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Abstract 
Metal−organic frameworks (MOFs) are a class of nanoporous materials with highly tunable 
structures in terms of both chemical composition and topology. Due to their tunable nature, high-
throughput computational screening is a particularly appealing method to reduce the time-to-
discovery of MOFs with desirable physical and chemical properties. In this work, a fully 
automated, high-throughput periodic density functional theory (DFT) workflow for screening 
promising MOF candidates was developed and benchmarked, with a specific focus on 
applications in catalysis. As a proof-of-concept, we use the high-throughput workflow to screen 
MOFs containing open metal sites from the Computation-Ready, Experimental MOF database 
for the oxidative C-H bond activation of methane. The results from the screening process suggest 
that, despite the strong C-H bond strength of methane, the main challenge is identifying MOFs 
with open metal sites that can be readily oxidized at moderate reaction conditions. 
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1. Introduction 
With the advent of materials informatics toolkits and software enabling the development of high-
throughput (HT) screening workflows,1–6 HT periodic density functional theory (DFT) has been 
used to construct databases of electronic, energetic, and structural properties for hundreds of 
thousands of inorganic materials from first-principles calculations.7–13 Metal−organic 
frameworks (MOFs), a novel class of highly porous crystalline materials, are well-suited for 
computational screening studies due to the modular nature of their inorganic nodes and organic 
linkers.14 To date, there are tens of thousands of experimentally synthesized MOFs,15 and 
numerous crystal structure databases have been developed from both known15–17 and 
hypothetical14,18 MOF structures. 

HT screening of these databases is particularly appealing, as it allows for a greater number of 
MOFs to be investigated than would be possible experimentally. One of the main goals of HT 
screening of MOF crystal structure databases is to reduce the time-to-discovery of MOFs with 
desired chemical and physical properties. In the area of gas storage and separations, HT grand 
canonical Monte Carlo simulations using classical force fields have been successfully used to 
identify top-performing MOFs with respect to CH4 storage capacity,14 CO2 capture,19 H2 
storage,20 and O2 uptake.21 However, extending HT screening of MOFs to applications requiring 
quantum chemical calculations, such as catalysis, remains a challenge. 

Due in part to the large unit cells of many MOFs, the most common approach when modeling 
MOFs for any catalytic reaction is to crop and terminate the periodic structure to create a finite-
sized cluster model of the proposed active site, often consisting of no more than a few dozen 
atoms.22 An appropriate choice of where to artificially terminate the MOF unit cell is often not 
immediately obvious, and this approach is therefore not amenable to HT screening of MOFs with 
widely varying topologies. Finite cluster models also inherently introduce artificial boundary 
effects that have the potential to influence charge delocalization23 and pore-based confinement 
effects.24,25 The use of periodic DFT to represent the full crystallographic unit cell naturally 
resolves these issues, and most implementations of periodic DFT are well-suited for massively 
parallel calculations that can be used to treat the larger number of atoms in each simulation. 
Nevertheless, to the best of our knowledge, there has never been a fully automated, HT periodic 
DFT screening study for any catalytic reaction using MOFs. 

In this work, we have developed a HT workflow based on periodic DFT to screen large numbers 
of MOFs for promising catalytic candidates. As a proof-of-concept, we use this HT workflow to 
screen MOFs with coordinatively unsaturated metal sites, also known as open metal sites 
(OMSs), for oxidative C-H bond activation. Due to the large economic demand for a catalyst that 
can directly convert methane to methanol26 and motivated by prior work involving MOFs for 
methane conversion,27–32 we specifically consider the partial oxidation of methane as the reaction 
of interest. In the process, we demonstrate the feasibility of a HT-DFT screening workflow for 
MOF catalysis and make several recommendations for future work involving HT-DFT screening 
studies of MOFs. 
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2. General Scheme 
Motivated by similar schemes for computational catalysis screening of bulk metals and 
alloys,33,34 the general approach for HT-DFT of MOF catalysts can be outlined as follows: 

(1) Determine a set of catalytic descriptors that can be used to correlate catalytic activity with 
readily computed quantities, such as those based on adsorption energies, reaction 
energies, or electronic structure properties.35–40 

(2) Identify or construct a dataset of MOF crystal structures to study. Tools such as 
Pymatgen1,41 and Zeo++42 can be used to select MOFs with specific metals, coordination 
environments, and pore sizes relevant to the given reaction of interest. 

(3) Using DFT, optimize the unit cell volume, unit cell shape, and internal degrees of 
freedom (i.e. atomic positions) for each MOF. 

(4) Starting from the optimized MOF structures, initialize the positions of atomic and 
molecular adsorbates required to predict catalytic activity via (1). 

(5) Using DFT, relax the atomic positions of the structures generated via (4). 
(6) Compute the catalytic descriptors of interest to rank MOF candidates. 
(7) For promising MOF candidates, generate the potential energy diagram for the proposed 

mechanism and perform detailed electronic structure analyses to better understand the 
reaction kinetics. 

In the following sections, we describe how to fully automate this process when studying MOFs 
with spatially isolated active sites, given previously determined catalytic descriptors. We then 
apply this procedure to screen MOFs for the ability to oxidatively activate the C-H bond of 
methane.  

