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Abstract. More and more ontologies have been published and used
widely on the web. In order to make good use of an ontology, espe-
cially a new and complex ontology, we need methods to help under-
stand it first. Identifying potentially important concepts and relations
in an ontology is an intuitive but challenging method. In this paper, we
first define four features for potentially important concepts and relation
from the ontological structural point of view. Then a simple yet effective
Concept-And-Relation-Ranking (CARRank) algorithm is proposed to si-
multaneously rank the importance of concepts and relations. Different
from the traditional ranking methods, the importance of concepts and
the weights of relations reinforce one another in CARRank in an iterative
manner. Such an iterative process is proved to be convergent both in
principle and by experiments. Our experimental results show that CAR-
Rank has a similar convergent speed as the PageRank-like algorithms,
but a more reasonable ranking result.

1 Introduction

Ontology provides Artificial Intelligence and Web communities the remarkable
capability of specifying shared conceptualization explicitly and formally. A diver-
sity of ontologies have been widely used as the bases of semantic representation
in many applications such as knowledge bases, multi-agents and the Semantic
Web. As the amount, scale, and complexity of ontologies are increasing rapidly,
it requires more efforts for ontologists and domain experts to understand them.
Hence, Ontology Understanding, the process of getting familiar with an ontology
[4], has to seek helps from computer intelligence.

The state-of-the-art ontology engineering projects, like IsaViz, Ontoviz, and
Jambalaya, use information visualization techniques to represent ontologies. They
have the ability to help humans understand and navigate in complex information
spaces [9]. However, for a complex ontology, graphically presenting all concepts
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and relations indistinctively makes above tools generate unreadable visualization
results. Users who are unfamiliar with the ontology will probably get lost in such
a maze.

To resolve the problem, some researchers have proposed approaches by draw-
ing users’ attention to those potentially important (or alternatively interesting)
concepts within one ontology. They calculate the importance of concepts either
by tracking the user’s browsing activities [7], or according to the concept hierar-
chy [20]. These solutions are straightforward. While more detailed information
about ontology structure, like the correlation between concepts and relations, is
not explored. In some other studies, traditional link analysis ranking algorithms
on Web pages and objects are employed to rank the importance of concepts [3],
and even the importance of relations [8, 17]. These solutions need the help of
additional statistic information or time-consuming machine learning schemes.

In this paper, we propose a simple yet effective algorithm, named Concept
And Relation Ranking (CARRank), for identifying potentially important con-
cepts and relations in an ontology. By efficiently ranking the importance of con-
cepts and relations simultaneously, CARRank can find out which concepts and
relations might be the ones the ontology creator would like to suggest to users
for further consideration. In this way, CARRank can promote the usability for
ontology understanding. Users can even outline an interested sub-scope of an
ontology, of which important parts are taken out. Although CARRank is rather
an automatic ranking algorithm than a specific visualization approach, it can be
easily integrated into the existing ontology visualization tools to provide a novel
perspective. Main contributions of this paper include:

1) To make good use of ontology structural information, we give a graph repre-
sentation of ontology which makes it easy for applying link analysis ranking algo-
rithms while preserves the semantics expressed by RDF-based ontology languages.

2) To determine the potentially important concepts and relations in an on-
tology, we introduce an importance ranking model. The model tries to imitate
the creation process of an ontology from the ontological structural point of view
by defining four representative features.

3) To calculate the importance of concepts and relations, we propose an effi-
cient algorithm according to the model, named CARRank. The difference between
CARRank and existing PageRank-like algorithms is two-fold. Firstly, with this
algorithm, the importance of vertices (i.e. concepts) and the weights of edges (i.e.
relations) reinforce one another in an iterative process. Such a dynamic compu-
tation on edges weights as well as vertices importance has never been studied
previously. Secondly, the directions of walk for the algorithms are opposed, which
makes CARRank more suitable for supporting ontology understanding. CARRank
is proved to be convergent, and thus is universal for simultaneously ranking ver-
tices importance and edges weights in arbitrary directed labeled graph.

4) Experiments are conducted to demonstrate the effectiveness and efficiency
of the approach to support understanding of ontologies.

The remainder of the paper is organized as follows. We review the closely
related work in Section 2, and present our CARRank model in Section 3. We
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then bring forward the CARRank algorithm in Section 4. Experimental results
are shown in Section 5. The final section is about the conclusion and discussion.

2 Related Work

Cognitive Support for Ontology Understanding. The DIaMOND project
[7] and the holistic “imaging” ontology [20] are two most related studies. DIa-
MOND [7] is a plug-in for Protégé1 to help users find concepts of interest within
an ontology. By tracking user’s navigation activities on an ontology, it continu-
ously calculates the degree of interest for each concept. The navigation overhead
can thus be reduced by drawing user’s attention to the highlighted concepts
of high interest degrees. The degree calculation of this method is user-specific.
In [20], authors exploited degrees of interest of concepts as a filter for labeling
important concepts in a large scale ontology. Its degree calculation is holisti-
cally based on concept hierarchy without considering non-subsumption relations
between concepts. Our work differs from these approaches. First, we think that
the importance measurement of a concept should take into account the contribu-
tions from all the other concepts in the ontology through relations including both
subsumption and non-subsumption ones. Second, relations between concepts are
also helpful for ontology understanding.

