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Abstract

Background: Many high-throughput experiments compare two phenotypes such as disease vs. healthy, with the

goal of understanding the underlying biological phenomena characterizing the given phenotype. Because of the

importance of this type of analysis, more than 70 pathway analysis methods have been proposed so far. These can be

categorized into two main categories: non-topology-based (non-TB) and topology-based (TB). Although some review

papers discuss this topic from different aspects, there is no systematic, large-scale assessment of such methods.

Furthermore, the majority of the pathway analysis approaches rely on the assumption of uniformity of p values under

the null hypothesis, which is often not true.

Results: This article presents the most comprehensive comparative study on pathway analysis methods available to

date. We compare the actual performance of 13 widely used pathway analysis methods in over 1085 analyses. These

comparisons were performed using 2601 samples from 75 human disease data sets and 121 samples from 11

knockout mouse data sets. In addition, we investigate the extent to which each method is biased under the null

hypothesis. Together, these data and results constitute a reliable benchmark against which future pathway analysis

methods could and should be tested.

Conclusion: Overall, the result shows that no method is perfect. In general, TB methods appear to perform better

than non-TB methods. This is somewhat expected since the TB methods take into consideration the structure of the

pathway which is meant to describe the underlying phenomena. We also discover that most, if not all, listed

approaches are biased and can produce skewed results under the null.
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Introduction
High-throughput technologies currently enable us to

measure gene expression levels of tens of thousands of

genes in the scope of a single experiment. Many such

experiments involve the comparison of two phenotypes,

such as disease vs. control, treated vs. not treated, drug A

vs. drug B, etc. Various statistical approaches are subse-

quently used to identify the genes which are differentially

expressed (DE) between these phenotypes, such as t test

[1], Z-score [2], and ANOVA [3]. Although such lists of

*Correspondence: sorin@wayne.edu
1Department of Computer Science, Wayne State University, Detroit, 48202 USA
3Department of Obstetrics and Gynecology, Wayne State University, Detroit

48202 USA

Full list of author information is available at the end of the article

genes provide valuable information regarding the changes

across phenotypes, and play important roles in the down-

stream analysis, they alone cannot explain the complex

mechanisms that are involved in the given condition.

One of the most common techniques used to address

this problem is to leverage the knowledge contained in

various pathway databases such as Kyoto Encyclopedia

of Genes and Genomes (KEGG) [4], Reactome [5], Bio-

Carta [6], NCI-PID [7], WikiPathways [8], and PANTHER

[9]. Such pathwaysmodel various phenomena as networks

in which nodes represent related genes or gene prod-

ucts, and edges symbolize interactions among them based

on prior knowledge in the literature. Pathway analysis

approaches use available pathway databases and the given

gene expression data to identify the pathways which are
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significantly impacted in a given condition. Other com-

plementary approaches include network analysis [10] and

GO analysis [11, 12].

Because of the importance of this type of analysis,

more than 70 pathway analysis methods have been pro-

posed thus far [11, 13]. These can be divided into

two different categories. The first category includes

“non-topology-based” methods (non-TB methods, also

known as gene set analysis methods), i.e., methods that

do not take advantage of the existing knowledge regarding

the positions and roles of the genes within the pathways,

the directions and types of the signals transmitted from

one gene to another, etc.

The first generation in the non-TB category is the over-

representation analysis (ORA). This approach takes a list

of DE genes as input and identifies the pathways in which

the DE genes are over- or underrepresented. Some widely

used classical approaches from this sub-group use Fisher’s

exact test [14] and χ
2 test [15]. Many tools that use

an ORA approach have been proposed over time, start-

ing as early as 2002: Onto-Express [16, 17], GeneMAPP

[18], GeneMerge [19], EASE [20], FuncAssociate [21], etc.

Moreover, GO analysis methods, which are classified as

ORA, can also be used for pathway analysis. Some popu-

lar tools are FatiGO [22], GOstats [23], GOToolBox [24],

GoMiner [25, 26], DAVID [27], WebGestalt [28, 29], etc.

