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Abstract

Scoliosis is a 3D-torsional rotation of the spine, but risk factors for initiation and progression are little understood. Research 

is hampered by lack of population-based research since radiographs cannot be performed on entire populations due to the 

relatively high levels of ionising radiation. Hence we have developed and validated a manual method for identifying scoliosis 

from total body dual energy X-ray absorptiometry (DXA) scans for research purposes. However, to allow full utilisation 

of population-based research cohorts, this needs to be automated. The purpose of this study was therefore to automate the 

identification of spinal curvature from total body DXA scans using machine learning techniques. To validate the automation, 

we assessed: (1) sensitivity, specificity and area under the receiver operator curve value (AUC) by comparison with 12,000 

manually annotated images; (2) reliability by rerunning the automation on a subset of DXA scans repeated 2–6 weeks apart 

and calculating the kappa statistic; (3) validity by applying the automation to 5000 non-annotated images to assess associa-

tions with epidemiological variables. The final automated model had a sensitivity of 86.5%, specificity of 96.9% and an 

AUC of 0.80 (95%CI 0.74–0.87). There was almost perfect agreement of identification of those with scoliosis (kappa 0.90). 

Those with scoliosis identified by the automated model showed similar associations with gender, ethnicity, socioeconomic 

status, BMI and lean mass to previous literature. In conclusion, we have developed an accurate and valid automated method 

for identifying and quantifying spinal curvature from total body DXA scans.
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Introduction

Scoliosis is defined as lateral curvature of the spine ≥ 10°, 

as measured using the Cobb method on a standing spinal 

radiograph [1]. The most common form is adolescent-onset 

idiopathic scoliosis (AIS), defined as occurring between 

age 10 years and skeletal maturity [2]. It is not always a 

benign structural abnormality, although the mortality rate 

for individuals with AIS is comparable to that of the general 

population [3]. Severe AIS may result in early degenerative 

joint disease [4], negative body image [5] and psychosocial 

disturbances [6]. Even small spinal curves in adolescents, 

which may not have presented to spinal units, are associ-

ated with an increased risk of future back pain and time off 

school [7].

However, our understanding of the causes of curve ini-

tiation and progression is hampered by lack of prospective 

population-based studies, driven mainly by the serious ethi-

cal concerns over performing spinal radiographs in healthy 

populations because of the radiation exposure, equivalent to 

an entire year’s background radiation [8].

To address this, we have validated a manual method for 

measuring spinal curvature using total body dual energy 
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X-ray absorptiometry (DXA) scans for research purposes 

[9]: the DXA Scoliosis Method (DSM). As previously 

published [9], the manual DSM is reliable (substantial 

agreement was seen with a kappa of 0.75), repeatable 

(95% of repeat measures were within 5°, and there was no 

change in interobserver variability as curve size increased) 

and accurate (comparison with the gold standard of using 

the Cobb method on standing spinal radiographs was as 

expected). The manual DSM also produced valid estimates 

of prevalence of scoliosis, with expected gender ratio [9].

This has allowed us to start to identify predictors of 

AIS onset utilising population-based cohorts that have 

already performed DXA scans for previous research into 

determinants of bone density. The DSM has been applied 

to participants in the Avon Longitudinal Study of Parents 

and Children (ALSPAC) at age 9 years (n = 7000) and age 

15 years (n = 5000) and results have shown we can identify 

altered body composition [10] and reduced physical activ-

ity [11] in children, prior to onset of their spinal curve. 

Interestingly, reduced physical ability is seen as early as 

age 18 months in those who go on to develop AIS between 

ages 9 and 15 [11]. This suggests that clinical features 

other than characteristics of the spinal deformity itself may 

indeed be useful prognostic indicators.

The main goal of further epidemiological analysis of 

scoliosis is to identify predictors of spinal curve progres-

sion. This would allow generation of a clinical prediction 

tool to identify people at low risk of curve progression, 

for example, who would then require less rigorous moni-

toring. However, even though the prevalence of AIS is 

relatively common (5.9% at age 15 [9]), ALSPAC is not 

large enough on its own, and to carry out appropriately 

powered epidemiological studies we need to combine data 

from multiple research cohorts. We have identified addi-

tional research cohorts that already have total body DXA 

scans already performed (approximately 84,000 scans). 

However, application of our manual DSM on all relevant 

DXA images is unfeasible in terms of time and cost. For 

example, the original annotation 12,000 ALSPAC images 

required 200 staff days of analysis time.

