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Mutational hotspots indicate selective pressure across a 

population of tumor samples, but their prevalence within and 

across cancer types is incompletely characterized. An approach 

to detect significantly mutated residues, rather than methods 

that identify recurrently mutated genes, may uncover new 

biologically and therapeutically relevant driver mutations.  

Here, we developed a statistical algorithm to identify recurrently 

mutated residues in tumor samples. We applied the algorithm to 

11,119 human tumors, spanning 41 cancer types, and identified 

470 somatic substitution hotspots in 275 genes. We find 

that half of all human tumors possess one or more mutational 

hotspots with widespread lineage-, position- and mutant 

allele–specific differences, many of which are likely functional. 

In total, 243 hotspots were novel and appeared to affect a broad 

spectrum of molecular function, including hotspots at paralogous 

residues of Ras-related small GTPases RAC1 and RRAS2. 

Redefining hotspots at mutant amino acid resolution will help 

elucidate the allele-specific differences in their function and 

could have important therapeutic implications.

Among the best-studied therapeutic targets in human cancers are 

proteins encoded by genes with tumor-specific mutational hotspots, 

such as KRAS, NRAS, BRAF, KIT and EGFR. The acquisition of 

somatic mutations is one of the major mechanisms responsible for 

the dysregulation of proliferation, invasion and apoptosis, which is 

required for oncogenesis. Comprehensive genomic characterization 

of tumors has produced valuable insights into the somatic aberrations 

that define individual cancer types1,2, broadening our understanding 

of the dysfunctional molecular pathways that govern tumor initiation, 

progression and maintenance. These data have spurred the develop-

ment of computational algorithms to identify cancer driver genes, 

defined as those in which molecular abnormalities lead to a fitness 

advantage for the affected cancer cells.

These computational approaches develop either gene-level  

statistical models that exploit different mutational patterns3–6 to 

identify significantly mutated genes or use weight-of-evidence-based 

methods1,7 that are heuristic and ratiometric in approach. Together, 

these methods focus on identifying cancer genes from a multitude 

of diverse molecular abnormalities affecting the gene. However, 

not all genomic alterations in cancer genes are driver alterations. 

Furthermore, not all driver alterations in a cancer gene have the 

same functional impact, and are therefore likely to have varying clini-

cal meaning. The potentially diverse functional effects of different  

lesions in the same gene are not captured and reported by gene-level 

models, but are rather assumed to be equivalent. However, emerg-

ing data indicate that different hotspot mutations in the same cancer  

gene can be functionally distinct in vitro and in vivo and display  

different clinical phenotypes and drug sensitivity8–11. Moreover,  

it is unknown how widespread such hotspot-specific functional  

differences may be.

To date, studies of hotspot mutations in cancer have been limited 

to within individual tumor types12–14 or have focused on individual 

cancer genes across tumor types15. A systematic population-scale, 

cross-cancer, genome-wide analysis of mutational hotspots has not 

been performed and the extent to which mutant allele– and lineage- 

specific effects exist remains unknown. As broad-based clinical 

sequencing has begun to inform the care of individual cancer patients, 

this would begin to address one of the greatest challenges in the prac-

tice of genomically driven cancer medicine: interpreting the biological 

and clinical importance of mutations in even presumed actionable 

cancer genes as they arise in oncology clinics.

To address this challenge, we develop a computational algorithm 

to identify driver mutations, rather than driver genes. We assem-

bled and rigorously curated a large repository of cancer genome data 

consisting of the sequenced tumor exomes and whole genomes of 

11,119 human tumors representing 41 tumor types. We developed 

a biologically aware, statistically principled computational model 

by combining observed biological phenomena such as nucleotide 

mutability and varying gene-specific mutation rates into coefficients 
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that we incorporate into binomial statistics. From this, we system-

atically identify individual recurrent mutations and associate these 

with related temporal and transcriptional data to investigate lineage- 

specific variation in mutations, and identify novel hotspots with likely 

clinical implications.

RESULTS

Landscape of hotspot mutations in primary human cancer

We collected the mutational data from the sequenced exomes and 

genomes of 11,119 human tumors in 41 tumor types (Supplementary 

Table 1). These originate from diverse sources including large  

international consortia and various published studies. This cohort 

represents a broad range of primary human malignancies with three 

or more tumor types in each of nine major organ systems (Fig. 1a). 

The repository consists of 2,007,694 somatic substitutions in protein-

coding regions with a median of 57 mutations (25 and 125 mutations; 

25th and 75th percentile, respectively) per tumor-normal pair with 

significant variability in mutation rates among and between tumors 

and types4,16. In total, 19,223 human genes harbor at least one somatic 

mutation in this data set.

Here, we define a mutational hotspot as an amino acid position in a 

protein-coding gene that is mutated (by substitutions) more frequently 

than would be expected in the absence of selection. In this analysis, we 

focus exclusively on individual substitutions rather than other somatic 

abnormalities such as translocations, amplifications, deletions or 

epigenetic modifications. To identify mutational hotspots, including 

low-incidence mutations, we developed a binomial statistical model 

that incorporates several aspects of underlying mutational processes 

including nucleotide context mutability, gene-specific mutation  

rates and major expected patterns of hotspot mutation emergence 

(Supplementary Figs. 1a and 2, Supplementary Code and Online 

Methods). As considerable variability exists in the methods and  

standards for mutation calling used by individual studies and  

centers, we also developed several evidence-based criteria for 

eliminating probable false-positive hotspots (Online Methods 

and Supplementary Fig. 1b). In total, we identified 470 statisti-

cally significant hotspots (q < 0.01) affecting 275 protein-coding  

genes (Supplementary Tables 2 and 3). Overall, more than half 

of all hotspots were determined to be novel (Fig. 1b, Table 1  

and Supplementary Table 2) and 54.8% of all tumors assessed here 

possessed one or more hotspot mutations.

Most affected genes possessed only a single hotspot (Supplementary 

Fig. 3a). A subset of genes, however, possessed many hotspots of 

varying frequency. In total, 49 genes possessed two or more hotspots 

(Fig. 1c), with many of these also arising in the greatest number 

of tumor types (Supplementary Fig. 3b). TP53 R248 was the most 

disseminated hotspot, observed in 25 tumor types. Among a subset 

of even well-characterized oncogenes, a pattern of both known and 

novel hotspots emerged (Fig. 1d). Moreover, the number of observed 

mutant amino acids at a given hotspot generally increases with its 

mutational frequency across tumors types (Supplementary Fig. 3c), 

though 35% (n = 164) of hotspots mutate to only a single variant 

amino acid. In most genes, hotspots bear only a fraction of the total 

mutational burden across the gene, whereas in a subset of cancer 

genes, the dominant mutational hotspot constitutes the vast majority 

of mutations independent of total mutational burden (Fig. 1d and 

Supplementary Fig. 3d). Overall, we identified considerable variabil-

ity in the patterns of mRNA expression of individual hotspots in even 

b

a

Breast

B
ra

in

Heme

T
h
o
ra

c
ic

Head and neck

G
yn

ec
ol
og

ic

S
kin

Low-grade glioma

Glioblastoma
High-grade pontine glioma

Medulloblastoma
Neuroblastoma

Pilocytic

Squamous lung
Small-cell lung

Lung adenocarcinoma

Cutaneous melanoma
Squamous cell carcinoma

Head and neck

Esophageal

Thyroid

Adenoid cystic

Nasopharyngeal

Uterine endometrial
Serous ovarian

Cervical

Uterine carcinosarcoma

Colorectal

Pancreas

Gastric

Hepatocellular

PNET

Gallbladder

Bladder Adrenocortical
Prostate

Renal (clear cell)
Kidney chromophobe

Renal (papillary)

