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Identifying probable Post-Traumatic Stress Disorder: Applying supervised 

machine learning to data from a UK military cohort 

Background: Early identification of probable post-traumatic stress disorder (PTSD) can lead to early 

intervention and treatment.  

Aims: This study aimed to evaluate supervised machine learning (ML) classifiers for the identification 

of probable PTSD in those who are serving, or have recently served in the United Kingdom (UK) 

Armed Forces. 

Methods: Supervised ML classification techniques were applied to a military cohort of 13,690 

serving and ex-serving UK Armed Forces personnel to identify probable PTSD based on self-reported 

service exposures and a range of validated self-report measures. Data were collected between 2003 

and 2009. 

Results: The predictive performance of supervised ML classifiers to detect cases of probable PTSD 

were encouraging when compared to a validated measure, demonstrating a capability of supervised 

ML to detect cases of probable PTSD. It was possible to identify which variables contributed to the 

performance, including alcohol misuse, gender and deployment status. A satisfactory sensitivity was 

obtained across a range of supervised ML classifiers but specificity was low, indicating a potential for 

false positive diagnoses.  

Conclusions: Detection of probable PTSD based on self-reported measurement data is feasible, may 

greatly reduce the burden on public health and improve operational efficiencies by enabling early 

intervention, before manifestation of symptoms. 

Declaration of Interests: NTF is a member of the Independent Group Advising on the Release of 

Data for NHS Digital and a trustee of The Warrior Programme. DL, VW and JD declare that they have 

no competing interests.  

Keywords: supervised machine learning, post-traumatic stress disorder, armed forces, classification, 

veteran, military, mental health.   
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Introduction 

The mental health of any solider influences their operational effectiveness, health and wellbeing 

(Payne et al., 2013; Rona et al., 2007). It has been shown to be an important factor in their retention 

and productivity while being a member of the Armed Forces (AF; Fear et al., 2010; Hotopf et al., 

2006; Rona et al., 2012). Similarly, service leavers with poor mental health are at an increased risk of 

dysfunction and social exclusion (Fear et al., 2010; Hotopf et al., 2006; A. Iversen et al., 2005). 

Exposure to traumatic events is not uncommon during military service and can contribute to the 

development of post-traumatic stress disorder (PTSD; Greenberg et al., 2011; Murphy et al., 2017). 

Previous research has shown between 7% and 30% of United Kingdom (UK) AF are likely to suffer 

from PTSD (Dickstein et al., 2015; Greenberg et al., 2011).  

Early identification and treatment of PTSD is vital to prevent manifestation of chronic symptoms 

(Bryant, 2003; Karstoft et al., 2015; Kelly et al., 2012; Otis et al., 2003). Many studies have estimated 

the likelihood of PTSD using probabilistic and regression modelling (O’Donnell et al., 2007; Orcutt et 

al., 2004; Rona et al., 2012; Sterling et al., 2011), but due to large quantities and increased 

complexity of data collected more sophisticated modelling methods may be useful.  

Machine learning (ML) classifiers generate sophisticated statistical models that describe behaviours 

and patterns in data at an abstract level (Koza et al., 1996; Samuel, 1959). There are multiple 

branches of ML; in this work we use supervised ML. Supervised ML is capable of automatically 

learning from data (usually a set of variables, which represent a single dimension of the data), 

making predictions on what has been observed (referred to as outcome in ML literature) (Gentleman 

et al., 2008). This is achieved by using labelled training data (referred as input data) to learn data 

distributions and patterns, and when presented with testing data (which does not contain a label), 

the ML predicts which label it believes is the outcome.   

Supervised ML has been found to be helpful in the diagnosis and personalisation of physical 

conditions such as the monitoring of musculoskeletal impairment with age (Ahad et al., 2008; 

Leightley et al., 2017). In genetics, Khondoker et al. (2013) performed a comparison of ML methods 

for classifying Bipolar gene expression, MRI brain imaging and Electroencephalographic datasets. 

The authors found that ML performed well in multiple testing scenarios, when altering the 

parameters (used to define the complexity and structure) and obtained acceptable outcome results.  

The application of ML in PTSD detection is more limited. Only one study (Karstoft et al., 2015) has 

used supervised ML for PTSD prediction to date. Karstoft et al. (2015) found that ML was capable of 

accurately detecting probable PTSD of a Danish military cohort. The term probable PTSD is 
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determined based on participants completing a self-report measure and is therefore not a clinical 

diagnosis, nevertheless it is a useful indicator of the likelihood of having PTSD (Blanchard et al., 

1996; Rona et al., 2012). However, the interpretation of these findings is limited as this study used 

only one ML technique, and a small number of data points.  

