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ABSTRACT

A fundamental problem in music is to classify songs according to their rhythm. A
rhythm is represented by a sequence of “Quick” (Q) and “Slow” (S) symbols, which
correspond to the (relative) duration of notes, such that S = 2Q. In this paper, we
present an efficient algorithm for locating the maximum-length substring of a music text
t that can be covered by a given rhythm r.

Keywords: algorithms, musical sequence, rhythm.

1. Introduction

The subject of musical representation for use in computer application has been
studied extensively in computer science literature [3, 2, 6, 11, 15, 13]. Computer
assisted music analysis [14, 12] and music information retrieval [7, 10, 9, 8] has
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a number of tasks that can be related to fundamental combinatorial problems in
computer science and in particular to stringology. A survey of computational tasks
arising in music information retrieval can be found in [4]. We, in this paper, are
interested in automatic music classification, which is one of the fundamental tasks
in the area of computational musicology. Songs need to be classified by one or more
of their characteristics, like genre, melody, rhythm, etc. For human beings, the pro-
cess of identifying those characteristics seems natural. Computerized classification
though is hard to achieve, given that there does not exist a complete agreement on
the definition of those features.

In this work, we will be concerned with classification of a music text by rhythms.
We will define what a rhythm is, and how it can be identified in a musical sequence,
a song for example. The musical sequences we will be considering consist of a series
of onsets (or events) that correspond to music signals, such as drum beats, guitar
picks, horn hits, etc. It is the intervals between those events, that characterizes the
song.

In particular, there are two types of intervals in the rhythm of a song: quick
(Q) and slow (S). Quick means that the duration between two (not necessarily
successive) onsets is q milliseconds, while the slow interval is equal to 2q. For
example, the dancing rhythm, cha-cha is given as the sequence SSQQSSSQQS

while a foxtrot is given as SSQQSSQQ, and a jive is given as SSQQSQQS.
The paper is organized as follows. In Section 2, we present the notations that

we use throughout the paper, and we define the notion of ‘match’ and ‘cover ’ in
musical sequences. In Section 3, we describe in detail our algorithm for finding
the longest area in a musical sequence that is covered by a given rhythm. Finally,
Section 4 contains our concluding remarks.

2. Definitions

A musical sequence can be thought of as a sequence of occurrences (in time axis)
of events. Consider a music signal having 5 musical events occurring at 0th, 50th,
100th, 200th and 240th miliseconds. Then, the sequence S1 = [0, 50, 100, 200, 240]
can be regarded as the corresponding sequence representing the music signal under
consideration. Alternatively, we can represent the same music signal by stating the
duration of the consecutive musical events, instead of stating their start times. In
this scheme, S2 = [50, 50, 100, 40] represent the same music signal. It is clear that
the two definitions are equivalent as it is evident from Figure 1. We use the latter
definition throughout the rest of this paper because the duration of the activity
can be directly compared with the Q and S parameters (to be formally defined
shortly) that also represent duration. So, formally, a musical sequence t is a string
t = t[1]t[2] . . . t[n], where t[i] ∈ N+, for all 1 ≤ i ≤ n.

A rhythm r is a string r = r[1]r[2] . . . r[m], where r[j] ∈ {Q, S}, for all 1 ≤ j ≤
m. For example, r = QSS. Here Q and S correspond to durations of activities
(intervals between the start of consecutive events), such that the length of an interval
represented by an S is double the length of an interval represented by Q. However,
the exact length of Q or S is not a priori known. One interesting fact is that, in our
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50 50 100 40

0 50 100 200 240

Figure 1: Two equivalent definitions of musical sequence

1 2 3 4 5 6 7 8 9

50 50 100 50 50 50 50 100 50
︸ ︷︷ ︸ ︸ ︷︷ ︸

q = 150 Q S

︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
q = 100 Q Q S

Figure 2: Q- and S-matching in musical sequences.

problem, the alphabet for the musical text and that of the rhythm differs from each
other. It should be clear that the alphabet for the musical text is Σ = {t[i] | 1 ≤
i ≤ n}, whereas the alphabet for the rhythm is Σr = {Q,S}. As will be seen,
this difference in corresponding alphabets, along with the new notion of match and
cover (to be defined below), makes our problem combinatorially much more difficult
to solve than the traditional string matching problems.

