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ABSTRACT  

This article highlights how the loose definition of the term ‘refugia’ has led to discrepancies in 

methods used to assess species’ vulnerability to the current trend of rising global temperatures. 

The term ‘refugia’ is commonly used without distinguishing between macrorefugia and 

microrefugia, ex situ refugia and in situ refugia, glacial and interglacial refugia or refugia based 

on habitat stability and refugia based on climatic stability. It is not always clear which definition 

is being used, and this makes it difficult to assess the appropriateness of the methods employed. 

For example, it is crucial to develop accurate fine-scale climate grids when identifying 

microrefugia, but coarse-scale macroclimate might be adequate for determining macrorefugia. 

Similarly, identifying in situ refugia might be more appropriate for species with poor dispersal 

ability but this may overestimate extinction risk for good dispersers. More care needs to be taken 

to properly define the context when referring to refugia from climate change so that the validity 

of methods and the conservation significance of refugia can be assessed. 

Keywords Bioclimatic envelope models, climatic stability, conservation biogeography, cryptic 

refugia, ecological niche models, extinction risk, interglacial refugia, macrorefugia, 

microclimate, microrefugia. 
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INTRODUCTION 

The importance of refugia is increasingly being recognized (Noss, 2001; Petit et al., 2003; 

Bennett & Provan, 2008). While the term was originally introduced to refer to locations where 

species survived the last glacial period (Bennett & Provan, 2008), it is now increasingly used to 

refer to areas that should be conserved to limit the impacts of rising global temperatures in the 

21st century (Barnosky, 2008; Trivedi et al., 2008; Williams et al., 2008; Rull, 2009). However, 

the broadening usage of the term has introduced apparent contradictions in methodology and 

potentially decreased its usefulness (Bennett & Provan, 2008). This article provides an overview 

of different interpretations of climate change refugia and highlights some of the methodological 

discrepancies and potential problems that can result (Table 1). Authors need to explicitly address 

these inconsistencies or the ecological significance of refugia will be ambiguous, thus 

confounding their conservation value. 

REFUGIA FROM CLIMATE CHANGE 

Taxa that prefer warmer climates generally contract their distributions to refugia during glacial 

periods, while taxa that prefer cooler climates are generally restricted to refugia during 

interglacial periods (Stewart et al., 2010). Both glacial and interglacial refugia should be 

conserved to ensure long-term persistence of species (Skov & Svenning, 2004), however, it is the 

species that prefer cooler conditions that are of most immediate concern as they are currently 

restricted to interglacial refugia and face increased threat with further rises in global 

temperatures. Present-day average global temperatures are approximately 2oC cooler than the 

previous interglacial (Jouzel et al., 1987), but there are spatial and seasonal differences in this 

relationship and some locations are already warmer than the last interglacial during some seasons 

(Kubatzki et al., 2000; Montoya et al., 2000; Kaspar et al., 2005). In addition, temperatures are 
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expected to rise by a further 1.1–6.4oC during the 21st century (IPCC, 2007), and this will place 

additional stress on species that prefer cooler temperatures and are currently restricted to 

interglacial refugia. 

Refugia from 21st century climate change will differ from current interglacial refugia in 

that temperatures will be warmer and species will have to cope with landscapes that have been 

fragmented by humans (Vos et al., 2008). If refugia are restricted to locations that remain 

suitable for a species (in situ refugia; Attore et al., 2007; VanDerWal et al., 2009), then refugia 

from 21st century climate change will occupy a subset of the locations where interglacial refugia 

currently occur (areas that are cooler than the surrounding region are expected to shrink as the 

climate warms; Ohlemüller et al., 2008). However, some species can survive periods of 

unfavourable climate in locations that they did not occupy previously (ex situ refugia; Loarie et 

al., 2008; Holderegger & Thiel-Egenter, 2009). Identifying in situ refugia from climate change 

might be more appropriate for species with poor dispersal or where human land use changes 

have created barriers, but this might exaggerate extinction risk for good dispersers. Potential ex 

situ refugia that were previously unreachable may become available if humans assist 

colonisations or create new corridors (Hunter, 2007; Vos et al., 2008). The choice between in 

situ and ex situ climate change refugia is therefore an important aspect that should be justified in 

terms of species’ dispersal capabilities. This choice is analogous to the assumption in species 

distribution models that species either have no dispersal (in situ refugia only) or universal 

dispersal (both in situ and ex situ refugia; Thomas et al., 2004; Pearson, 2006). 