The move to supervised ML-based approaches offers many advantages in developing automated, 

real-time systems to identify those who may be at risk of a mental health condition without the 

need for continuous self-reporting (Andreu-Perez et al., 2015; Schneeweiss, 2014).  The aim of this 

study is to use several supervised ML classifiers to predict probable PTSD in a large, representative, 

UK military cohort, with advancements over current methodologies and studies by including a 

greater number of participants, using the literature to determine variable selection and evaluating 

which variables which contribute most to the prediction.  
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Methods 

Participants 

This study used the King’s Centre for Military Health Research (KCMHR) cohort, which is a 

longitudinal cohort of the UK AF (Fear et al., 2010; Hotopf et al., 2006). Data was collected in two 

phases. Phase 1 data collected in 2004-2006 from a sample of personnel deployed to the Iraq war 

during 2003 and a sample of personnel who did not deploy at that time. Phase 1 participants were 

then followed up in Phase 2 (2007-2009), where two new samples were introduced to represent the 

socio-demographics and deployment characteristics of the AF at that time. A comprehensive 

description of the methods and rational for the study has been previously reported (Fear et al., 

2010; Hotopf et al., 2006). In total, 13,856 AF personnel provided data that was collected in either 

(or both) phases. The most recent record was used for each participant irrespective of phase (e.g. if 

a person is in both phases, only phase 2 data was used; if a person was in one phase, only that data 

was used).   

KCMHR cohort received ethical approval from the Ministry of Defence research ethics committee 

and King’s College Hospital local research ethics committee.  

Self-Report Measure of Probable PTSD   

Each participant was asked to complete the PTSD Checklist Civilian Version, (PCL-C; Blanchard et al., 

1996), based on the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric 

Association, 2013), which consists of 17-items assessing five re-experiencing, seven avoidance and 

five hyper-arousal symptoms, was used to categorise cases of probable PTSD. The PCL-C was used in 

preference to the military version because it is less restrictive in populations that may have 

experienced traumatic events unrelated to deployment. There are a variety of different cut-offs used 

for the PCL-C, but a cut-off of 50 has been widely used in both UK (Hotopf et al., 2006) and United 

States (Hoge et al., 2004) military studies, it is therefore used in this study.  

166 participants did not complete the PCL-C measure and were excluded, resulting in a study sample 

of n=13,690. 

Model Inputs (Training)  

To train each ML classifier, variables were extracted from the KCMHR cohort dataset; these were 

selected based on their availability in routinely collected AF data and use in similar studies (Karstoft 

et al., 2015).   
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The following is a list of descriptive data variables used: age (continuous), gender (male/female), 

children under 18 years (y/n), level of education attainment (categorical), marital status 

(categorical), smoking (y/n), consumes alcohol (y/n), service (e.g. RN, RM, Army, RAF; categorical), 

role (e.g. regular or reserve; categorical), combat role (y/n) and deployment zone: Afghanistan (y/n), 

Iraq (y/n), Bosnia &Kosovo (y/n), Bosnia-Herzegovina (y/n), Falklands (y/n), Gulf (y/n), Kosovo (y/n) 

and Northern Ireland (y/n).  

A range of self-reported psychometric measures were included based on previous literature (A. C. 

Iversen et al., 2009; Jones et al., 2013; Kessler et al., 2014; O’Donnell et al., 2007; Rona et al., 2012). 

AF personnel completed the following questionnaires: General Health Questionnaire (GHQ-12, those 

scoring  4; binary, Goldberg et al., 1997), GHQ-12 case (y/n), Alcohol Use Disorders Identification 

Test score (AUDIT; Saunders et al., 1993) and AUDIT case (those scoring  16, binary; Fear et al., 

2010). 

Alongside descriptive and self-reported variables, a binary variable (0: no PTSD, 1: probable PTSD), 

was included for each participant (see previous section). This label allowed supervised ML to 

generate the training data and learn the patterns/differences between those with probable PTSD 

and those without.  

Prediction (Testing) 

Unlike model inputs (training), caseness of probable PTSD is not included in the testing data. Simply, 

for each prediction (outcome), classifiers are blinded to the correct result, where they make a 

prediction of the class. To assess if the outcome was correct, a comparison was made between PCL-C 

caseness (PCL-C score > 50) and the result of the classifier.  

