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José Ramos1, Guillaume Mercère2, and Olivier Prot3

Abstract— The problem of identifying the mass, damping,
and stiffness matrices of a mechanical structure is a well known
constrained system identification problem in the literature. The
constraints come from the symmetry of the mass, damping,
and stiffness matrices, as well as the number of sensors and
actuators placed on the structure. Here we present two solutions
to this problem, one based on a structured system identification
approach and the other based on a similarity transformation
approach. The latter approach takes advantage of the non-
uniqueness of the problem to force the solution to a particular
basis. Examples of both approaches show the feasibility of the
methods, and it is expected to shed light on solving the most
restrictive of the structural identification class of problems.

I. INTRODUCTION

System identification theory, in its most general form,
consists of finding a mathematical model of a dynamical
system based on a set of recorded inputs and outputs from
some experiment. The type and choice of models depends
on the type of application at hand. When identifying finite
element model formulations, the identification of the mass,
damping, and stiffness matrices is of primary concern. Thus,
the model must be formulated in second order matrix dif-
ferential equations form or in what is known as physical
coordinates. The parameter matrices in physical coordinates
can be identified using experimental dynamic data (see, for
example, the works of [1], [29]). As with any physical system
identification procedure, there is always an identifiability
condition on the physical parameter matrices of the system.
In the structural identification problem this identifiability
condition depends on the number of sensors and/or actuators
in the structure. Whether the mass, damping, and stiffness
matrices can be uniquely identified from input/output data
will depend on the number of sensors and actuators placed
on the degrees-of-freedom (DOF) of the structure. Neverthe-
less, the identification of the system in modal coordinates,
followed by updating of a pre-existing finite element model,
seems to be the most widely employed approach. Some
noteworthy research efforts in this direction are those of [6],
[7], [8], [9], [11], [25].

The conversion from a second order form to first order
differential equation form has also received considerable
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attention as shown by the works of [12], [13], [16], [17],
[18], [20], [21], [22], [34]. However, in this approach, issues
of non-uniqueness of the parameters arise if a state space
model is used to identify the parameters of the second order
model. In addition to the system parameters, a similarity
transformation has to be found.

When updating structural models in second order form the
modal parameters used are the undamped (normal) modal pa-
rameters, whereas in the first order form, the identified modal
parameters are complex and equal to the damped modal
parameters of the second order formulation. Identifying the
undamped modal parameters from the identified complex
modes constitutes an important problem, and the study by
[28] presents a well documented discussion. One assumption
quite often used in the literature is that the vibrational modes
of the second order model are uncoupled (modal damping).
Arguably the most commonly employed method to retrieve
the undamped modal parameters is the so-called standard
method (see [2], [12], [15]). One limitation of this method
is that it loses its validity when the system is highly coupled.
An alternative approach used by many authors focuses on
how to obtain the undamped modal parameters from the
complex modal parameters for the case of general damping.
Some of the most noteworthy discussions include the works
of [3], [4], [5], [10], [12], [30], [31], [35], [36].

Looking closely at this inverse problem, one might be
interested in obtaining the parameters of the second order
model directly from the input/output data. This constitutes a
structured system identification problem as discussed in [23].
On the other hand, if one tries to obtain the second order
parameters from the identified state space model (first order
form), the various approaches impose different limitations on
the number of sensors and actuators employed, when all the
modes of the structure have been identified. For instance, the
case of having as many actuators and sensors as the number
of identified modes has been discussed by [35]. Alternatively,
in [3] this requirement was lessened to only the number
of sensors being equal to the number of identified modes,
with a single DOF containing an actuator-sensor pair (also
known as a co-located sensor-actuator pair). Later on [30],
[31] improved the requirement to the case where the number
of actuators is equal to the number of second order modes,
with at least a co-located sensor-actuator pair. In [21] it is
shown that the physical parameters of the second order model
can be obtained by solving a symmetric complex eigenvalue
problem. The requirements are that all DOFs should contain
either a sensor, an actuator, or both, with at least one co-
located sensor-actuator pair.
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In this paper we present an orthogonal complement ap-
proach to the identification of the physical parameters of a
second order model from input/output data. Here we present
two solutions to the problem, one based on a structured
system identification approach as in [23], and the other
based on a similarity transformation approach [26], [21],
[27]. Both approaches require that the number of sensors
equal the number of DOFs of the structure, with at least
one co-located sensor-actuator pair. The rest of the paper
is as follows: In Section 2 we present the structured system
identification approach. In Section 3 we present the similarity
transformation approach. Section 4 is devoted to a common
example. Section 5 presents the conclusions.