Therefore the aim of this work was to develop and 

validate a fully automated version of the manual DSM 

method using a machine learning approach. The intended 

purpose of this automated method is to exploit population-

based cohorts for research purposes. The availability of 

large datasets and increasingly powerful computational 

resources has made the development of such techniques 

feasible with applications ranging from fibrotic lung dis-

ease [12] to ophthalmology [13]. The scoliosis automa-

tion proposed here is based on the ideas developed in the 

SpineNet software [14], a deep-learning based automated 

tool for quantitative assessment of spinal degeneration on 

lumbar MRI imaging studies.

Methods

Study Population

ALSPAC is a geographically-based UK cohort that recruited 

pregnant women residing in Avon (South-west England), 

with an expected date of delivery between 1 April 1991 and 

31 December 1992 [15, 16]. A total of 14541 pregnancies 

were enrolled, with 14062 children born; see www.alspa 

c.bris.ac.uk for more information. The study website con-

tains details of all the data that are available through a fully 

searchable data dictionary and variable search tool available 

at https ://www.bris.ac.uk/alspa c/resea rcher s/our-data/. This 

study is based on 7298 children who had DXA scans at the 

aged 9 research clinic, 5122 who had DXA scans at the aged 

15 research clinic, and 4969 who had DXA scans at the aged 

17 research clinic.

Overall Study Design

The DXA images were performed by trained technicians 

using a Lunar Prodigy (GE Healthcare, Madison, WI) and 

were obtained in a standard supine manner. The scans from 

age 9 and age 15 were combined, then randomly split into 

a training, a validation and a test set. A similar automated 

system for three-dimension images of the spine based on 

magnetic resonance imaging (MRI) scans has already been 

developed [17]. We planned to modify this system to allow 

automatic collection of data on spinal scoliosis from total 

body DXA scans for future research purposes. This modifi-

cation process was planned to have two stages: (1) develop-

ment of a new software algorithm to extract the required 

features and classify spinal images based on a subset of 

anonymised DXA images from ALSPAC; and (2) validation 

of the software on a further dataset of anonymised images 

from ALSPAC.

Development of the New Software Algorithm

As previously reported from the computer science perspec-

tive [18], using the training set, all images were standardised 

to the same height without modifying the aspect ratio (iso-

tropic scaling using the SpineNet software). Segmentations 

of specific body parts were obtained via simple heuristics 

by expecting the participants to have two legs, a pelvis, a 

spine and a head, which are then used to help train the model 

understand spinal anatomy. Using these segmentations, the 

first stage of the model was then trained to produce the mid-

spine maps—that is a heatmap of which pixels are the most 

likely to be the middle of the spine. Then, the second stage 

of the model was trained against the manual classifier of 

http://www.alspac.bris.ac.uk
http://www.alspac.bris.ac.uk
https://www.bris.ac.uk/alspac/researchers/our-data/
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scoliosis/no scoliosis based on the previously validated man-

ual cut-off [9]. The input of the first stage was a DXA image 

while the input to the second stage was the DXA image and 

its corresponding mid-spine map. Accuracy of the model 

was then improved through modifications to labels, maps, 

and by training against different manual classifications of 

scoliosis (none, scoliosis with a curve sized 6° to 10°, and 

scoliosis with a curve sized > 10°) followed by summing 

these scoliotic classes into one. Each classification produced 

by the automated model comes with a score—the so-called 

‘suspiciousness score’. This score ranges from 0 (normal) to 

1 (scoliosis)—see Fig. 1.

Validation of the Automated Model

As before, using the test set, the images were standardised 

to the same height without modifying the aspect ratio. The 

trained model was then used to produce a single scoliosis 

score per test image. To interrogate the model to identify 

‘how’ it was making the decisions, heatmaps were pro-

duced—see Fig. 2. The brighter pixels in the heatmap are 

the pixels that contribute the most to the scoliosis prediction.