Let Q represent intervals of size q ∈ N+ milliseconds, and S represent intervals
of size 2q. Then Q is said to match with the substring t[i..i′] of the musical sequence
t, if and only if

q = t[i] + t[i + 1] + . . . + t[i′]

where 1 ≤ i ≤ i′ ≤ n. If i = i′ then the match is said to be solid. Similarly, S is
said to match with t[i..i′], if and only if either of the following is true

• i = i′ and t[i] = 2q, or

• i 6= i′ and there exists i ≤ i1 < i′ such that

q = t[i] + t[i + 1] + . . . + t[i1] = t[i1 + 1] + t[i1 + 2] + . . . + t[i′]

As with Q, the match of S is said to be solid if i = i′. Note that, the notion of
match of a Q and an S with the text t is specific to a particular value, namely, q.
For the sake of clarity, in what follows, we use the term q-match, when we refer to
matching of a Q and/or an S. As it will be seen, this notion of q-match will be
extended for the match and cover of rhythms as well. However, if it is clear from
the context, we prefer to use the term “match” instead of “q-match”.

For example, consider the musical sequence shown in Figure 2. For q = 150,
Q matches with t[2..3] and S matches with t[5..9]. For q = 100, Q matches with
t[1..2], t[3] etc. and S matches with t[6..8]. However, note that for q = 100, S does
not match with t[7..9] despite the fact that

∑9
i=7 t[i] = 2q.

Consequently, a rhythm r = r[1] . . . r[m] is said to q-match with the substring
t[i..i′] of the musical sequence t, if and only if there exists an integer q ∈ N+, and
integers i1 < i2 < . . . < im < im+1 such that
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1. i1 = i, im+1 = i′ + 1, and

2. r[j] q-matches t[ij ..ij+1 − 1], for all 1 ≤ j ≤ m

For instance, the rhythm r = QSS, q-matches with t[1..5] as well as with t[5..8], in
Figure 3, for q = 50. Note the difference in length of the portion of t that q-matched
with the r in the above two instances. This means that reporting only the start
(or end) position may not convey the complete information. Therefore we report
both the start and end positions to denote the q-occurrences against the q-matches.
Therefore, the q-occurrence list for the above case is Occq = {(1, 5), (5, 8)}.

Finally, a rhythm r is said to q-cover the substring t[i..i′] of the musical sequence
t, if and only if there exist integers i1, i

′
1, i2, i

′
2, . . . , ik, i′k, for some k ≥ 1, such that

• r q-matches t[i`..i′`], for all 1 ≤ ` ≤ k, and

• i′`−1 ≥ i` − 1, for all 2 ≤ ` ≤ k

In our example, Figure 3, the rhythm r = QSS q-covers t[1..8] for q = 50.

1 2 3 4 5 6 7 8 9

25 25 100 50 50 50 50 100 50
︸ ︷︷ ︸

r ︸ ︷︷ ︸
r

Figure 3: q-matches of r = QSS in t, for q = 50.

3. Maximal Coverability Algorithm

In this section, we focus on the maximal coverability problem, which is formally
defined as follows:
Problem 1 Given a musical sequence t = t[1]t[2] . . . t[n], t[i] ∈ N+, and a rhythm
r = r[1]r[2] . . . r[m], r[j] ∈ {Q,S}, find the longest substring t[i..i′] of t that is
q-covered by r among all possible values of q.

Note that the definition above is very general, allowing pathological cases like
the following: consider a musical sequence consisting of a single tone repeated every
1ms, t = 111 . . . 1. Consider also a rhythm r consisting of Q’s and S’s. Then r will
match t in every position i regardless of the value of q, since any Q in r will match
with a sequence of q 1’s, and any S in r will match with a sequence of 2q 1’s. To
avoid such cases, we introduce the following restriction for the matching of a rhythm
r with a substring t[i..i′] of t:
Restriction 1 For each match of r with a substring t[i..i′], there must exist at least
one S in r whose match in t[i..i′] is solid; that is, there exists at least one 1 ≤ j ≤ m

such that r[j] = t[k] = 2q, i ≤ k ≤ i′, for some value of q.
As explained before, the value of q is not a priori given. Therefore each σ ∈ Σ

should be considered as a candidate for q, provided of course that 2σ ∈ Σ (because
we need at least one solid S), and for that particular q all the occurrences of the
rhythm r must be identified. On the contrary, we can consider each σ to be equal
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to S = 2q. In our algorithm, for the sake of efficiency, we will be using the latter
form. Our algorithm works in following main stages:

• Stage 1 : Find all occurrences of (solid) S = σ in t for each possible value of
σ.