The second generation of non-TB approaches includes

functional class scoring methods (FCS). The hypothe-

sis behind this approach is that small but coordinated

changes in sets of functionally related genes may also

be important. This approach eliminates the dependency

on the gene selection criteria by taking all gene expres-

sions into consideration [30]. Some of the popular FCS

approaches are GSEA [31], Catmap [32], GlobalTest [33],

sigPathway [1], SAFE [34], GSA [35], Category [36],

PADOG [37], PCOT2 [38], FunCluster [39], SAM-GS

[40], etc.

Besides ORA and FCS methods, classical statisti-

cal tests, such as Kolmogorov-Smirnov test [41] and

Wilcoxon rank sum test [42], can also be applied in the

context of pathway analysis and fall into the non-TB

category.

In principle, considering the pathways as simple un-

ordered and unstructured collection of genes—as the

non-TB methods do—discards a substantial amount of

knowledge about the biological processes described by

these pathways. In essence, all the dependencies and

interactions between genes that are meant to cap-

ture and describe the biological phenomenon are com-

pletely ignored. Topology-based methods (TB) have been

developed in an attempt to include all this additional

knowledge in the analysis. The impact analysis was

the first such approach [43]. This was followed by a

plethora of over 30 tools and methods that fall in this

category [13] including Pathway-Express [43, 44], SPIA

[45], NetGSA [46], TopoGSA [47], TopologyGSA [48],

PWEA [49], PathOlogist [50], GGEA [51], cepaORA,

cepaGSA [52, 53], PathNet [54], ROntoTools [55],

BLMA [56, 57], etc.

Even though there are some review and benchmark-

ing papers which provide some guidance regarding

the use of pathway analysis methods, most of these

review papers are limited to describing the methods and

discussing various characteristics in a theoretical way

[13, 58]. Very rarely, some comparisons are done using

a few data sets [59], most often simulations. Tarca et al.

[60] was arguably the first article that compared 16 differ-

ent methods using 42 real data sets related to 17 diseases

using this type of assessment. However, this comparison

is limited to gene set methods (non-TB). A very inter-

esting article by Reimand et al. provided an astonishing

perspective on the effect of outdated annotations on path-

way enrichment analysis [61] but again comparing the

capabilities of the various methods was outside its scope.

Another significant limitation of these review papers

attempting to benchmark pathway analysis methods is

that they do not take into account the performance of

these methods under the null hypothesis, which is the

main cause of type I and type II errors in pathway anal-

ysis results. Although existing pathway analysis methods

work under the assumption that the p values are uniformly

distributed under the null hypothesis (i.e., that the distri-

butions of the p values generated by the pathway analysis

methods are uniform), Nguyen et al. [62, 63] showed that

this assumption does not hold true for some widely used

pathway analysis methods. As a result, the lists of signif-

icant pathways provided by these analysis methods often

include pathways that are not significantly impacted (false

positives), as well as fail to include pathways that are truly

impacted (false negatives). None of the existing review

papers discusses this major problem.

Here, for the first time, we present a comparison of

the performances of 13 representative pathways analysis

methods on 86 real data sets from two species: human

and mouse. To our knowledge, this is the highest number

of real data sets used in a comparative study on pathway

analysis methods. The second assessment investigates the

potential bias of each method and pathway.

This article provides precise, objective, and repro-

ducible answers to the following important and currently

unanswered questions: (i) is there any difference in perfor-

mance between non-TB and TB methods?, (ii) is there a

method that is consistently better than the others in terms

of its ability to identify target pathways, accuracy, sensitiv-

ity, specificity, and the area under the receiver operating

characteristic curve (AUC)?, (iii) are there any specific

pathways that are biased (in the sense of being more likely

or less likely to be significant across all methods)?, and (iv)
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do specific methods have a bias toward specific pathways

(e.g., is pathway X likely to be always reported as signifi-

cant by method Y )? This article provides some guidance

to help researchers select the right method to deploy in

analyzing their data based on any kind of scientific crite-

ria. At the same time, this article will be of interest to any

computational biologists or bioinformaticians involved in

developing new analysis methods. For such researchers,

this article is expected to become the benchmark against

which any future analysis method will have to be com-

pared. Finally, because of the bias analysis of all known

KEGGpathways included here, this article is also expected

to be extremely useful to many people involved in the

curation and creation of pathway databases.