Rhabdoid cancers

Non-lymphoma
AML

Myelodysplasia
Multiple myeloma

CLL

Mantle-cell lymphoma

ALL

Gastrointestinal

G
e
n
ito

u
rin

a
ry

02050

R258, G328

F1174, R1275

R337, N2875

Y44, P287

R24, K22

D1399, H1451

S17, F6    

A50, T100

R172, R140

R60, H28

P99, Y105
T58, S146

E14, Q15

P286, V411
R183, P179

P29, A159

P131, S87

G557, E1181  

N78, V155 splice

R1989, R1335, R693

F8, F17, R18

V104, D297, M60

N549, S252, C382

S249, Y373, R248

Q61, G13, G12

P124, K57, F53

S2215, C1483, I2500

Q61, G12, G13
R130, R233, C136

Y42, R5, E40

S34, Q157, I24

Q510, A72, E76, G503

R361, G386, D351, D537
F133, W131, Y87, F102

R465, R505, R479, R367, R658
M582 splice, N564, G376, R348, K567

Shown
Shown

Shown

K700, N626, R625, G742, K666, D894

52

Number of hotspots

c

19
14

9

FRMD6
MYC
MEF2A
ACVR1
VHL
MAX
FGFR1
CCND1
NUP93
CDK4
THSD7B
GPRIN2
RQCD1
ALK
EP300
ATM
POLE
PPP2R1A
H3F3A
IDH2
RAC1
BCL2L12
MTOR
RHOA
FGFR2
MAP2K1
ARID1A
FGFR3
ERBB3
U2AF1
HRAS
PTEN
NRAS
PTPN11
SPOP
SMAD4
PIK3R1
FBXW7
SF3B1
ERBB2
EGFR
KRAS
BRAF
NFE2L2
CDKN2A
CTNNB1
APC
PIK3CA
TP53

Nonsense hotspots in MCR
Shown
50 affect DNA binding domain

Shown
Multiple
Clustered in N terminus
Shown

d

50

100

200

R38

E81

R88 G106

K111
G118

V344

N
345

C
378

C
420

E453

E542
E545

Q546
E726

Y1021

M1043
N1044

H1047

10
20
30
40
50

D32
S33 G34

H36

S37

T41
S45

K335 N387

CTNNB1

10

20

560

570

G466
G469

N581
D594

G596
L597

V600

K601

BRAF

25
50
75

725 G12

G13

G60

Q61

K117
A146

KRAS

10

20

30

R108

A289

G598

G719

L858

L861

EGFR

5
10
15
20
25 S310

R678
L755

D769 V777

V842

ERBB2

N
u
m

b
e
r 

o
f 
m

u
ta

ti
o
n
s

1

1

1

1

1

1

Furin-like Kinase

GFRas

HelicalC2

p85 Other

470 hotspots

227
Levels 2,3 (known)

243
Level 1 (novel)

63 180

72

KRAS G12

IDH1 R132

RAC1 P29
...

RAC1 A159

PIK3CA Y1021

U2AF1 I24
...

Cancer genes 49 175 genes

astrocytoma

PIK3CA

K656, N546

K27, G34

RRAS2 Q72

PTN K44

MAPK7 A501
...

Figure 1 Mutational data and hotspot detection. (a) The distribution of tumor types included in this analysis. CLL, chronic lymphocytic leukemia; ALL, 

acute lymphoblastic leukemia; PNET, pancreatic neuroendocrine tumors. (b) Breakdown of known and classified novel hotspots and genes. (c) The number  

of hotspots in each of 49 genes with two more hotspots detected across the cohort. At right, a summary of hotspots identified. Novel hotspots are in 
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canonical oncogenes (Supplementary Fig. 4), indicating that levels 

of expression are often not correlated with the biological importance 

of known activating mutations.

The patterns by which some hotspots emerge support new clinical  

paradigms for testing targeted agents. Some hotspots that dominate 

the mutational landscape in one or a few cancer types also arise as 

uncommon subsets of many others. For instance, IDH1 R132 is most 

common in low-grade gliomas, glioblastomas, acute myeloid leuke-

mias (AMLs) and cutaneous melanomas; but it is also present in  

1 to 6 tumors in each of 11 additional cancer types. AKT1 E17K arises 

in greatest numbers in breast cancer, but also in 1 to 3 tumors of 10 

additional cancer types. The distribution of CREBBP R1446 mutations 

is qualitatively different. They were originally identified in relapsed 

acute lymphoblastic leukemias17, but in this cohort of mostly pri-

mary disease, we find that they arise in only a small minority (1–3; 

0.17–1.7%) of many (11) cancer types. Such patterns reaffirm the 

value of basket study designs that test mutation-specific inhibitors 

in early-phase clinical trials, where enrollment is based on specific 

mutations in patients instead of tissue of origin.

A lineage map of all hotspots in genes with at least one common 

hotspot (Fig. 2a and Supplementary Fig. 5) indicates most hotspots 

are defined more by the tissue types rather than the organ systems 

in which they arise. Of all hotspots, 81% arise in two or more tumor 

types, suggesting that many hotspot mutations may confer a growth 

advantage across diverse lineages. Indeed, of hotspots present in mul-

tiple tumor types, only 7.6% (n = 36) are confined to a single organ 

system (Table 2). Thus, hotspot mutations that arise in a single tumor 

type may reflect organ-specific growth advantages, but they represent 

only a small minority of all hotspot mutations in cancer. Likewise, 

a subset of hotspots arises in a cell type–specific manner. Twenty-

seven hotspots (5.7%) were more frequently mutated in tumors of a 

squamous cell lineage (Supplementary Fig. 6), the most significant 

of which were MAPK1 E322 and EP300 D1399 (q = 6 × 10−13 and  

1 × 10−11, respectively, χ2) and may potentially confer a squamous  

cell type–specific growth advantage.

Overall, the presence, type and frequency of hotspots by tumor 

type vary widely (Fig. 2b). In some tumor types, a large proportion of 

tumors possess one or more hotspot mutations including a substantial 

fraction of tumors with a hotspot in a candidate oncogene (Fig. 2b, 

top). Conversely, other tumor types never or rarely possess a tumor 

defined by a hotspot identified here. Some of these differences are 

certainly attributable to the fact that hotspots are only one of many 

possible driver genomic aberrations, including specific gene fusions 

or focal amplifications and deletions. These other aberrations may 

define tumors of a given type, but they are not mutually exclusive 

with hotspots in many cancers. Other differences could not, alone, 

be explained by the overall mutational burden in these tumor types. 