The differences between in situ and ex situ refugia illustrate the confusion that arises 

when the term ‘refugia’ is used without clarifying definitions and context. For example, the 

terms ‘refugia’ and ‘refuge’ are used at a variety of spatial and temporal scales, including intra-
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day shelters from predators (Monasterio et al., 2009), small patches of forest left undisturbed 

during forest harvesting (Perhans et al., 2009) and inter-annual protection from drought 

conditions (Manning et al., 2007). These definitions of refugia could also be extended to include 

climate change impacts, for example by management actions that create thermally buffered 

environments such as nest boxes (Williams et al., 2008). While attempts have been made to 

distinguish between refugia and refuges (e.g. Rull, 2009), corresponding rules are not always 

followed. This highlights the need to replace the term ‘refugia’ with a more descriptive term and 

clarify the context in which refugia is used (Bennett & Proven, 2008). 

Throughout this article the term ‘refugia’ is used for areas that are at least large enough to 

support a small population of some species (e.g. ~100–10,000 m2 or more), while individual 

shelters such as rocks and nest boxes are regarded as ‘refuges’ and not considered further. 

However, this arbitrary classification is biased towards plants and vertebrates, and smaller 

species, such as invertebrates, may be able to maintain viable populations in climate change 

refugia at finer scales. Once again, the taxon specific variations in the scale of refugia highlight 

the need to clarify the definition and interpretation of refugia. 

MICROREFUGIA AND MACROREFUGIA 

Although refugia can be examined at a continuum of scales, they have been broadly classified as 

either macrorefugia (classical refugia) or microrefugia (cryptic refugia; Bennett & Proven, 2008; 

Holderegger & Thiel-Egenter, 2009; Rull, 2009). For example, during the last glacial period 

large areas with favourable regional climate in southern Europe acted as macrorefugia for 

temperate taxa, while small areas with unusual microclimate in northern Europe acted as 

microrefugia. The climate grids needed to identify microrefugia differ from those needed to 

identify macrorefugia, yet the term ‘refugia’ is sometimes used without distinguishing between 
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the two. This is an unfortunate oversight, as it makes it difficult to assess the appropriateness of 

the climate grids used. 

Species responses’ to climate change are often identified using coarse-scale species 

distribution models (SDMs; Pearson & Dawson, 2003; Thomas et al., 2004), yet these may 

overestimate extinction risk because the climate grids used by these models are too coarse to 

predict the location of microrefugia (Thuiller et al., 2005; Araújo & Rahbek, 2006; Pearson, 

2006). For example, commonly used climate grids, such as BioClim (Houlder et al., 2003) and 

WorldClim (Hijmans et al., 2005), are developed using elevation sensitive interpolations from 

weather stations. While these methods are suitable at coarse resolutions, the climate surfaces 

cannot simply be downscaled to finer resolutions as they neglect climate-forcing factors that 

operate over small distances (< 10 km; Daly, 2006). Local climates are also affected by cold air 

drainage, streams, oceans, lakes, and topographic exposure to winds and radiation (Lookingbill 

& Urban, 2003; Daly, 2006; Ashcroft et al., 2008; Fridley, 2009; Bennie et al., 2010), all of 

which are neglected when temperatures are interpolated or downscaled based only on elevation 

or other simplistic methods (e.g. Saxon et al., 2005; Trivedi et al., 2008; Vos et al., 2008; 

VanDerWal et al., 2009). 

Studies that use simplified climate grids based only on elevation need to be clear that 

they can only capture macrorefugia, regardless of spatial resolution, because they do not consider 

the climate-forcing factors that create unusual local variations from the regional climate. Studies 

that attempt to identify microrefugia need to provide specific details on how the fine-scale 

climate surfaces were derived as the climate surfaces are crucial for assessing the 

appropriateness of the methods. Fine-scale climate grids need to be developed using large 

networks of temperature sensors across a broad range of environments. It is not possible to 
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simply interpolate observations from a sparse network of weather stations that are biased towards 

environments such as flat, low elevation or unvegetated areas (Lookingbill & Urban, 2003; 

Ashcroft et al., 2008; Fridley, 2009; Bennie et al., 2010). 