II. IDENTIFICATION OF MECHANICAL STRUCTURES: A
DIRECT INPUT-OUTPUT APPROACH

Consider a mechanical structure with N DOFs, whose
motion is described by the following system of second-order
differential equations

M q̈(t) + C q̇(t) + K q(t) = Bd(t) (1)
y(t) = H q(t), (2)

where q(t) ∈ RN , d(t) ∈ Rr, y(t) ∈ Rm, M ∈ RN×N ,
C ∈ RN×N , K ∈ RN×N , B ∈ RN×r, and H ∈ Rm×N .
Furthermore, the matrices B and H are known matrices
with binary elements {0, 1} that account for where the
sensors and actuators are placed with respect to the DOF
of the structure. We assume the matrices {M ,C ,K }
are unknown but symmetric and positive definite. In what
follows we will assume that r ≤ N and m ≤ N . To put
the above problem in the right perspective, we measure the
position of m DOFs and excite r of the N DOFs. With
this information we would like to find a symmetric triplet
{M ,C ,K }.

In this section we introduce a new orthogonal complement
approach to solve the above problem from a given discrete
data sequence {dk, yk}K−1

k=0 obtained from some input/output
experiment. We assume the data is measured at equidistant
time intervals, tk = ti + k∆t, where ti is an initial time
(usually taken as ti = 0) and ∆t is the sampling period.
Thus, the input and output equations are of the form uk =
Bdk and yk = H qk, respectively, where uk = u(tk), yk =
y(tk), dk = d(tk), and qk = q(tk), for k = 0, 1, . . . ,K −
1, are the sampled values. If we now approximate the first
and second derivatives of q(t), using a forward difference
scheme, we respectively obtain

q̇(tk) =
q(tk+1)− q(tk)

∆t
=

qk+1 − qk
∆t

q̈(tk) =
q̇(tk+1)− q̇(tk)

∆t

=
q(tk+2)−q(tk+1)

∆t − q(tk+1)−q(tk)
∆t

∆t

=
qk+2 − 2qk+1 + qk

∆t2
.

Let us now discretize equations (1) – (2), using the above
derivative approximations, i.e.,

M

(
qk+2 − 2qk+1 + qk

∆t2

)
+C

(
qk+1 − qk

∆t

)
+K qk = uk.

If we now rearrange terms with same indices, we obtain a
2nd-order matrix difference equation of the form(

M

∆t2
− C

∆t
+ K

)
qk +

(
−2M

∆t2
+

C

∆t

)
qk+1

+

(
M

∆t2

)
qk+2 = uk.

Let us now rename the coefficients of this last equation as

X0 =
M

∆t2
− C

∆t
+ K (3)

X1 =
−2M

∆t2
+

C

∆t
(4)

X2 =
M

∆t2
. (5)

Then we have the standard 2nd-order matrix difference
equation

X0qk + X1qk+1 + X2qk+2 = uk (6)
yk = H qk. (7)

In order to solve (6) – (7), we need to make the following
assumptions:

1) The number of actuators is equal to the number of
DOFs of the structure, i.e., r = N .

2) The number of sensors is equal to the number of DOFs
of the structure, i.e., m = N .