Ontology Ranking in the Semantic Web. OntoSelect [6], OntoKhoj [18],
and AKTiveRank [1] are three approaches that were developed to select (or
rank) one or more ontologies that satisfy certain criteria [19], with an ontol-
ogy document as the ranking granularity. The first two approaches relied on
the popularity, which assumed that ontologies referenced by many ontologies are
more popular, while the third one considered several structural evaluation met-
rics, including Density (DEM), Betweenness (BEM), Semantic Similarity (SSM),
and Class Match measure (CMM). Although AKTiveRank does not intend to
rank the importance of concepts or relations in an ontology, the above complex
networks analysis metrics it employs are useful for reference in this work. Ac-
cording to the pre-existing statistic information on instances, Swoogle [8] could
enable both document level and term level ranking, including the class-property
relationship ranking.

Compared with this line of research, our study aims to finding out potentially
important information in a given ontology, so the granularity of output is concept
and relation, rather than a whole ontology. Besides, the method can evaluate the
importance of general relations of concepts, as well as concepts themselves. Fur-
thermore, no prior knowledge or user interaction is required, which may be more
applicable in dealing with new ontologies. Table 1 lists some of the differences.

Ranking Algorithms. In ranking Web pages, hyperlink is the only relation to
be considered. PageRank [5] pointed out that a good authority page is the one
pointed to by many good authorities. The evaluation is performed in a random
surfer manner over all pages on the Web graph. Unlike PageRank, HITS [13]
1 http://protege.stanford.edu/
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Table 1. Related Work in the Semantic Web

Concept Rank Relation Rank Ranking Methods
CARRank � � CARRank
DIaMOND � - Tracking users’ navigation
[20] � - Concept hierarchy
OntoSelect - - PageRank-like
OntoKhoj - - PageRank-like
AKTiveRank - - CMM+DEM+SSM+BEM
Swoogle � � PageRank-like

exploited a mutual reinforcing relationship between hub pages and authority
pages within a subgraph of the Web. By extension of PageRank and HITS,
Reverse PageRank [10] was investigated as a reasonable approach to browse the
Web, which reverses the direction of all hyperlinks before applying PageRank.
In this study, we browse an ontology in a similar manner to Reverse PageRank.

Apart from the hyperlink relation, there exist more edge types in an ontol-
ogy, such as property-of, subclass-superclass, etc. The edge type is an important
factor in determining the importance of vertices. This was addressed recently
in a series of object-level link analysis ranking algorithms. In the field of data-
base, ObjectRank [3] applied link analysis methods to rank the importance of
database objects and tuples. Different weights are set according to link types
either manually or by statistic information. PopRank [17] is a machine learning
approach to automatically assign the weights and rank the importance of Web
objects. These weight assignment approaches are not applicable for ontology un-
derstanding where absence of priori knowledge is fairly common. We attempt to
resolve it by evaluating the weights simultaneously in the ranking process accord-
ing to only the mutually reinforcing relationship between concepts and relations.

3 CARRank Model

3.1 Ontology Graph

Before any link analysis could be performed, an ontology should be represented
as a graph. As an ontology defines the concepts and the relations between them
in certain domain [16, 11], it is suggested to model a concept as a vertex and a
relation as a directed edge linking two concepts. We call such constructed graph
the ontology graph.

Definition 1. Given an ontology O, the ontology graph G = (V , E , lV , lE) of
O is a directed labeled graph. V is a set of nodes representing all concepts in O.
E is a set of directed edges representing all relations in O. lV and lE are labeling
functions on V and E respectively.

Definition 1 is a representation of an ontology at the syntactic level. Its semantic
capabilities will be presented in section 3.4.

The ontology graph illustrated in Figure 1 is our running example. It de-
scribes concepts and relations in an open software project domain, especially
the relationships between developers and projects.
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Fig. 1. The running example

3.2 Mapping RDF-Based Ontology to Ontology Graph

In practice, the most important ontology languages in the Semantic Web are
RDF Schema (RDFS) and OWL. In these languages, an ontology is expressed
as a set of triples. A triple (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an
RDF triple where U , B, and L are infinite sets of URI references, blank nodes,
and literals respectively. Here, s is called the subject, p the predicate, and o the
object of the triple. A set of such RDF triples is defined as an RDF graph [21],
and represented as a directed labeled graph as shown in Definition 2. We will
use the RDF graph to refer to both a set of RDF triples and its directed labeled
graph representation throughout the rest of this paper.