For instance, uterine carcinosarcomas and prostate cancers have a 

similar mutation rate whereas there is a threefold greater frequency of 

hotspot-bearing tumors among the former. Likewise, whereas papil-

lary thyroid and high-grade pontine gliomas have mutations rates 

similar to nasopharyngeal tumors and neuroblastomas, the former 

far more commonly bear hotspot mutations (Fig. 2b).

Unconventional hotspots

In addition to missense mutations, we identified a variety of uncon-

ventional hotspot mutations with varied impact. Among these 

were 13 splice-site hotspots. For each of these hotspots, an associ-

ated transcript abnormality was identified from RNA sequencing 

of affected tumors (exon skipping, intron retention, in-frame dele-

tions; Supplementary Fig. 7a), including two previously character-

ized in-frame activating mutations (MET D1010_splice and PIK3R1 

M582_splice, both exon 14 skipping events). We also identified 70 

hotspots in 34 genes for which a nonsense mutation was among a 

Table 1 Select new hotspots in cancer genes

Pathway/symbol Codon q-value

No. of  

affected tumors

No. of  

tumor types

Signaling effectors

 KRAS GQ60 2.28 × 10−6 11 7

 PIK3CA Y1021 3.18 × 10−6 9 6

C378 0.0018 6 5

N1044 0.0008 6 3

 PIK3CB D1067 0.0068 5 5

 PIK3R1 K567 0.0002 5 4

 PTEN a C136 2.27 × 10−5 9 5

 RAC1 A159 2.27 × 10−6 10 5

 RRAS2 Q72 8.00 × 10−15 9 6

 GNAQ T96 7.04 × 10−8 7 5

 ERBB3 M60 0.0083 4 4

 MAPK7 A501 9.50 × 10−6 6 4

 PTPN11a Q510 1.84 × 10−6 7 4

 PTN K44 1.46 × 10−5 7 4

 ARHGAP28 L259 0.0061 5 3

Cell cycle

 CDK4a K22 0.0008 4 2

 CCND1 Y44 3.48 × 10−7 7 2

 CDKN2A E88 4.24 × 10−5 15 5

L130 0.007 6 3

Transcription factors

 NFE2L2 E82 1.60 × 10−13 11 7

T80 1.96 × 10−10 9 7

Q26 9.26 × 10−8 7 5

G81 1.34 × 10−9 10 7

L30 4.52 × 10−6 8 5

G31 0.0001 8 5

R34 0.0001 13 6

 MEF2A P99 2.91 × 10−5 7 6

Y105 0.0061 4 4

 MYC S146 0.0046 6 4

 MAX R60 0.0006 9 6

H28 0.004 4 1

 FOXA1 I176 0.0001 7 2

Epigenetic modifiers

 ARID1A R1989 2.45 × 10−8 17 5

R1335 0.0062 9 6

 ING1 R196 1.06 × 10−6 11 5

 EP300 H1451 0.008 4 4

 HIST1H3C K37 0.0008 5 2

 SMARCA4 G1232 0.0006 9 6

DNA damage

 ATM N2875 4.66 × 10−5 6 4

RNA splicing

 SF3B1 N626 2.06 × 10−5 6 4

D894 0.009 5 4

 U2AF1 I24 0.0002 4 4

Wnt pathway

 CTNNB1 H36 0.0001 6 2

Nuclear transport

 NUP93 E14 1.59 × 10−10 11 6

Q15 0.0082 4 2

TGF beta signaling

 SMAD2 S464 1.19 × 10−7 11 5

 SMAD4 D351 0.0003 8 6

 SMAD4 D537 0.0033 9 3

 TGFBR2 R528 0.0013 10 5

A subset of newly identified hotspots are shown, a complete listing is available in  

Supplementary Table 2.
aAlthough previously identified in the germline of patients with associated syndromes and 

familial cancers, this is the first documentation of somatic mutations.
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diversity of changes at the affected residue, including 28 hotspots  

in which only a nonsense mutation was present (Supplementary  

Fig. 7b). Whereas nonsense mutations scattered throughout a gene 

may reflect a pattern of loss-of-function consistent with tumor- 

suppressor activity, a nonsense hotspot would appear to indicate the 

selection for the selective truncation of specific functional domains. 

Such events are consistent with the loss of some functions and the reten-

tion of others, as has been observed previously in genes such as PIK3R1, 

NOTCH1 and MET18,19. These hotspots aside, there was a depletion 

of nonsense mutations in hotspots in constitutively essential genes  

(P < 10−16, those genes predicted or experimentally verified to be 

essential across all cell and tissue types and developmental states20). 

Otherwise, the specific impact of nonsense hotspots is generally 

unknown and belies the disseminated pattern of truncating mutations 

in likely or proven tumor suppressors (Supplementary Fig. 7c).

Lineage diversity and mutant allele-specificity 

The majority of hotspot mutations arose in diverse tumor types and organ 

systems, yet widespread differences exist among individual residues 

and mutant amino acids in hotspots, genes and tumor types (Fig. 3a).  

Examining the spectrum of KRAS mutations, which includes the most 

frequently mutated hotspot overall in our study (KRAS G12; n = 736 

mutant tumors; Figs. 1d and 2a), clarified patterns only incidentally 

observed in the past. We found that gastric cancers were more similar to 

multiple myeloma in the preponderance of non-G12 mutations compared 

to endometrial, lung, colorectal and pancreatic tumors (P = 5.3 × 10−18;  

Supplementary Table 4). Only colorectal tumors had KRAS A146 muta-

tions, whereas pancreatic tumors lacked G13 mutations (P s = 4 × 10−7 

and 2.8 × 10−15, respectively). Many of these lineage-specific patterns 

were present at finer resolution as well. Among KRAS G12 mutations, 

the abundance of G12C mutations are highest in lung adenocarcinomas 

(P = 4 × 10−42), an event that may be associated with prognostic differ-

ences compared with non-G12C KRAS mutations21–23. Such mutant 

amino acid specificity was also apparent in pancreatic tumors, where 

KRAS G12R was more common than in any other tumor type (21% ver-

sus between 0 and 2.6%; χ2 P = 4.8 × 10−19). Gastric cancers, on the other 

hand, had the fewest G12V mutations among all KRAS G12-mutant 

tumor types, but the highest proportion of G12S (P = 0.007, Fig. 3b).  

There is a different balance among hotspots in the other Ras genes. 

Whereas papillary thyroid cancers nearly exclusively possessed codon 

Q61 mutations in HRAS and NRAS (P = 4 × 10−7), there was a higher 

prevalence of G12 and G13 codon mutations in these genes in AMLs, 

colorectal, bladder, and head and neck cancers, which together share 

few mutational processes in common (P = 4 × 10−10, Fig. 3a).

Similar differences emerged in other driver cancer genes with  

multiple hotspots. V600E mutations describe nearly all BRAF hotspot 

mutations in melanoma, papillary thyroid and colorectal carcino-

mas, whereas multiple myelomas are similar to lung adenocarci-

noma in which non-V600E hotspots predominate (P = 1.9 × 10−32).  

