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Abstract

Background: In the analysis of effects by cell treatment such as drug dosing, identifying changes on gene

network structures between normal and treated cells is a key task. A possible way for identifying the changes is to

compare structures of networks estimated from data on normal and treated cells separately. However, this

approach usually fails to estimate accurate gene networks due to the limited length of time series data and

measurement noise. Thus, approaches that identify changes on regulations by using time series data on both

conditions in an efficient manner are demanded.

Methods: We propose a new statistical approach that is based on the state space representation of the vector

autoregressive model and estimates gene networks on two different conditions in order to identify changes on

regulations between the conditions. In the mathematical model of our approach, hidden binary variables are newly

introduced to indicate the presence of regulations on each condition. The use of the hidden binary variables

enables an efficient data usage; data on both conditions are used for commonly existing regulations, while for

condition specific regulations corresponding data are only applied. Also, the similarity of networks on two

conditions is automatically considered from the design of the potential function for the hidden binary variables.

For the estimation of the hidden binary variables, we derive a new variational annealing method that searches the

configuration of the binary variables maximizing the marginal likelihood.

Results: For the performance evaluation, we use time series data from two topologically similar synthetic networks,

and confirm that our proposed approach estimates commonly existing regulations as well as changes on

regulations with higher coverage and precision than other existing approaches in almost all the experimental

settings. For a real data application, our proposed approach is applied to time series data from normal Human

lung cells and Human lung cells treated by stimulating EGF-receptors and dosing an anticancer drug termed

Gefitinib. In the treated lung cells, a cancer cell condition is simulated by the stimulation of EGF-receptors, but the

effect would be counteracted due to the selective inhibition of EGF-receptors by Gefitinib. However, gene

expression profiles are actually different between the conditions, and the genes related to the identified changes

are considered as possible off-targets of Gefitinib.

Conclusions: From the synthetically generated time series data, our proposed approach can identify changes on

regulations more accurately than existing methods. By applying the proposed approach to the time series data on
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normal and treated Human lung cells, candidates of off-target genes of Gefitinib are found. According to the

published clinical information, one of the genes can be related to a factor of interstitial pneumonia, which is

known as a side effect of Gefitinib.

Background
Gene network estimation from time series gene expres-

sion data is a key task for elucidating cellular systems.

Thus far, wide variety of approaches have been proposed

based on the vector autoregressive (VAR) model [1,3],

the state space model [4-6], and the dynamic Bayesian

network [7,8]. Recently, time series gene expression data

on multiple conditions aiming at analyzing effects of cell

treatment such as drug dosing and heat shock are avail-

able. We here assume that some gene regulations are

disrupted but many of the gene regulations do not

change due to some treatment of interest, and try to

find a small number of changes on regulations as keys

for elucidating effects by the treatment.

A possible way for finding changes on regulations is to

estimate networks from two data sets separately and

then compare their structures. However, due to the lim-

ited length of time series data (usually less than 10 time

points) and unignorable measurement noise, networks

are estimated with high error rates and the estimation

errors cause the serious failure on identifying changes

on regulations. Thus, approaches using two time series

data in an efficient manner are strongly demanded.

Also, widely used statistical methods such as the VAR

model and dynamic Bayesian network assume equally

spaced time points in time series data. However,

observed time points on usually available time series

data are not equally spaced [5,6,9], and approaches that

can handle unequally spaced time series data in a theo-

retically correct way should be considered.

We propose a new statistical model that estimates

gene networks on two different conditions in order to

identify changes on regulations between the conditions.

As the basis of the proposed model, we employ the

state space representation for VAR model (VAR-SSM),

in which observation noise is considered between the

measured or observed gene expressions and the true

gene expressions in observation model and gene regula-

tions between true gene expressions are considered in

the system model [10]. The VAR-SSM can handle

unequally spaced time series data by ignoring observa-

tion model on the non-observed time points. For con-

sidering the changes on regulations, we introduce

hidden variables to the VAR-SSM in order to indicate

the presence of regulations in each condition. If hidden

binary variables on two conditions indicating the pre-

sence of a regulation are both estimated as one, the reg-

ulation is considered as a commonly existing regulation.

On the other hand, if only one of the hidden binary

variables for the regulation is estimated as one, the reg-

ulation is considered as a condition specific regulation.

We also introduce a potential function between the hid-

den binary variables that is designed to take high prob-

ability if the hidden binary variables on two conditions

take the same value. From the design of the potential

function, the similarity of networks on two conditions is

automatically considered. Since the time series data on

both conditions are used for estimating commonly

existing regulation due to the use of the hidden binary

variables, an efficient data assignment is achieved. In

addition, from the more accurate estimation of com-

monly existing regulations by the efficient data assign-

ment, accurate identification of changes on regulations

is induced.

The hidden binary variables are estimated by search-

ing the configuration of binary variables that maximizes

the marginal likelihood of the model. However, search-

ing the optimal configuration is computationally intract-

able. Thus, as an alternative approach, we derive a new

variational annealing method based on [11] in order to

estimate the hidden binary variables. We also give a

proof for the effectiveness of the variational annealing

compared to other candidate alternatives, the variational

annealing and the EM algorithm, in order to show the

validity of using the variational annealing.

Table 1 Comparison of the variation annealing

(Proposed) and EM algorithm (EM) based on the

proposed model

(a)

# of time points 50 25

# TP # FP PRE # TP # FP PRE

Proposed 295.9 41.7 0.88 238.4 71.6 0.77

EM 294.9 119.2 0.71 196.8 66.9 0.75

(b)

# of time points 50 25

# TP # FP PRE # TP # FP PRE

Proposed 39.8 13.2 0.75 23.4 20.8 0.53

EM 39.9 39.4 0.5 11.5 10.0 0.53

(a) The number of true positives (# TP) and false positives (# FP) of estimated

regulations in two network models by the proposed approach and EM for

equally spaced time series data. PRE denotes the precision of the results.