3. Catalytic Descriptors for Oxidative C-H Bond Activation 

 

Figure 1. Radical-rebound mechanism for the oxidative C-H bond activation of methane at a coordinatively 
unsaturated metal site (M) using an N2O oxidant. The precise coordination environment and M-O bond order are 
dependent on the given MOF. In this work, we mainly focus on oxidation of the metal center and subsequent H-
abstraction. 
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When studying materials such as MOFs with spatially isolated active sites, the expected 
mechanism for the conversion of methane to methanol is the radical-rebound mechanism, as 
shown in Figure 1.43 For HT screening purposes, we focus on the oxidation of the metal and H-
abstraction steps of this mechanism, as they dictate the overall conversion of methane by 
influencing the number of metal oxide active sites and the activity of each site, respectively. 
Recently, Nørskov and coworkers have proposed a universal transition state (TS) scaling 
relationship for the C-H bond activation of methane.38 This TS scaling relationship can be used 
to accurately predict the energy of the corresponding TS over a wide range of heterogeneous 
catalysts based on the strength that an H atom binds to the metal oxide active site, denoted   . 
This H-affinity linear scaling relationship has been benchmarked for a wide range of materials, 
including cation-exchanged zeolites, bulk metal oxides, transition metal surfaces, and MOFs.38 
Here, we define the H-affinity as 

                         (1) 

where         and        are the electronic energies of the metal site with adsorbed OH and 
O species, respectively, and     is the electronic energy of H2. Note that unlike the original 
description of   ,38 Equation (1) uses H2 as the H-reference, as justified in the Supporting 
Information. With this, we can use the universal scaling relationship38 of 

                         (2) 
to predict the energy of the TS,         , with respect to the initial oxidized state, as 
schematically illustrated in Figure S1. With Equations (1) and (2), the C-H bond activation 
barrier can then be readily computed via 

                  [           (           )] (3) 

where            is the electronic energy of methane adsorbed to the metal oxide active site, 
and      is the electronic energy of gas-phase methane. The asterisks in Equations (2) and (3) 
are used to denote quantities obtained from a TS scaling relationship rather than directly 
computed using a TS finding algorithm, although this difference is expected to be no more than 
~11 kJ/mol on average based on the work of Nørskov and coworkers.38 

In contrast with the C-H bond activation step, there is currently no reported universal TS scaling 
relationship for the step in which the metal site is oxidized. Instead, we consider the extrinsic 
oxidation reaction energy using N2O as the proposed oxidant, defined as 

      (          )  (         ) (4) 
to determine the thermodynamic favorability of oxidation, as has been done in prior work.38,39 
Here,     ,    , and      are the electronic energies of the bare MOF (i.e. the reduced state), 
gas-phase N2, and gas-phase N2O, respectively. We refer to Equation (4) as an “extrinsic” 
reaction energy, as the energies for N2 and N2O are for the isolated gas-phase species, not in the 
adsorbed state. 
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4. Initial Dataset Construction 
The starting dataset considered in this work is an 838 MOF subset44 of the Computation-Ready, 
Experimental (CoRE) MOF database.16 The MOFs in this database were originally obtained 
from the Cambridge Structural Database (CSD) with free and bound solvents removed. The 838 
MOFs in this database have previously been optimized at the PBE-D3(BJ) level of theory via the 
CP2K code,45 which uses mixed Gaussian and plane-wave basis sets.46 From this 838 MOF 
dataset, 168 unique MOFs were selected for analysis based on a high likelihood of having OMSs 
following optimization and having pore-limiting diameters of at least 3.0 Å as determined by 
Zeo++42 (refer to the Supporting Information for full details). 

5. Adsorbate Initialization 
One of the necessary aspects of any HT screening workflow is that the entire process should be 
fully automated with minimal user-intervention. For heterogeneous catalysis and other surface 
science applications, adsorption energies are commonly computed but typically involve the user 
manually specifying an initial guess for the location of the adsorbate that is later optimized using 
DFT. This naturally limits the number of materials that can be screened, especially since 
computational catalysis screening often involves the calculation of numerous adsorption energies 
per catalytic candidate. In addition, the choice of a good initial location for a given adsorbate can 
significantly reduce the length of the corresponding geometry optimization by ensuring the 
structure is relatively close to a minimum in the potential energy surface. We summarize 
methods to automate this adsorbate initialization process below. 

5.1 Vector-Sum Method 

 

Figure 2. (a) Initializing the position of adsorbates at undercoordinated atoms with planar coordination environments 
is done in the direction of the unit normal vector to the plane with the fewest neighbors,  ̂. (b) For non-planar 
coordination environments, the adsorbate is initialized in the direction resulting from the sum of the normalized 
distance vectors formed between the coordinating atoms and the central atom,  . 

An easy-to-implement set of geometrical rules, which we refer to as the vector-sum method, can 
be used to systematically locate physically relevant adsorption sites on undercoordinated atoms 
for the purposes of HT-DFT calculations. As an example, consider the chemisorption of a single 
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O atom to an unsaturated Cu site at the node of the widely studied HKUST-147 (Figure 2a). For 
simplicity, we define the binding site (in this case, a Cu atom) as species    , and all atoms in 
the first coordination sphere are given indices     through  , where   is the coordination 
number. The proposed metal binding site can be automatically determined using a variety of 
OMS detection algorithms.17,42,48 A distance vector,     , is then computed for each coordinating 
atom via 

            (5) 
where    is the position vector of atom  . Note that      should be the minimum-image distance 
vector, taking into account the periodicity of the unit cell. 

We then determine the planarity of the coordinating atoms via two metrics. The first method 
involves total least-squares regression of the positions of the coordinating atoms to the equation 
of a plane,             . As a second method, we calculate the sum of normalized 
distance vectors,  , as 

   ∑              
    

(6) 

We suggest using both metrics as measures of planarity and, through iterative testing, have found 
that a coordination environment is typically well-described as planar if the root mean square 
error in the planar fit is less than 0.25 Å or       < 0.25 Å. 