Another alternative is to use coarse-scale climate surfaces and the within-cell elevational 

range to predict whether there are microrefugia somewhere within grid cells (Luoto & 

Heikkinen, 2008; Vetaas & Ferrer-Castán 2008; Randin et al., 2009).  Ironically, this coarse-

scale method may be more successful at identifying the approximate location of microrefugia 

than fine-scale models that use climate surfaces only based on elevation (Trivedi et al., 2008; 

VanDerWal et al., 2009). This is because topography creates complex mosaics of exposure to 

wind and radiation, and sheltered locations may be buffered from regional climate change 

(Hampe & Petit, 2005; Williams et al., 2008; Ashcroft et al., 2009). Deep gorges, such as those 

that provide microrefugia for the Wollemi pine in Australia (Wollemia nobilis; Offord et al., 

1999), are predicted to be warmer than the surrounding area if climate surfaces are based only on 

elevation, but are actually cooler when topographic shelter is considered (Ashcroft et al., 2008). 

Both microrefugia and macrorefugia are of conservation interest. Larger refugia are 

expected to provide a more secure buffer against extinction, and will be needed for large-bodied 

animals or species with large home ranges (Stewart et al., 2010). However, as temperatures 

increase, microrefugia can persist even once the regional climate is unsuitable and no 

macrorefugia remain. This means that microrefugia have the potential to withstand a greater 

amount of warming than macrorefugia. Microrefugia may also be the only conservation option 

for rare or threatened species that exist in small fragmented populations (Maschinski et al., 

2006).  

ARE REFUGIA STABLE IN CLIMATE OR HABITAT? 
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There is confusion as to whether refugia should be defined with respect to stability in climate or 

habitat. Some have suggested that microrefugia are locations where the climate is more stable (or 

has less warming) than the surrounding areas (Saxon et al., 2005; Ashcroft et al., 2009; Fridley, 

2009; Rull, 2009). However, SDMs are typically used to predict stability in habitat rather than 

stability in climate (Attore et al., 2007; VanDerWal et al., 2009). Although locations that are 

stable in climate are likely to be stable in habitat for many species, the methodological issues that 

arise from the two different definitions deserve closer attention and are discussed in detail in the 

remainder of this section. 

 Locations that are stable in climate are defined without reference to any particular 

species, yet they are topographically and geographically biased in their locations and will only 

capture a subset of species in a region (Ashcroft et al., 2009; Fridley, 2009). In some landscapes, 

localities with low summer maximum temperatures have received less warming than warmer 

localities and therefore microrefugia are expected to help protect the species that are most at risk 

in a warming climate (Ashcroft et al., 2009). In these cases, as warmer localities experience 

larger increases in temperature than cooler localities, it also raises the possibility that climate 

change will increase the length of landscape-scale temperature gradients (Fridley, 2009). This 

could create higher environmental diversity (Faith & Walker, 1996; Faith, 2003), and therefore 

lead to higher landscape-scale biological diversity if new species that prefer warmer conditions 

are able to disperse to the area.  

 This trend of cooler locations warming less than warmer locations is not universally 

applicable, however. At the global scale the colder polar regions are warming more than the 

global average and overall global diversity is predicted to decrease (Hughes, 2000; Thomas et 

al., 2004). At the landscape scale, winter minimum temperatures decrease further from the coast 
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and more warming is expected to occur in these cooler locations (Ashcroft et al., 2008, 2009). 

Winter minimums are generally increasing more than summer maximum temperatures (Hughes, 

2000; Ashcroft et al., 2009), and therefore refugia from rising winter minimum temperatures 

may have greater conservation significance. 

In the context of the current warming trend, less warming is generally expected to occur 

in locations that are nearer to streams or coastlines, or where there is cold air drainage, higher 

soil moisture, higher canopy cover, higher elevation or less exposure to hot winds and radiation 

(Kennedy, 1997; Noss, 2001; Bennett & Proven, 2008; Ashcroft et al., 2009; Fridley, 2009). 

However, the relative effect of these will vary between seasons and locations. For example, the 

trend of decreased warming with elevation is stronger in tropical zones, with the trend outside 

the tropics obscured by snow–ice feedback and greater warming near the 0oC isotherm (Pepin & 

Lundquist, 2008). 

One problem with defining refugia with respect to climatic stability is that species that 

are adapted to climatically stable locations may be more susceptible to changes than are other 

species (Williams et al., 2008). Even if a cool gorge experiences half the warming of more 

exposed ridges, the biological impacts may be equivalent. Another problem is that climatic 

stability could be defined with respect to a number of factors, including winter minimum 

temperatures, summer maximum temperatures, or humidity (Barnosky, 2008). The location of 

refugia from climate change would vary according to which parameters were chosen, and this 

would also affect which species were protected. Although climatic stability may play a large role 

in determining the location of in situ refugia, SDMs are still needed to determine which species 

may be able to persist in ex situ refugia, and to determine the species-specific risks of extinction 

based on changes in multiple environmental factors. 
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Habitat stability is species specific, and therefore the location of refugia will differ among 

species. While habitat stability is undoubtedly influenced by climatic stability, SDMs sometimes 

assume there is uniform warming or downscale global climate models in a manner that would 

result in nearly uniform warming at fine-scales (see references in Beaumont et al., 2007; Trivedi 

et al., 2008; VanDerWal et al., 2009). Under these circumstances, cooler locations will almost 

inevitably be less susceptible to warming than warmer locations as they can withstand a larger 

increase in regional climate before the habitat becomes unsuitable (Fig. 1a). However, it is 

possible that a warmer site could have higher habitat stability if it had higher climatic stability 

