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Abstract

Open Information Extraction (IE) is the task
of extracting assertions from massive corpora
without requiring a pre-specified vocabulary.
This paper shows that the output of state-of-
the-art Open IE systems is rife with uninfor-
mative and incoherent extractions. To over-
come these problems, we introduce two sim-
ple syntactic and lexical constraints on bi-
nary relations expressed by verbs. We im-
plemented the constraints in the REVERB
Open IE system, which more than doubles the
area under the precision-recall curve relative
to previous extractors such as TEXTRUNNER
and WOEpos. More than 30% of REVERB’s
extractions are at precision 0.8 or higher—
compared to virtually none for earlier systems.
The paper concludes with a detailed analysis
of REVERB’s errors, suggesting directions for
future work.1

1 Introduction and Motivation

Typically, Information Extraction (IE) systems learn
an extractor for each target relation from la-
beled training examples (Kim and Moldovan, 1993;
Riloff, 1996; Soderland, 1999). This approach to IE
does not scale to corpora where the number of target
relations is very large, or where the target relations
cannot be specified in advance. Open IE solves this
problem by identifying relation phrases—phrases
that denote relations in English sentences (Banko
et al., 2007). The automatic identification of rela-

1The source code for REVERB is available at http://
reverb.cs.washington.edu/

tion phrases enables the extraction of arbitrary re-
lations from sentences, obviating the restriction to a
pre-specified vocabulary.

Open IE systems have achieved a notable measure
of success on massive, open-domain corpora drawn
from the Web, Wikipedia, and elsewhere. (Banko et
al., 2007; Wu and Weld, 2010; Zhu et al., 2009). The
output of Open IE systems has been used to support
tasks like learning selectional preferences (Ritter et
al., 2010), acquiring common sense knowledge (Lin
et al., 2010), and recognizing entailment (Schoen-
mackers et al., 2010; Berant et al., 2011). In ad-
dition, Open IE extractions have been mapped onto
existing ontologies (Soderland et al., 2010).

We have observed that two types of errors are fre-
quent in the output of Open IE systems such as TEX-
TRUNNER and WOE: incoherent extractions and un-
informative extractions.

Incoherent extractions are cases where the ex-
tracted relation phrase has no meaningful interpre-
tation (see Table 1 for examples). Incoherent ex-
tractions arise because the learned extractor makes a
sequence of decisions about whether to include each
word in the relation phrase, often resulting in incom-
prehensible predictions. To solve this problem, we
introduce a syntactic constraint: every multi-word
relation phrase must begin with a verb, end with a
preposition, and be a contiguous sequence of words
in the sentence. Thus, the identification of a relation
phrase is made in one fell swoop instead of on the
basis of multiple, word-by-word decisions.

Uninformative extractions are extractions that
omit critical information. For example, consider the
sentence “Faust made a deal with the devil.” Previ-



ous Open IE systems return the uninformative
(Faust, made, a deal)

instead of
(Faust, made a deal with, the devil).

This type of error is caused by improper handling
of relation phrases that are expressed by a combi-
nation of a verb with a noun, such as light verb
constructions (LVCs). An LVC is a multi-word ex-
pression composed of a verb and a noun, with the
noun carrying the semantic content of the predi-
cate (Grefenstette and Teufel, 1995; Stevenson et al.,
2004; Allerton, 2002). Table 2 illustrates the wide
range of relations expressed this way, which are not
captured by existing open extractors. Our syntactic
constraint leads the extractor to include nouns in the
relation phrase, solving this problem.

Although the syntactic constraint significantly re-
duces incoherent and uninformative extractions, it
allows overly-specific relation phrases such as is of-
fering only modest greenhouse gas reduction targets
at. To avoid overly-specific relation phrases, we in-
troduce an intuitive lexical constraint: a binary rela-
tion phrase ought to appear with at least a minimal
number of distinct argument pairs in a large corpus.

In summary, this paper articulates two simple but
surprisingly powerful constraints on how binary re-
lationships are expressed via verbs in English sen-
tences, and implements them in the REVERB Open
IE system. We release REVERB and the data used in
our experiments to the research community.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes previous work. Section 3 defines our
constraints precisely. Section 4 describes REVERB,
our implementation of the constraints. Section 5 re-
ports on our experimental results. Section 6 con-
cludes with a summary and discussion of future
work.