The balance between extracellular and kinase domain mutations in 

EGFR between brain tumors and lung adenocarcinoma (P = 3.3 × 10−12),  

respectively, have been documented previously and affect their 

biological impact and the efficacy of genotype-directed therapy10. 

ERBB2 followed a similar pattern, where extracellular domain muta-

tions typified by S310F are far more common than are kinase domain 

mutations in bladder cancers compared to breast cancers (P = 0.006, 

Fig. 3a). Another notable gene was PIK3CA. Whereas bladder and 

cervical cancers are similar in their distribution of PIK3CA hotspot 

mutations, they vary significantly from breast cancers in the overall 

balance of helical to kinase domain mutations, possessing far fewer 
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Figure 2 Lineage landscape of hotspot mutations. (a) Both common 

and rare hotspots are largely disseminated across a broad range of 

malignancies. All hotspots detected in genes with at least one hotspot 

affecting >5% of tumors of one or more tumor types are shown. Novel 

hotspots are in blue boldface. Genes are grouped broadly by functional 

similarity, hotspots are ordered by amino acid position, and tumor 

types (columns, labeled at bottom) are sorted according to the fraction 

of tumors affected by one or more hotspots overall (b). The percent of 

samples altered is represented by colored squares and indicated text. 

Hotspots in tumor suppressors TP53, PTEN, APC and FBXW7 were 

excluded here (Supplementary Fig. 5). (b) The fraction of tumors of a 

given type (as indicated) affected by one or more hotspots. Black circles 

represent the median mutation rate (right axis) in the indicated tumor 

type (bar is the median absolute deviation). Shown at top is the number 

of tumors of each type with a hotspot mutation affecting a known or 

candidate oncogene1.
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H1047R mutations among PIK3CA-mutated cases (P = 4.8 × 10−19).  

Endometrial and colorectal cancers also have a similar pattern  

of PIK3CA hotspots, but both have a higher prevalence of R88Q 

mutations than any other tumor type (P = 1.3 × 10−11; Fig. 3a). Such 

patterns extend beyond essential MAPK or PI3K signaling com-

ponents, such as with SF3B1 K700 mutations that predominate in 

breast cancers and chronic lymphocytic leukemias whereas melano-

mas more frequently possess SF3B1 R625 mutations (P = 0.0001). 

Finally, mutant amino acid specificity was not limited to hotspots 

in Ras genes. The IDH1 R132H hotspot mutation predominated in 

multiple brain tumor types, but cysteine was the most common IDH1 

R132 mutant amino acid in melanoma, which is unlikely to be exclu-

sively related to UV light exposure, as this is also true in AMLs that 

lack a UV-driven etiology (P = 3.9 × 10−21). Together, these results 

indicate that substantial mutant amino acid specificity exists among 

hotspot mutations across highly diverse tumor lineages. Two related 

conclusions may be drawn from these data. First, different hotspots 

in the same gene may possess in many cases different functions, much 

of which may be lineage-dependent, while not excluding the possi-

bility that some may still arise as a function of differing underlying 

mutational mechanisms. Second, that perhaps different mutant amino 

acids within the same hotspot can be functionally different, support 

for which idea is growing8,11.

Timing of individual hotspots

We next sought to determine if hotspot mutations, many of which are 

likely driver mutations and in some cases may serve as the initiating 

lesion, typically arise earlier than do nonrecurrent mutations in the 

same genes and are therefore more often clonal. Overall, mutations at 

hotspot residues more often resided in a greater fraction of tumor cells 

and therefore arose earlier (presumptive clonal), than non-hotspot muta-

tions in the same genes (Fig. 3c). So, whereas prior work has shown that 

driver genes in lung adenocarcinomas were enriched for clonal muta-

tions24, we found that this was true of hotspot mutations across a broad 

class of cancer genes and tumor types. However, there was considerable 

variability among hotspots. Whereas colorectal and endometrial can-

cers have a similar pattern of PIK3CA hotspot mutations (Fig. 3a) and 

share hypermutated subtypes of tumors driven 

by MSI and POLE exonuclease domain muta-

tions25,26, colorectal tumors were unique in the 

clonality of the E545 and H1047 mutations. 

The majority of PIK3CA E545 helical domain 

mutations in colorectal cancers were subclonal, 

whereas H1047 kinase domain mutations were 

clonal, a difference that was not apparent in 

endometrial tumors, in which both are early 

clonal mutations (Fig. 3d). This may be a func-

tion of the pattern of oncogenic co-mutation in 

these tumors as PIK3CA E545, but not H1047, 

mutations were significantly associated with 

KRAS mutations in these colorectal cancers  

(χ2 P = 0.0004) and in previous cohorts27. 

Overall, these differences in the molecular timing 

of specific hotspots augurs potentially important 

differences in their function in tumor initiation 

versus progression that requires further study.

Population-level hotspots in the long tail

Consistent with the so-called long tail of 

the frequency distribution of somatically 

mutated genes across cancer2, we found that 

85% of all hotspots identified here were mutated in less than 5% 

of tumors of all cancer types in which they were found (Fig. 4a).  

Such findings have led to calls for sequencing up to many thou-

sands of additional specimens from every tumor type28. However, 

many hotspots present at low frequency across cancers are not 

mutated commonly or significantly in even a single cancer type. 

Indeed, 23% of all hotspots identified here were present in only one 

or two samples in the tumor types in which they were observed. 

This included 19 hotspots arising in only one sample of each 

affected cancer type such as U2AF1 I24, MYC T58, the hyperac-

tivating MTOR I2500 (ref. 29), PIK3CB D1067, EP300 H1451 and 

ERBB3 M60. Conversely, population-level analysis, rather than by 

individual cancer type or organ system, allows identification of 

hotspots that arise as even private mutations in rare malignancies, 

for which additional broad-scale sequencing is most challenging. 

Although rare, such recurrent alleles are evidence of selection and 

may be associated with specific phenotypes, such as exceptional 

responses30,31 or de novo resistance to cancer therapy, or may 

reveal specific facets of pathway biology. Consequently, we found 

that notable long-tail hotspots affect a broad spectrum of abnor-

mal molecular function including macromolecular transport and 

transcriptional regulation (Table 1, Supplementary Note and 

Supplementary Fig. 8), as well as essential components of key  

signaling pathways.