Regulations in two networks are 305 in total. (b) The number of true positives (#

TP) and false positives (# FP) of changes on regulations between two network

models estimated by the proposed approach and EM for equally spaced time

series data. The regulations changed in two networks are in total 47.
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For the performance evaluation, we generate two reg-

ulatory networks in such a way that most of the regula-

tions commonly exist and some exist only on one of the

networks. We then apply our proposed approach and

existing var model based and dynamic Bayesian network

based approaches to two equally spaced time series data

drawn separately from the generated networks. From

the comparisons of true positive rates and false positive

rates of these approaches, we confirm the effectiveness

of our approach. We also generate unequally spaced

time series data from these networks, and show that our

approach works correctly on unequally spaced time ser-

ies data while the performance of the existing

approaches assuming equally spaced time points is dras-

tically worsened.

Our proposed approach is used to analyze changes on

regulations in gene networks between normal Human

lung cells and Human lung cells treated by stimulating

EGF-receptors and dosing an anticancer drug termed

Gefitinib. A lung cancer condition is simulated by the

stimulation of EGF-receptors in the treated cells. Since

Gefitinib is known as a selective inhibitor of EGF-recep-

tors, the stimulation of EGF-receptors would be coun-

teracted by Gefitinib, and hence the treated cells are

expected to be the same condition as normal cells.

However, gene expression profiles from normal and

treated cells are actually different, and off-targets of

Gefitinib causing unexpected positive or negative effects

are implied. We focus on genes with changes on regula-

tions between the networks estimated by our approach

and find possible off-target genes of Gefitinib. According

to the published clinical information, one of the possible

off-target genes is suggested as one of factors of intersti-

tial pneumonia, which is known as a side effect of

Gefitinib.

Methods
Vector autoregressive model and its state space

representation

Vector autoregressive model

Given gene expression profile vectors of p genes during

T time points {y1, ..., yT}, the first order vector autore-

gressive (VAR(1)) model at time point t is given by

yt = Ayt−1 + ε1,

where A is a p × p autoregressive coefficient matrix,

and εt is observation noise at time t and follows
N (0, diag[σ 2

1 , ..., σ 2
p ]), a normal distribution with mean

0 and variance diag[σ 2
1 , ..., σ 2

p ]. The (i, j)th element of A,

Aij, indicates a temporal regulation from the jth gene to

the ith gene, and if Aij ≠ 0, regulation from the jth gene

to the ith gene is considered. By examining whether Aij

is zero or not for all i and j, a gene network is

constructed. Since equally space time points are

assumed in the VAR model, it has difficulty on handling

unequally spaced time series data.

State space representation of VAR model (VAR-SSM)

Let T be the set of equally spaced entire T time points

and Tobs the set of time points where gene expressions

are observed. Note that Tobs ⊆ T holds. VAR-SSM is

comprised of two models: system model and observation

model. Let xt be hidden variable vector representing

true gene expression at time t. The system model is

given as the VAR model of xt:

xt = Axt−1 + ηt, t ∈ T ,

where ht is the system noise normally distributed with

mean 0 and variance H = diag[h1,...,hp]. The observation

model represents measurement error of observed gene

expression yt and true gene expression xt at observed

time point t ∈ Tobs:

yt = xt + ρt, t ∈ Tobs,

where rt is the observation noise normally distributed

with mean 0 and variance R = diag[r1,..., rp]. Unequally

spaced time series data are handled by ignoring observa-

tion model at non-observed time points.

Joint model of VAR-SSM for two time series data

Let {y(c)
t }

t∈T (c)
obs

be time series gene expression data on cell

condition c, where T
(c)

obs
is the set of observed time

points on cell condition c. We also let T (c) be the set of

time points from 1 to T(c), where T(c) = max{t ∈ T
(c)

obs }.
Given time series data on two types of cell conditions c

= 1 and 2, we propose a new VAR-SSM model to esti-

mate gene networks in the two conditions as well as

identify changes on regulations between them. The

model is comprised of the following two equations:

x
(c)
t = A ◦ E(c)

x
(c)
t−1 + η

(c)
t , t ∈ T (c),

y
(c)
t = x

(c)
t + ρ

(c)
t , t ∈ T

(c)
obs ,

where ∘ denotes the Hadamard product, E(c) is a p × p

binary matrix, and η
(c)
t

and ρ
(c)
t

are respectively system

and observation noises from N (0, H) and N (0, R). In

this model, the (i, j)th element E
(c)
ij takes one if regula-

tion from gene j to gene i exists on condition c and

zero otherwise, i.e., the presence of regulations is con-

trolled by E(c) and the AR coefficient matrix A is com-

monly used in conditions 1 and 2. Changes on

regulations are identified when regulations exist only in

a condition.

The complete likelihood of our model, P(Y, X, Θ, E),

where Y, X, Θ, and E are respectively the sets of y
(c)
t , x

(c)
t
,

parameters, and E(c), is given by the following equation:
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P(Y, X, �, E) =

2
∏

c=1

∏

t∈T (c)

|H|−1/2

√
2π

p exp

{

−1

2
(x

(c)
t − A ◦ E(c)

x
(c)
t−1)′H−1(x

(c)
t − A ◦ E(c)

x
(c)
t−1)

}

×
∏

t∈T (c)
obs

|R|−1/2

√
2π

p exp

{

−1

2
(y

(c)
t − x

(c)
t )′R−1(y

(c)
t − x

(c)
t )

}

P(�, E),

where the prior distribution P(Θ, E) is assumed to be

factorized as

P(�, E) =
∏

i

P(hi)P(ri)
∏

j

P(Aij)P(E
(1)
ij , E

(2)
ij , zij).