If the coordination environment is planar, the adsorbate’s position      is given by 

           ̂ (7) 
where  ̂ is the unit normal vector to the best-fit plane and   is a bond distance scale-factor that is 
dependent on the proposed adsorbate. For instance, in this work we use    2 Å for the 
chemisorption of an O atom to an OMS. To determine the sign in Equation (7), we calculate the 
number of neighbors within a cutoff distance      and choose the direction with fewer 
neighboring atoms. In this work, we use a value of       2.5 Å. The choice of sign is important 
for many MOFs, especially those with paddlewheel secondary building units such as HKUST-
1.47 If the coordination environment is not planar, the desired adsorption site      is given by 

            (8) 
This approach attempts to maximize the symmetry of the molecular geometry, such as the 
formation of a trigonal bipyramidal geometry from the original seesaw structure shown in Figure 
2b. Naturally, a modified approach is needed for coordination numbers of three or less, which we 
describe in the Supporting Information along with the method for determining the atoms within 
the first coordination sphere. While the example shown in Figure 2 is for a monatomic adsorbate, 
this procedure can be readily extended for the adsorption of small molecules as well.49 

5.2 Potential Energy Grid Method 

To initialize the position of molecular adsorbates, a different method based on a molecular 
mechanics-based potential energy grid (PEG) generated for each MOF can be used to identify 
physically plausible adsorbate positions. In this work, we consider the adsorption of CH4 near the 
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metal oxide active site of each MOF following oxidation of a single metal center. The PEG for 
each MOF is calculated using a single-site TraPPE50 CH4 probe in RASPA51 with a grid 
discretization of 0.1 Å in  ,  , and   (Figure 3). The lowest energy position within a cutoff 
distance          from the proposed active site is taken as the initial position for the adsorbate. 
Since we used a single-site CH4 probe, the central C atom was placed at the lowest energy site 
within           3.0 Å, and one of the four H atoms in CH4 was made colinear with the O atom 
at the active site and the central C atom of CH4. The remaining three H atoms are arranged to 
satisfy the tetrahedral geometry of CH4. 

 

Figure 3. Potential energy grid obtained using a single-site CH4 probe in an example MOF with a hypothetical 
[NiO]2+ active site. The position of the CH4 molecule has been initialized in the low-energy adsorption site. The 
repulsive regions are colored in dark red, and the most attractive region is shown in light green. Color key: Ni 
(green), O (red), N (blue), C (gray), H (white). 

5.3 Implementation of Methods 

Additional details regarding the implementation of the adsorbate initialization algorithms used in 
this study can be found in the Supporting Information. An open-source Python code referred to 
as the MOF Adsorbate Initializer is made publicly available to readily perform fully automated 
adsorbate initialization workflows such as those described in this work.49 This code makes use of 
Pymatgen1 and the Atomic Simulation Environment (ASE)2 to carry out the adsorbate 
initialization process and has optional interfaces to Zeo++42 or Open Metal Detector17,52 for the 
automated detection of OMSs in MOFs. For PEG-based adsorbate initialization, the code is 
compatible with multiple volumetric data formats for the energy as a function of (     ) 
coordinates, including PEGs computed from RASPA51 or PorousMaterials.jl53. 

6. High-Throughput Density Functional Theory 
Given that the unit cells of MOFs can contain hundreds of atoms and that multiple reaction 
energies and kinetic barriers are needed to predict catalytic activity, it is essential that a robust 
and efficient HT-DFT workflow is established. In this section, we describe the multi-stage 
optimization scheme used to successfully perform the calculations in this work (~500 DFT 
calculations on materials with an average of ~200 atoms per Niggli-reduced unit cell). 
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6.1 Constant Parameters 

All periodic DFT calculations are performed with the Vienna ab initio Simulation Package 
(VASP) v.5.4.154,55 and the projector-augmented wave (PAW) pseudopotentials56 outlined in 
Table S1 of the Supporting Information. The electron exchange-correlation is described by the 
Perdew-Burke-Ernzerhof (PBE) functional,57 and Grimme’s D3 dispersion correction58 with 
Becke-Johnson (BJ) damping59 is used to account for van der Waals (vdW) dispersion 
interactions. We use the PBE functional as a reasonable balance between computational cost and 
accuracy for the purposes of HT screening.60,61 Due to the electronically insulating nature of 
most MOFs, Gaussian smearing of the band occupancies with a small smearing width of   = 
0.01 eV is used prior to extrapolation to the 0 K limit. Transition state calculations are done 
using an automated procedure involving the climbing image nudged elastic band method62 and 
the dimer method63 as described in the Supporting Information. 

6.2 Electronic Optimization 

The default electronic optimization algorithm used in this work is a preconditioned conjugate 
gradient (CG) algorithm (also referred to as the “all bands simultaneous update of orbitals” 
algorithm), which is suggested for both large and insulating materials.64,65 An additional benefit 
of this algorithm is that it is not heavily reliant on the choice of Pulay density mixing 
parameters,66 which are used to achieve convergence of the self-consistent field (SCF) but can be 
highly material-specific.8,9,54,67 This is in contrast with electronic optimization routines more 
commonly used for modeling metallic systems (e.g. blocked Davidson, RMM-DIIS),54 which 
generally require frequent monitoring of the SCF convergence and post hoc tweaking of the 
mixing parameters to resolve problematic convergence issues in a HT-DFT workflow.8,9 

6.3 Multi-Stage Geometry Optimizations 

6.3.1 Optimizing the Volume of Bare MOFs 

As is common in computational catalysis studies, the first step of the HT-DFT workflow 
involves optimizing the unit cell of each bare MOF, including the cell shape, cell volume, and all 
internal degrees of freedom. As shown in Figure 4, we performed a multi-step relaxation scheme 
inspired in part by the one used in constructing the Open Quantum Materials Database 
(OQMD).7 
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Figure 4. Schematic summarizing the high-throughput periodic density functional theory workflow for performing 
volume relaxations (including the cell parameters, cell shape, and internal degrees of freedom) of bare MOFs. 