Long-tail hotspots in Ras superfamily members

Mutations in the Ras family of small GTPases occur widely in human 

cancers. As expected, these were among the most significant hotspots 

detected here (Supplementary Table 2), affecting 1,335 tumors (12% 

of all cases). Whereas G12, G13 and Q61 codon hotspots predominate 

in KRAS, NRAS and HRAS, albeit at varying frequencies in different 

tumor types (Figs. 2a and 3a), we also identified GQ60GK, K117 

and A146 hotspots in KRAS. Both K117 and A146 are known acti-

vating hotspots in the long tail, but we also identified a previously  

occult GQ60GK dinucleotide substitution (q = 2.3 × 10−6) in 11 

tumors. This dinucleotide substitution results in a Q61K mutation 

accompanied by a G60 synonymous mutation that are present in cis 

Table 2 Organ system-specific hotspots

Symbol Position Tumor typesa

Organ  

system

No. affected 

tumors q-valueb

H3F3A K27M High-grade pontine glioma (26) Brain 27 2.2 × 10−50

Pilocytic astrocytoma (1)

MYD88 L265P Chronic lymphocytic leukemia (12) Hematologic 15 1.9 × 10−26

Non-Hodgkin’s lymphoma (2)

Multiple myeloma (1)

STK19 D89N Cutaneous melanoma (13) Skin 18 3.5 × 10−21

Squamous cell carcinoma (5)

EGFR G598V/A Glioblastoma (15) Brain 19 5 × 10−16

Low-grade glioma (3)

High-grade pontine glioma (1)

PPP2R1A P179R/L Endometrial (8) Gynecologic 13 1.6 × 10−12

Uterine carcinosarcoma (5)

FGFR3 Y373C Urothelial bladder (7) Genitourinary  8 2.8 × 10−10

Renal papillary cell carcinoma (1)

KNSTRN S24F Cutaneous melanoma (11) Skin 13 7.7 × 10−10

Squamous cell carcinoma (2)

CCND1 Y44D/S/H/F/C/* Mantel cell lymphoma (6) Hematologic  7 3.5 × 10−7

Multiple myeloma (1)

CRNKL1 S128F Cutaneous melanoma (8) Skin 10 4 × 10−7

Squamous cell carcinoma (2)

EGFR L861Q Lung adenocarcinoma (5) Thoracic  7 5.4 × 10−7

Lung squamous cell carcinoma (2)

Shown are the ten most significant hotspots that arise in multiple tumor types of a single organ system.
aNumber in parentheses is the count of affected tumors of the indicated cancer type. bq-value is estimated from P-values 

produced by the binomial model described in Online Methods.
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(in concomitant RNA sequencing; Supplementary Fig. 9). Although 

Q > K mutations at codon 61 can result from 3′ G > T single-nucleotide  

mutations in KRAS, 100% of these tumors harbored the dinucle-

otide substitution, a rare spontaneous event in human genomes.  

Overall, the distribution of codon 61 mutations in KRAS, NRAS and 

HRAS are very different, with Q > K mutations occurring signifi-

cantly less frequently in KRAS (P = 0.016; Fig. 4b). GA > TT muta-

tions were the most common dinucleotide substitution producing 

GQ60GK (Fig. 4c) and converts the ACC codon at KRAS G60 to TCC, 

which is the sequence of the G60 codon in NRAS, in which Q61K 

mutations are far more common and arise nearly exclusively from 

single-nucleotide mutations. It remains to be determined whether 

KRAS GQ60GK is therefore driven by a pattern of codon usage at the 

−1 position. Notably, only one tumor had evidence of a non-KRAS 

GQ60GK mutation, an NRAS-mutant cutaneous melanoma (Fig. 4c 

and Supplementary Table 5).

We next explored whether KRAS GQ60GK may serve as a driver of 

Ras pathway activity as do conventional KRAS hotspots. GQ60GK is 

indeed present in diverse tumor types that all have well-established 

Ras-driven subsets (Supplementary Table 5). Reasoning that if 

GQ60GK were a passenger mutation in Ras-driven tumors, alternative 

MAPK-activating mutations may be present in these tumors. Instead, 

we found that in every GQ60GK-mutant sample where another puta-

tive driver of MAPK signaling was present, that lesion was either 

(i) subclonal, defining a different clone than did GQ60GK; (ii) low 

activity; or (iii) a passenger mutation (Supplementary Table 5).  

Also, despite the frequency of GA > TT, there was no evidence that a 

common underlying mutational process or exogenous mutagen was 

the source of GQ60GK. There was no evidence of UV light exposure 

in the clinical histories or nucleotide contexts of most affected cases, 

only one of which was a cutaneous melanoma. Moreover, GQ60GK 

arose in both hypermutated (MSI-H colon lacking BRAF V600E) 

and nonhypermutated tumors. Finally, rare G60 missense muta-

tions were evident in KRAS and HRAS in this data set and in the 

literature (Supplementary Table 5) (ref. 32). So, although we cannot 

exclude the possibility that the GQ60GK dinucleotide substitution is 
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Figure 3 Lineage diversity and mutant allele specificity. (a) The fraction of cases mutated for each of the most common hotspots in eight frequently 

mutated genes in the most commonly mutated lineages indicate substantial lineage diversity and hotspot specificity. (b) Same as in a, but for KRAS G12 

and IDH1 R132 mutations, showing that mutant amino acid specificity exists within individual hotspots across affected tumor types. (c) The fraction 

of clonal mutations, those present in 80% or more of the tumor cells of affected samples, was higher among mutations in hotspots versus all other 

nonrecurrent mutations in the same genes (χ2 P = 1 × 10−14). (d) The fraction of tumor cells mutated for PIK3CA E545 and PIK3CA H1047 hotspots in 

affected colorectal and uterine endometrial cancers indicates a pattern of allele-specific subclonality for E545 mutations in colorectal cancer.
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simply an alternative mechanism to achieve 

Q61K, the accompanying KRAS-specific G60 

synonymous mutation may potentiate a dif-

ferent class of Q61-mutant tumors or cause 

signaling differences among Q61K-mutant 

tumors between KRAS, NRAS or HRAS. 

Although further studies will need to explore 

the molecular properties of KRAS GQ60GK, 

this allele represents the most common dinu-

cleotide substitution spanning two codons in 

human cancer and a mutation more common 

than other known hotspots in KRAS.

Novel long-tail hotspots were also identi-

fied in two other genes that encode members 

of the Ras superfamily of small GTPases. 

RAC1, in which we identified two hotspots, is a Rho subfamily mem-

ber that plays a vital role in various cellular functions. RAC1 P29S is an 

oncogenic hotspot in melanomas12,33, that we also identified in head 

and neck, and endometrial cancers (Fig. 4d). This mutation can con-

fer resistance to RAF inhibitor treatment in vitro34, and may underlie 

early resistance in patients35. We also identified a novel RAC1 A159V 

hotspot present in 10 tumors (q = 2.27 × 10−6; Fig. 4d). Notably, RAC1 

A159V is paralogous to KRAS A146, a known activating mutation36. 

Whereas activating KRAS A146T mutations arise predominantly in 

colorectal carcinomas (Supplementary Table 2), RAC1 A159V muta-

tions are most common in head and neck cancers and were not present 

in any melanomas, despite the frequency of RAC1 P29S in this cancer 

type. Moreover, similar to P29S mutations, we observed RAC1 A159V 

mutations in tumors that are both Ras/Raf wild-type and mutant  

(Fig. 4e). To determine whether RAC1 A159V is an activating mutation, 

we assessed its effect in vitro. Active RAC1 is GTP-bound, interacting 

with PAK1 to activate downstream effectors. Therefore, to quantify 

RAC1 activation in vitro, we used a PAK1 pull-down assay. In HEK293T 

cells expressing RAC1 A159V, there was substantial RAC1 activation 

to levels equal to or exceeding positive-control RAC1 GTPγS cells and 

greater than even those levels induced by the known RAC1 P29S onco-

genic mutation (Fig. 4f). Moreover, cells expressing RAC1 Q61R, a 

mutation we identified in a primary prostate cancer that is paralogous 

to KRAS Q61, also potently induced RAC1 activation (Fig. 4d,f).