Here, zij is a parameter for a potential function of E
(1)
ij

and E
(2)
ij

defined later. The prior distributions of Aij is

given by

P(Aij|hi, E
(1)
ij , E

(2)
ij ) = N (Aij; 0, hi · α1)FijN (Aij; 0, hi · α0)1−Fij ,

where a0 and a1 are parameters controlling the

shrinkage of coefficients A and Fij is a binary variable

that takes 1 if E
(1)
ij or E

(2)
ij takes 1 and 0 otherwise, i.e.,

Fij is given by 1 −
∏2

c=1 (1 − Ec
ij). a1 is set to a large

value, while a0 is set to smaller than a1. From the

design of the prior for Aij, if E
(1)
ij or E

(2)
ij takes one, i.e.,

there exists regulation from gene j to i in condition 1 or

2, weaker prior N (Aij; 0, hi · α1) is selected and the

shrinkage of the coefficients are avoided. Otherwise

stronger prior N (Aij; 0, hi · α0) is selected and the spar-

sity of the network structures is promoted. The prior

distributions of hi , and ri are given by

P(hi) = IG(hi; u0, k0),

P(ri) = IG(ri; v0, l0),

where IG represents the density function of inverse

gamma distribution, u0 and v0 are the shape parameters,

and k0 and l0 are the inverse scaling parameters. Under

the assumption that a small number of regulations

change between two conditions, we design the prior dis-

tribution for E
(1)
ij and E

(2)
ij , P(E

(1)
ij , E

(2)
ij , zij) by using the fol-

lowing potential function between E
(c)
ij for c = 1 or 2:

1

2
φ(E

(1)
ij , E

(2)
ij ; zij) =

{

zij if E
(1)
ij �= E

(2)
ij

1 − zij otherwise
.

In this setting, if zij is small, E
(1)
ij and E

(2)
ij tend to take

the same value and thus most of the regulations exist in

both two conditions. We also introduce a prior distribu-

tion for zij by beta distribution with parameters ζi0 and

ζi1:

B(zij; ζi0, ζi1) =
1

B(ζi0, ζi1)
z
ζi0−1
ij (1 − zij)

ζi1−1,

where B(·) is the beta function. Thus, the prior distri-

bution of E
(c)
ij

is given by

P(E
(1)
ij , E

(2)
ij , zij) = φ(E

(1)
ij , E

(2)
ij )B(zij; ζi0, ζi1).

Figure 1 shows a graphical representation of the pro-

posed model, where dependency of the parameters and

variables are indicated. The hyperparameters are

omitted and the observed data yt is represented by gray

nodes. In the observed data y
(1)
t

and y
(2)
t

are propagated

mainly via hidden variables E
(1)
ij

and E
(2)
ij
. Due to the

data propagation, more accurate estimation is expected

in the proposed model than the approaches considering

data on two conditions independently.

For the parameter estimation, we search the config-

uration of E maximizing the following marginal likeli-

hood:

Ê = arg max
E

∫

dX

∫

d�P(Y, X, �, E). (1)

Finding the optimal configuration of E is computa-

tionally intractable, and heuristics approaches such as

the EM algorithm and the variational method are used

in practice. Here, we use the variational annealing, an

extension of the deterministic annealing for discrete

variables [11]. In the next section, we give a small expla-

nation of the variational annealing and show its effec-

tiveness compared to the EM algorithm and the

variational method.

Parameter estimation by variational annealing

In the deterministic annealing, optimization problem is

solved while gradually changing temperature in a some

schedule, and maximum likelihood estimator is obtained

like the EM algorithm [12-14]. Yoshida and West pro-

posed to use the deterministic annealing to find the

configuration of the binary variables that maximizes the

likelihood of factor models with sparseness priors [11].

We derive a new variational annealing method by

extending Yoshida and West’s approach to find the con-

figuration of the binary variables on marginal likelihood

function, which can be applied for searching E that

maximizes Equation (1).

Let E, X, and Θ be p dimensional binary variables,

unobserved variables, and parameters, respectively, and

consider to search E maximizing the following marginal

likelihood:

max
E∈{0,1}p

log

∫

dX

∫

d�P(X, �, E). (2)

The maximum of the marginal likelihood on E is

bounded by the following formula:

max
E∈{0,1}p

log

∫

dX

∫

d�P(X, �, E) ≥ τ log

∫

(0,1)p
dE

[
∫

dX

∫

d�P(X, �, E)

]1/τ

, (3)

Kojima et al. BMC Genomics 2012, 13(Suppl 1):S6

http://www.biomedcentral.com/1471-2164/13/S1/S6

Page 4 of 14



where τ is called temperature and the equality holds

for τ ® +0. Hereafter, the integral range of E is

omitted if no confusion occurs. Let Q(E) be a normal-

ized non-negative function, i.e., Q(E) ≥ 0 and ∫ Q(E)dE

= 1.

From the Gibbs inequality, the right side of Equation

(3) is also bounded:

τ log

∫

dE

[
∫

dX

∫

d�P(X, �, E)

]1/τ

≥
∫

dEQ(E) log

∫

dX
∫

d�P(x, �, E)

Q(E)τ .

Here, Q(E) is considered as an approximation function

of
P(E)1/τ

∫

P(E′)1/τ dE′. Under the assumption that P(X,Θ,E) ∝ Q

(X)Q(Θ), where Q(X) and Q(Θ) are normalized non-

negative functions, we have the following inequality

Figure 1 A graphical representation of the proposed model. Hyperparameters are omitted from this representation. The nodes in gray

denote observed data.
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∫

dEQ(E) log

∫

dX
∫

d�P(X, �, E)

Q(E)τ ≥
∫

dE

∫

dX

∫

d�Q(X)Q(�)Q(E) log
P(X, �, E)

Q(X)Q(�)Q(E)τ . (4)

Thus, as an approximation of E maximizing Equation

(2), we try to find Ê = arg maxEQ(E), where Q(E) is the

function maximizing the lower bound in Equation (4).

Since higher values on P(E) are weighed more in the

approximation by Q(E) for τ < 1, the better approxima-

tion is expected for the higher values. This property on

the limited case is shown in Proposition 1. As is in the

variational method and the EM algorithm, the maxi-

mum of the lower bound in Equation (4) is searched by

a hill climbing from high temperature τ > 1.

In the hill climbing, Q(X), Q(Θ), and Q(E) are alter-

nately updated from the following equations:

Q(E) ∝ exp

(

1

τ

∫

dX

∫

d�Q(X)Q(�) log P(E|X, �)

)

,

Q(X) ∝ exp

(∫

dE

∫

d�Q(E)Q(�) log P(X|�, E)

)

,

Q(�) ∝ exp

(
∫

dE

∫

dXQ(E)Q(X) log P(�|X, E)

)

.

Gradually converging τ to 0, local optimum of the

lower bound and corresponding Q(E), Q(X), and Q(Θ)

are obtained.