In the first step, a test single-point calculation is performed to confirm that there are no VASP-
related errors. Any errors in this stage (e.g. too high a degree of parallelization requested for a 
particularly small MOF) and throughout the workflow (e.g. convergence failures) are fixed on-
the-fly using a procedure similar to the Custodian tool of the Materials Project.8,9 Following the 
test calculation, a preliminary low-accuracy ionic relaxation is performed (i.e. relaxation of 
atomic positions at fixed cell shape and volume), which is necessary for the efficient geometry 
optimization of most MOFs due to the large number of atoms per unit cell. The default 
maximum plane-wave energy cutoff specified by the pseudopotentials (generally 400 eV) and a  -point grid68 of 100  -points per atom (KPPA) are used.  

The initial ionic relaxation is done in two main stages. In the first stage, we use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm with a line search mechanism that ensures the 
energy and absolute value of the force decrease monotonically. This algorithm is available in 
ASE2 and is used until the magnitude of the maximum force,       , is less than 5 eV/Å. 
Compared to the default CG or quasi-Newton (QN) algorithms in VASP, we found that the 
BFGS line search algorithm was able to resolve high forces without atoms in the MOF unit cell 
moving to unphysical locations far away from their starting positions. Once the 5 eV/Å threshold 
is reached, the CG algorithm in VASP is used until         0.05 eV/Å. 

Following the low-accuracy ionic relaxation, a full volume relaxation (i.e. cell shape, cell 
volume, ionic positions) is performed at an initial low-accuracy setting. To prevent Pulay 
stresses,69 the plane-wave kinetic energy cutoff is raised to 520 eV. All other parameters are 
unchanged. In the subsequent high-accuracy volume relaxation, the density of the  -point grid is 
increased from 100 KPPA to 1000 KPPA, and the force-tolerance is changed to 0.03 eV/Å. A  -
point grid density of 1000 KPPA is also currently used in the Materials Project8 and has been 
previously used to model MOFs.60 
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A final high-accuracy ionic relaxation is performed after the high-accuracy volume relaxation to 
confirm that the ionic positions are fully converged when the cell shape is kept fixed, and then a 
single-point calculation is performed to store the final wavefunction and charge density. Starting 
from the converged high-spin structure, a low-spin spin-initialization is considered (as discussed 
in Section 6.4). If performed, the lowest energy structure from the two initialized spin states is 
used for further stages of the HT screening workflow. The key DFT parameters are summarized 
in Table 1 (with all parameters listed in Table S2). 

Table 1. Periodic DFT parameters used in the optimizing the bare MOFs. ENCUT is the plane-wave kinetic energy 
cutoff, KPPA is the number of  -points per atom (with the corresponding  -point grids generated using Pymatgen1), 
and        is the force-convergence criterion. 

Stage ENCUT (eV) KPPA        (eV/Å) 
1: Ionic relaxation 

(low-accuracy) 
400 100 0.05 

2: Volume relaxation 
(low-accuracy) 

520 100 0.05 

3: Volume relaxation 
(high-accuracy) 

520 1000 0.03 

4: Ionic relaxation 
(high-accuracy) 

520 1000 0.03 

5: Single-point 
(high-accuracy) 

520 1000 N/A 

The percent difference in computed cell volumes between the low-accuracy and high-accuracy 
volume relaxations is shown in Figure 5a. For the vast majority of tested MOFs, the cell volume 
is nearly identical at the low- and high-accuracy settings. As shown in Figure 5b, the deviation in 
cell volumes is most pronounced for MOFs with a small number of atoms per unit cell where the 
increased  -point density is expected to increase the accuracy of the results. While 100 KPPA 
and 1000 KPPA corresponds to the same  -point grid (consisting of just the  -point) for 33% of 
the MOFs in this analysis, 90% of MOFs had a volume change of less than ±1% when going 
from the low- to high-accuracy settings. This is consistent with the findings of Ceder and 
coworkers,9 who suggested that the plane-wave energy cutoff (rather than the size of the  -point 
grid) has a more pronounced effect on cell volumes. 
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Figure 5. (a) Percent deviation in the cell volume,   , computed with low-accuracy settings (cutoff = 520 eV, 
KPPA = 100,         0.05 eV/Å) compared to high-accuracy settings (cutoff = 520 eV, KPPA = 1000,        < 
0.03 eV/Å), defined as    (                    )          . (b) Percent deviation in cell volumes as a function of 
the number of atoms per Niggli-reduced unit cell. Data shown in this figure is for the high-spin initialization cycle of 
the high-throughput workflow. 

6.3.2 Optimizing the Ionic Positions of MOFs with Adsorbates 

 

Figure 6. Schematic summarizing the high-throughput periodic density functional theory workflow for performing 
ionic relaxations (i.e. internal degrees of freedom only) of MOFs with adsorbates. 

The multi-stage optimization procedure for relaxing the atomic positions of MOFs with 
adsorbates (at fixed cell shape and volume) is summarized in Figure 6 and is similar to the 
procedure for volume relaxations of the bare MOFs. At the medium-accuracy ionic relaxation 
stage, the  -point density is increased from 100 KPPA to 1000 KPPA, but the default (400 eV) 
plane-wave kinetic energy cutoff is still used. For both the medium- and high-accuracy ionic 
relaxations, the Fast Inertial Relaxation Engine (FIRE) algorithm70 as implemented in VTST 
Tools71 is used instead of the CG algorithm for relaxing the ionic positions. This was found to be 
necessary for optimizing the structures of MOFs with adsorbates, as the atoms far away from the 
adsorption site are already close to their optimized positions and the PES is very shallow, 
resulting in the CG algorithm failing to converge for nearly every MOF-adsorbate system studied 
in this work. The FIRE algorithm, which is a molecular dynamics method, was found to reach 
convergence in these otherwise problematic cases. This is consistent with the findings of Bitzek 
et al.70 who demonstrated that the FIRE algorithm is both more efficient and robust than the 
typical CG and QN schemes when the forces are sufficiently low. For this reason, we also switch 
to the FIRE algorithm in any other part of the HT-DFT workflow if the default CG algorithm 
fails. The key DFT parameters are summarized in Table 2 (with all parameters listed in Table 
S2). 