Definition 2. Let T be a set of RDF triples. The directed labeled graph
representation of T is G = (V, E, lV , lE), where

V = {vx|x ∈ subject(T ) ∪ object(T )}
E = {es,p,o|(s, p, o) ∈ T}

lV (vx) =

�
(x, dx) if x is literal (dx is datatype identifier)
x else

from(es,p,o) = vs, to(es,p,o) = vo, and lE(es,p,o) = p

V is the set of vertices in G. E is the set of directed edges. lV and lE are
labeling functions on V and E. subject(T ) and object(T ) are used to achieve all
the subjects and the objects in T . Function from() and to() return the starting
and ending vertex of an edge.

However, for the same ontology, an RDF graph and an ontology graph are
unequal. Suppose an ontology consists of a relation “manage” linking from
“Project Admin” to “Project”. The ontology graph is shown in Figure 2. To ex-
press the same semantics, an RDF graph needs two triples (manage, rdfs:domain,
Project Admin) and (manage, rdfs:range, Project) as shown in Figure 3.

The difference lies in that, for an ontology, a relation does not exist as a di-
rected edge but a vertex in an RDF graph. A relation is associated with a concept
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ProjectProject_Admin
manage

Fig. 2. An ontology graph representation

Project
rdfs:domain rdfs:range

Project_Admin manage

Fig. 3. An RDF graph representation

by the semantics of rdfs:domain or rdfs:range (the concept is named domain or
range accordingly). Such indirect relationships will hinder the importance prop-
agation during the ranking, because there is no path between the domain and
the range. Hence, we propose a map function ω to map an RDF graph to an
ontology graph in Definition 3.

Definition 3. Let G = (V, E, lV , lE) be the RDF graph of an ontology O. We
define a map ω : G → G as follows: ω(G) = (V , E , lV , lE) where,

V = V, lV = lV ,

E = {es,p,o|es,p,o ∈ E ∧ lE(es,p,o) �= rdfs:domain ∧ lE(es,p,o) �= rdfs:range}
∪ EDR ∪ ED ∪ ER,

EDR = {es,p,o|∃ep,rdfs:domain,s ∈ E ∧ ∃ep,rdfs:range,o ∈ E},

ED = {es,p,keg:Sink|∃ep,rdfs:domain,s ∈ E∧ � ∃ep,rdfs:range,o ∈ E},

ER = {ekeg:Source,p,o|∃ep,rdfs:range,o ∈ E∧ � ∃ep,rdfs:domain,s ∈ E},

∀es,p,o ∈ E , from(es,p,o) = vs, to(es,p,o) = vo, and lE(es,p,o) = p

Here, keg:Source and keg:Sink are defined to be the virtual domain and range of
those relations having no domain or range defined explicitly.

Each edge in the output ontology graph is an RDF triple. Therefore the same
relation can be distinguished between different domain concepts and range con-
cepts. The map removes those edges taking rdfs:domain or rdfs:range as their
labels, while adds new labeled edges to directly link the domains to the ranges
according to the rules in Definition 3. In this way, ω(G) presents an ontology
graph that preserves the semantics of G and makes it easy for ranking. Thus,
the RDF graph in Figure 3 can be mapped to the ontology graph in Figure 2. In
fact, our running example shown in Figure 1 is mapped from a real ontology2.

3.3 Model Description

The creation of an ontology is a composition process where the creator operates
with a set of concepts and relations. Hence, the ontology could be considered
as the image of the creator’s own understanding of the knowledge, just like
a literary work to its author. This phenomenon of human consciousness can
be best explained with William James’ famous stream of consciousness theory
[12]. He observed that human consciousness has a composite structure including
substantive parts (thought or idea) and transitive parts (fringe or penumbra), and
keeps moving from thought to thought. Transitive parts play an important role
in controlling the orderly advance of consciousness from one thought to another.
2 http://keg.cs.tsinghua.edu.cn/project/software.owl
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By analogizing concepts and relations to substantive parts and transitive parts,
the creation of an ontology could be described as drifting on the stream of the
creator’s consciousness of the domain knowledge from one concept to another
via a particular relation. The initially created concept has a certain possibility of
being one of the creator’s emphasis (suggestions to users). For the concepts to be
suggested, the creator would always like to create more relations to describe its
relationships with other concepts. Consequently, ontology users will implicitly
follow the creator’s stream of consciousness for understanding the ontology.

We characterize four features for potentially important concepts and relations
which drive the drift on the stream of consciousness. It turns out to be our model
for Concepts And Relations Ranking (the CARRank model):

1. A concept is more important if there are more relations starting from the
concept.

2. A concept is more important if there is a relation starting from the concept
to a more important concept.

3. A concept is more important if it has a higher relation weight to any other
concept.

4. A relation weight is higher if it starts from a more important concept.

There are three meanings here. First, it explains what is important (or al-
ternatively interesting). In this paper, term importance is used as a metric for
measuring the extent that the ontology creator suggests a concept or relation
to users. Second, a concept is regarded as a source that owns a set of relations
related to other concepts. We refer to this character as the hub like that in HITS
[13]. Finally, concepts and relations exhibit a mutually reinforcing relationship.