Evaluation 

In this study, the following supervised ML classifiers were selected:  Support Vector Machines (SVM; 

Cortes et al., 1995), Random Forests (RF; Breiman, 2001), Artificial Neural Networks (ANN; 

McCulloch et al., 1943) and Bagging (Breiman, 1996). SVM was selected as it had been used by 

Karstoft et al. (2015) in detecting probable PTSD. RF, ANN and Bagging were selected based on their 

popularity and proven reliability in health-related research (Khondoker et al., 2016; Leightley et al., 

2017; Nitze et al., 2012).  

This study employed a similar data processing approach to Karstoft et al. (2015). Prior to undertaking 

any analyses, variables were standardised to normalise the distribution. Any missing values in the 

dataset were imputed using k-nearest neighbours algorithm (Freidman et al., 1977; Karstoft et al., 
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2015), where a missing value is replaced with a weighted mean of the k-nearest neighbours based 

on their Euclidean distance. This consideration is important to ensure that missing data does not bias 

the modelling process (Hastie et al., 1999). The proportion of missing data was <10% across the 

dataset.  

Data resampling, variable importance and testing was performed using 100 iterations to consider 

variance and to assess the repeatability of the results. In each iteration, a random 80% of the data 

was selected for training and the remaining 20% used for testing. Since the outcome is unbalanced 

(3.95% are probable PTSD cases), each dataset (training and testing) contained an equal ratio of 

probable PTSD cases. This was performed due to the large number of non-PTSD cases (96.05%).  

Parameter selection was undertaken using 10-fold cross-validation, a common fine-tuning technique 

(Stone, 1974). In this procedure, training data was randomly split into ten equally sized non-

overlapping subsets with the same ratio of cases. The classifier is then trained on nine of these 

random subsets, and tested on the tenth subset. This process is repeated until all sub-sets have been 

used for testing. The outcome of this validation is a set of training parameters which were identified 

as the most ‘suitable’ to train the model to achieve the best sensitivity outcome. The most suitable 

parameters are used to train the final model using all the training data and evaluated on the testing 

dataset.  

ML models are sensitive to small variations in data and it is important to be able to identify which 

variables contribute towards the prediction. During each iteration, stabilised variable selection using 

bootstrapping is employed (Bi et al., 2003). Variable selection is repeated with each iteration 

(defined previously). To determine the order in which variables contributed to the prediction, model 

outputs are evaluated, detailed description is provided in Guyon et al., 2003.  

Success of each ML is reported as sensitivity, specificity and Matthews Correlation Coefficient (MCC) 

across all testing iterations.  

Analyses and machine learning were performed using Matlab 2016a and the Image Processing 

Toolbox (The Mathworks Inc).  
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Results  

The results were generated using an automated script, on a machine with the following 

specifications; Windows 10 operating system, i7 processor, Nvidia GeForce GTX 1050 Ti and 16GB of 

RAM.  The total computational processing time was approximately 19 hours.  

Sample demographics (n=13,690) are presented in Table 1.  

Prediction of probable PTSD 

The performance of each ML classifier is presented in Table 2. Overall performance varied between 

ML classifiers, RF (accuracy: 0.97, SD: 0.13, CI 0.97-0.98) provided the highest accuracy rate 

(alongside the largest SD); on the other hand, SVM (sensitivity: 0.70, SD: 0.08, CI 0.69-0.84) obtained 

the highest sensitivity rates.  

Variable Importance 

Of the 23 variables used for training, the five highest ranked variables over all iterations, based on 

the highest contribution to prediction were identified for each classifier and are presented in Table 

3, with the most common variables including AUDIT score, AUDIT case and GHQ-12.  
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Discussion 

This study examined the potential for using supervised ML to identify UK AF personnel who have 

probable PTSD. Overall, our results demonstrated an accuracy of 0.89 or greater for all ML classifiers 

evaluated. Sensitivity analyses identified that cases of probable PTSD (true positive) could be 

identified alongside a high specificity to detect those without a probable PTSD diagnosis. These 

results extend previously published works, demonstrating the capability and suitability of ML 

classifiers in detecting probable PTSD (Karstoft et al., 2015).   