RRAS2 is a Ras-related small GTPase37. RRAS2 is overexpressed or 

mutated in a small number of cancer cell lines of various origins38–40, 

and is oncogenic in vitro with transforming ability similar to that of 

established Ras oncoproteins41. However, it has not been documented 

as somatically mutated in human tumor specimens. Here, we identi-

fied a RRAS2 Q72 hotspot present in nine tumors (q = 8 × 10−15).  
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Figure 4 Candidate Ras-related small GTPase 

driver mutations in the long tail. (a) The  

frequency distribution of hotspot mutations in 

cancer has a long right tail of mutated residues 

that, although recurrent, are not common in 

any cancer type. (b) There is a statistically 

significant difference in the pattern of Q61 

codon mutations in KRAS, HRAS and NRAS  

(χ2 P-value = 0.016). (c) The sequence of  

Gly60-Glu62 of KRAS, HRAS and NRAS are 

shown along with mutant alleles from affected 

cases indicating the GQ60GK dinucleotide  

mutation was the only source of KRAS Q61K 

mutation, whereas the far more common HRAS 

and NRAS Q61K mutations arose almost  

exclusively from single nucleotide events.  

The KRAS G60G synonymous mutation also 

creates a G60 codon in sequence (ACC > TCC) 

identical to wild-type sequence of NRAS G60,  

where Q61 mutations are the most common.  

(d) RAC1, RRAS2 and KRAS are shown in 

schematic form indicating the position of novel 

hotspots RAC1 A159V and RRAS2 Q72L/H at 

paralogous residues in the Ras domain to known 

activating mutations in KRAS (A146 and Q61, 

respectively). (e) The pattern of RAC1 (left) and 

RRAS2 (right) mutations along with those in 

BRAF and Ras genes in affected tumor types.  

(f) Western blot analysis of RAC1 activation 

(GTP-bound RAC1) by PAK1 pull down (right). 

RAC1 A159V was associated with significant 

RAC1 activation at levels equal to or exceeding 

the positive control GTPγS and greater than 

those of the known oncogenic RAC1 P29S.
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Similar to RAC1 A159V, the RRAS2 Q72 hotspot is paralogous to 

KRAS Q61 (Fig. 4d). However, unlike RAC1, RRAS2 Q72 does not 

predominate in any individual tumor type. Also unlike RAC1, the 

RRAS2 Q72 mutation was present in Ras/Raf wild-type tumors among 

the affected types (Fig. 4e). This result suggests that RRAS2 acti-

vation may be an alternative avenue for tumors to acquire Ras-like 

activation as previous studies have shown that RRAS2 shares many 

Ras downstream signaling elements including phosphatidylinositol-3  

kinase (PI3K)42,43, the Ral GDP dissociation pathway42, and Raf 

kinases44. Beyond these hotspots, several less common RAC1 and 

RRAS2 mutations affect paralogous residues of highly recurrent alleles  

in KRAS (Fig. 4d); some which we validated were also activating  

in vitro (Fig. 4f), indicating that the landscape of potentially  

functional mutations in these genes extends beyond even these less 

common long-tail hotspots to private mutations as well.

DISCUSSION

Although we focused only on recurrent substitutions, we did find that 

whereas a subset of hotspots were prevalent in individual cancer types, 

most hotspots were present infrequently across many cancer types. This 

indicates that studies of any individual cancer type may have limited  

power to identify novel alleles. We have also begun to detail best 

practices for the use of diverse public cancer sequencing data in the 

translational setting. Our approach for hotspot detection incorpo-

rates features such as the variable background mutational burden of  

individual codons and genes, thereby avoiding passenger mutations 

whose recurrence is due only to their presence in highly mutable amino 

acids. Although the identification of private driver mutations remains 

challenging, our approach did uncover low-incidence hotspots in 

highly mutated genes. Though less common, these hotspots are under 

selection and may confer important clinical phenotypes in cancer  

patients, such as exceptional responses to cancer therapy30,31.

New mutant alleles in established genes are likely to emerge faster 

than new cancer genes are identified, extending the long tail of the 

frequency distribution of somatic mutations. This is especially true 

as clinical sequencing focuses on profiling advanced and metastatic 

disease for clinical trial enrollment. Such pretreated, late-stage cases 

have been historically under-represented among such population-

scale resources, including the one studied here. Moreover, at present 

there are fewer actionable mutations in cancer than there are cancer 

genes. Yet the near-term clinical utility of expanding the former is far 

greater than adding to the latter. Our results suggest this will require 

an understanding of the function of different hotspot mutants in the 

same gene by lineage, as their function and response to therapy may 

be specific to the mutant amino acid. Although positive selective 

pressure may produce the same hotspot mutation, or different vari-

ant amino acid changes within the same hotspot residue, it does not 

imply that they will confer similar selective advantages across lineages.  

Underlying functional distinctions may explain the differences 

observed here in the emergence and frequencies of hotspots across 

lineages. Although this remains speculative or unknown for most 

hotspots, early evidence suggests that this will be true for even some 

of the most important alleles in human cancer8,9,11. Understanding 

this landscape of distinct molecular function is the necessary transla-

tional prerequisite for effective clinical implementation. This focus on 

mutations rather than genes will spur studies of the biochemical, bio-

logical, signaling impact and drug sensitivity of candidate individual 

alleles. Collectively, the complementary study of both significantly 

mutated individual alleles as well as genes will prove indispensable 

in enabling precision oncology through clinical decision support for 

patients sequenced at the point of care.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Mutational data set and pre-processing. Mutational data were obtained from 

three publically available sources: (i) The Cancer Genome Atlas (TCGA);  

(ii) the data portal of the International Cancer Genome Consortium (ICGC); 

(iii) various published studies in peer-reviewed journals in which mutational 

data were made available45,46. Mutation-calling algorithms and mutation 

reporting practices varied from study to study in these curated data, so muta-

tion data review and correction were undertaken where possible. Genomic 

coordinates of variants from alignments to human reference assembly NCBI36 

(hg18) were converted to GRCh37 using LiftOver47 with an Ensembl chain 

file (see URLs). After standardization to GRCh37, the mutation calls were 

annotated to gene transcripts in Ensembl release 75 (Gencode release 19), and a 

single canonical effect per mutation was reported using Variant Effect Predictor 

(VEP) version 77 (ref. 48) and vcf2maf version 1.5. All possible pairs of any 

two samples with at least ten somatic mutations were interrogated for sample 

duplication. For any pair of tumors that shared greater than 80% mutational 

identity and identical or near-identical clinical-pathological characteristics 

(upon review of data from the source site/publication), a single tumor in the 

pair was chosen at random and removed from further analysis as a presump-

tive duplicate specimen. Furthermore, we excluded small insertions and dele-

tions (indels), despite their presence as true oncogenic hotspots in some genes, 

because of their greater variability in call quality across data sets. In total, the 

final data set included mutations of the following types: 1,348,424 missense; 

524,827 synonymous; 100,866 nonsense; 30,346 splice-site; and 3,231 affecting 

translational start or stop codons. There are also 21,130 oligonucleotide variants 

the majority of which are dinucleotide mutations along with 71 trinucleotide 

mutations and 13 substitutions of 4 bp or longer. Individual mutations and 

hotspots of interest (detected as described below) were inspected in individual 

BAM files from tumor and matched normal specimens of DNA and available 

RNA sequencing data downloaded from CGHub. When available, expression 

analyses were based on level-3 RNASeqV2 RSEM normalized gene expres-

sion counts from RNA sequencing available via the TCGA Data Coordinating 

Center. These values were log-transformed and scaled across all samples within 

each cancer type to facilitate comparisons between cancer types.