Methods
The following subsections will describe briefly the 13

methods studied (Table 1). Eight of these are non-

TB methods: Fisher’s exact test [14], WebGestalt [28],

GOstats [23], Kolmogorov-Smirnov test [41], Wilcoxon

rank sum test [42], GSA [35], PADOG [37], and GSEA

[31]. The other five of them are TB methods: SPIA [64],

ROntoTools [65], CePaGSA, CePaORA [52, 53], and Path-

Net [54].

Non-TB pathway analysis methods

Fisher’s exact (FE) test is a statistical test that can be

used to determine whether two classes of results have a

non-random association [14]. In the context of pathway

analysis, FE test calculates the probability that an associa-

tion between the list of DE genes and the genes belonging

to a given pathway occurs just by chance. The input of

this test, a 2 × 2 confusion matrix, includes the following

four numbers: (i) DE genes belonging to the pathway, (ii)

DE genes not belonging to the pathway, (iii) non-DE genes

belonging to the pathways, and (iv) non-DE genes not

belonging to the pathway. In R, FE test can be performed

by using fisher.test function.

WebGestalt is composed of four modules that allow

users to manage the gene sets, retrieve the information for

up to 20 attributes for all genes, visualize/organize gene

sets in figures or tables, and identify impacted gene sets

using two statistical tests, namely the hypergeometric test

and Fisher’s exact test [28, 29].

GOstats uses the hypergeometric probability to assess

whether the number of DE genes associated with the term

(e.g., GO terms or KEGG pathways) is significantly larger

than expected. Similar to other non-TB methods, this

computation ignores the structure of the terms and treats

each term as independent from all other terms [23].

Kolmogorov-Smirnov (KS) test compares two empir-

ical distributions to determine whether they differ

significantly [42]. Similar to the FE test, it is a non-

parametric test that does not make any assumptions

about the distributions of the given data sets. In the

context of pathway analysis, the two empirical distribu-

tions are the scores of the DE genes inside (denoted

as DE-hit) and outside (denoted as DE-miss) a path-

way. The null hypothesis here is that there is no asso-

ciation between DE genes and the given pathway, and

therefore, there is no significant difference between the

two empirical distributions of DE-hit and DE-miss. In

R, ks.test function can be used where the inputs are

the list of DE-hit, DE-miss, their fold changes, and the

list of pathway’s genes. The output is p values of the

pathways.

Table 1 Pathway analysis methods investigated in this study

Method Category R-function/package version Pathway database

1 Fisher’s exact test non-TB fisher.test KEGG v.65

2 WebGestalt non-TB WebGestaltR 0.3.1 KEGG v.65

3 GOstats non-TB 2.48.0 KEGG v.65

4 Kolmogorov-Smirnov test non-TB ks.test KEGG v.65

5 Wilcoxon rank sum non-TB wilcox.test KEGG v.65

6 GSEA non-TB 1.0 KEGG v.65

7 GSA non-TB 1.03 KEGG v.65

8 PADOG non-TB 1.20.0 KEGG v.65

9 SPIA TB 2.30.0 KEGG v.65

10 ROntoTools TB 2.6.0 KEGG v.65

11 CePaORA TB 0.5 KEGG (version unknown)

12 CePaGSA TB 0.5 KEGG (version unknown)

13 PathNet TB 1.18.0 KEGG v.56

Versions of KEGG of CePa methods are unknown because they are embedded in the software

non-TB non-topology-based method, TB topology-based method
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Wilcoxon rank sum (WRS) is a non-parametric sta-

tistical test generally used to determine whether or not

there is a significant difference in the medians of two

given populations [42]. In the context of pathway analy-

sis, WRS can be used to compare the ranks or p values

(derived from a statistical test, such as a t test) of the DE

genes inside and outside a pathway. WRS is available in

R via the function wilcox.test, which takes the list

of DE genes, their fold changes, and a list of genes of

a given pathway as input. WRS is employed differently

by some pathway analysis tools such as SAFE [34] and

Camera [66].