• Stage 2 : Transform the areas around all the S’s found in Stage 1 into sequences
of Q’s and S’s. A sequence in this stage is identified by σ = S as follows: A
sequence is said to be a q-sequence, if the solid S is assumed to be of value
2q, i.e. σ = 2q.

• Stage 3 : Find the q-matches of r in corresponding q-sequences from Stage 2.

• Stage 4 : Find the maximal area q-covered by r for all possible values of q and
then report a maximum one.

We next explain each of these stages in detail.

3.1. Stage 1 – Finding all occurrences of S

In this stage, we need to find all occurrences of S = σ, for the chosen σ, so
that we can (in Stage 2) transform the areas around each of those occurrences to
sequences of Q’s and (possibly) S’s. And we have to repeat the above for every
possible values of σ. A single scan through the input string suffices to find all
occurrences of σ. Since the stage is repeated for every distinct σ ∈ Σ, overall the
algorithm would need O(|Σ|n) time on this stage alone.

However, it is easy to speedup this stage, by collectively computing linked lists
of the occurrences of all the symbols. This can be done in O(n) time and O(n+ |Σ|)
space in the following manner. Consider vectors first, i.e. of size |Σ|, and next,
i.e. of size n, such that

• first[σ] = i if and only if the leftmost occurrence of the symbol σ appears at
position i

• next[i] = j if and only if t[i] = t[j] and for all k, i < k < j, t[k] 6= t[i]; if no
such j exists, then next[i] = 0

A single scan through t suffices to compute vectors first and next provided that
we can index the alphabet Σ. In order to do that we first compute Σ from t. Let
Σ′ = {1, 2, 3, ..., |Σ|}. We construct a function f : Σ → Σ′ such that

f(Σ[i]) = Σ′[i], 1 ≤ i ≤ |Σ|. (1)

Then we compute the two vectors using the function f to index the alphabet.
The details are given in Algorithm 1

3.2. Stage 2 – Transformation

The task of this stage is to transform t, which is a sequence of integers, into a
number of sets Rσ of sequences for all possible values of σ. Each sequence belonging

5



Algorithm 1 Stage 1: Computing vectors first and next

1: function FindOccurrences(t[1..n])
2: Construct the function f (see Equation 1)
3: first[1..|Σ|] ← 00 . . . 0
4: next[1..n] ← 00 . . . 0
5: last[1..|Σ|] ← 00 . . . 0 . Keeps track of the last occurrence of a particular

σ ∈ Σ so far
6: for i ← 1 to n do
7: if last[f(t[i])] = 0 then
8: first[f(t[i])] ← i
9: else

10: next[last[f(t[i])]] ← i

11: last[f(t[i])] ← i

12: return first, next

to Rσ is a q-sequence over {Q,S} for the chosen q = σ/2. Our aim is to identify
all the q-matches of r in t′ ∈ Rσ (and consequently, into t).

(a)

1 2 3 4 5 6 7 8 9

50 50 50 100 15 35 15 50 50
︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
Q Q Q S Q Q Q

︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
S Q S Q Q Q

︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
Q S S Q Q Q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b)

1 2 3 4 5 6 7 8 9

50 50 50 100 15 35 15 50 50
︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
Q Q Q S Q Q Q

=⇒
︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
Q Q Q S Q Q Q

⇐=

Figure 4: Ambiguities in transformation.

However, this transformation is ambiguous, in several ways, as the following ex-
ample demonstrates. Consider the musical sequence shown in Figure 4(a), and let
q = 50. One does not know whether two consecutive Q’s should be transformed as
QQ or S, and creating all the possible combinations is too time consuming. More-
over, as shown in Figure 4(b) the transformation that is generated while processing
t from left to right is different from that generated while moving from right to left.
So, what we do is as follows. For each occurrence of the current symbol σ = 2q = S,
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we try to convert the area surrounding that S into sequences or tile of Q’s. When
we can’t continue to make Q’s, we check whether we can make S’s instead. Note
that we first try to make Q and in case of a failure we try for an S. It is easy to
observe that in this way, we can only find S, if S is solid, because, by definition, we
cannot have S which can’t be divided into two consecutive Q’s. If we can’t make
either of them then we mark the end of the sequence. So each sequence t′ ∈ Rσ

consists of one or possibly more solid S’s, surrounded by and separated from each
other by zero or more Q’s. Algorithm 2 gives the details.