In our running example, concepts “Project”, “Project admin” and “Devel-
oper” are more attractive because they either have abundant relations to other
concepts (e.g. “Project”), or locate deeply in the subsumption hierarchy (e.g.
“Project admin”), or have a relation to other attractive concept (e.g. “Devel-
oper”). Accordingly, relation “manage” between “Project” and “Project admin”
becomes more meaningful. These observations coincide with the creator’s com-
ment that declares to emphasize the relationship between developers and projects.
Our inquiry to the creator about the design process is answered as follows: First
defined the concept “Project” with some decorative literals such as “Version” and
“Usage statistic”. Next, provided another concept “Developer” to complement
the description of “Project” through a relation “developed by” from “Project”
to “Developer”. Then, a hierarchy was built about “Developer” from “Person”
to “Project admin”. The process continued until all information was included.

3.4 Semantic Abilities

By using ω mapping, any RDF-based ontology, like RDF Schema, DAML+OIL,
and OWL (including three increasingly-expressive sublanguages: OWL Lite,
OWL DL, and OWL Full), can be ranked with the CARRank model. In the
section of experiments, we will further analyze the ranking results of CARRank
for the same ontology in three languages with different expressive powers.
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Furthermore, CARRank even has the ability to support axioms expressed
as rules, e.g. SWRL [22] rules, because there exists RDF-compatible model-
theoretic semantics [15] of SWRL by which we can interpret SWRL rules in the
framework of RDF graphs. In a broad sense, any inference scheme for ontology
is supported by CARRank, if it is resolvable on the level of RDF graphs.

Moreover, since a relation is represented as a vertex in an RDF graph, and
then kept in the ontology graph after ω mapping, the hierarchies and proper-
ties of relations will also impact the global importance of these relations. That
means if there is a deeper hierarchy or more properties for a specific relation,
the importance of that relation is higher. Here, whereas we only concern about
the comparison locally among relations starting from the same concepts rather
than globally among all relations, because the importance may be quite different
when associated with different concepts.

Finally, since ontology understanding is affected by many factors, here the
importance only means some potential to be important in our context.

4 CARRank Algorithm

Definition 4. Suppose an ontology graph G has |V| = n ≥ 1 concepts v1, ..., vn ∈
V. The adjacency matrix representation of G, A = (ai,j), is a n×n matrix
where 1 ≤ i, j, k ≤ n and

ai,j =

{
1 if ∃ei,k,j ∈ E ,

0 otherwise.
(1)

Let w(vi, vj) be a relation weight function, and wi,j = w(vi, vj) be the weight of
all relations from vi to vj. The relation weight matrix representation of G,
W = (wi,j), is a n × n matrix where 1 ≤ i, j, k ≤ n, and{

0 < wi,j ≤ 1 if ∃ei,k,j ∈ E ,

wi,j = 0 otherwise.
(2)

Definition 5. For any concept vi ∈ V, the forward concepts of vi are defined
as Fvi = {vj|vj ∈ V∧∃ei,k,j ∈ E}, and the backward concepts of vi are defined
as Bvi = {vj |vj ∈ V ∧ ∃ej,k,i ∈ E}.

Definition 6. Suppose an ontology graph G has |V| = n ≥ 1 concepts v1, ..., vn.
Let r(vi) be an importance function on V, and ri = r(vi) be the importance value
of vi where 0 ≤ ri ≤ 1,

∑
ri = 1, and W = (wi,j) be the relation weight matrix.

We call R = (r1, ..., rn) the ontology graph G’s concept importance vector ,
and Li = (r1wi,1, · · · , rnwi,n) the concept vi’s relation importance vector .

It is possible that there exists more than one relation from concept vi to concept
vj . Therefore, rjwi,j is the total importance value of all the relations from concept
vi to concept vj . Suppose there are m > 0 such relations, ei,k1,j , ..., ei,km,j . We
define the importance of individual relation ei,kl,j to be rjwi,j

m for any 1 ≤ l ≤ m.
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Since a concept, like a hub according to the first two features of our model,
sinks the importance of other concepts, the computation for the importance is
totally the reverse of the process in PageRank. In fact, CARRank traces the
stream of consciousness reversely similar to the idea of Reverse PageRank [10].
The difference is that it updates the weight of relations during the iteration
according to the last two features of the model. Given an ontology graph G =
(V , E , lV , lE), after k (k = 0, 1, 2, ...) iterations, the importance of a concept s ∈ V
and the weight of relation(s) from s to another concept t ∈ V are written as
rk+1(s) and wk+1(s, t) respectively. They are recursively evaluated in Equations
3 and 4.

wk+1(s, t) =
rk(s)∑

ti∈Bt

rk(ti)
(3)

rk+1(s) =
1 − α

|V| + α
∑

ti∈Fs

rk(ti)wk+1(s, ti) (4)

Like PageRank-like algorithms, we use a damping factor 0 < α < 1 as the
probability at which CARRank will get bored of reversely tracing the stream of
consciousness and begin looking for another concept on the ontology graph.