(Fig. 1b). The differences are more apparent when considering refugia from a cooling climate. 

Under these circumstances, the cooler site, which is at least risk under a warming climate, is at 

most risk under a cooling climate if climatic stability is ignored (Fig. 1a). However, the same site 

can have higher habitat stability under both warming and cooling climates when climatic 

stability is considered (Fig. 1b). 

The implications are even more dramatic when considering that commonly used climate 

surfaces such as BioClim (Houlder et al., 2003) and WorldClim (Hijmans et al., 2005) are based 

on elevation sensitive interpolations. The assumption of uniform warming will potentially over-

emphasize the importance of the coldest locations in the landscape (Fig. 1), and the assumption 

that temperatures are correlated with elevation will result in these being at higher elevations. 

There is thus the danger that SDMs will identify refugia from climate change at higher elevations 

simply based on the assumptions that were made during the modelling process rather than based 

on the ecology or distribution of the species. Microrefugia are known to occur in sheltered 

locations at lower elevations, and the methods employed to locate them should be capable of 

capturing the unique climates in these topographic positions. Therefore, it is important to 
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consider variations in climatic stability, even when using a definition of refugia based on habitat 

stability. 

Studies therefore need to include both climatic stability and habitat stability in studies of 

refugia. While this may not be a problem at coarse-scales, where SDMs are widely employed 

and spatial variations in climate change are well studied, further work is needed to adequately 

address both these factors when locating microrefugia. 

REDUCTION IN DISTRIBUTION 

A key attribute of refugia is a reduction in species’ distributions. This usually involves a 

reduction in overall range size, but it is also possible that a species’ overall range may be more or 

less maintained while it contracts its distribution to a number of microrefugia within that range 

(Bennett & Proven, 2008). While the term ‘refugia’ is generally used with respect to contractions 

and expansions that have occurred over glacial and interglacial periods in the Quaternary (e.g. 

Stewart et al., 2010), there are also contractions and expansions that have been occurring over 

longer time periods. For example, Bennett & Proven (2008) highlight examples of species that 

have been expanding their range sizes in a stepwise manner during the glacial and interglacial 

periods of the Quaternary. Conversely, the gradual shift of Australia and South America towards 

the equator has caused some species to contract their ranges in a stepwise manner (Kershaw, 

1986; Ledru et al., 2007). Climate change could further reduce the distribution of these species, 

demonstrating that climate change refugia need not be limited to species that expand and contract 

their ranges in the glacial and interglacial periods. Similarly, even species that prefer warmer 

conditions and have initially expanded during the current interglacial period may eventually 

reach a limit and begin to contract. 
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 SDMs typically predict that many species will contract their distributions under climate 

change (e.g. Thomas et al., 2004; Thuiller et al., 2005; Svenning & Skov, 2006; Coetzee et al., 

2009). Therefore, restricting the term ‘refugia’ to species that have contracted in range size is 

unlikely to hinder studies predicting refugia from 21st century climate change. Indeed, any study 

that uses coarse-scale SDMs to predict future distributions is effectively identifying 

macrorefugia from climate change if a range contraction occurs. Nevertheless, if a contraction in 

distribution is a requirement for the use of the term ‘refugia’, then this needs to be demonstrated. 

A species that has continued to exist in a small area is unlikely to be regarded as a refugial 

population if there is no expansion and contraction (Bennett & Proven, 2008). 

 Range contractions are also problematic for methods that identify refugia based on 

climatic stability (see previous section), the compositional irreplaceability of locations (Coetzee 

et al., 2009), or other methods based on the expected response of multiple species. Unless these 

methods estimate the range change for individual species, they may be based to some degree on 

rare or restricted species where no contraction in distribution occurs. Indeed, as species respond 

individualistically to climate change, it makes sense to limit the definition of refugia to 

individual species (as per Stewart et al., 2010). This does not prevent other terms, such as 

‘ecosystem hotspots’ (Vos et al., 2008) being used to refer to locations where refugia for 

multiple species coincide, and this might be beneficial from a conservation perspective. 