GSEA uses a KS-like statistic test and considers the

entire list of genes rather than simply relying on the cut-off

to select the list of DE genes [31]. The GSEA method con-

sists three important steps: (i) calculation of the enrich-

ment score (ES) for each gene set (e.g., pathway), (ii)

estimation of the statistical significance of the ES, and (iii)

adjustment for multiple hypothesis testing. To derive the

ES, it traverses down from the top of the sorted gene list.

A running-sum statistic is increased upon encountering

a gene inside the pathway and decreased upon encoun-

tering a gene outside the pathway. ES is the maximum

deviation from zero. Subsequently, a null distribution of

the ES is created in the second step using an empirical

phenotype-based permutation test. The significance of a

pathway is assessed relative to this null distribution. In the

last step, normalized ES (NES) of each gene set (pathway)

is calculated based on the size of the set. False discovery

rate corresponding to each NES is also determined in this

final step.

GSA was proposed as an improvement of GSEA [35].

First, it uses the “maxmean” statistic instead of the

weighted sign KS statistic to derive the gene set score. It

also creates a different null distribution for the estimation

of false discovery rates. To be more specific, it conducts

row (genes) randomization in conjunction with the per-

mutation of columns (samples) and scales the maxmean

statistic by its mean and standard deviation to obtain the

restandardized version of the maxmean statistic.

PADOG hypothesizes that genes which appear in fewer

pathways have a more significant effect than those which

appear in many pathways [37]. Hence, the popular genes

are downweighted. Furthermore, PADOG computes gene

set scores by assigning the mean of absolute values

of weighted moderated gene t-scores. Similar to other

FCS methods, PADOG’s input is the expressions of

all the genes under study. The PADOG R package is

available at [67].

TB pathway analysis methods

The first method to be able to incorporate the topological

structure of the pathways in the analysis of signaling path-

ways was proposed in [43]. This is widely known as impact

analysis and often considered to be the state-of-the-art

method in TB pathway analysis. Impact analysis meth-

ods calculate the impact of a pathway by combining two

types of evidence. The first type of evidence captures the

over-representation of DE genes in a given pathway. The

second type captures several other important biological

factors such as the position and magnitude of expres-

sion change for all the DE genes, the interactions between

genes as described by the pathway, and the type of inter-

actions. In essence, the measured fold changes of all DE

genes are propagated as signals following the topology of

the pathway in order to calculate a pathway-level pertur-

bation. The first implementation of impact analysis was

Pathway-Express (PE) [43]. Currently, the impact analysis

and several follow-up improvements [55, 68] are available

in two R packages in Bioconductor [69]: SPIA [64] and

ROntoTools [65].

CePaGSA and CePaORA consider each pathway as a

network where each node can contain one or many genes

or proteins [52, 53]. CePaORA only takes the expres-

sion changes of the DE genes into account whereas

CePaGSA considers the entire list of genes. Both meth-

ods consider the whole node as DE if one of the genes

residing in the node is DE. Node weights are calcu-

lated based on different centrality measurements such

as in-degree, out-degree, betweenness, in-largest reach,

out-largest reach, and equal weight condition. The path-

way score is calculated as a summation of the weights

of differentially affected nodes in the pathways. Subse-

quently, the significance of the pathway is measured based

on the null distribution of the pathway score, which is

constructed by permutation of the DE genes on a path-

way. As a result, for each pathway, there are six dif-

ferent p values derived from the six different measure-

ments mentioned above. Since there is no indication from

the original authors about which centrality measurement

provides the most accurate result, in this manuscript,

we choose the lowest p value of a pathway as its

final p value.