Effectiveness of variational annealing

As alternatives of the variational annealing, we may con-

sider the variational method and the EM algorithm

where X is the set of hidden variables and E is handled as

the set of parameters to be maximized. We show the

effectiveness of variational annealing compared to the

variational method and the EM algorithm under the fol-

lowing conditions: P(X, Θ, E) is factorized into P(X, E)P

(Θ, E), and P(Ei|X, Θ, E\{Ei}) is given as a binomial distri-

bution, where Ei is the ith element of E. If factorization

of P(X, Θ, E) = Q(X)Q(Θ)Q(E) is assumed in the calcula-

tion of the variational method, arg maxE Q(E) is not the

optimal solution of Equation (2) in general. In the EM

algorithm, by allowing E to move around a p-dimensional

continuous space (0, 1)p, ÊEM = arg maxE∈(0,1)m P(E) can

be calculated. Let ÊEM,i be the ith element of ÊEM.

Usually, ÊEM,i is mapped to 1 if ÊEM, i > 0.5 and 0 other-

wise for discretizing ÊEM to the p-dimensional binary

space {0,1}p, but such a mapping is not guaranteed to

provide arg maxE∈{0,1}mP(E). Although other mappings

can be considered, to the best of our knowledge, no map-

ping is guaranteed to provide the optimal solution in

polynomial time of p.

In the following, we prove a proposition in order to

show that the variational annealing possibly give the

optimal solution of Equation (2) even if the factorization

of Q(E) =
∏p

i=1 Q(Ei) is additionally considered.

Proposition 1. P(X,Θ,E) is factorized into P(Θ,E)P(X,

E), and P(Ei|X,Θ,E\{Ei}) is given as a binomial distribu-

tion. Let Q̂(Ei)be Q(Ei) maximizing the lower bound of

the variational annealing for τ ® +0 given by

∫

dE1...

∫

dEp

∫

dX

∫

d�Q(X)Q(�)
∏

i

Q(Ei) log
P(X, �, E)

Q(X)Q(�)
∏

i Q(Ei)
τ . (5)

Then, the set of Ei Î {0,1} maximizing ÊEMis
arg maxE∈{0,1}pP(E).
For the proof of the proposition, see Section 1 in

Additional file 1. From Proposition 1, if the factorization

P(X, Θ, E) = P(Θ, E)P(X, E) is satisfied and optimal Q

functions are found, the variational annealing is guaran-

teed to provide the optimal solution of Equation (2)

while the variational method and the EM algorithm are

not. Although the factorization is not a generally satis-

fied property, the factorization is often assumed in

approaches based on the variational method, and the

assumption usually works as good approximations.

Thus, the variational annealing is expected to provide

the better performance than the variational method and

the EM algorithm even if the factorization is not satis-

fied exactly.

Procedures of variational annealing on proposed model

In the variational annealing on the proposed model, we

calculate Q functions for hidden variables X, parameters

Θ, and binary variables E iteratively while cooling tem-

perature τ to zero gradually at each iteration cycle. In

the following, we show the calculation procedures of Q

(X), Q(Θ), and Q(E) on the proposed model as varia-

tional E-step, variational M-step, and variational A-step,

respectively. More details of the procedures are given in

Additional file 1. For the notational brevity, we denote

the expectation of a value x with a probability distribu-

tion Q(y) as 〈x〉Q(y).

Variational E-step

Parameters of Q(X) are mean of xt, variance of xt, and

cross time variance of xt-1 and xt. These parameters can

be calculated via variational Kalman filter by using fol-

lowing terms expected with Q(Θ)Q(E): 〈E(c)〉Q(Θ)Q(E), 〈A〉Q

(Θ)Q(E), 〈H
-1 A ○ E(c)〉Q(Θ)Q(E), and 〈(A ○ E(c))’H-1A ○ E(c)〉Q

(Θ)Q(E). For the details of variational Kalman filter, see [4].

From the parameters of Q(X), expectations of the follow-

ing terms with Q(X) required in other steps are calcu-

lated:
〈

x
(c)
t

〉

Q(X)
, 〈x(c)

t

(

x
(c)
t

)′
〉Q(X), and 〈x(c)

t+1

(

x
(c)
t

)′
〉Q(X).

Variational M-step

Q(Θ) is factorized into ∏iQ(Ai|hi) Q(hi)Q(ri) ∏jQ(zij),

where Ai is a vector given by (Ai1, ..., Aip)’. From the

design of the proposed model, Q(Ai|hi), Q(hi), Q(ri), and

Q(zij) are given in the following form:
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Q(Ai|hi) = N (Ai; µAi
, hiT

−1
Ai

),

Q(hi) = IG(hi; ui, ki),

Q(ri) = IG(ri; vi, li),

Q(zij) = B(ζij,0
; ζij,1).

Parameters for the above functions are calculated by

using 〈x(c)
t 〉Q(X), 〈x(c)

t

(

x
(c)
t

)′
〉Q(X), 〈x(c)

t+1

(

x
(c)
t

)′
〉Q(X),, and

〈E(c)
ij 〉Q(E).

Variational A-step

For the calculation of Q(E), we assume the factorization

of Q(E) to
∏

c

∏

ij Q(E
(c)
ij ) in order to make the computa-

tion tractable. Q(E
(c)
ij ) follows a binomial distribution

that takes one with probability e
(c)
ij

and zero with prob-

ability 1 − e
(c)
ij
, and thus the expectation of E

(c)
ij

with Q

(E) is given by e
(c)
ij
. For the preparation, we calculate

〈A〉Q(�), 〈H−1A〉Q(�), 〈A′H−1A〉Q(�), 〈x(c)
t 〉Q(X), 〈x(c)

t

(

x
(c)
t

)′
〉Q(X),

and 〈x(c)
t+1

(

x
(c)
t

)′
〉Q(X). Q(E

(c)
ij ) is then iteratively calculated

by using these expected terms as well as 〈E(c)
ik 〉Q(E) for k

≠ j. A few iterations are enough for the convergence.