This translates to the following properties B = IN and
H = IN . These two assumptions are the most restrictive
but are not uncommon in the literature. The 2nd-order matrix
difference equation now becomes

X0yk + X1yk+1 + X2yk+2 = uk. (8)

Since we have excitations and measurements {uk, yk}K−1
k=0 ,

we can use these to write the 2nd-order matrix difference
equation (8) as an overdetermined linear system of equations.
That is, let X T =

[
X0 X1 X2 −IN

]
and

A =


y0 y1 y2 · · · yK−3 yK−2 yK−1

y1 y2 y3 · · · yK−2 yK−1 0N×1

y2 y3 y4 · · · yK−1 0N×1 0N×1

u0 u1 u2 · · · uK−3 uK−2 uK−1

 ,

where 0n1×n2 denotes a zero matrix of size n1×n2 and In1

denotes an n1 × n1 identity matrix. Then we have

X TA = 0N×K , (9)

where X ∈ R4N×N and A ∈ R4N×K . When the data
is noise-free, rank{A } = 3N and equation (9) can be
solved using a singular value decomposition (SVD) of A
as follows.

A = UΣV T

=
[
U1 U2

] [ Σ1 03N×(K−3N)

0N×3N 0N×(K−3N)

] [
V T
1

V T
2

]
= U1Σ1V

T
1 ,
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where U1 ∈ R4N×3N , U2 ∈ R4N×N , Σ1 ∈ R3N×3N , V1 ∈
RK×3N , V2 ∈ RK×(K−3N). In the above SVD we have that
UTU = UUT = I4N and V TV = V V T = IK . Thus we
obtain the following orthogonal complement problem

UT
2 A = 0N×K . (10)

If we now let UT
2 =

[
UT
21 UT

22 UT
23 UT

24

]
. Then a

solution to (9) of the form X T = −U−T
24 UT

2 , does not
consider the symmetry of X0, X1, and X2. In order to do
so, we need to enforce the symmetry of (3) – (5). This leads
to the following symmetry constrained problem, which in
turn makes use of the orthogonal complement data, i.e.,

UT
24

(
M

∆T 2
− C

∆T
+ K

)
= −UT

21 (11)

UT
24

(
− 2M

∆T 2
+

C

∆T

)
= −UT

22 (12)

UT
24

(
M

∆T 2

)
= −UT

23 (13)

UT
24

(
M T

∆T 2
− C T

∆T
+ K T

)
= −UT

21 (14)

UT
24

(
−2M T

∆T 2
+

C T

∆T

)
= −UT

22 (15)

UT
24

(
M T

∆T 2

)
= −UT

23. (16)

Let Q = QT with Q ∈ RN×N be an arbitrary symmetric
matrix, then one can apply a “shuffle matrix” operator [24]
to obtain vec{QT } = F · vec{Q}, where F is a given by

F =


IN2(1 : N : N2, 1 : N2)
IN2(2 : N : N2, 1 : N2)

...
IN2(N : N : N2, 1 : N2)

 , (17)

and for an arbitrary square matrix Q, vec{Q} ∈ RN2×1

is a column vector that stacks all columns of Q from left
to right into a long vector. F is the matrix obtained from
the rows of the N2 × N2 identity matrix, IN2 , by taking
every N th row starting with the first, then every N th row
starting with the second row, and so on, until the last block
obtained by taking every N th row starting with the N th
row. Equation (17) uses MATLAB1 notation.

Let us now define

E1 = IN ⊗ UT
24 (18)

E2 = (IN ⊗ UT
24) · F (19)

L1 = −vec{UT
21} (20)

L2 = −vec{UT
22} (21)

L3 = −vec{UT
23}. (22)

1MATLAB is a registered trademark of the Math Works, Inc.

Then by vectorizing (11) – (16), we get

A =


E1 −E1 E1

−2E1 E1 0N2×N2

E1 0N2×N2 0N2×N2

E2 −E2 E2

−2E2 E2 0N2×N2

E2 0N2×N2 0N2×N2



X =

 vec{ M
∆t2 }

vec{ C
∆t}

vec{K }

 and B =


L1

L2

L3

L1

L2

L3

 .