2 Previous Work

Open IE systems like TEXTRUNNER (Banko et al.,
2007), WOEpos, and WOEparse (Wu and Weld, 2010)
focus on extracting binary relations of the form
(arg1, relation phrase, arg2) from text. These sys-
tems all use the following three-step method:

1. Label: Sentences are automatically labeled
with extractions using heuristics or distant su-
pervision.

Sentence Incoherent Relation
The guide contains dead links
and omits sites.

contains omits

The Mark 14 was central to the
torpedo scandal of the fleet.

was central torpedo

They recalled that Nungesser
began his career as a precinct
leader.

recalled began

Table 1: Examples of incoherent extractions. In-
coherent extractions make up approximately 13% of
TEXTRUNNER’s output, 15% of WOEpos’s output, and
30% of WOEparse’s output.

is is an album by, is the author of, is a city in
has has a population of, has a Ph.D. in, has a cameo in
made made a deal with, made a promise to
took took place in, took control over, took advantage of
gave gave birth to, gave a talk at, gave new meaning to
got got tickets to, got a deal on, got funding from

Table 2: Examples of uninformative relations (left) and
their completions (right). Uninformative relations oc-
cur in approximately 4% of WOEparse’s output, 6% of
WOEpos’s output, and 7% of TEXTRUNNER’s output.

2. Learn: A relation phrase extractor is learned
using a sequence-labeling graphical model
(e.g., CRF).

3. Extract: the system takes a sentence as in-
put, identifies a candidate pair of NP arguments
(arg1, arg2) from the sentence, and then uses
the learned extractor to label each word be-
tween the two arguments as part of the relation
phrase or not.

The extractor is applied to the successive sentences
in the corpus, and the resulting extractions are col-
lected.

This method faces several challenges. First,
the training phase requires a large number of la-
beled training examples (e.g., 200, 000 heuristically-
labeled sentences for TEXTRUNNER and 300, 000
for WOE). Heuristic labeling of examples obviates
hand labeling but results in noisy labels and distorts
the distribution of examples. Second, the extrac-
tion step is posed as a sequence-labeling problem,
where each word is assigned its own label. Because
each assignment is uncertain, the likelihood that the
extracted relation phrase is flawed increases with
the length of the sequence. Finally, the extractor



chooses an extraction’s arguments heuristically, and
cannot backtrack over this choice. This is problem-
atic when a word that belongs in the relation phrase
is chosen as an argument (for example, deal from
the “made a deal with” sentence).

Because of the feature sets utilized in previous
work, the learned extractors ignore both “holistic”
aspects of the relation phrase (e.g., is it contiguous?)
as well as lexical aspects (e.g., how many instances
of this relation are there?). Thus, as we show in Sec-
tion 5, systems such as TEXTRUNNER are unable
to learn the constraints embedded in REVERB. Of
course, a learning system, utilizing a different hy-
pothesis space, and an appropriate set of training ex-
amples, could potentially learn and refine the con-
straints in REVERB. This is a topic for future work,
which we consider in Section 6.

The first Open IE system was TEXTRUNNER

(Banko et al., 2007), which used a Naive Bayes
model with unlexicalized POS and NP-chunk fea-
tures, trained using examples heuristically generated
from the Penn Treebank. Subsequent work showed
that utilizing a linear-chain CRF (Banko and Et-
zioni, 2008) or Markov Logic Network (Zhu et al.,
2009) can lead to improved extraction. The WOE

systems introduced by Wu and Weld make use of
Wikipedia as a source of training data for their ex-
tractors, which leads to further improvements over
TEXTRUNNER (Wu and Weld, 2010). Wu and Weld
also show that dependency parse features result in a
dramatic increase in precision and recall over shal-
low linguistic features, but at the cost of extraction
speed.