Update and selection of hyperparameters

The proposed model contains u0, k0, v0, l0, ζi0, ζi 1, a0,

and a1 as hyperparameters. a0 and a1 should be a0 <a1

as in the model setting, but this condition can be vio-

lated in the update step of the variational method. Thus,

we select a0 and a1 by cross validation, and update

other hyperparameters as in the variational method.

We first consider update of hyperparameters u0, k0, v0,

l0, ζi0, and ζi1 to increase the lower bound of marginal

probability. u0 and k0 are updated by maximizing the

following equation:

(û0, k̂0) = arg max
(u0,k0)

∑

i

∫

Q(hi) log IG(hi; u0, k0)dhi

= arg max
(u0,k0)

(u0 − 1)

∑

i 〈log hi〉Q(hi)

p
+ u0 log k0 − k0

∑

i 〈1/hi〉Q(hi)

p
− log Ŵ(u0).

û0 and k̂0 are obtained by numerical optimization

methods such as the Newton-Raphson method. v0 and

l0 are also updated in a similar manner to u0 and k0. ζi0
and ζi1 are updated by solving the following equation:

(ζ̂i0, ζ̂i1) = arg max
ζi0,ζi1

∑

j

∫

Q(zij) logB(zij; ζi0, ζi1)dzij

= arg max
ζi0,ζi1

(ζi1 − 1)

∑

j 〈log(1 − zij)〉Q(zij)

p
+ (ζi0 − 1)

∑

j 〈log zij〉Q(zij)

p
− log B(ζi0, ζi1).

ζ̂i0 and ζ̂i1 can also be obtained by the Newton-Raph-

son method.

For the selection of a0 and a1, we set a1 to some

large value and select a0 by a leave one out cross valida-

tion procedure. For condition c Î {1, 2} and time point

t ∈ T
(c)

obs
, we remove y

(c)
t

from data set y and use the data

set to train the model. We calculate square sum of resi-

dues r2
t,c between y

(c)
t

and the prediction of x
(c)
t

estimated

from the variational Kalman filter on the trained model

given by r2
t,c = (y

(c)
t − x

(c)
t )′(y

(c)
t − x

(c)
t ). By grid search on

parameter space of a0, we select a0 that minimizes
∑2

c=1

∑

t∈T (c)
obs

r2
t,c.

Summary of procedures

The procedures for estimating parameters in the pro-

posed model are summarized as follows:

1. Set τ to some large value. Also set a0 to a small

value and a1 to a large value satisfying that a0 <a1.

2. Initialize other hyperparameters and hidden

variables.

3. Perform the following procedures:

(a) Calculate variational M-step.

(b) Update hyperparameters.

(c) Calculate variational E-step.

(d) Calculate variational A-step.

(e) Go back to step (a) until some convergence

criterion is satisfied.

4. Divide τ by some value > 1 such as 1.05.

5. Go back to step 3 if τ is larger than some very

small value > 0.

In our setting, a1 is set to 1,000. For the initialization

of τ and other hyperparameters, we use the following

settings: τ = 2.5, E
(c)
ij = 0.5, ui = 1, ki = 1, vi = 1, li = 1, ζi0 = 10, and ζi1 = 10.

If y
(c)
t

is observed, we initialize x
(c)
t

with y
(c)
t
. Otherwise,

we use the linearly interpolated one.

Results and discussion
Performance evaluation by Monte Carlo experiments

For the evaluation of the proposed approach, we gener-

ate two linear regulatory network models with similar

topological structures G1 and G2 based on a linear regu-

latory network model G0. G0 is prepared in the follow-

ing manner: (i) a scale free network of 100 nodes and

150 edges is generated; (ii) edge directions are assigned

randomly; (iii) autoloop edges are added to root nodes

of the directed network; and (iv) AR coefficients for the

directed edges are chosen randomly from {-0.9, -0.8,

-0.7, -0.6, -0.5, 0.5, 0.6, 0.7, 0.8, 0.9}. We then generate

G1 and G2 from G0 as follows: (i) autoloop edges and

70% of non-autoloop edges in G0 are used for com-

monly existing edges in G1 and G2; and (ii) the other

30% of non-autoloop edges are randomly assigned as

either G1 or G2 specific edges. Note that AR coefficients

on edges of G1 and G2 are preserved, i.e., if a regulation

from gene j to gene i exists in G1 or G2, then its coeffi-

cient is the same as that of the regulation from gene j

to gene i in G0.

Figure 2 gives graph structure of G1 and G2, where

commonly regulations, G1 specific regulations, and G2
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specific regulations are represented with black, red, and

green arrows, respectively.

From each of G1 and G2, we obtain two equally

spaced time series data of 25 time points and 50 time

points. For system noise and observation noise, normally

distributed values with mean 0 and standard deviation 1

and mean 0 and standard deviation 0.1 and 1 are used,

respectively. The signal-noise ratio for system noise with

standard deviation 1 and observation noise with stan-

dard deviation 0.1 is 0.03dB, and the signal is bit stron-

ger than the noise. On the other hand, for observation

noise with standard deviation 1, the signal-noise ratio is

-0.26dB. In the condition, the noise is stronger than the

signal, and the noise level is quite high.

Comparison between variational annealing and EM

algorithm

We first compare the performances of the proposed

approach and the approach that is based on the pro-

posed approach but uses the EM algorithm instead of

the variation annealing using the equally spaced time

series data of 50 and 25 time points on the system noise

with standard deviation 1 and observation noise with

standard deviation 0.1. From the comparison, we verify

the effectiveness of the variational annealing, compared

to the EM algorithm. Table 1 summarizes the results of

the proposed approach and the EM algorithm based

approach. For the EM algorithm, the regulation from j

to i on condition c is considered to exist if the estimated

E
(c)
ij is more than 0.5.

From the comparison, the results of the proposed

approach contain more true positives than those of the

EM algorithm based approach except for identifying

changes on regulations for time points 50. For identify-

ing changes on regulations, the EM algorithm based

approach estimates bit more true positives than the pro-

posed approach, but the difference is so small that it

can be ignored. On the other hand, the results of the

EM algorithm based approach contain more false posi-

tives than those of the proposed approach, and hence

the precision of the results by the EM algorithm is

Figure 2 The graph structures of G1 and G2. Commonly regulations, G1 specific regulations, and G2 specific regulations are represented with

black, red, and green arrows, respectively.
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worse than that of the proposed approach. Therefore,

the effectiveness of the variational annealing is con-

firmed in the computational experiment as well.