Equations 3 and 4 reflect the features of our potentially important concepts
and relations model. Equation 3 formalizes the last feature, which computes the
weight of relation(s) starting from concept s to concept t at the (k+1)th iteration.
The weight is in proportional to the importance of s and in the inverse ratio of the
sum of all importance of t’s backward concepts at the kth iteration. Therefore, an
important concept will increase the weight of those relations starting from itself.
Equation 4 formalizes the first three features, which compute the importance
of concept s at the (k + 1)th iteration. The importance consists of two parts.
One is contributed by all the importance of s’s forward concepts and the weight
of relations from s to the forward concepts with probability α. The other is
contributed by some independent jump probabilities (here is 1

|V|) when CARRank
leaves the current stream of consciousness with probability 1 − α.

For any initial distribution of concept importance vector R0 = (r0
1 , r

0
2 , ..., r

0
n),

we have proved3 that the iterative sequence {Rk | k = 0, 1, 2, ...} will converge
to R∗ which is the solution of this non-linear equations, i.e. the final result
of concept importance vector. Correspondingly, W∗ is the final result of the
relation weight matrix. In numerical analysis, it is reasonable to take Rk+1 as
the approximation of R∗ and stop the iterative process, if the difference between
two successive iterations ‖ Rk+1 − Rk ‖ is small enough. Thus ranking the
importance of the concepts is performed by sorting the entries in R∗. With a
slight effort, ranking the importance of the relations related to certain concept
is performed by sorting the entries in the relation importance vector which is
computed with W∗ and R∗.
3 For the details of the proof, see our technical report [24]. The proof indicates that

CARRank is a flexible algorithm for evaluating the importance of vertices and edges
simultaneously in any kind of directed graph.
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Let A be the adjacency matrix representation of an ontology graph4, and S be
the initial concept importance vector. In terms of Equation 3, 4 and the above
descriptions, we present the CARRank algorithm as follows.

CARRank(A, S)
1 R0 ← S, W0 ← 0, k ← 0
2 repeat
3 Σ ← ARk

4 for i← 1, 2, ..., n
5 do for j ← 1, 2, ..., n
6 do if σk

i,j �= 0

7 then wk+1
i,j ←

rk
i

σk
i,j

8 Rk+1 ←Wk+1Rk

9 d← ‖Rk‖1 − ‖Rk‖1
10 Rk+1 ← Rk+1 + dE
11 δ ← ‖Rk+1 −Rk‖1
12 k ← k + 1
13 until δ < ε
14 return (Wk, Rk)

The algorithm consists of two parts, the update of the relation weight matrix
(line 3 to 7) and the update of the concept importance vector (line 8 to 10). σk

i,j is
the sum of ranks of concepts which are i’s backward concepts at step k. Damping
factor α in Equation 4 is represented in vector as E where ‖E‖1 = α. Ignoring the
differences in concepts, E is usually a uniform distribution. Threshold 0 < ε < 1
controls the termination of the iteration. The algorithm returns Rk and Wk as
the limits of the concept importance vector and the relation weight matrix.

5 Experiments

We study the feasibility of CARRank from three aspects: ranking qualities, se-
mantic abilities, and efficiencies.

5.1 Experimental Settings

Evaluation Metrics. The metric for measuring the efficiency of ranking algo-
rithms is the number of iterations k that minimizes the difference between two
successive iterations ‖ Rk+1 −Rk ‖ to a given threshold ε. A smaller k indicates
a faster convergence.

In order to measure the quality of concepts ranking results, we employ a
variant first 20 precision metric [14]. The improved first 20 precision, ˜P@20 =
n1∼3×20+n4∼10×17+n11∼20×10

279 , assigns different weights for the first 3, the next 7,
and the last 10 results to increase the value for ranking effectiveness.

Similarly, we define PR =
�

c∈C1∼20
mc
5

|C1∼20| to measure the quality of relation
ranking results, where C1∼20 is the relevant concepts in the first 20 most im-
portant concepts, and mc is the count of relevant relations in the first 5 most
important relations starting from concept c.
4 A is obtained by parsing an ontology file into an RDF graph, and mapping it to an

ontology graph, and finally constructed according to Definition 4.
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A higher value of ˜P@20 or PR means a better quality of ranking the impor-
tance of concepts or relations.