In the UK, there is a moral obligation and duty of care to service personnel, as enshrined in the 

Armed Forces Covenant (House of Commons Defence Committee, 2015) to its AF by the ‘People of 

the United Kingdom’ (The Ministry of Defence, 2015). This study could contribute towards meeting 

these obligations by providing an early diagnostic tool by predicting those who may be susceptible to 

a probable PTSD diagnosis, enabling early intervention and treatment; further ensuring military 

fitness and operational readiness (Murphy et al., 2017). Similarly, ML application in other mental 

health conditions (e.g. anxiety, depression) and occupational settings (e.g. police, firefighters, 

paramedics) should be further explored.  

This study used the PCL-C to identify cases of probable PTSD; it has previously been validated against 

a clinical interview (Blanchard et al., 1996), and used in a number of military studies (Hoge et al., 

2004; Jones et al., 2013; Rona et al., 2012). However, it has yet to be audited in a UK military sample. 

Stigma connected to mental health problems remains a key barrier that prevents serving and ex-

serving personnel seeking help, which may result in an under-reporting and under-diagnosis of PTSD 

(Fear et al., 2012; Murphy et al., 2015). Solutions with a greater degree of automation could be used 

to identify probable PTSD without the need for AF personnel or veterans to self-disclose their health 

and wellbeing, improving diagnoses rates and reducing report bias. However, focus should be placed 

on improving help seeking, which is low, among the AF community to enable automated solutions to 

function correctly (Hines et al., 2014; Murphy et al., 2015; Sharp et al., 2015).  

This study identified variables which contributed to the prediction of probable PTSD. It is 

encouraging that several of the variables – AUDIT score, consuming alcohol and age – have all 

previously been associated with PTSD and comorbid alcohol misuse in military cohorts (Jacobson, 

2008; Wilk et al., 2010). Further, the presence of gender in two ML models may reflect that males 

(90% UK AF are male) within the UK AF are more likely to be defined as having probable PTSD than 

female counterparts based on clinical interview data (A. C. Iversen et al., 2009). On the other hand, 
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this has not be found when using self-reported data measured using the PCL-C (Fear et al., 2010; 

Hotopf et al., 2006). 

The sensitivity of the classifiers in detecting probable PTSD were relatively low (range: 0.60-0.70), 

but in combination with high specificity (range: 0.90-0.98) this demonstrates the ability to accurately 

determine those without probable PTSD. The low sensitivity could reflect participants’ alcohol 

consumption as, overall levels of hazardous alcohol consumption are high in the UK AF for both 

those with and without probable PTSD (Thandi et al., 2015). This could explain the low sensitivity 

observed, with AUDIT score and consuming alcohol both being present in the top 5 variables of 

importance.  

Limitations 

The results of this study must be considered in light of the following limitations.  

First, this study utilised a previously collected dataset that was not collected for the purposes of 

building ML models. Therefore, biases in data collection could potentially impact ML modelling. This 

approach is not uncommon and previous studies using ML to examine mental health outcomes have 

utilised similar methodologies (Karstoft et al., 2015).   

Second, self-report measures were utilised which may have introduced bias, though, these methods 

are commonly used in research studies investigating PTSD (Blanchard et al., 1996; Jones et al., 2013). 

However, one study has shown participants who complete the PCL-C report higher rates than clinical 

interview (McDonald et al., 2010). Future work should focus on introducing new modalities of data 

to present a more holistic view of the person’s health and well-being – for example, 1) secondary 

data including the number of enemy engagements, type of engagement and intensity of 

engagement, 2) wearable technology (e.g. heart rate monitor) to monitor physical health, which has 

been shown to be worse in those with PTSD (Schry et al., 2015), 3) external data including General 

Practitioner data on AF personnel.  

Third, the time of questionnaire completion and study phase was not considered; therefore, 

temporal factors could have impacted the findings. Further considerations should be given to the 

utilisation of more complex ML approaches (e.g. deep learning).  

Finally, in this study, serving and ex-serving personnel were not differentiated in our models. 

Nevertheless, previous research has indicated that service leavers may be at increased risk of mental 

health disorders including PTSD, anxiety and depression (Pesonen et al., 2007; Rona et al., 2012). 
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Thus, additional research is needed to examine the potential usability of ML in predicting probable 

PTSD in these subgroups.  