Definition of a mutational hotspot. For the purposes of this analysis, we first 

define a driver cancer gene as one in which a molecular abnormality leads to 

a fitness advantage for the affected cancer cell. This is the broadest definition 

that encompasses both initiating lesions on which tumor growth depends 

as well as lesions arising later in tumor progression that perhaps confer a 

more modest fitness advantage. We then define a hotspot as an amino acid 

position in a protein-coding gene mutated more frequently than would be 

expected in the absence of selection. Therefore, all of the following mutation 

types result in the same hotspot: (i) mutations in different nucleotide positions  

in the same codon of a gene, (ii) different nucleotide substitutions at the  

same site in the same codon that result in different amino acid changes,  

and (iii) mutations where the amino acid substitution is identical but the 

nucleotide change are different. At present, this analysis is limited to recurrent 

somatic substitutions, but can be expanded to other classes of somatic altera-

tions such as small insertions and deletions, DNA copy number alterations 

and structural rearrangements.

Determining significant mutational hotspots. To determine the statisti-

cal significance of individual mutational hotspots, we developed a truncated 

binomial probability model not only by incorporating underlying features 

of mutation rates in cancer but also by anticipating the gene-specific pattern 

with which hotspots may arise in different classes of possible cancer genes. In 

its most general form, if X represents the count of mutations in n samples, the 

probability of observing k mutations is: 

Pr( ) ( )X k p pk
n k n k= = ( ) − −

1

where p is the probability of a mutation in any sample. However, differences 

exist in the mutability of specific nucleotide contexts in cancer genomes. These 

vary as a function of the underlying mutational process, potential molecular 

abnormality in normal DNA maintenance pathways and possible exposure 

to exogenous mutagens16. Moreover, individual genes have highly variably 

(1)(1)

nucleotide composition and background mutation rates. To address these fun-

damental characteristics, we integrated a coefficient into a position-specific 

probability that incorporates both the mutability of the trinucleotide context 

in which the mutation arose and the trinucleotide composition of the affected 

gene. For each of the 32 possible trinucleotides, we estimate the mutability of 

a given trinucleotide t as: 

m
C

F
t

t

t=

where Ct is the number of mutations affecting the central position of  

trinucleotide t across all samples and Ft is the number of occurrences of the 

trinucleotide t in the coding genome. Too little data existed to compute tumor 

type-specific or underlying mutational process–specific mutability. Because  

a mutated codon in a given gene is comprised of mutations in any one of  

three trinucleotides that encode that codon, we estimate the mutability of a 

codon c in gene g as: 

m
m n

n
c g

t c t t c

c
,

,= ∈Σ

where nt,c is the number of mutations in the central position of trinucle-

otide t in codon c and nc is the number of mutations in codon c overall. We  

estimate the mutability of gene g as µg= Cg/(nLg), where Cg is the number  

of mutations affecting the gene across the n samples and Lg is the length  

of the gene in amino acids. We then estimated the expected mutability of a 

given gene g as: 

m
N m

L
g t

t g t

G

= Σ ,

where Nt,g is the number of occurrences of trinucleotide t in gene g. The rela-

tive mutability of a codon within a gene is then rc,g= mc,g/mg. This leads to a 

binomial parameter for hotspot detection of: 

p rc g c g g, ,= m

We sought to avoid overestimating the background mutation rate for a gene 

with several hotspots. This would limit the detection of lower frequency 

hotspots (warmspots) due to the rate of recurrence of one or a few dominant 

hotspots in the same gene. We therefore developed a truncated form by remov-

ing positions in gene g bearing greater than or equal to the 99th percentile of 

all mutations in the gene. The new background rate is therefore mg
′ , calculated 

as before where the prime signifies the mutation counts and lengths modified 

using the above threshold. Then p rc g c g g, ,
′ ′= m . Finally, in rarely mutated genes 

where the probability p is exceedingly small (relative to the size of the cohort 

N and the length of the protein L), we limited the number of false-positive 

hotspots by allowing pc g,′  to get no smaller than the 20th percentile of all p′ 
data set-wide. Therefore, the final binomial probability is: 

p
p

ile of all p
c g

c g
,

,
max

%
″

′

′
=





20

Accordingly, we calculate one-sided P-values for all unique amino acids in 

every annotated gene per the binomial form given in equation (1) with prob-

ability from equation (6) and test whether more mutations are observed than 

would be expected by chance given the pattern of all mutations in the gene; 

its composition and length; the pattern of its mutability; and the number and 

type of samples assessed.

Multiple hypothesis correction. To correct for multiple hypotheses, we 

employed a method for false-discovery rate correction that assumes depend-

ence among tests. This correction was performed on the gene level in the fol-

lowing manner. P-values were aggregated per gene on the basis of their codon 

position. For codons that were not mutated in a given gene and therefore not 

formally assessed, we padded this with a vector of P-values equal to 1 such 

that the final set of P-values equaled the amino acid length of the given gene. 

For all resulting P-values in each gene, they were corrected with the Benjamini 

and Yekutieli49 method (implemented in p.adjust in the stats package in R) 

and significant hotspots were those sites with q < 0.01.