Finally, solving the overdetermined system of equations

AX = B, (23)

we obtain { M
∆t2 ,

C
∆t ,K }, from which {M ,C ,K } can be

retrieved. However, if there is noise in the data, rank{A } ≠
3N in (9), which implies that we can only solve the problem
approximately. Any algorithm will face the same challenges
under severe noise conditions. Thus, we have to resort to
an approximation. One way to solve the above problem is
by using an errors-in-variable approach, where we accept
noise in both the inputs and outputs, i.e., yk = ŷk + ∆yk
and uk = ûk + ∆uk, then solve the following structured
optimization problem:

Minimize
∑K−1

k=0

[
tr{∆yTk ∆yk}+ tr{∆uT

k∆uk}
]

Subject to: X T Â = 0N×K

rank{Â } = 3N

Â is a block Hankel matrix,

where

Â =


ŷ0 ŷ1 ŷ2 · · · ŷK−3 ŷK−2 ŷK−1

ŷ1 ŷ2 ŷ3 · · · ŷK−2 ŷK−1 0N×1

ŷ2 ŷ3 ŷ4 · · · ŷK−1 0N×1 0N×1

û0 û1 û2 · · · ûK−3 ûK−2 ûK−1

 .

The solution to the above problem can be obtained using
some recently proposed algorithms in [23].

III. IDENTIFICATION OF MECHANICAL STRUCTURES: A
SIMILARITY TRANSFORMATION APPROACH

Let us convert the second order model (1) – (2) to first
order or state space form. Let the states and parameter
matrices be defined as

ẋc(t) =

[
q̇(t)
q̈(t)

]
∈ R2N×1, xc(t) =

[
q(t)
q̇(t)

]
∈ R2N×1

Ac =

[
0N×N IN

−M−1K −M−1C

]
∈ R2N×2N

Bc =

[
0N×r

M−1B

]
∈ R2N×r

Cc =
[

H 0m×N

]
∈ Rm×2N

Dc =
[
0m×r

]
∈ Rm×r,
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where the subscript c is used to denote a continuous time
model, i.e.,

ẋc(t) = Acxc(t) +Bcd(t) (24)
y(t) = Ccxc(t) +Dcd(t). (25)

Given a set of discrete input/output measurements
{dk, yk}K−1

k=0 , a discrete model can be identified of
the form

xd
k+1 = Adx

d
k +Bddk (26)

yk = Cdx
d
k +Bddk, (27)

where the order of the system is n = 2N , xd
k ∈ Rn×1,

Ad ∈ Rn×n, Bd ∈ Rn×r, Cd ∈ Rm×n, and Dd ∈ Rm×r.
This model can be identified with any state space identifi-
cation technique from the system identification toolbox of
MATLAB [32], [33]. Once the discrete model is obtained, a
continuous time version can be obtained using any discrete-
to-continuous transformation. The resulting model has the
form

ẋ(t) = Ax(t) +Bd(t) (28)
y(t) = Cx(t) +Dd(t), (29)

where n = 2N is the system order, x(t) ∈ Rn×1, A ∈ Rn×n,
B ∈ Rn×r, C ∈ Rm×n, and D ∈ Rm×r. The partitioned
matrices are as follows:

A =

[
A1 A2

A3 A4

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

The above model (28) – (29) is a black-box model, whereas
(24) – (25) is a physical model of the mechanical structure.
It is well known in system identification that two equi-
dimensional models of the same system are related by a
non-singular similarity transformation matrix T ∈ Rn×n of
the form [26], [27]

T =

[
T1 T2

T3 T4

]
such that

TA = AcT (30)
TB = Bc (31)
C = CcT (32)
D = Dc. (33)

Using partitioned matrices, (30) – (32) become

T1A1 + T2A3 = T3 (34)
T1A2 + T2A4 = T4 (35)
T3A1 + T4A3 = −M−1K T1 − M−1CT3 (36)
T3A2 + T4A4 = −M−1K T2 − M−1CT4 (37)
T1B1 + T2B2 = 0N×r (38)
T3B1 + T4B2 = M−1B (39)