Conclusion 

In the present study, we demonstrate that supervised ML methods can reliably identify probable 

PTSD from self-reported data from UK AF personnel. Detection of probable PTSD based on existing 

data is feasible, may reduce the burden on public health and improve operational efficiencies by 

enabling early intervention before chronic manifestation of symptoms. However, it is important to 

stress that it is not this study’s intention to replace the clinical decision-making process or provide 

direct patient feedback. Further work is required to improve ML outcome using a larger cohort, 

comparison to an actual clinical diagnosis and increasing the number of variables which do not rely 

upon self-reporting. Nonetheless, this study has shown that, compared to traditional self-report 

questionnaire measures which often require continuous user engagement, there are clear 

advantages to supervised methods which use routinely collected data and can reliably perform 

retrospective analyses to determine probable PTSD. 
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Table 1: Descriptive analyses of variables used in modelling with PTSD diagnoses. Probable PTSD and no PTSD determined 
by PCL-C caseness (score >50). n=13,690 

# Socio-demographic and 
military variables 

Total sample, 
n (%) 

Probable PTSD, 
n (%) 

No PTSD, 
n (%) 

1 Sex    

 Male 12,206 (89.16) 483 (3.96) 11,723 
(96.04) 

 Female 1,484 (10.84) 58 (3.91) 1,426 (96.09) 

2 Service    

 Royal Navy 1,631 (11.91) 52 (3.19) 1,579 (96.81) 

 Royal Marines 517 (3.78) 14 (2.71) 503 (97.29) 

 Army 8,909 (65.08) 414 (4.65) 8,495 (95.35) 

 Royal Air Force 2,633 (19.23) 61 (2.32) 2,572 (97.68) 

3 Engagement Type    

 Regular 11,513 (84.10) 459 (3.99) 11,054 
(96.01) 

 Reserve 2,177 (15.90) 82 (3.77) 2,095 (96.23) 

4 Combat Role    

 No 10,698 (78.14) 356 (3.33) 10,342 
(96.67) 

 Yes 2,992 (21.86) 185 (6.18) 2,807 (93.82) 

5 Age (in years)    

 <25 2,547 (18.60) 133 (5.22) 2,414 (94.78) 

 25-29 2,792 (20.39) 131 (4.69) 2,661 (95.31) 

 30-34 2,319 (16.94) 89 (3.84) 2,230 (96.16) 

 35-39 2,429 (17.74) 73 (3.01) 2,356 (96.99) 

 40-44 1,847 (13.49) 72 (3.90) 1,775 (96.10) 

 45-49 1,026 (7.49) 25 (2.44) 1,001 (97.56) 

 50-54 453 (3.31) 8 (1.77) 445 (98.23) 

 60+ 277 (2.02) 10 (5.79) 267 (94.21) 

6 Children under 18 years    

 No 5,087 (37.16) 196 (3.85) 4,891 (96.15) 

 Yes 8,603 (62.84) 345 (4.01) 8,258 (95.99) 

7 Educational attainment    

 No qualifications 1,554 (11.35) 85 (5.47) 1,469 (94.53) 

 GCSE/NVQ level 1-2 or 
similar  

4,972 (36.32) 237 (4.77) 4,735 (95.23) 

 A-Level/NVQ level 3 or 
similar 

4,494 (32.83) 173 (3.85) 4,321 (96.15) 

 Degree/NVQ level 4-5 1,731 (12.64) 36 (2.08) 1,695 (97.92) 

 Postgraduate qualifications 939 (6.86) 10 (1.06) 929 (98.94) 

8 Marital Status    

 Married 7,058 (51.56) 218 (3.09) 6,840 (96.91) 

 Living with partner 1,565 (11.43) 63 (4.03) 1,502 (95.97) 

 Long term relationship 1,790 (13.08) 82 (4.58) 1,708 (95.42) 

 Single 2,404 (17.56) 112 (4.66) 2,292 (95.34) 

 Separated, Divorced and 
Widowed 

873 (6.37) 66 (7.56) 807 (92.44) 

9 Smoking    

 No 10,074 (73.59) 296 (2.94) 9,778 (97.06) 
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 Yes 3,616 (26.41) 245 (6.78) 3,371 (93.22) 

10 Deployment – Afghanistan    

 No 10,291 (75.17) 438 (4.26) 9,853 (95.74) 

 Yes 3,399 (24.83) 103 (3.03) 3,296 (96.97) 

11 Deployment – Iraq    

 No 5,793 (42.32) 195 (3.37) 5,598 (96.63) 

 Yes 7,897 (57.68) 346 (4.38) 7,551 (95.62) 

12 Deployment – Bosnia & 
Kosovo 

   

 No 12,664 (92.51) 486 (3.84) 12,178 
(96.16) 