Other approaches to large-scale IE have included
Preemptive IE (Shinyama and Sekine, 2006), On-
Demand IE (Sekine, 2006), and weak supervision
for IE (Mintz et al., 2009; Hoffmann et al., 2010).
Preemptive IE and On-Demand IE avoid relation-
specific extractors, but rely on document and en-
tity clustering, which is too costly for Web-scale IE.
Weakly supervised methods use an existing ontol-
ogy to generate training data for learning relation-
specific extractors. While this allows for learn-
ing relation-specific extractors at a larger scale than
what was previously possible, the extractions are
still restricted to a specific ontology.

Many systems have used syntactic patterns based
on verbs to extract relation phrases, usually rely-

ing on a full dependency parse of the input sentence
(Lin and Pantel, 2001; Stevenson, 2004; Specia and
Motta, 2006; Kathrin Eichler and Neumann, 2008).
Our work differs from these approaches by focus-
ing on relation phrase patterns expressed in terms
of POS tags and NP chunks, instead of full parse
trees. Banko and Etzioni (Banko and Etzioni, 2008)
showed that a small set of POS-tag patterns cover a
large fraction of relationships in English, but never
incorporated the patterns into an extractor. This pa-
per reports on a substantially improved model of bi-
nary relation phrases, which increases the recall of
the Banko-Etzioni model (see Section 3.3). Further,
while previous work in Open IE has mainly focused
on syntactic patterns for relation extraction, we in-
troduce a lexical constraint that boosts precision and
recall.

Finally, Open IE is closely related to semantic role
labeling (SRL) (Punyakanok et al., 2008; Toutanova
et al., 2008) in that both tasks extract relations and
arguments from sentences. However, SRL systems
traditionally rely on syntactic parsers, which makes
them susceptible to parser errors and substantially
slower than Open IE systems such as REVERB. This
difference is particularly important when operating
on the Web corpus due to its size and heterogeneity.
Finally, SRL requires hand-constructed semantic re-
sources like Propbank and Framenet (Martha and
Palmer, 2002; Baker et al., 1998) as input. In con-
trast, Open IE systems require no relation-specific
training data. ReVerb, in particular, relies on its ex-
plicit lexical and syntactic constraints, which have
no correlate in SRL systems. For a more detailed
comparison of SRL and Open IE, see (Christensen
et al., 2010).

3 Constraints on Relation Phrases

In this section we introduce two constraints on re-
lation phrases: a syntactic constraint and a lexical
constraint.

3.1 Syntactic Constraint

The syntactic constraint serves two purposes. First,
it eliminates incoherent extractions, and second, it
reduces uninformative extractions by capturing rela-
tion phrases expressed by a verb-noun combination,
including light verb constructions.



V | V P | VW ∗P
V = verb particle? adv?
W = (noun | adj | adv | pron | det)
P = (prep | particle | inf. marker)

Figure 1: A simple part-of-speech-based regular expres-
sion reduces the number of incoherent extractions like
was central torpedo and covers relations expressed via
light verb constructions like gave a talk at.

The syntactic constraint requires the relation
phrase to match the POS tag pattern shown in Fig-
ure 1. The pattern limits relation phrases to be either
a verb (e.g., invented), a verb followed immediately
by a preposition (e.g., located in), or a verb followed
by nouns, adjectives, or adverbs ending in a preposi-
tion (e.g., has atomic weight of). If there are multiple
possible matches in a sentence for a single verb, the
longest possible match is chosen. Finally, if the pat-
tern matches multiple adjacent sequences, we merge
them into a single relation phrase (e.g., wants to ex-
tend). This refinement enables the model to readily
handle relation phrases containing multiple verbs. A
consequence of this pattern is that the relation phrase
must be a contiguous span of words in the sentence.

The syntactic constraint eliminates the incoherent
relation phrases returned by existing systems. For
example, given the sentence

Extendicare agreed to buy Arbor Health Care for
about US $432 million in cash and assumed debt.

TEXTRUNNER returns the extraction
(Arbor Health Care, for assumed, debt).

The phrase for assumed is clearly not a valid rela-
tion phrase: it begins with a preposition and splices
together two distant words in the sentence. The syn-
tactic constraint prevents this type of error by sim-
ply restricting relation phrases to match the pattern
in Figure 1.

The syntactic constraint reduces uninformative
extractions by capturing relation phrases expressed
via LVCs. For example, the POS pattern matched
against the sentence “Faust made a deal with the
Devil,” would result in the relation phrase made a
deal with, instead of the uninformative made.