Identification of Cut‑Off Point for Binary 
Classification

Scans with evidence of body positioning error based on 

a score of > 0.5 were excluded. The scoliosis suspicious-

ness score was reduced to a binary output of scoliosis 

(yes/no). Different cut-offs of the suspiciousness score 

were assessed for validity by comparison with the manual 

DSM annotation on the age 9 and age 15 data using val-

ues for sensitivity, specificity and area under the receiver 

operator curve (AUC). In addition, to estimate the posi-

tive predictive value (PPV) and negative predictive value 

(NPV) of a specific cut-off, the relevant sensitivity and 

0.01 0.25 0.49 0.53 0.72 0.99

Normal Scolio�c

Fig. 1  Scoliosis ‘suspiciousness’ scores produced by the automated method. A score of 0 indicates low suspiciousness of scoliosis, and a score 

of 1 high suspiciousness

Fig. 2  Heatmaps produced by the automation indicating the site of 

the total body DXA scan that contributed to the decision that scolio-

sis was present
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specificity were projected onto a hypothetical population 

of 10,000 using the known prevalence of 5.9% [9]. The 

hypothetical population was also used to calculate the 

percentage of individuals who would be identified (that 

is, predicted) as having scoliosis according to a given 

cut-off. A final cut-off (the final model) was chosen by 

consensus of the study authors based on a high AUC, and 

optimisation of the sensitivity and PPV.

Reliability of Final Automated Model

Since identification of spinal curves is influenced by 

positioning of people on the DXA scanner bed, evaluation 

of reliability requires assessment of repeat scans in the 

same individual, with repositioning in-between. There-

fore, the automation was also run on a subset of repeat 

DXA scans carried out 2–6 weeks later in 284 participants 

from the aged 15 research clinic. To assess reliability, an 

unweighted Cohen’s kappa statistic was calculated, with 

standard definitions of categories of agreement [19].

Assessment of Discrepancies

Using the final cut-off model, where discrepancies 

between the automated model and manual annotations 

(DSM) occurred, a random selection of images were 

reviewed by clinicians (JF and IH who had not previ-

ously reviewed these images, and EC who developed the 

original manual DSM) to identify if the manual anno-

tations were correct or incorrect. All were unaware of 

the automated prediction, and all read the scans without 

knowledge of each other’s interpretation. In addition, the 

automated model was run on the age 17 scans for the dis-

crepancies to identify if the images were still classified as 

scoliosis by the model, and these age 17 scans were also 

reviewed by the clinicians.

Validity of Final Automated Model

The final model was then run on the non-annotated age 17 

scans. Percentages were calculated for prevalence of scolio-

sis. χ2 tests were used to assess associations between gender 

and the presence of scoliosis identified by the automated 

model. Previously, independent associations were identified 

in ALSPAC between body composition [10] and scoliosis 

identified by the manual DSM. To assess clinical validity of 

the automated model, χ2 tests were used to assess if similar 

associations were seen between potential predictors (body 

composition and physical activity) and scoliosis identified 

by the automated method. For continuous variables such as 

lean mass unpaired t-tests were used to assess associations 

with scoliosis.

Results

The heatmaps of those images with high suspiciousness 

score for scoliosis consistently highlight specific regions of 

the spine, indicating these regions contribute the most to the 

suspiciousness score.

Identification of the Final Cut‑Off Model

After excluding those with body positioning error, differ-

ent cut-offs of the suspiciousness score were studied: 0.95, 

0.98, 0.99, 0.995 and 0.9995—see Table 1. Using a cut-off 

Table 1  Identification of 

the final cut-off point of the 

continuous suspiciousness score 

for scoliosis based on the age 

15 data after exclusion of those 

scans with evidence of body 

positioning error

Table shows sensitivity, specificity and AUC calculated from the validation set. The calculated sensitivity 

and specificity were then applied to a hypothetical population assuming a prevalence of 5.9% to allow cal-

culation of the positive predictive value (PPV), negative predictive value (NPV) and proportion identified 

with scoliosis by the automated model

Various cut-off levels of the scoliosis suspiciousness score for scoliosis 

produced by the automation

0.95 0.98 0.99 0.995 0.999 0.9995

Using the validation set from ALSPAC

 Sensitivity (%) 94.6 94.6 89.2 89.2 86.5 78.4

 Specificity (%) 93.9 94.9 95.2 95.5 96.9 97.8

 AUC, 95%CI 0.738 

(0.680–

0.796)

0.760 

0.699–

0.820)

0.759 

(0.696–

0.821)

0.767 

(0.704–

0.803)

0.804 

(0.737–

0.871)

0.831 

(0.760–

0.902)

Applied to a hypothetical population of 10,000

 PPV (%) 49.3 53.8 53.8 55.4 63.6 69.1

 NPV (%) 99.6 99.6 99.2 99.3 99.1 98.6

 Calculated prevalence (%) 11.3 10.4 9.8 9.5 8.0 6.7
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of suspiciousness score of 0.999, compared with the manual 

DSM, the automated model has a sensitivity of 86.5%, a 

specificity of 96.9% and an area under the receiver opera-

tor curve value (AUC) of 0.80 (95%CI 0.74 to 0.87)—see 

Table 2A. This cut-off was then applied to a hypothetical 

population of 10,000 and has a PPV of 63.6% and an NPV 

of 99.1%—see Table 2B.