 Yes 1,026 (7.49) 55 (5.36) 971 (94.64) 

13 Deployment – Bosnia-
Herzegovina 

   

 No 11,347 (82.89) 450 (3.97) 10,897 
(96.03) 

 Yes 2,343 (17.11) 91 (3.88) 2,252 (96.12) 

14 Deployment – Falklands    

 No 12,944 (94.55) 516 (3.99) 12,428 
(96.01) 

 Yes 746 (5.45) 25 (3.35) 721 (96.65) 

15 Deployment – Gulf    

 No 12,109 (88.45) 477 (3.94) 11,632 
(96.06) 

 Yes 1,581 (11.55) 64 (4.05) 1,517 (95.95) 

16 Deployment – Kosovo    

 No 11,552 (84.38) 452 (3.91) 11,100 
(96.09) 

 Yes 2,138 (15.62) 89 (4.16) 2,049 (95.84) 

17 Northern Ireland    

 No 10,117 (73.90) 374 (3.70) 9,743 (96.30) 

 Yes 3,573 (26.10) 167 (4.67) 3,406 (95.33) 

18 General Health 
Questionnaire-12 Caseness 

   

 No Case 11,046 (80.69) 78 (0.71) 10,968 
(99.29) 

 Case 2,644 (19.31) 463 (17.51) 2,181 (82.49) 

19 General Health 
Questionnaire-12 Scoring1 

   

 ≤4 12,236 (89.38) 239 (1.95) 11,997 
(98.05) 

 5-8 993 (7.26) 126 (12.68) 867 (87.32) 

 9-12 461 (3.36) 176 (38.17) 285 (61.83) 

20 AUDIT caseness    

 No case 11,725 (85.65) 314 (2.68) 11,411 
(97.32) 

 Case 1,965 (14.35) 227 (11.55) 1,738 (88.45)  

21 Consumes Alcohol     

 No 429 (3.13) 29 (6.76) 400 (93.24) 

 Yes 13,261 (96.87) 512 (3.86) 12,749 
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(96.14) 

22 AUDIT Score1    

 ≤7 5,618 (41.04) 142 (2.53) 5,476 (97.47) 

 8-15 6,107 (44.61) 172 (2.82) 5,935 (97.18) 

 16-19 1,050 (7.67) 62 (5.90) 988 (94.10) 

 20-40 915 (6.68) 165 (18.03) 750 (81.97) 

n, number; %, percentage. 

1To improve readability, score is presented in groups. A full breakdown can be requested from the 
corresponding author.  
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Table 2: Overall results for each machine learning classifier with Standard deviation and 95% confidence intervals 

 Accuracy  

(SD, 95% CI) 

Sensitivity  

(SD, 95% CI) 

Specificity 

(SD, 95% CI) 

Matthews 

Coefficient 

Correlation  

(SD, 95% CI) 

Support Vector 

Machines (SVM) 

0.91 

(0.10, 0.91-0.93) 

0.70  

(0.08, 0.69-0.84) 

0.92 

(0.05, 0.92-0.93) 

0.74  

(0.07, 0.69-0.78) 

Random Forests 

(RF) 

0.97  

(0.13, 0.97-0.98) 

0.60  

(0.20, 0.59-0.85) 

0.98  

(0.07, 0.97-0.98) 

0.64  

(0.17, 0.53-0.75) 

Artificial Neural 

Networks (ANN) 

0.89  

(0.10, 0.88-0.92) 

0.61  

(0.21, 0.48-0.74) 

0.92  

(0.08, 0.91-0.93) 

0.45  

(0.16, 0.35-0.56) 

Bagging 0.95  

(0.11, 0.95-0.96) 

0.69  

(0.12, 0.61-0.77) 

0.96  

(0.12, 0.96-0.97) 

0.55  

(0.10, 0.49-0.61) 
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Table 3: Variable ranking, based on contribution to prediction, for each machine learning classifier.  

 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

Support Vector 
Machines 

(SVM) 

AUDIT Score GHQ-12 Age Consumes 
alcohol 

Deployment 
to Iraq 

Random 
Forests (RF) 

Gender AUDIT score GHQ-12 Service Type Deployment 
to Iraq 

Artificial Neural 
Networks 

(ANN) 

GHQ-12 AUDIT case AUDIT score Consumes 
alcohol 

Gender 

Bagging Age Consumes 
alcohol 

Smoking GHQ-12 AUDIT score 
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