PathNet relies on two types of evidence in the gene

level: direct evidence and indirect evidence [54]. Direct

evidence of a gene corresponds to the p value obtained

from a statistical test such as a t test when comparing

two given phenotypes. Indirect evidence of a gene is cal-

culated from the direct evidence of its neighbor genes in

a so-called pooled pathway. The pooled pathway is con-

structed by combining all the pathways in a given pathway

database. The PathNet version used in this manuscript

incorporates 130 KEGG pathways that were embed-

ded in the software. The p values obtained from these

two types of evidence are then combined using Fisher’s

method [70] to derive a combined evidence for each gene.

Finally, the pathway-level p value is computed using a

hypergeometric test.
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Results
One of the main challenges in assessing pathway analy-

sis methods is that it is difficult to assess the correctness

of whatever comes out from the pathway analysis. Many

times, papers describing new methods validate them on

only two to three data sets followed by a human interpre-

tation of the results. However, this approach has several

problems. First, it is biased and not objective. Living

organisms are very complex systems, and almost any anal-

ysis result will be supported by some references. Without

a deep knowledge of the phenomena involved in the given

phenotype, it is impossible to judge objectively whether

such connections are really meaningful or not. Second, it

is not scientifically sound. A scientific approach should

formulate some hypotheses in advance, i.e., what a suc-

cessful outcome of the pathway analysis should look like.

Interpreting and justifying the results obtained from an

experiment by searching the supporting literature as evi-

dence are not scientifically sound.

Another approach for benchmarking methods is eval-

uating them based primarily on their performances on

simulated data sets. The problem with this approach is

that any simulated data set is constructed based on a set

of assumptions, few of which apply to the real data. The

resulting comparison not only is difficult to reproduce,

but also has some inherent bias.

Here, we introduce two completely objective, repro-

ducible, and scientifically sound approaches to bench-

mark pathway analysis methods. In the first subsection,

we evaluate the methods based on their ability to identify

the involved phenotypes using human and mouse bench-

mark data sets. The second subsection assesses their per-

formances under the true null hypothesis, i.e., there is no

true phenotype involved.

Systematic assessment of the methods using benchmark

data sets

Ability to identify the target pathways on human data sets

A better way of validating a pathway analysis method

is assessing its ability to identify the target pathway

describing the related mechanism of the condition stud-

ied. This validation approach works as follows. First, data

sets related to conditions that already have an associated

KEGG pathway (i.e., target pathway) are collected. For

each experiment, a perfect method would be able to iden-

tify the target pathway as significantly impacted and rank

it on top. The target pathway is chosen in advance without

human interpretation. Hence, this validation is completely

objective and scientifically sound. We apply each method

on each of those data sets and report the ranks and p

values of target pathways (Fig. 1).

Here, we use 75 human data sets related to 15 different

diseases with each disease being represented by five differ-

ent data sets to evaluate the ability of methods to identify

target pathways. Figure 2 shows violin plots for the rank-

ings (top panel) and p values (bottom panel) of the 75

target pathways for each of the 13 competing methods.

On a general note, the median rank of target pathways

is within the top half for all methods studied, except for

KS (Fig. 2a). None of them, however, has a median rank

in the top 20. Notably, the TB methods are more con-

sistent in ranking the target pathways. Specifically, the

range of the median rank values obtained by the TBmeth-

ods (from 45 to 52) is much smaller than the median

rank values obtained by the non-TB methods (from 29 to

79). Among the non-TB methods, each of the FCS meth-

ods (GSEA, GSA, and PADOG) performs better than any

other methods.

Regarding the performance of the individual meth-

ods, the best ranks of target pathways were obtained by

PADOG (median rank = 29), followed by CePaGSA, ROn-

toTools, and PathNet which have median rank values of

45, 46, and 46, respectively. This result also confirms the

claims in Tarca et al. [37] that PADOG is better thanGSEA

and GSA.

The p values of target pathways using the 13 methods is

plotted in Fig. 2b. In contrast to median ranks, median p

values of non-TB methods are comparable to each other

while those of TB methods vary considerably. Among all

the methods, the median p value obtained by CePaGSA

is the lowest (median p value = 0.001), followed by

PADOG (median p value = 0.11) and CePaORA (median

p value = 0.14).