Reliability of Final Automated Model

There was almost perfect agreement of identification of 

those with scoliosis on repeated DXA scans taken 2–6 weeks 

apart (kappa of 0.90, 95%CI 0.72–1.00).

Assessment of Discrepancies: Re‑assessment 
of Images by Clinicians

A random sample of 20 of the scans where the manual 

method and the automated method did not agree were 

reviewed by three clinicians. Of the scans where the manual 

method identified no scoliosis, but the automated method did 

identify scoliosis, 55.6% were re-classified as having sco-

liosis (in agreement with the automated model) by all three 

clinicians, suggesting the manual annotation was incorrect in 

these cases. Similarly, of the scans where the manual method 

identified scoliosis, but the automated method did not, 60.0% 

were re-classified as not having scoliosis (in agreement with 

the automated model) by all three clinicians, suggesting the 

manual annotation was incorrect in these cases. There was 

therefore no clear pattern or direction of judgement by the 

automation. There was no agreement for the remaining dis-

crepant scans as to whether scoliosis was present or not due 

to the small size of spinal abnormality.

Assessment of Discrepancies: Comparison 
with Automated Model Prediction on Age 17 Data

The automated model was run on the age 17 images for 

those randomly selected discrepant scans described above. 

For 82.0% of participants, the automated model classified 

their spines the same at age 15 and age 17, thereby increas-

ing the confidence that the model output is valid.

Description of Scoliosis Identified by the Automated 
Model in ALSPAC at Age 17

The descriptive statistics of those with and without scoliosis 

at age 17 identified by the final automated model is shown 

in Table 3. As expected, scoliosis was more common in 

females, but no association was seen with socio-economic 

status or ethnicity. Similar to previous literature, those with 

scoliosis at age 17 had lower BMI at age 15. As in previous 

work by our group [10], those with scoliosis at age 17 had 

lower total body lean mass.

Discussion

We have developed a fully automated method of identifica-

tion of scoliosis from total body DXA scans for research 

purposes. The final model has good reliability, accuracy, 

sensitivity, specificity and AUC. Those identified with scoli-

osis using this method have similar associations with gender, 

socio-economic status, ethnicity, BMI and lean mass as the 

known epidemiology of this condition [9, 10]. Disagreement 

between the automated model and the manual annotation 

is likely to be explained by errors with the original manual 

annotation in at least half the cases. Now we are confident 

the automated model is valid, we are working on training 

the model to measure size of spinal curve, to allow future 

research into the predictors of curve size progression.

The benefits of our fully automated model compared to 

manual annotation of DXA scans is the vast reduction in 

time required to look at each spinal image, with the conse-

quent large reduction in financial costs. To run the automa-

tion on all 12,000 DXA scans from ALSPAC took approx-

imately 5 min. This has resulted in the first feasible and 

low-radiation process for identification of spinal curves in 

large populations for research purposes. Other no-radiation 

techniques are available such as EOS machines, but their use 

is limited by lack of availability. It is increasingly difficult 

to justify regular conventional spinal radiography because 

of the radiation risks, especially to adolescent females who 

may have an increased risk of breast and uterine carcinoma 

with increased radiation exposure [20].

Table 2  Final model: Automated prediction of scoliosis (suspicious-

ness score cut off of 0.999) excluding those with body positioning 

error (suspiciousness score cut-off of 0.5) (A) compared to manual 

prediction (DSM) based on a test set from within ALSPAC age 9 and 

age 15 total body DXA scans; and (B) applying the 5.9% prevalence 

[9], the identified specificity of 96.9% and the identified sensitivity of 

86.5% to a hypothetical population of 10,000

Automation Manual method

No scoliosis Scoliosis

(A) Compared to manual prediction in test set

No scoliosis 606 5 611

Scoliosis 20 32 52

Total 626 37 663

(B) Applied to a hypothetical population of 10,000

No scoliosis 9118 80 9198

Scoliosis 292 510 802

Total 9410 590 10,000



383Identifying Scoliosis in Population‑Based Cohorts: Automation of a Validated Method Based…