Finally, we require the relation phrase to appear
between its two arguments in the sentence. This is a
common constraint that has been implicitly enforced
in other open extractors.

3.2 Lexical Constraint

While the syntactic constraint greatly reduces unin-
formative extractions, it can sometimes match rela-
tion phrases that are so specific that they have only a
few possible instances, even in a Web-scale corpus.
Consider the sentence:

The Obama administration is offering only modest
greenhouse gas reduction targets at the conference.

The POS pattern will match the phrase:

is offering only modest greenhouse gas reduction targets at
(1)

Thus, there are phrases that satisfy the syntactic con-
straint, but are not relational.

To overcome this limitation, we introduce a lexi-
cal constraint that is used to separate valid relation
phrases from overspecified relation phrases, like the
example in (1). The constraint is based on the in-
tuition that a valid relation phrase should take many
distinct arguments in a large corpus. The phrase in
(1) is specific to the argument pair (Obama admin-
istration, conference), so it is unlikely to represent a
bona fide relation. We describe the implementation
details of the lexical constraint in Section 4.

3.3 Limitations

Our constraints represent an idealized model of re-
lation phrases in English. This raises the question:
How much recall is lost due to the constraints?

To address this question, we analyzed Wu and
Weld’s set of 300 sentences from a set of random
Web pages, manually identifying all verb-based re-
lationships between noun phrase pairs. This resulted
in a set of 327 relation phrases. For each rela-
tion phrase, we checked whether it satisfies our con-
straints. We found that 85% of the relation phrases
do satisfy the constraints. Of the remaining 15%,
we identified some of the common cases where the
constraints were violated, summarized in Table 3.

Many of the example relation phrases shown in
Table 3 involve long-range dependencies between
words in the sentence. These types of dependen-
cies are not easily representable using a pattern over
POS tags. A deeper syntactic analysis of the input
sentence would provide a much more general lan-
guage for modeling relation phrases. For example,
one could create a model of relations expressed in



Binary Verbal Relation Phrases
85% Satisfy Constraints

8% Non-Contiguous Phrase Structure
Coordination: X is produced and maintained by Y
Multiple Args: X was founded in 1995 by Y
Phrasal Verbs: X turned Y off

4% Relation Phrase Not Between Arguments
Intro. Phrases: Discovered by Y, X . . .
Relative Clauses: . . . the Y that X discovered

3% Do Not Match POS Pattern
Interrupting Modifiers: X has a lot of faith in Y
Infinitives: X to attack Y

Table 3: Approximately 85% of the binary verbal relation
phrases in a sample of Web sentences satisfy our con-
straints.

terms of dependency parse features that would cap-
ture the non-contiguous relation phrases in Table 3.
Previous work has shown that dependency paths do
indeed boost the recall of relation extraction systems
(Wu and Weld, 2010; Mintz et al., 2009). While us-
ing dependency path features allows for a more flex-
ible model of relations, it significantly increases pro-
cessing time, which is problematic for Web-scale ex-
traction. Further, we have found that this increased
recall comes at the cost of lower precision on Web
text (see Section 5).

The results in Table 3 are similar to Banko and Et-
zioni’s findings that a set of eight POS patterns cover
a large fraction of binary verbal relation phrases.
However, their analysis was based on a set of sen-
tences known to contain either a company acquisi-
tion or birthplace relationship, while our results are
on a random sample of Web sentences. We applied
Banko and Etzioni’s verbal patterns to our random
sample of 300 Web sentences, and found that they
cover approximately 69% of the relation phrases in
the corpus. The gap in recall between this and the
85% shown in Table 3 is largely due to LVC relation
phrases (made a deal with) and phrases containing
multiple verbs (refuses to return to), which their pat-
terns do not cover.

In sum, our model is by no means complete.
However, we have empirically shown that the ma-
jority of binary verbal relation phrases in a sample
of Web sentences are captured by our model. By
focusing on this subset of language, our model can

be used to perform Open IE at significantly higher
precision than before.