Table 2. Periodic DFT parameters used in the optimizing MOFs with adsorbates. ENCUT is the plane-wave kinetic 
energy cutoff, KPPA is the number of  -points per atom (with the corresponding  -point grids generated using 
Pymatgen1), and        is the force-convergence criterion. 

Stage ENCUT (eV) KPPA        (eV/Å) 
1: Ionic relaxation 400 100 0.05 

This article is protected by copyright. All rights reserved.



12 
 

(low-accuracy) 
2: Ionic relaxation 
(medium-accuracy) 

400 1000 0.05 

3: Ionic relaxation 
(high-accuracy) 

520 1000 0.03 

4: Single-point 
(high-accuracy) 

520 1000 N/A 

Figure 7a and 7b emphasize the value in using a multi-stage workflow, as the lower accuracy 
runs often result in nearly converged geometries and therefore greatly accelerate the HT-DFT 
workflow. Since energy differences are typically desired for catalytic applications, we also 
computed the H-affinity previously shown in Equation (1) at the low-, medium-, and high-
accuracy settings. Similar to what was shown in Figure 5, the results in Figure 7c emphasize the 
need to use 1000 KPPA over the much coarser 100 KPPA  -point density. However, as shown in 
Figure 7d, the increase in cutoff from 400 eV to 520 eV (and tighter force-convergence of         0.03 eV/ Å compared to 0.05 eV/Å) does not significantly change the computed H-
affinity beyond 1−2 kJ/mol on average, which is far below the expected accuracy from the 
choice of exchange-correlation functional and any TS scaling relationships. That being said, due 
to the nearly converged geometry at the end of the medium-accuracy run, the high-accuracy 
calculations exhibit rapid convergence (particularly when starting from the previously converged 
wavefunctions), so we decided to still include this step in the workflow. 
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Figure 7. (a) Deviation in the position of the O adsorbate,    , for the formation of the active site between the low-
accuracy and medium-accuracy run. (b) Deviation in     between the medium-accuracy and high-accuracy run. (c) 
Deviation in H-affinity,    , computed with low-accuracy settings (cutoff = 400 eV, KPPA = 100,         0.05 
eV/Å) compared to medium-accuracy settings (cutoff = 400 eV, KPPA = 1000,        < 0.05 eV/Å), defined as                            . (d)     computed with medium-accuracy settings and high-accuracy settings (cutoff 
= 520 eV, KPPA = 1000,         0.03 eV/Å), defined as                             . 
6.4 Spin-Polarization 

To account for spin-polarization, both high-spin and low-spin initial magnetic moments are 
considered in a procedure motivated in part by the Materials Project8,9 and OQMD.7 In the high-
spin case,  -block elements (i.e. Sc−Cu, Y−Ag, Hf−Au) are initialized in a high-spin state of 5    (Bohr magnetons), all  -block elements (i.e. La−Lu, Ac−Lr) are initialized with 7   , all 
metals and semi-metals in groups 12−17 are initialized with 0.1   , and all  - and  -block metals 
are initialized with no spin. Once the high-spin run is completed, if the absolute values of the 
converged magnetic moment for each atom is less than 0.1    (or if there were no  - or  -block 
metals in the MOF), a low-spin configuration is not performed. Otherwise, a low-spin initial 
configuration is applied to the converged structure from the high-spin initialization, and the 
structure is reoptimized. For the low-spin case, the only difference is that the  - and  -block 
elements are initialized with 0.1    instead of 5    and 7   , respectively. If at the end of any 
step of the HT-DFT workflow the low-spin calculation converges to the magnetic moments that 
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resulted from the high-spin calculation, the low-spin calculation is aborted. Two spin states are 
deemed to be equal if the converged magnetic moments are all within ±0.05   . While the high-
spin initialization is sufficient for many of the MOFs studied in this work, the low-spin 
initialization can result in significantly more stable structures for select MOFs, as shown in 
Figure 8. Benchmarking of this spin treatment is shown in Table S3 and indicates that it is often 
sufficient for determining low-energy spin states, especially for the purposes of HT screening. 
Additional details regarding the convergence to complex magnetic orderings, such as 
antiferromagnetism, are discussed in the Supporting Information. 

 

Figure 8. Difference in energy between the converged high-spin and low-spin electronic energies,                             , of MOFs where a full low-spin calculation was performed. 

6.5 Implementation of Methods 

Additional details regarding the implementation of the periodic DFT screening workflow used in 
this study can be found in the Supporting Information. An open-source Python code referred to 
as PyMOFScreen is made publicly available to readily perform fully automated periodic DFT 
calculations of MOFs using the related workflows to those described in this work.72 As with the 
MOF Adsorbate Initializer, PyMOFScreen makes extensive use of Pymatgen1 and ASE2 to set up 
and carry out the DFT calculations. We note that analogous workflows could be readily 
constructed using the highly flexible Atomate package as well.4 

7. Oxidative C-H Bond Activation 
With the developed HT screening workflow, we identified MOFs in an 838 MOF subset of the 
CoRE MOF database44 that contained OMSs (Section 4), performed volume relaxations on each 
MOF (Section 6), initialized the positions of relevant adsorbates (Section 5), and performed ionic 
relaxations on each MOF with bound adsorbates to calculate adsorption energies (Section 6). The 
volume relaxation (i.e.     ) and three ionic relaxations (i.e.       ,        ,           )  
all achieved 99−100% convergence of the screened MOFs in this work, indicative of the 
robustness of the developed HT-DFT workflow. With the DFT-computed adsorption energies, 
we subsequently used Equations (1)−(4) to calculate the catalytic descriptors of interest. The 
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results of the catalytic screening for oxidative C-H bond activation of methane are discussed 
below. 