SPECIES PERSISTENCE 

The conservation value of refugia reflects their ability to allow species to persist during periods 

of unfavourable climate. As the distribution of the species contracts to a smaller area, the 

probability of extinction is increased, and this risk increases the longer the unfavourable 

conditions last (Stewart et al., 2010). However, species persistence is also affected by the quality 
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of the habitat in refugia. Species may even be able to persist for a limited time after their habitat 

becomes unsuitable. Examples include seeds stored in the soil bank, or species that can survive 

as adults for long periods even when conditions are not suitable for reproduction. These species 

are effectively committed to extinction (Thomas et al., 2004), and it may be more appropriate to 

refer to these as relict populations than refugial populations (Hampe & Petit, 2005). However, 

even these relicts could have conservation value if the trend in climate change reversed in future, 

and they can recover when conditions become favourable again. 

If the term ‘refugia’ is used to refer purely to species that have contracted in range, then 

this definition would also include long-lived species surviving in unsuitable habitat. This is 

problematic for SDMs, as it requires them to identify previously suitable habitat, estimate how 

long the adults or seeds could survive under unfavourable conditions, and determine whether 

they could recover in future. Even if these relicts are excluded from the definition of refugia, it is 

still necessary to know how long the climate will be warmer than ‘normal’ interglacial conditions 

so that the probability of persistence in refugia can be estimated. 

CONCLUDING REMARKS 

Refugia need to be identified and protected across multiple spatial and temporal scales (Noss, 

2001). While the trend of rising global temperatures poses immediate threats, long term survival 

of species depends on protecting both glacial and interglacial refugia (Skov & Svenning, 2004), 

as well as refugia from climate change, and these may not coincide. The variety of species 

responses to climate change (Bennett & Proven, 2008) and the methodological discrepancies 

highlighted in this article illustrate the need to improve terminology and clarify the context to 

which the term ‘refugia’ is applied. This article has highlighted a number of potential 

methodological issues that could arise when identifying refugia from climate change (Table 1), 
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and clarifying the context of refugia in each study would help avoid these pitfalls. It would be 

beneficial to replace the general term ‘refugia’ with more distinct terms such as ‘interglacial 

microrefugia’ (Rull, 2009) or ‘microclimatic refugia’ (Trivedi et al., 2008); however, even these 

leave some ambiguities with regards to in situ versus ex situ refugia and climatic stability versus 

habitat stability. If studies are based on a clearer definition of refugia (e.g. Stewart et al., 2010), 

it will help others to assess the appropriateness of the methods employed and place the results in 

the appropriate ecological context.  
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Table 1 A list of potential issues that could arise when identifying refugia from climate change 

Potential methodological issues 

Limiting studies to in situ refugia might exaggerate extinction risk for good dispersers while including 

ex situ refugia might underestimate extinction risk for poor dispersers or where there are 

barriers to dispersal 

The minimum viable size of refugia depends on body size and area required to support population, and 

therefore the relevant scale of macrorefugia and microrefugia will be taxon specific 

Macrorefugia can be identified using commonly used climate grids based on elevation sensitive 

interpolations (e.g. BioClim and WorldClim), but microrefugia require fine scale climate 

surfaces that consider a broader range of climate‐forcing factors 

Refugia based only on climate stability are limited to in situ refugia, and may be misleading if species in 

more climatically stable areas are more sensitive to change 

Refugia based on habitat stability may be biased towards cooler locations if climate stability is ignored 

(uniform warming), and these will be biased towards high elevations if climate surfaces neglect

other climate‐forcing factors 

Refugia based on climate stability or community composition may include non‐refugial species unless 

they demonstrate a contraction in distribution for individual species 

Species distribution models (SDMs) need to predict where, and how long, species can persist in areas 

where habitat has become unfavourable if they are to comprehensively predict species’ 
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persistence 
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Figure 1 The bell curves illustrate the relationship between habitat suitability and temperature 

for a hypothetical species. Two locations, A and B, are subjected to global warming which shifts 

their position to A' and B' respectively. Site A is less susceptible to global warming under the 

assumption of uniform warming (a) because it is a cooler location. However, if site B was more 

climatically stable (b), then it could be less susceptible to warming than site A even if it was 

originally warmer. 
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Figure 1. 

 


	Identifying refugia from climate change
	Recommended Citation

	Identifying refugia from climate change
	Abstract
	Disciplines
	Publication Details

	Microsoft Word - Ashcroft2010JBiogeogr.doc