What should be the total running time of Stage 2? It should be clear that
the function Transform(t[1..n],σ,f) in Algorithm 2, has to be called for all possible
values of σ. Another question is what will be the length in total of all the sequences
generated in this stage. The latter question is important as well because this will
affect the running time of the subsequent stages. In the rest of this subsection we
answer the above two important questions.

We first define the relational operator “º” on t as follows. We say that t[i] º t[j],
if and only if, we have either t[i] > t[j] or t[i] = t[j] and i ≤ j. Now let H is a
multi-set such that H = {t[i] | t[i] ≥ t[j], 1 ≤ j ≤ n}. Now if |H| = ` > 1, then
let H = {H1,H2, ...,H`}, where Hj º Hi, j < i. Note carefully that H1 = H2 =
. . . = H` (= H let). In this case, for all 1 ≤ i ≤ `, we denote by index(Hi),
the index of Hi in t. For example if t = 5 10 5 15 5 15 15 10, then we have
H = 15, H = H1 = 15,H2 = 15, H3 = 15, where index(H1) = 4, index(H2) = 6
and index(H3) = 7.

It is easy to see that the vector first gives us the location of H1 and along with
the vector next (Algorithm 1) implicitly provides us with the full set H. So, in this
stage we first call the function Transform(t[1..n],H, f) of Algorithm 2. It is easy to
see that, Algorithm 2 will give us all the sequences (H/2-sequences to be precise)
for RH . Now we have the following Lemmas.
Lemma 1

∑
t′∈RH

|t′| ≤ 2n.
Proof. If |H| = 1 then we are done, so assume otherwise. If |H| = ` > 1, then we
have H = {H1, H2, ..., H`}. Now assume that we have two separate sequences tki

and tki+1 each having only one S, due to Hi and Hi+1, respectively. Also assume
that Hi and Hi+1 is due to t[m] and t[n], i.e. index(Hi) = m and index(Hi+1) = n.
It is clear that n > m. Now, in tki the tile of Q’s to the right of Hi can not continue
after t[n − 1] because t[n] = H and Q = H/2. Similarly, in tki+1 the tile of Q’s to
the left of Hi+1 can not continue before t[m + 1]. So in the worst case we have two
tiles of Q’s in the same area namely t[m + 1..n− 1]. From this it is easy to realize

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

. . . 60 50 25 25 100 50 15 30 5 70 30 20 50 100 25 25 100 25 20 5 60. . .
︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸ ︷︷ ︸
Q Q S Q Q Q Q S Q S Q

Figure 5: Transforming the area around t[5] = S = 100 and then around t[14] =
S = 100.
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Algorithm 2 Stage 2: Transformation
1: function Transform(t[1..n],σ, f)
2: q ← σ/2
3: Rσ ← {}
4: i ← first[f(σ)]
5: while i 6= 0 do
6: x ← “S′′

7: r ← 0
8: j ← i
9: while r < q and j > 1 do . Converting to the left. Here we don’t need

to check for any solid S.
10: j ← j − 1
11: r ← r + t[j]
12: if r = q then
13: Push Q at the front of x
14: r ← 0
15: r ← 0
16: j ← i
17: solid ← false
18: while r < 2q and j < n do . Converting to the right
19: j ← j + 1
20: r ← r + t[j]
21: if r = q then
22: Push Q at the back of x
23: if t[j + 1] = 2q then. This means the next position has a solid S
24: solid ← true
25: r ← 0
26: if r = 2q and solid = true then
27: Push S at the front of x
28: solid ← false
29: i ← j . We should not consider this S as next candidate
30: if t[j + 1] = 2q then. This means the next position has a solid S
31: solid ← true
32: r ← 0
33: Rσ ← Rσ ∪ {x}
34: i ← next[i]
35: return Rσ
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that, in the worst case, a particular region can be covered by 2 tiles of Q and this
worst case can only occur when each sequence have exactly one S. This proves the
Lemma. ¤
Lemma 2 The length of the total number of sequences generated in Stage 2 is
O(n log H), where H is the maximum value in t.
Proof. Assume that we have computed RH and each part of t is covered by at least
one sequence t′ ∈ RH . Now, consider, again, two separate sequences tki and tki+1