We also perform a higher level comparison between the

ranks and p values of the target pathways obtained by non-

TB and TB methods. As expected, the median rank values

of the TB methods are significantly lower (Wilcoxon p

value = 8.771E−3) than those of the non-TB methods

(Fig. 3a). Similarly, the median p values obtained by using

TBmethods are also significantly lower (Wilcoxon p value

= 4.51E−4) than those of non-TB methods. These results

suggest that overall, in this assessment, TB methods are

superior to the non-TB methods.

Ability to identify the pathways containing the cause of the

phenotype onmouse data sets

Although the above assessment is better than the human

interpretation approach or using simulated data sets, it

still has some limitations: it focuses solely on one true

positive, the target pathway. We do not know what other

pathways are also truly impacted and therefore cannot

evaluate other criteria such as the accuracy, specificity,

sensitivity, and the AUC of a method. Here, we use knock-

out data sets that involve using knockout experiments

(KO), where the source of the perturbation is known, i.e.,

the KO gene. We consider pathways containing the KO

gene as positives and the others as negatives. After per-

forming the pathway analysis method on this data set, a
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Fig. 1 The process of evaluating a pathway analysis method based on their ability to identify target pathways. Each pathway analysis method is

applied on 75 data sets. Methods are evaluated based on their ability to rank the target pathways. In this example, a data set of Alzheimer’s disease is

examined, and thus, the target pathway is “Alzheimer’s disease.” Each method produces lists of ranks and p values of the target pathways, which are

then used to assess its performance

p value threshold of 0.05 is used to determine whether a

pathway is significantly impacted. A true positive (TP) is

a positive which is correctly identified as significant. Sim-

ilarly, a true negative (TN) is a negative which is correctly

identified as insignificant. A false positive (FP) is a path-

way that does not contain the KO gene but is reported

as significant. A false negative (FN) is a pathway that

contains the KO gene but is not reported as significant.

Subsequently, we calculate the accuracy, sensitivity,

specificity, and AUC of methods studied using 11

KO data sets. Since CePaGSA, CePaORA, and Path-

Net do not support mouse pathways, they are left

out from these comparisons. The comparisons of accu-

racy, sensitivity, and specificity are illustrated in Addi-

tional file 1: Fig. S3. ROntoTools and PADOG have

the highest median value of accuracy (0.91). ROnto-

Tools also has the highest median value of specificity

(0.94). All methods show rather low sensitivity. Among

them, KS is the best one with the median value of

sensitivity of 0.2.

Among those four statistical measures, the AUC is

the most comprehensive and important one because it

combines both the sensitivity and specificity across all

possible thresholds (Fig. 4). Again, ROntoTools has the

highest median value of AUC, namely 0.799, followed by

GSEA (0.763) and SPIA (0.719). On the higher level, the

AUCs derived by the TB methods are significantly higher

than those derived by the non-TB methods (Wilcoxon

p value = 0.009).

In conclusion, TB methods outperform non-TB meth-

ods in all aspects, namely ranks and p values of target

pathways, and the AUC.Moreover, the results suggest that

there is still room for improvement since the ranks of

target pathways are still far from optimal in both groups.

Investigation of the bias under the null

In this benchmark, we conduct a deeper investigation into

the behavior of these methods under the null hypothesis.

Here, we create a true null hypothesis by using simu-

lated data sets that are constructed by randomly selected

healthy samples from the 75 aforementioned data sets.

We apply each method more than 2000 times, each time

on different simulated data sets. Each pathway then has

an empirical null distribution of p values resulting from

those 2000 runs (Fig. 5). When the null hypothesis is

true, p values obtained from any sound statistical test

should be uniformly distributed between 0 and 1 [71, 72].