4 REVERB

This section introduces REVERB, a novel open ex-
tractor based on the constraints defined in the previ-
ous section. REVERB first identifies relation phrases
that satisfy the syntactic and lexical constraints, and
then finds a pair of NP arguments for each identified
relation phrase. The resulting extractions are then
assigned a confidence score using a logistic regres-
sion classifier.

This algorithm differs in three important ways
from previous methods (Section 2). First, the re-
lation phrase is identified “holistically” rather than
word-by-word. Second, potential phrases are fil-
tered based on statistics over a large corpus (the
implementation of our lexical constraint). Finally,
REVERB is “relation first” rather than “arguments
first”, which enables it to avoid a common error
made by previous methods—confusing a noun in the
relation phrase for an argument, e.g. the noun deal in
made a deal with.

4.1 Extraction Algorithm
REVERB takes as input a POS-tagged and NP-
chunked sentence and returns a set of (x, r, y)
extraction triples.2 Given an input sentence s,
REVERB uses the following extraction algorithm:

1. Relation Extraction: For each verb v in s,
find the longest sequence of words rv such that
(1) rv starts at v, (2) rv satisfies the syntactic
constraint, and (3) rv satisfies the lexical con-
straint. If any pair of matches are adjacent or
overlap in s, merge them into a single match.

2. Argument Extraction: For each relation
phrase r identified in Step 1, find the nearest
noun phrase x to the left of r in s such that x is
not a relative pronoun, WHO-adverb, or exis-
tential “there”. Find the nearest noun phrase y
to the right of r in s. If such an (x, y) pair could
be found, return (x, r, y) as an extraction.

We check whether a candidate relation phrase
rv satisfies the syntactic constraint by matching it
against the regular expression in Figure 1.

2REVERB uses OpenNLP for POS tagging and NP chunk-
ing: http://opennlp.sourceforge.net/



To determine whether rv satisfies the lexical con-
straint, we use a large dictionary D of relation
phrases that are known to take many distinct argu-
ments. In an offline step, we construct D by find-
ing all matches of the POS pattern in a corpus of
500 million Web sentences. For each matching re-
lation phrase, we heuristically identify its arguments
(as in Step 2 above). We set D to be the set of all
relation phrases that take at least k distinct argument
pairs in the set of extractions. In order to allow for
minor variations in relation phrases, we normalize
each relation phrase by removing inflection, auxil-
iary verbs, adjectives, and adverbs. Based on ex-
periments on a held-out set of sentences, we found
that a value of k = 20 works well for filtering out
overspecified relations. This results in a set of ap-
proximately 1.7 million distinct normalized relation
phrases, which are stored in memory at extraction
time.

As an example of the extraction algorithm in ac-
tion, consider the following input sentence:

Hudson was born in Hampstead, which is a
suburb of London.

Step 1 of the algorithm identifies three relation
phrases that satisfy the syntactic and lexical con-
straints: was, born in, and is a suburb of. The first
two phrases are adjacent in the sentence, so they are
merged into the single relation phrase was born in.
Step 2 then finds an argument pair for each relation
phrase. For was born in, the nearest NPs are (Hud-
son, Hampstead). For is a suburb of, the extractor
skips over the NP which and chooses the argument
pair (Hampstead, London). The final output is

e1: (Hudson, was born in, Hampstead)
e2: (Hampstead, is a suburb of, London).

4.2 Confidence Function
The extraction algorithm in the previous section has
high recall, but low precision. Like with previous
open extractors, we want way to trade recall for pre-
cision by tuning a confidence threshold. We use a
logistic regression classifier to assign a confidence
score to each extraction, which uses the features
shown in Table 4. All of these features are efficiently
computable and relation independent. We trained
the confidence function by manually labeling the ex-
tractions from a set of 1, 000 sentences from the Web
and Wikipedia as correct or incorrect.

Weight Feature
1.16 (x, r, y) covers all words in s
0.50 The last preposition in r is for
0.49 The last preposition in r is on
0.46 The last preposition in r is of
0.43 len(s) ≤ 10 words
0.43 There is a WH-word to the left of r
0.42 r matches VW*P from Figure 1
0.39 The last preposition in r is to
0.25 The last preposition in r is in
0.23 10 words < len(s) ≤ 20 words
0.21 s begins with x
0.16 y is a proper noun
0.01 x is a proper noun

-0.30 There is an NP to the left of x in s
-0.43 20 words < len(s)
-0.61 r matches V from Figure 1
-0.65 There is a preposition to the left of x in s
-0.81 There is an NP to the right of y in s
-0.93 Coord. conjunction to the left of r in s

Table 4: REVERB uses these features to assign a confi-
dence score to an extraction (x, r, y) from a sentence s
using a logistic regression classifier.