each having only one S, due to Hi and Hi+1, respectively. Also assume that Hi

and Hi+1 is due to t[m] and t[n] i.e. index(Hi) = m and index(Hi+1) = n. Now we
need to compute the next value, let H ′, to consider as S. We claim that H ′ = H/2
as follows. We show it considering the area of t namely, t[m + 1..n− 1]. Note that
according to our assumption t[m+1..n−1] is covered by either tki

or tki+1 or both.
It is easy to observe that there can not exists a t[i] > H/2,m+1 ≤ i ≤ n−1 because
otherwise any tile of Q(= H/2) would have to stop before that, contradicting our
assumption. Therefore, we can see that each value to be considered as S, is half of
the previous value considered as S on so on. Therefor, from Lemma 1, it follows,
in this case, that total number of sequences in Stage 2 is O(n log H). Finally, it is
easy to realize that it would be lesser in the case when not every part of t is covered
by RH and also in the case when a sequence may have more than one S. ¤

In the rest of this subsection, we show that the total running time of Stage 2
would be O(n log H) as well. This is so as follows. Recall that we first compute
RH which takes linear time. Now we have to find the next value to consider as
S. Consider the situation of Lemma 2 once again. It should be clear that the next
value for S, in this case, is the highest value in the range t[m + 1..n − 1]. It is
not very difficult to observe that, for each pair of sequences in RH we get a range,
the maximum value in which gives us the next possible values for S. With a linear
preprocessing on t, this can be done in constant time per query by using Range
Maxima Query technique [1, 5]. So it should be clear that the total running time is
bounded by O(n log H) as is the total length of all the sequences generated in this
stage.

One essential detail is that in this stage we may have to work with more then
one values for S at the same time. Also note that, if there exists more than one
instances for a particular value, we first consider the one having lowest index and so
on. This ensures that in every Rσ, we have the sequences in sorted order according
their start position in t. And when we check for the next value we consider each
sequence (for deducing the range to check) in that order. This preserves the order
in each Rσ and ensures that the occurrences we find in later stages are in sorted
order as well. This fact is used by us in Stage 4 to gain efficiency.

3.3. Stage 3 – Find the Matchings

In this stage we consider each t′ ∈ Rσ, for all valid values of σ and identify all
the q-matches of r in t′. To do that efficiently we exploit a bit-masking technique as
described below. We first define some notations that we use for sake of convenience.
We define St′ and Sr to indicate an S in t′ and r respectively. Qt′ and Qr are defined
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analogously. We first perform a preprocessing as follows. We construct t′′ from t′

where each St′ is replaced by 01 and each Qt′ is replaced by 1. Note that we
have to keep track of the corresponding positions of t′ in t′′. We then construct
the ‘Invalid’ set I for t′′ where I includes each position of ‘1’ of St′ in t′′. For
example, if t′ = QQSQS then t′′ = 1101101 and I = {4,7}. It is easy to see that
no occurrence of r can start at i ∈ I. We also construct r′ from r where each Sr

is replaced by 10 and each Qr is replaced by 0. This completes the preprocessing.
After the preprocessing is done, at each position i /∈ I of t′′ we perform a bitwise
‘OR’ operation between t′′[i..i + |r′| − 1] and r′. If the result of the ‘OR’ operation
is all 1’s, i.e. 1r′ then we have found a match at position i of t′′. However, we need
to ensure that there is a solid S in the match. To achieve that we simply perform a
bitwise ‘XOR’ operation between t′′[i..i + |r′| − 1] and 1r′ and only if the result of
this ‘XOR’ returns a nonzero value, we go on with the ‘OR’ operation stated above.
The details are formally given in the form of Algorithm 3.