However, p values generated from many pathway analy-

sis methods are often unimodal (biased toward 0 or 1)

or bimodal (biased toward 0 and 1) (Additional file 1:

Figures S4 and S5). More specifically, a null distribution

of p values of a pathway generated by a method skewed

to the right (biased toward 0) shows that this method

has a tendency to yield low p values and therefore report
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(a)

(b)

Fig. 2 The Ranks and p values of target pathways derived by 13 methods. We perform each method on 75 human benchmark data sets. The

resulting ranks and p values of target pathways are plotted in violin plots. The horizontal axis shows the pathway analysis methods in both

subfigures. The vertical axis in a represents the ranks while the vertical axis in b corresponds to p values of the target pathways. Hereafter, the labels

of non-TB and TB methods are written in blue and red, respectively

the pathway as significantly impacted even when it is not

(false positive). By contrast, a null distribution of p val-

ues of a pathway skewed to the left (biased toward 1)

indicates that the given method tends to produce consis-

tently higher p values thus possibly report this pathway

as insignificant when it is indeed impacted (false neg-

ative). The results of this null-hypothesis analysis may

explain why some methods work well for certain dis-

eases while they perform poorly for others. If a method

is biased to report more often a given cancer pathway

as significant, that method may be perceived to per-

form better in experiments involving that particular type

of cancer.

The total number of biased pathways (either toward 0

or 1) produced by these methods are compared in Fig. 6a.

The number of biased pathways is at least 66 for all the

methods compared in this work, except GSEA which has

no biased pathway. While investigating more, we found

that the aggregate p values of all the pathways generated

by GSEA is uniformly distributed under the null (Addi-

tional file 1: Figure S6). A similar conclusion about GSEA

was also reached by Nguyen et al. [62].

The number of pathways biased toward 0 produced by

13 methods are shown in Fig. 6b. The figure shows that

performing pathway analysis using the FE test produces

the highest number (137 out of 150 pathways) of false

positives; this is followed by the WRS test (114 out of

150 pathways) and CePaGSA (112 out of 186 pathways).

On the other hand, GSEA and PathNet produce no false

positive pathways.
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(a) (b)

Fig. 3 The performances of non-TB and TB methods in term of ranks

(a) and p values (b) of target pathways. We collect all the ranks and p

values in Fig. 2 and divide them accordingly into two groups: non-TB

and TB methods. Here, lower is better for both ranks and p values. The

WRS test indicates that TB methods achieved significantly lower ranks

(WRS p value = 8.771E−3) and p values (WRS p value = 4.51E−4) than

those of non-TB methods

Similarly, the numbers of pathways biased toward 1

produced by different methods are shown in Fig. 6c.

PathNet produces the highest number (129 out of

130 pathways) of false negative pathways. No false

negative pathways are identified while performing

pathway analysis using GSEA, CePaGSA, WRS test, and

FE test.

Discussion
The goal of pathway analysis is to translate the list of genes

that are differentially expressed across the given pheno-

types (e.g., disease versus healthy, treated versus non-

treated, disease subtype A versus disease subtype B, etc.)

into meaningful biological phenomena. Over the last few

years, more than 70 pathway analysis methods have been

proposed. A real problem in the field is the annotation of

the pathways. The pathways evolve as more knowledge is

gathered. Essentially, at any moment in time, the knowl-

edge captured by the pathways is both incomplete and

perhaps partially incorrect. Regardless of the imperfec-

tions of today’s pathways, one still needs to identify which

of these pathways are significantly impacted in the given

phenotype. Hence, extensive benchmarking results will be

very useful even though the annotations of the pathway

will be imperfect at any one particular time. Although

there have been already a few publications guiding the

users by comparing these methods, they are collectively

limited in the following ways: (i) they only discuss the

methodological aspects of the methods, (ii) the assess-

ment of the methods is based on simulation data sets

which often fail to capture the complexity of real biologi-

cal phenomena, (iii) they do not compare the performance

Fig. 4 The AUCs of eight methods using 11 KO data sets (higher is better). CePaORA, CePaGSA, and PathNet are left out in this comparison because

they do not support mouse pathways. ROntoTools has the highest median value of AUC, followed by GSEA and SPIA (a). Overall, the AUCs obtained

by TB methods are better than those from non-TB ones (Wilcoxon p value = 0.009) (b)
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Fig. 5 The process of creating the null distributions of p values for all pathways by a given pathway analysis method. Control samples from data sets

are gathered to construct a control sample pool. To create the null distribution of p values of all pathways under the null for each method, more than