Comparison between proposed approach and existing

approaches

We employ the elastic net based VAR model approach

[2] and the dynamic Bayesian network based approach

termed G1DBN [8] as existing approaches for estimating

networks from time series data. For the experiments,

two versions of these approaches are considered: ENet1

and ENet2 from the elastic net based VAR model

approach, and G1DBN1 and G1DBN2 from G1DBN.

These approaches are different in the following point:

ENet1 and G1DBN1 estimate G1 and G2 independently,

i.e., for the estimation of G1, only time series data from

G1 is used, while ENet2 and G1DBN2 assume that G1

and G2 have the same network structure and estimate a

network by using two time series data. Thus, ENet2 and

G1DBN2 are considered to more use data sample than

ENet1 and G1DBN1 for network estimation, but

changes on regulations between G1 and G2 are not con-

sidered. For selection of hyperparameters in ENet1 and

ENet2, AICc is used [2], and for hyperparameters a1

and a2 of G1DBN1 and G1DBN2, a setting of a1 = 0.1

and a2 = 0.0059 considered in [8] is used.

For the comparison of these approaches, we focus on

the following two points: the number of correctly

estimated regulations and the number of correctly esti-

mated changes on regulations. The former is usually

considered for evaluating the performance of gene net-

work estimation methods. The numbers of true positives

and false negatives of the estimated regulations are sum-

marized in Table 2(a). The precisions of the results

given by

The number of true positives

The number of true positives + The number of false positives

are also provided. The results are averaged on ten data

sets. The number of regulations in the true network

models of G1 and G2 are in total 305. For the latter

point, we consider the estimated regulations existing

only in one of two estimated networks as changed regu-

lations, and check if they correctly exist only in the cor-

responding true network. The numbers of true positives

and false negatives of the estimated changes on regula-

tions and the precisions are summarized in Table 2(b).

The results are also averaged on ten data sets. The

number of true changes on regulations between in G1

and G2 are 47, i.e., the number of true positives on this

case is at most 47.

For the estimation of the regulations in Table 2(a), the

proposed approach outperforms other approaches in

terms of true positives. The proposed approach contains

more false positives than ENet1, G1DBN1, and

Table 2 A summary of results for system noise with standard deviation 1 and observation noise with standard

deviation 0.1

(a)

Equally spaced Unequally spaced

# of time points 50 25 50 25

# TP # FP PRE # TP # FP PRE # TP # FP PRE # TP # FP PRE

Proposed 295.9 41.7 0.88 238.4 71.6 0.77 262.4 42.1 0.86 110.7 37.2 0.75

ENet1 246.3 119.7 0.67 109.2 67 0.62 84.7 140.6 0.38 20.3 70.4 0.22

ENet2 277.9 130.9 0.68 212.8 130 0.62 169.7 241.5 0.41 65.5 132.5 0.33

G1DBN1 223.7 48 0.82 99.9 46.2 0.68 65.1 83.1 0.44 19.3 72.7 0.21

G1DBN2 268.8 83.4 0.76 188.1 64.5 0.74 134.8 104.4 0.56 46.7 85.7 0.35

(b)

Equally spaced Unequally spaced

# of time points 50 25 50 25

# TP # FP PRE # TP # FP PRE # TP # FP PRE # TP # FP PRE

Proposed 39.8 13.2 0.75 23.4 20.8 0.53 31.2 16.5 0.65 5.5 15.9 0.26

ENet1 38.5 153.1 0.2 18.6 113 0.14 12.3 186.6 0.06 3.7 85 0.04

ENet2 - - - - - - - - - - - -

G1DBN1 35.6 88.9 0.29 16.8 91.9 0.15 10.3 121.9 0.08 2.4 87.8 0.03

G1DBN2 - - - - - - - - - - - -

(a) The number of true positives (# TP) and false positives (# FP) of estimated regulations in two network model by the proposed approach, ENet1, ENet2,

G1DBN1, and G1DBN2 for equally and unequally spaced time series data. PRE denotes the precision of the results. Regulations in two networks are 305 in total.

(b) The number of true positives (# TP) and false positives (# FP) of changes on regulations between two network models estimated by the proposed approach,

ENet1, ENet2, G1DBN1, and G1DBN2 for equally and unequally spaced time series data. Since no changes are estimated by ENet2 and G1DBN2, their results are

indicated by ‘-’. The regulations changed in two networks are in total 47.
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G1DBN2 on the data of 25 time points. We further con-

sider these cases in terms of the precision. The preci-

sions of the proposed approach, ENet1, G1DBN1, and

G1DBN2 are given by 0.77, 0.62, 0.68, and 0.74, respec-

tively. From this analysis, the proposed approach shows

better performance than ENet2, G1DBN1, and G1DBN2

on the whole. More true positives are estimated by

ENet2 than ENet1, and the precisions of ENet2 tend to

be better than those of ENet1. This type of relationship

is also observed between G1DBN1 and G1DBN2. Also,

the elastic net based VAR model approaches estimate

more true positives than the approaches from G1DBN.

However, in the precision, the approaches from G1DBN

are better than the elastic net based VAR model

approaches. From the results in Table 2(b), we see that

the proposed approach estimates more true changes on

regulations than ENet1 and G1DBN1 on both data of 25

and 50 time points. In addition, the results of the pro-

posed approach contain less false positives than those of

ENet1 and G1DBN1. No changes on regulations are

detected in ENet2 and G1DBN2 as topological differ-

ences are ignored in these approaches. Since the pro-

posed approach considers differences on network

structures as well as uses two time series data efficiently,

it can provide better results than other approaches on

both estimating regulations and identifying changes on

regulations.

One may think it is strange that false positives in

ENet1 and G1DBN1 in Table 2(b) is more than those in

Table 2(a), but this case can occur from the following

reason. If a regulation exists in both of the true network

models of G1 and G2, but is estimated only for G1, then

the case is not counted as a false positive in Table 2(a)

while it is counted as a false positive in Table 2(b).