Ranking Methods. Most of the related work in Section 2 are not specific for
ontology understanding as shown in Table 1. Appropriate modifications are made
in order to make them comparable. 1) We choose the standard PageRank(PR)
algorithm [5] on behalf of those PageRank-like algorithms. 2) We extract the
importance based labeling method from [20] which represents the methods that
only consider concept hierarchy(CH). 3) AKTiveRank [1] algorithm is modi-
fied by only considering the aggregation of density and betweenness measures
(DEM+BEM) for each concept as the importance. CMM and SSM are irrele-
vant to the task of ontology understanding.

Experimental Environments. The experiments were carried out on a Win-
dows 2003 Server with two Dual-Core Intel Xeon processors (2.8 GHz) and 3GB
memory. For some ranking methods, let damping factor α = 0.85, and threshold
ε = 1 × 10−6 by default.

5.2 Ranking Qualities

To evaluate our proposed approach, we tried to collect representative ontologies
and their accurate answers (a list of ranked concepts and relations) as pos-
sible as we could. In this experiment, four representative ontologies from the
SchemaWeb5 dataset are selected as shown in Table 2. “OWL” is a well-known
meta ontology. “Software Project” is a full version of our running example which
has a small number of concepts and relations, while, “Copyright Ontology” and
“Travel Ontology” are more complex.

Table 2. Four ontologies

Concept# Property# URL
OWL 17 24 http://www.w3.org/2002/07/owl.rdf

Software Project 14 84 http://keg.cs.tsinghua.edu.cn/persons/tj/ontology/software.owl

Copyright Ontology 98 46 http://rhizomik.net/ontologies/2006/01/copyrightonto.owl

Travel Ontology 84 211 http://learn.tsinghua.edu.cn:8080/2003214945/travelontology.owl

We take the ontology creators’ feedback to the ranking task as the reference
answers. We sent emails to the four contact creators, and got three ranks (for
Software Project, Copyright Ontology, and Travel Ontology) and one suggestion
(the creator of OWL recommended [23] as his answer) back in their replies. In
our inquiry email, the following ranking instruction is described:

For each ontology file, list top 20 (or as many as you like) important
concepts (with URI) of your ontology in your mind. And for each top
concept, please give top 5 (or as many as you like) important relations
(with URI) for that concept.

5 http://www.schemaweb.info/
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Table 3. The importance of concepts – Software ontology

Rank Reference Answer PageRank DEM+BEM CARRank User Study
1 Project Message Project Project Project
2 Member has usage statistics Usage statistics Usage statistics Category
3 Developer statistics bugs Developer Statistic record Message
4 Category statistic record support Statistic record Developer Discussion
5 Public forum Member Member Category Help
6 LastestNew Project Message Release package Person
7 Message Developer Public forums Member Member
8 Version Category Person Message Developer
9 homepage super category Category Help Project admin
10 Usage statistics page views Project admin Public forums Public forums

Table 4. The importance of relations – Software ontology

Top 5 Ranking results
Concepts Reference Answer CARRank User Study

1 title has usage statistics project homepage
2 summary developed by title

Project 3 activity ranking belong to category activity ranking
4 project homepage translations has public forum
5 project of statistic intended audience has usage statisitics
1 login name post message person name
2 publicly displayed name site member since

Member 3 email address login name
4 user id email address
5 site member since publicly displayed name
1 skills member of project person name
2 project role project role

Developer 3 skills
4 user id
5
1 hasProject hasProject super category
2 category name sub category sub category

Category 3 super category super category category name
4 sub category category name hasProject
5
1 hasMessage hasMessage hasMessage
2 belong to project

Public Forum 3 project of forum
4
5

With these reference answers, we compare CARRank with the four other rank-
ing methods mentioned above and a user study. The user study was conducted
on 5 volunteers whose research interests include the Semantic Web. We provided
each volunteer the four ontologies that they never knew about before, in their
original file formats, e.g. RDF or OWL. And then, for each ontology, volunteers
were required to independently give the top 20 important concepts and the top
5 important relations for each top concept as their own ranking results. In this
way, given one of the four ontologies, for each volunteer, we can computed a
˜P@20 value and a PR values according to his/her ranking results. The arith-
metic means on five ˜P@20 values and five PR values are used to represent the
corresponding metrics of the user study.

Table 3 and 4 present the comparisons on concepts and relations ranking for
a full version of our running example. Here, we choose one of the five ranking
results collected in the user study which has the highest ˜P@20 value.

Items listed in italic bold font are relevant ranking results. In Table 3, there are
5 relevant items in the first 10 ranking results for PageRank, 7 for DEM+BEM,
7 for CARRank, and 6 for the user study. Obviously, CARRank and DEM+BEM
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both have better ranking qualities than the user study. It means that they can
somewhat support the ontology understanding. It also shows that PageRank
is not a proper method in ranking the importance of concepts with less rele-
vant results than the user study. Both CARRank and DEM+BEM rank concept
“Project” the first place. The major difference of their results is that DEM+BEM
considers “Person” and “Project admin”, while CARRank considers “Help” and
“Release package”. However, “Person” is relatively not important in this on-
tology because it is a base class of “Developer” and “Member” in the class
hierarchy and rarely instantiated. PageRank fails in ranking “Project” the first
place, which greatly lower its ranking qualities.