As shown in Figure 9a, the vast majority of screened MOFs have strongly endothermic oxidation 
reaction energies in the presence of an N2O oxidant. Thermodynamically, this suggests that there 
will only be a small (potentially negligible) population of metal-oxo active sites present at 
moderate reaction conditions. Kinetically, since the lower-bound for the activation barrier is set 
by the reaction energy for endothermic reactions, this also implies that the rate of N2O activation 
is likely to be very low. As a result of this phenomenon, we expect that few MOFs in the 838 
CoRE MOF subset have accessible metal sites that can be readily oxidized using N2O. 

Nonetheless, it is clear from Figure 9b that if a metal-oxo active site can be formed, the barrier 
for C-H activation would likely be sufficiently low for the catalytic conversion of methane for 
most MOFs considered in this work, as every MOF tested in this study has a methane C-H 
activation barrier below 100 kJ/mol, comparable to many cation-exchanged zeolites that can 
activate methane.73 It is common in the computational catalysis literature to focus on the C-H 
activation step due to the large 440 kJ/mol bond dissociation energy of methane (when not in the 
presence of a catalyst).74 However, the results shown in Figure 9 suggest that the main challenge 
in terms of high-throughput screening is not identifying MOFs with low C-H activation barriers, 
but rather identifying MOFs with OMSs that can be readily oxidized. Indeed, despite the many 
thousands of MOFs that have been synthesized to date, there are relatively few that have been 
experimentally shown to exhibit redox-active OMSs for catalytic applications.23 

 

Figure 9. (a) Reaction energy for N2O activation,     , defined in Equation (4). (b) Methane C-H activation barrier 
at metal oxide active site,        , defined in Equation (3). 

As one example from the HT-DFT analysis, consider Cu3(dmtrz)2(ox)2 (Hdmtrz = 3,5-dimethyl-
1H-1,2,4-triazole, ox = oxalate, CSD refcode = LIFWEE)75 shown in Figure 10. The structure of 
Cu3(dmtrz)2(ox)2 has mono( -aquo) Cu(II,II) dimers that can be desolvated around 125 °C, 
leaving behind adjacent square-planar Cu(II) sites.75 In principle, the dicopper(II) species can be 
oxidized to form mono( -oxo) dicopper(III) species. This mono( -oxo) dicopper(III) species is 
extremely active toward the C-H activation of methane, with a predicted barrier of          40 
kJ/mol. Despite this high reactivity toward H-abstraction, it can be expected that 
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Cu3(dmtrz)2(ox)2 would not be promising for oxidative C-H bond activation, as the computed 
reaction energy for formation of the mono( -oxo) dicopper(III) species is strongly endothermic 
(      127 kJ/mol). 

 

Figure 10. Formation of the metal oxide active site and subsequent H-abstraction of methane with Cu3(dmtrz)2(ox)2. 
Color key: Cu (orange), C (gray), N (blue), O (red), H (white). Structures are DFT-optimized (only a representative 
portion of the unit cell is shown for clarity). 

One approach to increase the likelihood of accessing low C-H bond activation barriers with 
MOFs containing OMSs is to increase the temperature during the oxidation step. This is a 
common and often necessary approach in the Cu-exchanged zeolite literature, where a multi-step 
conversion process is performed with O2 or N2O activation around 450 °C and subsequent 
methane activation around 125–200 °C.76–79 However, applying this approach to most MOFs is 
likely to be challenging, as the majority of MOFs are not capable of withstanding harsh thermal 
treatment without significant decomposition of the framework, especially in the presence of air 
or other oxidizing agents.80 One of the more thermally and chemically stable MOFs synthesized 
to date is Ni3(BTP)2 (H3BTP = 1,3,5-tris(1H-pyrazol-4-yl)benzene, CSD refcode = UTEWOG),81 
which is stable in air up to 430 °C and is included in the database of MOFs screened in this work 
(its structure was previously shown in Figure 3). From the present work, we predict that          25 kJ/mol. However, we also predict that       119 kJ/mol, which is likely to 
prevent sufficient oxidation of the metal site even at elevated temperatures near the stability limit 
of Ni3(BTP)2. 

Another general approach to increase the activity of MOFs for oxidative C-H bond activation 
when N2O activation is the rate-limiting step is to consider the use of a more reactive oxidizing 
agent. As one example, H2O2 could be used and would act as a green oxidant since it only 
releases water as the byproduct. In addition to being more kinetically reactive than N2O, the 
standard enthalpy of reaction for MOF + H2O2   MOF−O + H2O compared to MOF + N2O   
MOF−O + N2 is more thermodynamically favorable by 82 kJ/mol at the PB3-D3(BJ) level of 
theory. H2O2 has recently been used as the oxidant in the conversion of methane to methanol 
with Fe-containing Al-MIL-5331,82 as well as graphene-confined single Fe atoms83 and multiple 
works involving cation-exchanged zeolites25,84,85. The use of other strong oxidizing agents is also 
likely worth considering for the purposes of gaining experimental insight into oxidative C-H 
bond activation on MOF-supported metal-oxo species. For instance, the strong oxidant K2S2O8 
has been used for the conversion of methane to acetic acid with V-containing MIL-47 and MOF-
48 catalysts.28 Although the most industrially desirable oxidant is air or O2, the use of strong 
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oxidants is expected to significantly aid experimental investigation of MOFs capable of 
activating the strong C-H bond of methane. 