Algorithm 3 Reporting Occurrences of r in t′

1: function FindMatch(t′,r)
2: Occ[1..|t′|] ← 0 0 . . . 0 . Preprocessing Step
3: I[1..|t′′|] ← 0 0 . . . 0
4: j ← 1
5: for i = 1 to |t′| do
6: track[j] ← i
7: if t′[i] = S then
8: t′′[j] ← 0
9: t′′[j + 1] ← 1

10: I[j + 1] ← 1 . Position j + 1 is invalid
11: j ← j + 2
12: else
13: t′′[j] ← 1
14: j ← j + 1
15: j ← 1
16: for i = 1 to |r| do
17: if r[i] = S then
18: r′[j] ← 1
19: r′[j + 1] ← 0
20: j ← j + 2
21: else
22: r′[j] ← 0
23: j ← j + 1

. Matching Step
24: for i = 1 to |t′′| do
25: if (I[i] 6= 1) and (t′[i..i + |r′| − 1]⊕ 1r′ > 0) then . ‘⊕’ is the bitwise

xor operator
26: if t′′[i..i + |r′| − 1] || r′ = 1r′ then . ‘||’ is the bitwise or operator
27: Occ[track[i]] ← 1
28: return Occ
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We now discuss the correctness of Algorithm 3. We use the symbol ∼ and � to
denote, respectively “matches” and “doesn’t match”. It is easy to see that for the
problem in hand we must meet the following conditions.

1. Qt′ ∼ Qr

2. Qt′Qt′ ∼ Sr

3. St′ ∼ Sr

4. St′ � QrQr

All the conditions stated above are obeyed by the encoding we use as shown
below. Recall that we do bitwise or operation and that we report a match when
the result of the operation is all 1’s.

1. Qt′(= 1) and Qr(= 0) always matches: (1 or 0 = 1).

2. Qt′Qt′(= 11) always matches with Sr(= 10): (11 or 10 = 11).

3. St′(= 01) can only match with Sr(= 10) : (01 or 10 = 11).

4. Since St′(= 01) can’t give a match with QrQr(= 00): (01 or 00 = 01).

However we have a problem when the Sr and St′ are ‘misaligned’. We define
start(Sr) = 1 and end(Sr) = 0. Similarly, we have, start(St′) = 0 and end(St′) = 1.
Assume that we have an Sr(say Sk

r ) misaligned with an St′(say Sl
t′).

Case 1- end(Sk
r ) is aligned with start(Sl

t′): We have end(Sk
r ) or start(Sl

t′) 0 or 0 =
0. So we have no match as required.

Case 2- start(Sk
r ) is aligned with end(Sl

t′): Unfortunately here we have start(Sk
r )

or end(Sl
t′) = 1 or 1 = 1 which may create problems. We distinguish between

two subcases. We say an Sr is ‘inside’ r (or equivalently r′) if this Sr is not
the start of r.

Case2.a- Sk
r is inside r: There must be either a Qr or another Sr (say Sj

r)
just before this Sk

r . In any case we will have either Qr(= 0) or end(Sj
r)(=

0) to align with start(Sl
t′)(= 0) which will give 0 after the or operation

and hence we have no problem.

Case2.b- Sk
r is the start of r: In this case, we have start(Sk

r ) or end(Sj
t′) =

1 which may give us a ‘false positive’ starting at this position. To exclude
these false positives we have the ‘Invalid’ set I. The main idea is that
no occurrence of the rhythm can start at end(St′). So each end(St′) is
included in I. And we check whether the position we are checking is in
I or not.

Here we give an example of a ‘false positive’ as discussed above. Suppose t′ =
QQSQQ and r = SQ. Then we have t′′ = 110111 and r′ = 100. It is easy to
see that if we perform the bitwise or operation at each position of t′′ we get two
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matches starting at t′′[3] and also at t′′[4]. But it is easy to verify that position 4
of t′′ doesn’t really exist in t′. So it is a ‘false positive’. It remains to show how
we ensure that there exists a solid S in the match. Recall that we perform an ‘xor’
operation between t′′[i..i + |r′| − 1] and 1r′ before we perform the ‘or’ operation
between t′′[i..i + |r′| − 1] and r′. Now if there exists a solid S in t′′[i..i + |r′| − 1],
assuming i /∈ I, we must have t′′[j] = 0, j ∈ [i..i + |r′| − 1] and therefore, the
‘xor’ operation above returns a nonzero value only when there exists a solid S in
t′′[i..i + |r′| − 1].