Previous open extractors require labeled training
data to learn a model of relations, which is then used
to extract relation phrases from text. In contrast,
REVERB uses a specified model of relations for ex-
traction, and requires labeled data only for assigning
confidence scores to its extractions. Learning a con-
fidence function is a much simpler task than learning
a full model of relations, using two orders of magni-
tude fewer training examples than TEXTRUNNER or
WOE.

4.3 TEXTRUNNER-R

The model of relation phrases used by REVERB

is specified, but could a TEXTRUNNER-like sys-
tem learn this model from training data? While
it is difficult to answer such a question for all
possible permutations of features sets, training ex-
amples, and learning biases, we demonstrate that
TEXTRUNNER itself cannot learn REVERB’s model
even when re-trained using the output of REVERB

as labeled training data. The resulting system,
TEXTRUNNER-R, uses the same feature representa-
tion as TEXTRUNNER, but different parameters, and
a different set of training examples.

To generate positive instances, we ran REVERB



on the Penn Treebank, which is the same dataset
that TEXTRUNNER is trained on. To generate neg-
ative instances from a sentence, we took each noun
phrase pair in the sentence that does not appear as
arguments in a REVERB extraction. This process
resulted in a set of 67, 562 positive instances, and
356, 834 negative instances. We then passed these
labeled examples to TEXTRUNNER’s training proce-
dure, which learns a linear-chain CRF using closed-
class features like POS tags, capitalization, punctu-
ation, etc.TEXTRUNNER-R uses the argument-first
extraction algorithm described in Section 2.

5 Experiments

We compare REVERB to the following systems:

• REVERB¬lex - The REVERB system described
in the previous section, but without the lexical
constraint. REVERB¬lex uses the same confi-
dence function as REVERB.

• TEXTRUNNER - Banko and Etzioni’s 2008 ex-
tractor, which uses a second order linear-chain
CRF trained on extractions heuristically gener-
ated from the Penn Treebank. TEXTRUNNER

uses shallow linguistic features in its CRF,
which come from the same POS tagger and NP-
chunker that REVERB uses.

• TEXTRUNNER-R - Our modification to
TEXTRUNNER, which uses the same extrac-
tion code, but with a model of relations trained
on REVERB extractions.

• WOEpos - Wu and Weld’s modification to
TEXTRUNNER, which uses a model of re-
lations learned from extractions heuristically
generated from Wikipedia.

• WOEparse - Wu and Weld’s parser-based ex-
tractor, which uses a large dictionary of depen-
dency path patterns learned from heuristic ex-
tractions generated from Wikipedia.

Each system is given a set of sentences as input,
and returns a set of binary extractions as output. We
created a test set of 500 sentences sampled from the
Web, using Yahoo’s random link service.3 After run-

3http://random.yahoo.com/bin/ryl
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Figure 2: REVERB outperforms state-of-the-art open
extractors, with an AUC more than twice that of
TEXTRUNNER or WOEpos, and 38% higher than
WOEparse.
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Figure 3: The lexical constraint gives REVERB
a boost in precision and recall over REVERB¬lex.
TEXTRUNNER-R is unable to learn the model used by
REVERB, which results in lower precision and recall.

ning each extractor over the input sentences, two hu-
man judges independently evaluated each extraction
as correct or incorrect. The judges reached agree-
ment on 86% of the extractions, with an agreement
score of κ = 0.68. We report results on the subset
of the data where the two judges concur.

The judges labeled uninformative extractions con-
servatively. That is, if critical information was
dropped from the relation phrase but included in the
second argument, it is labeled correct. For example,
both the extractions (Ackerman, is a professor of, bi-
ology) and (Ackerman, is, a professor of biology) are
considered correct.