While seven MOF structures were identified as having exothermic      values, they are unlikely 
to be experimentally realizable, as they have unexpected structural defects or solvents that are 
unlikely to be removed. These instances can often be traced back to challenges in experimentally 
resolving the positions of ligands or charge-balancing ions during X-ray diffraction studies 
and/or their removal in construction of the CoRE MOF database. As an example, we highlight 
one MOF with a predicted exothermic oxidation reaction energy but an ambiguous crystal 
structure. This MOF, referred to as Rh-BMOF-1 (B = 4,4’-bipyridine, CSD refcode = TERFUT), 
is a post-synthetically modified, cyclometalated MOF obtained from the reaction of a Rh(I) 
precursor and a 2-phenylpyridine-5,4’-dicarboxylic acid (dcppy) ligand.86 BMOF-1 and the 
related DMOF-1 (D =  DABCO = 1,4-diazabicyclo[2.2.2]octane) can be synthesized with Rh(I) 
or Ir(I) species anchored between a carbanion and a nitrogen atom of the nearby pyridine in the 
dcppy ligand.86 Rh-BMOF-1 is predicted to have           kJ/mol and            kJ/mol 
when using the as-published crystal structure with two-coordinate Rh(I) cations. 

It is likely that the highly exothermic      value can be attributed to atypically undercoordinated 
Rh(I) sites. Since Rh(I) and Ir(I) are    metals, it is more likely that they form square-planar 
geometries via the coordination of two additional ligands, as has been found in a related Rh(I)-
containing MOF by Sumby and coworkers.87 As an example, the presence of CO or CH3CN 
ligands greatly reduces the redox activity of the Rh(I) and Ir(I) sites, although the resulting C-H 
activation barrier is expected to be lower if the active site were to form (Figure 11). Since the 
exact nature of the bound ligands has not been experimentally determined due to low 
occupancies of the cyclometalated species in the crystal structure,86 we focus on other screened 
MOFs for the remainder of the analysis. 

 

Figure 11. (a) Rh(I) environment in cyclometalated DMOF-1 based on the structure from X-ray diffraction (XRD) 
(i.e. no additional ligands). The structure is DFT-optimized (only a representative portion of the unit cell is shown 
for clarity). Color key: Rh (teal), C (gray), N (blue), O (red), H (white). (b) Extrinsic reaction energy for oxidation 
via N2O,     , defined in Equation (4). (c) Methane C-H activation barrier,        , at metal oxide active sites, 
defined in Equation (3). XRD, CH3CN, and CO refer to the two-coordinate metal, square-planar metal environment 
with two CH3CN ligands, and square-planar metal environment with two CO ligands. Energetics are identical for the 
interpenetrated BMOF-1. 
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From the HT-DFT procedure, the MOF with the lowest oxidation reaction energy and a fully 
resolved crystal structure is Cu8I4(dmtrz)4 (CSD refcode = CUNFOH01), which contains Cu(I)-I 
cubane tetramers as well as two-coordinate Cu(I) cations,88 of which only the latter are expected 
to be readily accessible for oxidation by N2O. The HT-DFT analysis suggests that the two-
coordinate Cu(I) sites in Cu8I4(dmtrz)4 have       103 kJ/mol and          36 kJ/mol. With 
the goal of identifying Cu(I) cations that can be more easily oxidized, we screened the 2019 
CoRE MOF database17 for MOFs with two-coordinate Cu(I) species, a PLD greater than 3.0 Å, 
and less than 400 atoms in the Niggli-reduced unit cell. From this procedure, we identified 
Cu2(tqpt) (H2tqpt = 6,6,14,14-tetramethyl-6,14-dihydroquin-oxalino-[2,3-b]phenazinebistriazole, 
CSD refcode = URUWEL), also known as CFA-8,89 which has the topology shown in Figure 
12a. CFA-8 contains two-coordinate (linear), three-coordinate (trigonal planar), and four-
coordinate (tetrahedral) Cu(I) species in the framework. We will refer to these species as CuA, 
CuB, and CuC, respectively. 

 

Figure 12. (a) Structure of CFA-8 with Cu(I) ions lining the pore along the  -axis. H atoms omitted for clarity. (b) 
Ball-and-stick model of distinct Cu sites in CFA-8 and a proposed mono( -oxo) dicopper(II) active site following 
activation of N2O. Color key: Cu (orange), C (gray), N (blue), O (red), H (white). Structures are DFT-optimized. 

Due to the close proximity of Cu(I) species in the framework, we hypothesized that the 
thermodynamics for oxidation via N2O could be significantly more favorable than that of 
Cu8I4(dmtrz)4 via the formation of a mono( -oxo) motif bridging two neighboring Cu(I) sites 
(Figure 12b). Based on the HT-DFT calculations, the extrinsic oxidation reaction energy is       47 kJ/mol, which is significantly more thermodynamically achievable than the other 
MOFs screened in this study. The proposed [Cu2O]2+ core of oxidized CFA-8 contains a bent 
geometry with a CuA-O-CuB bond angle of 103° and equal CuA-O and CuB-O bond lengths of 
1.88 Å. The CuA-CuB bond length decreases from 3.40 Å in the bare MOF to 2.96 Å in the 
oxidized state. 