The above discussion establishes the correctness of Algorithm 3. Now we discuss
the the total running time of this stage. It is easy to see that Algorithm 3 runs in
O(|t′′|×|r′|/w) time where w is the size of the word of the target machine. Note that
the function FindMatch(t′,r) of Algorithm 3 is called for every sequence generated
in Stage 3. So it follows from Lemma 2 that the total running time in Stage 3 is
O(n log H ×m/w).

3.4. Stage 4 – Find the Cover

In this stage we can assume that we have sets of q-occurrence lists corresponding
to the q-matches for the r in t. Let us assume that we have O = {Occσ} where
Occσ is the set of occurrences corresponding to q-matches assuming q = σ/2. Recall
that we have the occurrences in sorted order. Now what we do is as follows. For
each Occσ ∈ O, we try to find the corresponding q-covers (q = σ/2). This can
be easily done by checking, respectively, the end and start positions of consecutive
occurrences. Also, we maintain global variable to keep track of the longest cover so
far. Algorithm 4 gives the details. It is easy to observe that the running time of
stage can’t exceed O(n log H) because the total number of occurrences in the worst
case can’t exceed the total length of all the sequences.

So in total, the algorithm takes O(n log Hm/w) time. Hence, if m ∼ w, the
running time reduces to O(n log H). It may further be noted here that the length
m of the rhythm, in practical cases, is usually 10-13 characters and thus we can
consider it to be constant. Therefore, for all practical purposes our algorithm runs
in O(n log H) time.

4. Conclusions

In this paper we have presented efficient algorithms that can be used to classify
musical texts according to given rhythms. We have defined the musical text, rhythm
and the notion of match and cover in this regard and formulated a new problem
(Problem 1). As a by product we end up defining a yet another new pattern
matching paradigm where addition of consecutive entries in the text are allowed to
find a match with the pattern. Note also that, in our model, the pattern and the
text are from different alphabets. The algorithm we have presented can be used
for a number of different variants of our problem with slight or no modification as
follows:

Cover versus Tile: In some cases, instead of covers, finding a tile, i.e. consecutive
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Algorithm 4 Finding Covers
1: function FindCover(O)
2: globalCover{start, end, value} ← {0, 0, 0}
3: for each Occσ ∈ O do
4: Coverσ{start, end} ← {0, 0}
5: start ← true
6: for i = 1 to |Occσ| do
7: if start = true then
8: Cover.start ← Occσ[i].start
9: Cover.end ← Occσ[i].end

10: start ← false
11: else if start = false then
12: if Cover.end ≥ Occσ[i].start then . A continuing cover
13: Cover.end ← Occσ[i].end
14: else if Cover.end < Occσ[i].start then . A discontinued cover
15: start ← true
16: if Coverσ.end−Coverσ.start < Cover.end−Cover.start then

. current cover is longer than the global one for this σ
17: Coverσ.start ← Cover.start
18: Coverσ.end ← Cover.end

. End of one Occσ

19: if globalCover.end − globalCover.start < Coverσ.end − Coverσ.start
then . Cover for this σ is longer than the global one

20: globalCover.start ← Coverσ.start
21: globalCover.end ← Coverσ.end
22: globalCover.value ← σ/2

return globalCover
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repetition may turn out to be more meaningful. Our algorithm can be easily
adapted to solve this variant. It is easy to see that the only change that need
to be done is in Stage 4 of our algorithm.

Rhythms of Different Tempo: In our problem we look for the longest cover for
a for a specific value of q. However, if the same rhythm exists in the same
music at more than one tempo, then it would definitely be interesting to find
the best cover considering different values of q. This variant, as well, can be
solved using our algorithm with slight modification.

Despite that there does not exist a complete agreement on different definitions
in Computational Musicology, we believe that our model and the problem we have
handled would be of both practical and theoretical interest in both Computing and
music research. A number of interesting issues remain open as follows:

1. Designing an algorithm that avoids the restriction that one symbol has to be
‘solid’. In this cases it may be meaningful to apply restriction on the number
of consecutive entries to be added to match a Q or S.

2. We have assumed that the duration of S is double the duration of Q. It may
be interesting to relax this assumption and allow other possibilities simulta-
neously.

3. As is the case in all pattern matching algorithms, it would be interesting to
introduce different kinds errors and define an approximate paradigm on top
of this new model.
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