Each system returns confidence scores for its ex-
tractions. For a given threshold, we can measure
the precision and recall of the output. Precision
is the fraction of returned extractions that are cor-
rect. Recall is the fraction of correct extractions in
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Figure 4: REVERB achieves significantly higher preci-
sion than state-of-the-art Open IE systems, and compara-
ble recall to WOEparse.

the corpus that are returned. We use the total num-
ber of extractions labeled as correct by the judges
as our measure of recall for the corpus. In order to
avoid double-counting, we treat extractions that dif-
fer superficially (e.g., different punctuation or drop-
ping inessential modifiers) as a single extraction. We
compute a precision-recall curve by varying the con-
fidence threshold, and then compute the area under
the curve (AUC).

5.1 Results

Figure 2 shows the AUC of each system. REVERB

achieves an AUC that is 30% higher than WOEparse

and is more than double the AUC of WOEpos or
TEXTRUNNER. The lexical constraint provides a
significant boost in performance, with REVERB

achieving an AUC 23% higher than REVERB¬lex.
REVERB proves to be a useful source of train-
ing data, with TEXTRUNNER-R having an AUC
71% higher than TEXTRUNNER and performing
on par with WOEpos. From the training data,
TEXTRUNNER-R was able to learn a model that
predicts contiguous relation phrases, but still re-
turned incoherent relation phrases (e.g., starting with
a preposition) and overspecified relation phrases.
These errors are due to TEXTRUNNER-R overfitting
the training data and not having access to the lexical
constraint.

Figure 3 shows the precision-recall curves of the
systems introduced in this paper. TEXTRUNNER-R
has much lower precision than REVERB and
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Figure 5: On the subtask of identifying relations phrases,
REVERB is able to achieve even higher precision and re-
call than other systems.

REVERB¬lex at all levels of recall. The lexi-
cal constraint gives REVERB a boost in precision
over REVERB¬lex, reducing overspecified extrac-
tions from 20% of REVERB¬lex’s output to 1% of
REVERB’s. The lexical constraint also boosts recall
over REVERB¬lex, since REVERB is able to find a
correct relation phrase where REVERB¬lex finds an
overspecified one.

Figure 4 shows the precision-recall curves of
REVERB and the external systems. REVERB has
much higher precision than the other systems at
nearly all levels of recall. In particular, more than
30% of REVERB’s extractions are at precision 0.8
or higher, compared to virtually none for the other
systems. WOEparse achieves a slightly higher recall
than REVERB (0.62 versus 0.64), but at the cost of
lower precision.

In order to highlight the role of the relational
model of each system, we also evaluate their per-
formance on the subtask of extracting just the rela-
tion phrases from the input text. Figure 5 shows the
precision-recall curves for each system on the rela-
tion phrase-only evaluation. In this case, REVERB

has both higher precision and recall than the other
systems.

REVERB’s biggest improvement came from the
elimination of incoherent extractions. Incoher-
ent extractions were a large fraction of the errors
made by previous systems, accounting for approxi-
mately 13% of TEXTRUNNER’s extractions, 15% of
WOEpos’s, and 30% of WOEparse’s. Uninformative



REVERB - Incorrect Extractions
65% Correct relation phrase, incorrect arguments
16% N-ary relation
8% Non-contiguous relation phrase
2% Imperative verb
2% Overspecified relation phrase
7% Other, including POS/chunking errors

Table 5: The majority of the incorrect extractions re-
turned by REVERB are due to errors in argument extrac-
tion.

extractions had a smaller effect on other systems’
precision, accounting for 4% of WOEparse’s extrac-
tions, 5% of WOEpos’s, and 7% of TEXTRUNNER’s,
while only appearing in 1% of REVERB’s extrac-
tions. REVERB’s reduction in uninformative extrac-
tions resulted in a boost in recall, capturing many
LVC relation phrases missed by other systems (like
those shown in Table 2).

To test the systems’ speed, we ran each extrac-
tor on a set of 100, 000 sentences using a Pen-
tium 4 machine with 4GB of RAM. The process-
ing times were 16 minutes for REVERB, 21 min-
utes for TEXTRUNNER, 21 minutes for WOEpos, and
11 hours for WOEparse. The times for REVERB,
TEXTRUNNER, and WOEpos are all approximately
the same, since they all use the same POS-tagging
and NP-chunking software. WOEparse processes
each sentence with a dependency parser, resulting
in much longer processing time.