Thus, the number of false positives in Table 2(b) can be

greater than those in Table 2(a).

In order to show the performance in unequally spaced

time series data, we generate unequally spaced time ser-

ies data of 25 and 50 observed time points. For time ser-

ies data of 25 observed time points, we first generate

equally spaced time series data of 40 time points and

divide it into three blocks: 15 time points, 10 time

points, and 15 time points. We then remove time points

in the following manner: no time point is removed in

the first block; one of every two time points are

removed in the second block; and two of every three

time points are removed in the third block. Figure 3

shows the time point schedule of time series data

obtained in this process. For time series data of 50

observed time points, we first generate equally space

time series data of 80 time points, divide it into three

blocks: 30 time points, 20 time points, and 30 time

points. Then, some time points are removed in a similar

manner. We apply the proposed approach, ENet1,

ENet2, G1DBN1, and G1DBN2 to the unequally spaced

time series data. Results for the dataset are also sum-

marized in Tables 2(a) and 2(b). From the comparison

of results on equally and spaced time series data, the

results of the proposed approach from unequally spaced

time series data are worse than those from equally

spaced one even with the same number of observed

time points. However, results of ENet1, ENet2,

G1DBN1, and G1DBN2 are worsened more than those

of the proposed approach. This is probably because

unequally spaced time points break their assumption,

and their estimation process is misled.

We also consider the time series data with the high

level noise: system noise with standard deviation 1 and

observation noise with standard deviation 1. The results

for the case are summarized in Tables 3(a) and 3(b).

The proposed approach shows the better performance

on the number of true positives and precisions than

other approaches except for the identification of the

changes on regulations from the equally spaced time

series data of 50 time points. For equally spaced time

series data of 50 time points, the number of true posi-

tives on the changes on regulations estimated by the

proposed approach is more than that of G1DBN1, but

less than that of ENet1. However, the precisions on the

estimated changes by both ENet1 and G1DBN are much

worse than the proposed approach. Thus, overall, the

proposed approach is more effective than other meth-

ods. Although the proposed approach provides the bet-

ter performance than other methods, the results of all

Figure 3 A time point schedule on unequally spaced time series data in the Monte Carlo experiment. Observed points in the time

schedule are indicated by arrows. 15 time points are equally spaced in first block, every second point is observed in second block comprised of

5 observed time points, and every third point is observed in third block comprised of 5 observed time points.
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the approaches are worsened due to the high level noise,

and the differences on the performance among the

approaches get smaller, compared to the case of obser-

vation noise with standard deviation 0.1.

Analysis of time series microarray data from Human small

airway epithelial cells

We apply the proposed approach to two time series

microarray gene expression data from normal Human

small airway epithelial cells (SAECs) and SAECs treated

by stimulating EGF-receptors and dosing an anticancer

drug termed Gefitinib. EGF-receptors are often overex-

pressed in lung cancer cells such as tumoral SAECs, and

a lung cancer condition is simulated in the treated

SAECs by stimulating EGF-receptors. Since Gefitinib is

known as a selective inhibiter of EGF-receptors, the sti-

mulation of EGF-receptors would be counteracted by

Gefitinib, and the condition of treated SACEs should be

the same as that of normal SAECs in theory. However,

since some gene expression patterns are different

between the two conditions in practice, some unknown

effects by Gefitinib may be involved in the phenomenon.

Thus, we focus on changed regulations between the

gene networks estimated from gene expression data in

these two conditions in order to find some insights on

the unknown effects of Gefitinib.

For gene set selection, we first screen 500 genes from

the ranking of the gene list sorted by coefficient

variation [5]. We then select 100 genes with highly var-

ied expression profiles between normal SAECs and trea-

ted SAECs. The time series gene expression data from

both types of cells are comprised of spaced 14 time

points in 48 hours. The time schedule of 14 time points

are {0 h, 6 h, 9 h, 12 h, 15 h, 18 h, 21 h, 24 h, 27 h, 30

h, 33 h, 36 h, 39 h, 48 h}. For the analysis on the pro-

posed approach, we set interval on system model to

three hours.

Table 3 A summary of results for system noise with standard deviation 1 and observation noise with standard

deviation 1

(a)

Equally spaced Unequally spaced

# of time points 50 25 50 25

# TP # FP PRE # TP # FP PRE # TP # FP PRE # TP # FP PRE

Proposed 190.2 122.8 0.61 88.1 121.0 0.42 132.1 675.5 0.66 52.1 108.9 0.33

ENet1 110.8 136.9 0.45 30.3 75.9 0.29 32.5 133.7 0.2 7.4 75.2 0.09

ENet2 189.8 218 0.47 85.8 136.2 0.39 75.9 180.7 0.3 23.5 123.3 0.16

GIDBN1 86.6 82.6 0.51 22.6 90.8 0.2 26.3 74 0.26 7.1 71.6 0.09

GIDBN2 163.9 105.7 0.61 54.4 99 0.35 66.2 91.2 0.42 17.4 92.8 0.16

(b)

Equally spaced Unequally spaced

# of time points 50 25 50 25

# TP # FP PRE # TP # FP PRE # TP # FP PRE # TP # FP PRE

Proposed 15.4 43.6 0.26 4.7 50.0 0.09 8.1 16.7 0.33 3.1 42.5 0.07

ENet1 16.9 184 0.08 3.8 95.4 0.04 5.2 155 0.03 1.2 81.4 0.01

ENet2 - - - - - - - - - - - -

GIDBN1 14.5 125.1 0.1 3.9 105.7 0.04 4 91.9 0.04 1.7 76.8 0.02

GIDBN2 - - - - - - - - - - - -

(a) The number of true positives (# TP) and false positives (# FP) of estimated regulations in two network model by the proposed approach, ENet1, ENet2,

G1DBN1, and G1DBN2 for equally and unequally spaced time series data. PRE denotes the precision of the results. Regulations in two networks are 305 in total.

(b) The number of true positives (# TP) and false positives (# FP) of changes on regulations between two network models estimated by the proposed approach,

ENet1, ENet2, G1DBN1, and G1DBN2 for equally and unequally spaced time series data. Since no changes are estimated by ENet2 and G1DBN2, their results are

indicated by ‘-’. The regulations changed in two networks are in total 47.