(2)(2)

(3)(3)

(4)(4)

(5)(5)

(6)(6)
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Mutation call quality filtering. Considerable variability exists in the process-

ing and generation of mutational data in individual cohorts by originating 

centers. To address this variability, we developed several criteria based on 

weight of evidence for eliminating presumptive false positives and sequenc-

ing artifacts from individual mutation calls as well as from hotspots across the 

data set (Supplementary Fig. 1b). Initially, to exclude likely germline variants 

misattributed as somatic mutations we exclude any mutation identified by both  

1000 Genomes and the National Heart, Lung, and Blood Institute or those iden-

tified only by 1000 Genomes in two or more samples. We then reasoned that 

hotspots arising in genes not expressed in a given tumor type are less likely to 

exert biological impact. We therefore removed from consideration hotspot muta-

tions in genes whose expression was <0.1 transcripts per million (TPM) in 90% 

or more of the tumors of that type, or for tumors that lacked RNA sequencing 

data, if more than 95% of all tumors independent of organ of origin had expres-

sion of TPM < 0.1. After determining statistically significant hotspots (described 

above), hotspots were removed from consideration based on a decision tree 

model as follows. First, a presumptive true-positive (pTPs) list of hotspots was 

predetermined as coding positions harboring substitutions in five or more tumor 

samples (from the August 2013 release of the cBioPortal45,46) in one of 341 key 

cancer-associated genes sequenced as part of routine CLIA-certified sequencing 

of matched tumor and normal specimens at Memorial Sloan Kettering Cancer 

Center50. Initially, for all samples in which a hotspot was observed and for which 

the fraction of tumor cells mutated could be calculated from corresponding vari-

ant allele frequency and DNA copy number data, we calculated the fraction of 

tumors in which that site was mutated subclonally (in fewer than 90% of tumor 

cells). If the fraction of samples in which the hotspot arose subclonally exceeded 

the maximum such value among pTPs, it was excluded. For remaining sites, we 

excluded potential hotspots that arose from mutation calling bias from a single 

source center. We identified cohorts in which subsets of samples were called by 

different centers and excluded hotspots in which greater than 85% of contrib-

uting mutation calls originated from a single mutation-calling center. Next, as 

local sequence complexity can affect alignment accuracy in various ways based 

on the read lengths and chemistry of source studies in our data set, we sought 

to exclude hotspots on the basis of sequence context. We excluded hotspots 

where the minimum of Shannon entropy calculated from both 12 bp or 24 bp 

of flanking sequence on either the 5′ or 3′ side of the mutated site was less than 

the minimum such value among pTPs. We then excluded hotspots that were 

positioned at either the 5′ or 3′ end of mono-, di- or trinucleotide homopolymer 

runs of 10 bp or longer. Remaining hotspots were then excluded if either the 

sum of their ranked weighted 100-bp and 24-bp alignability (determined by 

CRG Alignability; UCSC Genome Browser) was less than the minimum value 

of pTPs or their weighted 24-bp alignability was lower than the 12.5 percentile 

of all sites. We also excluded any hotspot that although passing these criteria 

affected a gene that was (i) already rich in presumptive false positives by these 

criteria (the number of retained hotspots was less than two times the count of 

hotspots in the gene excluded by one or more of these criteria) or (ii) one of 20 

well-characterized presumptive “red-herring” cancer genes due to high mutation 

rates that co-vary with underlying features independent of selection4. Finally, 

we manually inspected the sequencing data contributing to the mutation call for 

select hotspots in a sampling of affected tumor and matched normal samples. 

The significant hotspots (q < 0.01) that were excluded from consideration on 

the basis of this model are available in Supplementary Table 3.

Hotspot mutation data and literature review. In addition to the mutation call 

filtering described above, we independently validated the accuracy of a subset 

of mutation calls contributing to the novel hotspots discussed in the text. We 

downloaded BAM files of the aligned and unaligned sequencing reads corre-

sponding to the tumor and matched normal exomes from each patient harboring  

one of the novel hotspots we discuss in detail in the manuscript (RAC1 A159; 

RRAS2 Q72; NUP93 E14 and Q15; MAX R60; and MAX H28) and reproc-

essed these from raw FASTQ to mutation calls with an independent sequence 

analysis pipeline30,31. We re-identified the hotspot mutation of interest in 34 of 

35 affected specimens. Only a single sample failed to reproduce the published 

mutation (NUP93 E14 in a hepatocellular carcinoma), but NUP93 E14K remains 

statistically significant even after excluding the tumor in which the mutation 

was not called by the independent pipeline. To determine novel hotspots among 

the 470 identified here, we classified each mutation into one of three levels of 

evidence from an extensive literature review (Supplementary Table 2). Level-1 

mutations are those not previously identified in human tumors or those that 

have been identified in an individual sample, but never described as a hotspot 

of recurrent mutation. This also includes mutations previously documented in 

the germline of patients, but never identified previously as recurrently somati-

cally mutated. Level-2 hotspots are those mutations that have been reported 

previously in one tumor type that we also identified in the same, but also found 

mutated in one or more additional tumor types not previously described. Level-3  

hotspots are those mutations that have been previously identified in one or more 

tumor types and have been assessed functionally in vitro or in vivo. Using this 

categorization, we identified 249, 41 and 180 levels 1, 2 and 3 mutations from 

the 470 hotspots described here. These were classified as being present or not in 

established candidate cancer genes (n = 880, Fig. 1b) compiled from the Sanger 

Cancer Gene Census and four additional published sources1,4,5,50.

Cell type specificity analysis. We determined the enrichment of individual 

hotspots in different cell types (squamous versus nonsquamous). For this analysis,  

squamous cell cancers included head and neck squamous cell carcinoma, lung 

squamous cell carcinoma, cervical squamous cell carcinoma and esophageal 

squamous cell carcinoma. Hotspots mutated in at least one squamous tumor 

were examined and their statistical significance was assessed with Fisher’s exact 

test assuming the null hypothesis that squamous and nonsquamous tumor sam-

ples are equally likely to possess a given hotspot. Resulting P-values were cor-

rected for multiple hypothesis testing with the Benjamini and Yekutieli49 method 

and squamous cell-type specific hotspots were those with q < 0.01.

Analysis of the fraction of cancer cells mutated. Level-3 segmentation of 

DNA copy number data was acquired when available without restriction for 15 

cohorts (primarily TCGA). Using these data, we estimated tumor purity using 

absCN-seq51, due to the ease of its automation. We calculated the fraction of 

tumor cells bearing each mutation (tumor/cancer cell fraction) in each tumor 

based on this purity estimate, local copy number, and mutant and reference 

allele sequencing coverage, all as previously described52.

Functional validation. DNA coding sequences for wild-type RAC1 as well as 

RAC1P29S, RAC1Q61R and RAC1A159V were generated via site-directed mutagen-

esis (Genewiz, NJ) to include an N-terminal 3xFLAG epitope tag and were sub-

cloned into a pcDNA3 mammalian expression vector (Life Technologies, NY).  

Early-passage HEK293T cells were acquired from ATCC and authenticated as 

mycoplasma free. The expression  constructs were transfected into these cells using 

Lipofectamine 2000 (Life Technologies), and cells were harvested after 72 h. GTP-

bound Rac1 (active Rac1) was isolated via immunoprecipitation using recom-

binant p21-binding domain (PBD) of PAK1 (PAK1-PBD; Active Rac1 Detection 

Kit, Cat#8815, Cell Signaling, MA), according to the manufacturer′s instructions. 

The Rac1 was detected using kit-provided Rac1 primary antibody.

Data availability. Publically available sequencing data, CGHub, https://

cghub.ucsc.edu; Broad Institute Genome Data Analysis Center, http://

gdac.broadinstitute.org/; mutation curation and visualization, cBioPortal 

for Cancer Genomics, http://cbioportal.org/; reference genome remapping, 

Ensembl chain file, http://ftp.ensembl.org/pub/assembly_mapping/homo_

sapiens/NCBI36_to_GRCh37.chain.gz; mutational data analyzed in this study 

and source code, https://github.com/taylor-lab/hotspots.
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