As the other four ranking methods do not directly support to rank the im-
portance of relations, Table 4 only gives the comparisons of CARRank and the
user study. It lists the first 5 relations (if available) starting from each concept of
the first 5 concepts in the reference answers6. Apparently, CARRank can better
reflect the importance of relations except for the concept “Project”, since its
ranking results are closer to the reference answers most of the time. For concept
“Project”, several owl:DatatypeProperty type relations, e.g. “title”, “summary”,
“activity ranking”, and “project homepage”, are given in the reference answers.
Such relations usually link to those simple data type values which have no out-
going edges hence very low importance as concepts. Therefore, according to
Equation 3, owl:DatatypeProperty type relations are assigned low importance.
We believe that it is beyond the scope of link analysis ranking algorithms.

We further examine the quality of ranking results with ˜P@20 and PR. The
comparisons are illustrated in Figure 4 and Table 5. CARRank has some affir-
mative ability for helping ontology understanding, because it obtained a better
result than the user study did. Though the precision of CARRank for “Software”
is only about 4 percentage higher than that of users’ decision, the degree of the
support will be amplified along with the increase of the ontology’s scale and com-
plexity as shown in Figure 4. We find users can hardly decide the top important

owl software copyright travel
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Fig. 4. The Comparison of Ranking Concepts

Table 5. The Comparison of
Ranking Relations

CARRank User
copyright 0.06 0
software 0.586 0.562

6 In fact, every concept listed in Table 4 has more than five relations except “Pub-
lic Forum”. However, the creator could not provide us more relations than the ref-
erence answers.
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concepts for “Copyright Ontology” for its complexity. Obviously, CARRank is
helpful in this case. Another interesting observation is that our algorithm is also
effective to those meta ontologies like “OWL”.

5.3 Comparison of Semantic Abilities

To exhibit the semantic abilities of CARRank, we generate three variations of
FOAF ontology7, i.e. OWL-Full, OWL-DL, and OWL-Lite, with a tool named
foaf cleaner [2]. Then, CARRank is applied on the three versions of FOAF and
the original FOAF. Results are shown in Table 5.

Original OWL-Full OWL-DL OWL-Lite
Person 1 1 1 1
Document 2 2 2 2
Organization 3 3 3 5
Project 4 4 4 4
Agent 5 5 5 3
OnlineEcommerceAccount 6 6 6 7
OnlineChatAccount 7 7 7 8
OnlineGamingAccount 8 8 8 9
OnlineAccount 9 9 9 10
PersonalProfileDocument 10 10 10 11
Image 11 11 11 6
Group 12 12 12 12
Pearson Correlation Coefficients 1.0 1.0 0.867

Fig. 5. Top 10 Concepts for FOAF

Table 6. Top 10 Concepts for
CYC

Rank Concepts
1 RNAPolymerase
2 ExtensionOf-C-Regular
3 ClosedUnderGeneralizations-Classical
4 NetworkPortNumber
5 SimpleWord
6 GLFGraph
7 BrigadeOrRegimentSized
8 BrigadeOrRegimentSized
9 ExtensionOf-K-Normal
10 GLFAnalysisDiagramGraph

There are totally 12 concepts involved. The values in the first two columns
are the concepts and their ranks produced by applying CARRank on the original
FOAF ontology. The values in the last three columns are the ranks for the three
versions. We use the Pearson Correlation Coefficient to measure the similarity of
ranking results between one OWL version and the original version. The ranking
results for the OWL-Full and OWL-DL are the same as that for the original
one, though owl:imports of the OWL and RDFS ontologies are removed from the
original, and owl:InverseFunctionalProperty on owl:DatatypeProperty is removed
from OWL-Full. The only affection happens to the ranking results of OWL-Lite
when owl:disjointWith is removed from OWL-DL. However, the similarity is still
over 85%. This indicates that CARRank can capture most of the semantics even
when the language expressive power changes.

Another challenge for semantic abilities of CARRank is to rank large scale
ontologies, e.g. CYC8 (23.7MB). Large scale ontologies are always developed
collaboratively by many creators for a long time. Because of the limitations of
individual creator and the limitation of the time, a global design intention may
be unstable or even inconsistent. The interesting ranking results of CYC are
listed in Table 6. There are 30432 classes and properties defined with 254371
RDF triples. It seems that CARRank ranks higher some abstract concepts for
7 http://xmlns.com/foaf/spec/
8 http://www.cyc.com/2004/06/04/cyc
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their complicated class hierarchy constructed with rdfs:subClassOf. Although it
is hard to determine the quality of ranking results for such large scale ontology,
we still suggest to use CARRank to periodically rank the concepts during its
composition in order to discover early the deviation of design intention.