The potential energy diagram of the proposed mechanism for oxidative C-H bond activation of 
methane in this MOF is shown in Figure 13. For the mono( -oxo) sites in CFA-8, we calculate 
that         57 kJ/mol, which is essentially identical to the experimentally observed ~65 
kJ/mol barrier attributed to similar mono( -oxo) dicopper(II) active sites in Cu-ZSM-5 that can 
catalytically convert methane to methanol.76 It is also predicted that methanol, the desired 
product, should readily desorb at ambient conditions, which is commonly problematic for cation-
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exchanged zeolites.90 We note that the barrier for N2O activation to form the [Cu2O]2+ site is 
relatively high with a predicted value of 152 kJ/mol, such that it still expected to dictate the 
overall reaction kinetics for this system. Improved catalytic performance can potentially be 
achieved by considering more reactive oxidants. Provided a transient mono( -oxo) active site 
can be formed, CFA-8 would likely be a promising candidate for oxidative C-H bond activation 
reactions. 

 

Figure 13. Potential energy diagram for oxidation of the metal centers via N2O, subsequent H-abstraction of 
methane, and formation/desorption of methanol with CFA-8. (1) MOF + N2O (g) + CH4 (g); (2) N2O*; (3) transition 
state for N2O activation; (4) N2

#; (5) CH4
#; (6) transition state for H-abstraction; (7) CH3OH*; (8) MOF + CH3OH 

(g) + N2 (g). Here, * denotes adsorption at the metal center and # denotes adsorption at the metal-oxo site formed via 
oxidation. Since the barrier for the radical rebound of •CH3 is expected to be small compared to the other barriers, 
this step is omitted. 

To obtain a better understanding of the proposed [Cu2O]2+ active site of CFA-8, we calculated 
the density-derived electrostatic and chemical (DDEC) partial atomic charges91 and Bader spin 
density92 for each atom. As shown in Table 3, the DDEC charges on the Cu(I) sites increase from 
0.26 to 0.53–0.57 following N2O activation. The large increase and near-equal magnitude of the 
partial atomic charges on the Cu species is consistent with the oxidation of the Cu(I) sites to 
mono( -oxo) dicopper(II) species. At the TS for N2O activation, the DDEC analysis suggests 
that the CuB site is more easily oxidized than the CuA site, with the CuB site being almost entirely 
oxidized from Cu(I) to Cu(II) at the TS. 

Formally, the H-abstraction from methane should decrease the charge of the active site by one. 
Instead of equally reducing the charge on both Cu(II) sites, the DDEC analysis indicates that the 
CuA site is more significantly reduced, whereas the CuB retains most of its charge. The Bader 
spin densities provide additional insight into this phenomenon. Since it is expected that a Cu(I) 
species should have no net spin, the Bader spin densities suggest that the CuA and CuB sites are 
likely best described as being in the 1+ and 2+ oxidation state following H-abstraction, 
respectively. The Bader spin density analysis also highlights the radical-like character of the 
bridging oxo species prior to H-abstraction, which results in the low methane C-H activation 
barrier of 57 kJ/mol. Finally, the formation of methanol closes the redox-cycle, with both the 
CuA and CuB sites returning to their original 1+ oxidation states.  
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Table 3. DDEC6 partial atomic charges91 and Bader spin densitiy92 for the proposed active site of CFA-8 throughout 
the radical-rebound mechanism. CuA and CuB refer to the Cu sites shown in Figure 12b.     and     refer to the 
closed-shell singlet and open-shell triplet spin multiplicities, respectively.      refers to an open-shell singlet state 
with an antiferromagnetic coupled methyl radical. 

 Bare 
MOF 

TS for 
formation of 
[Cu2O]+ site 

Oxidized 
MOF 

TS for C-H 
activation 

of CH4 

MOF with 
adsorbed 
•CH3 

MOF with 
adsorbed 
CH3OH 

DDEC partial atomic charge 
CuA 0.26 0.34 0.53 0.40 0.36 0.27 
CuB 0.26 0.52 0.57 0.54 0.52 0.28 
O -- −0.50 −0.61 −0.65 −0.72 −0.45 

Magnitude of Bader spin density 
CuA   0.38 0.04 0.11  
CuB   0.48 0.33 0.40  
O   0.76 0.11 0.15  

Spin multiplicity 
                           

8. Conclusions 
High-throughput periodic DFT is a promising method for accelerating the discovery of MOFs for 
various applications, but there are numerous technical challenges that must be addressed before it 
can be routinely used to design and/or discover MOF candidates. In this work, we have 
developed a robust and automated workflow for the high-throughput screening of MOFs using 
periodic DFT, specifically focusing on applications in heterogeneous catalysis. We describe 
appropriate choices for electronic and structural optimization algorithms, treatment of spin states, 
and methods for automating the calculation of adsorption energies at open metal sites. 

As a proof-of-concept, we applied this workflow to screen MOFs with open metal sites from an 
838 MOF subset of the CoRE MOF database16,44 for the oxidative C-H bond activation of 
methane using an N2O oxidant. From this high-throughput procedure, it was found that oxidation 
of the metal – and not the C-H bond activation of methane – is the step with the largest barrier 
for the vast majority of screened MOFs in this work. Based on this finding, we expect that the 
development of new MOF datasets focused on low-valence, redox-active open metal sites will be 
central to the discovery of MOF-based heterogeneous catalysts that can directly convert methane 
to methanol at ambient conditions as well as other oxidative C-H bond activation reactions. 
While there are countless experimental studies of gas adsorption in MOFs, there are relatively 
few studies focusing on N2O adsorption or activation,93–97 so this serves as an avenue for further 
research as well.  With the high-throughput framework outlined in this work, we hope that high-
throughput periodic density functional theory will become a more mainstream tool for designing 
and identifying MOFs with unique physicochemical properties. 
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