C1 = H T1 (40)
C2 = H T2. (41)

If we now let X T
s and As be defined as

X T
s =

[
T1 T2 T3 T4 M−1B IN

]

As =


A1 A2 B1 0N×r

A3 A4 B2 0N×r

−IN 0N×N 0N×r B1

0N×N −IN 0N×r B2

0r×N 0r×N 0r×r −Ir
0m×N 0m×N 0m×r 0m×r

IN 0N×N

0N×N IN
0N×N 0N×N

0N×N 0N×N

0r×N 0r×N

−H †C1 −H †C2

 ,

where H † denotes the pseudo-inverse of H . Then (34)
– (35) and (38) – (41) can be written as an orthogonal
complement problem of the form

X T
s As = 0N×(4N+2r). (42)

Given that As ∈ R(4N+r+m)×(4N+2r), it is easy to verify
that rank{As} = 4N+r. Since CB = 0m×r, if we take (col
4 of As)×B1 + (col 5 of As)×B2, we see that it is equal
to (col 3 of As), thus the above rank property. However, in
order to be able to solve (42), we must enforce assumption
(2) (m = N), as well as the condition r ≤ N . This is
a less restrictive set of conditions than assumptions (1) –
(2) combined. In this case As ∈ R(5N+r)×(4N+2r) and it is
guaranteed that there exists a matrix Xs ∈ R(5N+r)×N such
that (42) is satisfied.

If we compute the SVD of As, we obtain

As =
[

U1 U2

] [ S1 0(4N+r)×r

0N×(4N+r) 0N×r

] [
V T
1

V T
2

]
,

where U1 ∈ R(5N+r)×(4N+r), U2 ∈ R(5N+r)×N ,
V1 ∈ R(4N+r)×(4N+2r), V2 ∈ R(4N+r)×r, S1 ∈
R(4N+r)×(4N+r), from which we obtain U T

2 As =
0N×(4N+2r). If we now make the partition U T

2 =[
U T

21 U T
22 U T

23 U T
24 U T

25 U T
26

]
, we obtain the so-

lution

X T
s = (U T

26)
−1U T

2 . (43)

Then T and H1 = M−1B can be obtained from

T =

[
(U T

26)
−1U T

21 (U T
26)

−1U T
22

(U T
26)

−1U T
23 (U T

26)
−1U T

24

]
=

[
T1 T2

T3 T4

]
H1 = (U T

26)
−1U T

25 .

If we now define H2 = M−1K and H3 = M−1C , then
(36) – (37) can be solved from[

H2 H3

]
= −

[
T3 T4

]
AT−1. (44)

We now need to find {M ,C ,K }, taking into account
the symmetry conditions on these. From the symmetry
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constraints and Hi, for i = 1, 2, 3, we can write the system
of equations as

B = INMH1 (45)
K = INMH2 (46)
C = INMH3 (47)

INMH2 = H T
2 M IN (48)

INMH3 = H T
3 M IN . (49)

Now vectorizing (45) – (49) and using the property
vec{XY Z} = (ZT ⊗X)vec{Y }, we obtain

Q = P†R, (50)

where

P =


(H T

1 ⊗ IN ) 0Nr×N2 0Nr×N2

(H T
2 ⊗ IN ) −IN2 0N2×N2

(H T
3 ⊗ IN ) 0N2×N2 −IN2

(H T
2 ⊗ IN )− (IN ⊗ H T

2 ) 0N2×N2 0N2×N2

(H T
3 ⊗ IN )− (IN ⊗ H T

3 ) 0N2×N2 0N2×N2



Q =

 vec{M }
vec{K }
vec{C }

 , R =


vec{B}
0N2×1

0N2×1

0N2×1

0N2×1

 .

IV. EXAMPLES

We now present an example of a mechanical structure with
N = 3 DOFs and a true set of parameters {M ,C ,K } given
by

M =

 0.8 0.0 0.0
0.0 2.0 0.0
0.0 0.0 1.2

 , C =

 0.4 −0.1 −0.1
−0.1 0.4 −0.1
−0.1 −0.1 0.4



K =

 4.0 −1.0 −1.0
−1.0 4.0 −1.0
−1.0 −1.0 4.0

 .