1 3

The model is not perfect. The sensitivity, specificity and 

NPV are high, but PPV is low. This, combined with the 

estimated percentage with scoliosis identified by the model 

of 8.0%, suggests the model identifies more spinal curves 

than traditional manual methods. However, it is increasingly 

recognised that spinal curvature in humans is a continuum, 

and it is possible our automated method identified more of 

the small curves than manual methods. Most previous pop-

ulation-based studies of prevalence of scoliosis are based 

on the Adams forward bending test, and it is recognised that 

this clinical assessment will miss small curves. It is therefore 

possible our automated method is correctly identifying a 

higher prevalence of spinal curves. This could be important, 

as the current paradigm of using a cut-off of spinal curvature 

of ≥ 10 ° on standing radiographs [21] carries the implica-

tion that lesser curves are not pathological and are ‘normal 

variants’ [22]. However, previous work by our group has 

shown that small curves are associated with future back pain 

and time off school/work [7].

Alternatively, our automated method may be identify-

ing false-positives, but we think this is less likely given 

that our results are similar to the known epidemiology of 

scoliosis. The intended purpose of this automated method 

of scoliosis identification from total body DXA scans is 

for exploitation of large research datasets. In UK Biobank 

for example, there will be 100,000 total body DXA scans 

which will not be able to be analysed for spinal curvature 

manually because of the enormous time commitment. Our 

automated method, despite the potential for a proportion 

of false positives, will allow exploitation of this unique 

resource, sacrificing some precision for a vast reduction in 

time required for analysis. Another limitation of this study 

is that we were unable to confirm that those identified 

with scoliosis by the automated method were true cases, 

due to ethical issues regarding over-exposing otherwise 

normal individuals from ALSPAC to substantial levels of 

ionising radiation. As previously discussed in the paper 

describing the validation of the manual method [9], DXA 

scans are performed in the supine position, which unsur-

prisingly results in an under-estimation of curve size by 

approximately 10° in the ALSPAC cohort, similar to other 

authors [23]. Also as previously published [9], analysis of 

the supine DXA imaging identifies a higher prevalence of 

double or triple curves, perhaps explained that without 

clinical examination we are unable to distinguish compen-

satory curves that are correctable. However, using a binary 

cut-off to categorise scans into scoliosis or no scoliosis 

reduced the impact of this potential limitation.

A final limitation is that both the manual method 

and the automation described in this paper have been 

Table 3  Descriptive statistics of those participants from ALSPAC identified by the final automated model with and without scoliosis at age 17, 

with comparisons by Chi-squared statistics or unpaired t-tests as appropriate

BMI body mass index

No scoliosis

N = 3235

Scoliosis

N = 449

P value for difference

N (%) N (%)

Gender  < 0.001

Male 1526 (91.8) 136 (8.2)

Female 1709 (84.5) 313 (15.5)

Ethnicity 0.939

White 2783 (87.9) 382 (12.1)

Non-white 119 (88.2) 16 (11.9)

Maternal education 0.343

Level 1 (none or CSE only) 322 (85.2) 56 (14.8)

Level 2 (vocational) 219 (90.5) 23 (9.5)

Level 3 (O levels) 1002 (88.1) 136 (12.0)

Level 4 (A levels) 824 (87.9) 113 (12.1)

Level 5 (°) 576 (88.6) 74 (11.4)

BMI categories at age 17  < 0.001

 < 18.5 246 (78.6) 67 (21.4)

18.5–24.9 2193 (86.9) 331 (13.1)

25.0–29.9 536 (93.1) 40 (6.9)

 ≥ 30 244 (95.7) 11 (4.3)

Mean (SD) Mean (SD) P value for difference

Total body lean mass at age 15 (kg) 43.5 (8.4) 39.9 (7.1)  < 0.001
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developed on DXA scans performed on a Lunar Prodigy 

machine produced by GE Healthcare. Other DXA manu-

facturers are available, (machines produced by GE Health-

care and Hologic comprise the majority), and it is cur-

rently unknown how our automation will perform on such 

images, although we are currently in the process of testing 

it on Hologic images and outputs are encouraging [un-pub-

lished data]. However, the intended use of our automation 

is for research purposes in population-based cohort studies 

where the serial images are taken on the same machines. 

We do not intend to use our automation on repeat scans in 

individuals taken on machines by different manufacturers.

We are now in a position to use this fully automated 

method to insert the scoliosis phenotype into population-

based research cohorts with total body DXA scans around 

the globe. This will facilitate well-powered studies of the 

risk factors for initiation of spinal curves, and is likely to 

produce a step-change in our understanding of this little-

researched disease. With future automation development 

we will also be in the position to study the risk factors for 

curve progression.
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