Table 4 Changes on regulations between normal and

treated SAECs

Normal SAECs Treated SAECs

ZC3HAV1L ® FOXA2 Prss22 ® foxn2

LIF ® foxn2 Prss22 ® cdk14

Cdc42ep2 ® Spink6 Prss22 ® Camk2n1

Siglec15 ® NTN1 Prss22 ® cttn

HAS3 ® HAS3 Prss22 ® Sfrs6

HAS3 ® Enc1 Prss22 ® ITGA2

HAS3 ® LEPREL1 Prss22 ® pkn2

Prss22 ® Hs2st1

Prss22 ® FILIP1L

Prss22 ® Hcn2

Prss22 ® KLF16

Ktelc1 ® NTN1

Tm6sf1 ® Siglec15

Estimated regulations only in normal or treated SAECs are listed in the left

side or right side, respectively.
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The estimated networks from time series gene expres-

sion data in normal SAECs and treated SAECs are sum-

marized and given in Figure 4. Black arrows, red arrows,

and green arrows indicate regulations in both condi-

tions, only in normal SAECs, and only in treated

SAECs, respectively. Table 4 gives a list of the estimated

regulations only in normal SAECs or in treated SAEC.

From Table 4, we see that Prss22 is involved in most

of the regulations only in treated SAECs. Prss22 is a

tryptase, one of serine proteases, and its relationship

with the airways is suggested by a report about its

expression in the airways in a developmentally regulated

manner. Tryptase is a potent mitogen of fibroblast [15],

and it is reported that the increase and activation of

fibroblast are promoted in lung cells under the condi-

tion of interstitial pneumonia. Interstitial pneumonia is

known as a side effect of Gefitinib, and these findings

suggest that Prss22 is an off-target of Gefitinib and is

Figure 4 An estimated gene network by the proposed approach from time series gene expression data on normal SAECs and treated

SAECs. In the estimated network, regulations in both conditions are in black, and regulations only in normal SAECs and treated SAECs are in

red and green, respectively.
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possibly related to the side effect of Gefitinib. Also,

FILIP1L, a gene estimated as one of targets of Prss22 in

treated SAECs, is reported as an inhibitor of cell prolif-

eration of fibroblast [16]. This observation supports the

relation between Prss22 and fibroblast as well.

We also focus on other several genes related to

changes on regulations in normal and treated SAECs.

LIF, leukemia inhibitory factor, is known to affect cell

growth and development. Gefitinib is also known to be

effective for acute myelogenous leukemia via Sky, which

is an off-target gene of Gefitinib [17]. In addition, Wang

et al. reported that LIF prolongs the cell cycle of stem

cells on acute myelogenous leukemia lines [18].

Although, to the best of our knowledge, no direct influ-

ence from Gefitinib to LIF is reported, the above facts

suggest some relation between Gefitinib and LIF, and

support changes on regulations of LIF between normal

and treated SAECs.

Heikema et al. reported that Human Siglecs, Siglecs-

14, -15, and -16 interact with transmembrain adaptor

proteins containing the immunoreceptor tyrosine-based

activation motif such as DAP12 [19], and therefore they

potentially mediate the activation of intracellular signal-

ing. Gefitinib is a selective inhibitor of tyrosine kinase,

and the inhibition of tyrosine kinase is considered to

affect the regulations around Siglec-15.

Although the stimulation of EGF-receptors in the trea-

ted SAECs is considered to be counteracted by Gefitinib,

the expressions of some genes may be affected by the

stimulation in practical conditions. HAS3 is related to

synthesis of the unbranched glycosaminoglycan hyaluro-

nic acid and is reported to be up-regulated by EGF [20].

The stimulation of EGF-receptors affects the amount of

EGF taken into cells, and hence the stimulation is

expected to cause the changes on the regulations around

HAS3. Foxn2 is a member of family of Fox proteins. Fox

proteins are known to play important roles on control-

ling the expressions of genes related to cell growth, pro-

liferation, and differentiation. Some members of Fox

family are related to EFG-receptors, e.g., the expression

of Foxn1 is suppressed by EGF-receptor signaling [21]

although no direct relation between EGF-receptors and

Foxn2 is found. FOXA2 is also a member of family of

Fox proteins. EGF-receptor signaling is known to

decrease the expression of FOXA, which prevents the

mucus production [22]. [23] reported the relation

between EGF-receptors and FOXA2 in the airways of

asthmatic patients. Thus, it appears that the change on

the regulation related to FOXA2 is caused by the stimu-

lation of EGF-receptors.

Conclusions
We proposed the new computational model that is

based on VAR-SSM and estimates gene networks from

time series data on normal and treated conditions as

well as identifies changes regulations by the treatment.

Unlike many of existing gene network estimation

approaches assuming equally spaced time points, our

approach can handle unequally spaced time series data.

The efficient use of time series data is achieved by

representing the presence of regulations on each condi-

tion with hidden binary variables. Since finding the opti-

mal configuration of the hidden binary variables on the

proposed model is computationally in tractable, we

derive the extended variational annealing method in

order to address the problem as the alternative method.

In the Monte Carlo experiments, we use equally and

spaced time series data from synthetically generated two

regulatory networks whose structures are different in

several regulations, and verified the effectiveness of the

proposed model in both estimation of regulations and

changes on regulations between the two conditions,

compared to existing methods.

As the real data application, we use the proposed

approach to analyze two time series data from normal

SAECs and SAECs treated by stimulating EGF-receptors

and dosing Gefitinib. From genes related to changes on

regulations by the treatment, we find possible off-target

genes of Gefitinib, and one of these genes is suggested

to be related to a factor of interstitial pneumonia, which

is known as a side effect of Gefitinib. In this study, we

consider changes on regulations in two conditions, but

the proposed approach can be extended to identifying

changes among more than two conditions.

Additional material

Additional file 1: Proof of Proposition 1 and more details on the

procedures of variational annealing. A proof of Proposition 1 and

more details on the procedures of variational annealing on the proposed

model are described.
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