Direct Input-Output Approach:

In this method we assume that r = N and m = N so
that all DOFs contain both a sensor and an actuator. Thus,
B = IN and H = IN . The system was simulated with a
continuous time state space model with parameter matrices

Ac =


0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00

−5.00 1.25 1.25 −0.50 0.13 0.13
0.50 −2.00 0.50 0.05 −0.20 0.05
0.83 0.83 −3.33 0.08 0.08 −0.33


Bc =

[
03×3

I3

]
, Cc =

[
I3 03×3

]
, Dc =

[
03×3

]
.

The sampling time used in the simulation was ∆t = 0.0001
and K = 100, 000 data points were used. The resulting

physical parameter matrices were

M =

 0.8000 −0.0002 −0.0001
−0.0002 2.0001 0.0000
−0.0001 0.0000 1.2000


C =

 0.4001 −0.1000 −0.1001
−0.1000 0.4004 −0.1001
−0.1001 −0.1001 0.4001


K =

 4.0001 −1.0003 −1.0002
−1.0003 4.0001 −1.0001
−1.0002 −1.0001 4.0001

 .

As can be seen, the computed physical parameters agree
closely with the true physical parameters.

Similarity Transformation Approach

In this method all previous conditions are the same, except
for r = 1, which is a less restrictive condition. Thus,
B = e1 and H = IN , where e1 is the first column of
IN . The data was generated from the same model as before
but with only one input and is shown in Fig. 1. First a
discrete time model was identified using a subspace system
identification technique from MATLAB. Then the discrete
time model was converted to continuous time form using
the MATLAB function d2c. The parameter matrices of the
identified continuous time model were then used to solve
(42) and eventually, equation (50). The physical parameters
obtained were

0 50 100
−2

−1

0

1

2

Time, t (milliseconds)

y 1(t
)

0 50 100
−2

−1

0

1

2

Time, t (milliseconds)

y 2(t
)

0 50 100
−2

−1

0

1

2

Time, t (milliseconds)

y 3(t
)

0 50 100
−5

0

5

Time, t (milliseconds)

u(
t)

Fig. 1. Input and output data used in the example.

M =

 0.8000 0.0000 0.0000
0.0000 2.0000 0.0000
0.0000 0.0000 1.2000


C =

 0.4000 −0.1000 −0.1000
−0.1000 0.4000 −0.1000
−0.1000 −0.1000 0.4000


K =

 4.0000 −1.0000 −1.0000
−1.0000 4.0000 −1.0000
−1.0000 −1.0000 4.0000

 .
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As can be seen from the results, there are no discrepancies
between the true and computed models.

V. CONCLUSIONS

We have introduced two algorithms for identifying the
physical parameters of mechanical structures. As an inverse
problem this is a challenging one due to the fact that the data
is discrete and the model is continuous in time. Furthermore,
the matrices to be identified must be symmetric. There are
other challenges such as the number of sensors and actuators
needed to monitor the structure. In reality, the lower the
number of sensors and actuators, the better the model. The
first method assumes that each degree of freedom has both
an actuator and a sensor. This presents some limitations com-
pared to the works of [21]. In the similarity transformation
approach, we assumed that the structure contains a full set
of sensors and at least one actuator. Thus the condition that
r + m = N + 1 as proposed by [21], although this is not
the general case. More work needs to be done along these
lines. The similarity transformation approach is an extension
of the works of [27] to mechanical structures and a special
case of the works of [26], representing an exact rank case.
Finally, we point out that the problem presented herein is
normally solved with nonlinear methods. Here we presented
two linear methods for its solution.

REFERENCES

[1] M. S. Agbabian, S. F. Masri, R. K. Miller, and T. K. Caughey, “System
Identification Approach to Detection of Structural Changes”, ASCE
Journal of Engineering Mechanics, Vol. 117, No. 2, pp. 370-390, 1991.