5.2 REVERB Error Analysis
To better understand the limitations of REVERB, we
performed a detailed analysis of its errors in pre-
cision (incorrect extractions returned by REVERB)
and its errors in recall (correct extractions that
REVERB missed).

Table 5 summarizes the types of incorrect extrac-
tions that REVERB returns. We found that 65% of
the incorrect extractions returned by REVERB were
cases where a relation phrase was correctly identi-
fied, but the argument-finding heuristics failed. The
remaining errors were cases where REVERB ex-
tracted an incorrect relation phrase. One common
mistake that REVERB made was extracting a rela-
tion phrase that expresses an n-ary relationship via
a ditransitive verb. For example, given the sentence

REVERB - Missed Extractions
52% Could not identify correct arguments
23% Relation filtered out by lexical constraint
17% Identified a more specific relation
8% POS/chunking error

Table 6: The majority of extractions that were missed by
REVERB were cases where the correct relation phrase
was found, but the arguments were not correctly identi-
fied.

“I gave him 15 photographs,” REVERB extracts (I,
gave, him). These errors are due to the fact that
REVERB only models binary relations.

Table 6 summarizes the correct extractions that
were extracted by other systems and were not ex-
tracted by REVERB. As with the false positive ex-
tractions, the majority of false negatives (52%) were
due to the argument-finding heuristics choosing the
wrong arguments, or failing to extract all possible ar-
guments (in the case of coordinating conjunctions).
Other sources of failure were due to the lexical con-
straint either failing to filter out an overspecified re-
lation phrase or filtering out a valid relation phrase.
These errors hurt both precision and recall, since
each case results in the extractor overlooking a cor-
rect relation phrase and choosing another.

5.3 Evaluation At Scale

Section 5.1 shows that REVERB outperforms ex-
isting Open IE systems when evaluated on a sam-
ple of sentences. Previous work has shown that
the frequency of an extraction in a large corpus is
useful for assessing the correctness of extractions
(Downey et al., 2005). Thus, it is possible a pri-
ori that REVERB’s gains over previous systems will
diminish when extraction frequency is taken into ac-
count.

In fact, we found that REVERB’s advantage over
TEXTRUNNER when run at scale is qualitatively
similar to its advantage on single sentences. We ran
both REVERB and TEXTRUNNER on Banko and Et-
zioni’s corpus of 500 million Web sentences and ex-
amined the effect of redundancy on precision.

As Downey’s work predicts, precision increased
in both systems for extractions found multiple
times, compared with extractions found only once.
However, REVERB had higher precision than



TEXTRUNNER at all frequency thresholds. In fact,
REVERB’s frequency 1 extractions had a precision
of 0.75, which TEXTRUNNER could not approach
even with frequency 10 extractions, which had a
precision of 0.34. Thus, REVERB is able to return
more correct extractions at a higher precision than
TEXTRUNNER, even when redundancy is taken into
account.

6 Conclusions and Future Work

The paper’s contributions are as follows:

• We have identified and analyzed the problems
of incoherent and uninformative extractions for
Open IE systems, and shown their prevalence
for systems such as TEXTRUNNER and WOE.

• We articulated general, easy-to-enforce con-
straints on binary, verb-based relation phrases
in English that ameliorate these problems and
yield richer and more informative relations
(see, for example, Table 2).

• Based on these constraints, we designed, im-
plemented, and evaluated the REVERB extrac-
tor, which substantially outperforms previous
Open IE systems in both recall and precision.

• We make REVERB and the data used in our
experiments available to the research commu-
nity.4

In future work, we plan to explore utilizing our
constraints to improve the performance of learned
CRF models. Roth et al. have shown how to incor-
porate constraints into CRF learners (Roth and Yih,
2005). It is natural, then, to consider whether the
combination of heuristically labeled training exam-
ples, CRF learning, and our constraints will result
in superior performance. The error analysis in Sec-
tion 5.2 also suggests natural directions for future
work. For instance, since many of REVERB’s errors
are due to incorrect arguments, improved methods
for argument extraction are in order.
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