5.4 Efficiencies

Convergence Comparison. Figure 6 presents the comparisons among PageR-
ank, Reverse PageRank, and CARRank. Rankings are performed on “Relation-
ship”9 ontology which has 169 vertices and 252 directed labeled edges in its
ontology graph. Obviously, CARRank and Reverse PageRank have conformable
convergent speed because both consider the hub score instead of authority score.
The only difference is that the additional time spent on updating the relation
weight matrix makes CARRank a little slower than Reverse PageRank.

On the other hand, the convergent speed of both CARRank and Reverse
PageRank are quite different from that of PageRank. The reason is that PageR-
ank considers authority score instead of hub score. Therefore, the convergent
speed may be various with respect to the topological structure of the ontol-
ogy graph. In Figure 6 the convergent speed of PageRank is much faster. How-
ever, take “UNSPSC”10 ontology on SchemaWeb for another example. There are
19600 vertices and 29386 directed labeled edges. As shown in Figure 7, CARRank
and Reverse PageRank express the same convergent speed and converge to the
threshold early than PageRank. In any case, the convergent speed is acceptable
for CARRank.

Fig. 6. Convergence (“Relationship”) Fig. 7. Convergence (“UNSPSC”)

6 Conclusion and Discussion

CARRank is a simple yet effective algorithm for identifying potentially impor-
tant concepts and relations in an ontology. The experimental results show the
feasibility of CARRank from the ranking qualities and the semantic abilities.

9 http://purl.org/vocab/relationship/
10 http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml
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Although ontology understanding means much more than our proposed solu-
tion. we expect CARRank to be a preliminary step towards identifying potentially
important concepts and relations user-independently. In addition, we also agree
that being user-independent may not meet all the needs of application. Fortu-
nately, CARRank can be personalize by letting user provide a sub-graph of the
ontology which mainly contains the concepts and relations concerned about. It
would be interesting to explore the ranking based on users’ tasks and needs in
the future work.
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H. (eds.) IICS 2003. LNCS, vol. 2877, pp. 65–79. Springer, Heidelberg (2003)

[11] Gruber, T.R.: What is an ontology (December 2001)
[12] James, W.: The principles of psychology. Harvard (1890)
[13] Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.

ACM 46(5), 604–632 (1999)
[14] Leighton, H.V., Srivastava, J.: First 20 precision among world wide web search

services (search engines). Journal of the American Society for Information Sci-
ence 50(10), 870–881 (1999)

[15] Mei, J., Boley, H.: Interpreting swrl rules in rdf graphs. Electr. Notes Theor.
Comput. Sci. 151(2), 53–69 (2006)

http://www.mindswap.org/2005/foaf_cleaner/


Identifying Potentially Important Concepts and Relations in an Ontology 49

[16] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout,
W.R.: Enabling technology for knowledge sharing. AI Mag. 12(3), 36–56 (1991)

[17] Nie, Z., Zhang, Y., Wen, J.-R., Ma, W.-Y.: Object-level ranking: bringing order
to web objects. In: WWW, pp. 567–574 (2005)

[18] Patel, C., Supekar, K., Lee, Y., Park, E.K.: Ontokhoj: a semantic web portal for
ontology searching, ranking and classification. In: WIDM, pp. 58–61 (2003)

[19] Sabou, M., Lopez, V., Motta, E.: Ontology selection for the real semantic web:
How to cover the queens birthday dinner? In: Managing Knowledge in a World of
Networks. LNCS, pp. 96–111. Springer, Heidelberg (2006)

[20] Tu, K., Xiong, M., Zhang, L., Zhu, H., Zhang, J., Yu, Y.: Towards imaging large-
scale ontologies for quick understanding and analysis. In: Gil, Y., Motta, E., Ben-
jamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729. Springer, Heidel-
berg (2005)

[21] W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax
(2004), http://www.w3.org/TR/rdf-concepts/

[22] W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML
(2004), http://www.w3.org/Submission/SWRL/

[23] Wang, T.D., Parsia, B., Hendler, J.: A survey of the web ontology landscape. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

[24] Wu, G.: Understanding an ontology by ranking its concepts and relations. Tech-
nical report, Tsinghua University (January 2008),
http://166.111.68.66/persons/gangwu/publications/kegtr-carrank.pdf

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/Submission/SWRL/
http://166.111.68.66/persons/gangwu/publications/kegtr-carrank.pdf

	Identifying Potentially Important Concepts and Relations in an Ontology
	Introduction
	Related Work
	CARRank Model
	Ontology Graph
	Mapping RDF-Based Ontology to Ontology Graph
	Model Description
	Semantic Abilities

	CARRank Algorithm
	Experiments
	Experimental Settings
	Ranking Qualities
	Comparison of Semantic Abilities
	Efficiencies

	Conclusion and Discussion
	References