[2] K. F. Alvin, “Second-Order Structural Identification via State Space
Based System Realizations”, Ph.D. Thesis, University of Colorado,
1993.

[3] K. F. Alvin and K. C. Park, “Second-Order Structural Identification
Procedure via State - Space - Based System Identification”, AIAA
Journal, Vol. 32, No. 2, pp. 397-406, 1994.

[4] K. F. Alvin, L. D. Peterson, and K. C. Park, “Method for Determining
Minimum - Order Mass and Stiffness Matrices from Modal Test Data”,
AIAA Journal, Vol. 33, No. 1, pp. 128-135, 1995.

[5] E. Balmès, “New Results on the Identification of Normal Modes
from Experimental Complex Modes”, Mechanical Systems and Signal
Processing, Vol. 11, No. 2, pp. 229-243, 1997.

[6] M. Baruch, “Optimal Correction of Mass and Stiffness Matrices Using
Measured Modes”, AIAA Journal, Vol. 20, No. 11, pp. 1623-1626,
1982.

[7] M. Baruch, “Modal Data are Insufficient for Identification of Both
Mass and Stiffness Matrices”, AIAA Journal, Vol. 35, No. 11, pp.
1797-1798, 1997.

[8] J. L. Beck and L. S. Katafygiotis, “Updating Models and Their Un-
certainties. I: Bayesian Statistical Framework”, Journal of Engineering
Mechanics, Vol. 124, No. 4, pp. 455-461, 1998.

[9] A. Berman, “Mass Matrix Correction Using an Incomplete Set of
Measured Modes”, AIAA Journal, Vol. 17, No. 10, pp. 1147-1148,
1979.

[10] S. Y. Chen, M. S. Ju, and Y. G. Tsuei, “Extraction of Normal Modes
for Highly Coupled Incomplete Systems with General Damping”,
Mechanical Systems and Signal Processing, Vol. 10, No. 1, pp. 93-106,
1996.

[11] D. J. Ewins, Modal Testing: Theory and Practice, Letchworth, Re-
search Studies Press, 1984.

[12] S. R. Ibrahim and E. C. Mikulcik, “A Method for the Direct Identi-
fication of Vibration Parameters from the free response”, Shock and
Vibration Bulletin, Vol. 47, No. 4, pp. 183-198, 1977.

[13] S. R. Ibrahim, “Random Decrement Technique for Modal Identifica-
tion of Structures”, Journal of Spacecraft and Rockets, Vol. 14, No.
11, pp. 696-700, 1977.

[14] S. R. Ibrahim, “Computation of Normal Modes from Identified Com-
plex Modes”, AIAA Journal, Vol. 21, No. 3, pp. 446-451, 1983.

[15] M. Imregun and D. J. Ewins, “Realization of Complex Mode Shapes”,
Proceedings of the 11th International Modal Analysis Conference, pp.
1303-1309, 1993.

[16] J. N. Juang and R. S. Pappa, “An Eigensystem Realization Algorithm
for Modal Parameter Identification and Model Reduction”, Journal of
Guidance, Control, and Dynamics, Vol. 8, no. 5, pp. 620-627, 1985.

[17] J. N. Juang, J. E. Cooper, and J. R. Wright, “An Eigensystem
Realization Algorithm Using Data Correlations (ERA/DC) for Modal
Parameter Identification”, Control Theory and Advanced Technology,
Vol. 4, No. 1, pp. 5-14, 1988.

[18] J. N. Juang, M. Phan, L. G. Horta, and R. W. Longman, “Identi-
fication of Observer/Kalman Filter Markov Parameters: Theory and
Experiments”, Journal of Guidance, Control, and Dynamics, Vol. 16,
2, pp. 320-329, 1993.

[19] C. G. Koh and L. M. See, “Identification and Uncertainty Estimation
of Structural Parameters”, Journal of Engineering Mechanics, Vol. 120,
No. 6, pp. 1219-1236, 1993.
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