2000 iterations were performed. The data sets used in these iterations are generated by randomly selecting samples from the control sample pool

of the methods under the null, (iv) they do not take into

account the systematic bias of a method introduced by

the imbalanced number of data sets for one disease, and

(v) they do not take the quality of annotation of the path-

ways into account, which is one of the real challenge in

the field. These limitations may cause significant bias in

the conclusions [63]. Here, we address all aforementioned

issues and provide a systematic assessment and com-

parison of 13 widely used pathway analysis methods (8

non-TB and 5 TBmethods). Note that all of the R packages

of the approaches in this study are non-commercial and

free for educational purposes. Therefore, other popular

commercial or web service pathway analysis tools (e.g.,

iPathwayGuide [73], Ingenuity Pathway Analysis [74], or

DAVID [27]) are out of scope of this review. Nevertheless,

the results presented here can be extrapolated to these

tools as well, based on the approach used. Thus, iPath-

wayGuide (www.advaitabio.com) uses the impact analysis

that is also implemented in ROntoTools so iPathwayGuide

results are expected to be comparable with those of ROn-

toTools. Also, Ingenuity Pathway Analysis and DAVID

are both using a hypergeometric test so their results

are expected to be comparable with those obtained with

Fisher’s exact test (FE).

In order to avoid the potential bias in the comparison,

we consider several important factors. First, we utilize an

equal number of data sets for each disease in our exper-

iment. This is a crucial factor because if a method tends
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Fig. 6 The number of biased pathways calculated based on Pearson’s moment coefficient. Under the true null hypothesis, an ideal method would

produce a uniform distribution of p values from 0 to 1 for every pathway. Here, thresholds of Pearson’s moment coefficient of 0.1 and − 0.1 are used

to determine if the empirical distribution of p values is biased toward 0 or 1, respectively. a The total number of biased pathways (toward either 0 or

1) produced by each method. Each method, except GSEA, has at least 66 biased pathways. b The number of pathways biased toward 0 (false

positives) produced by different methods. FE produces the highest number (137 out of 150 pathways) of false positives, followed by WRS (114 out of

150) and CePaGSA (112 out of 186). c The number of pathways biased toward 1 (false negatives) produced by different methods. PathNet produces

the highest number (129 out of 130) of false negative pathways. The methods in red are TB methods. The methods in blue are non-TB methods

to unsuccessfully identify some pathways associated with

some particular diseases as significantly impacted (type

II error), then having too many data sets of these dis-

eases will undermine the rank and the performance of this

method.

Second, we attempt to reduce the bias caused by dif-

ferent data sets by selecting a fixed number of DE genes,

namely 400 DE genes, for each data set (around 10% of

total number of genes in KEGG). The classical approach

to obtain a list of DE genes from a given gene expression
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experiment involves applying thresholds based on p val-

ues and absolute log-fold changes. However, due to the

heterogeneity present in the individual experiments, the

number of DE genes obtained from different studies of

the same condition often differ significantly [75–77]. For

example, with a threshold for the absolute fold change of

1.5 and a threshold for corrected p values of 5%, 21 out of

75 human gene expression data sets studied do not have

any DE genes. At the same time, one of the data sets has

more than 1000 DE genes (Additional file 1: Figure S1). A

similar problem occurs with the 11 KO data sets, five of

which do not have anyDE genes according to these criteria

(Additional file 1: Figure S2). This problem in turn makes

the downstream analysis (e.g., pathway analysis) incon-

sistent and biased toward certain data sets. We address

this issue by using the same number of DE genes for each

data set.

In addition, we apply the use of KO data sets in assessing

pathway analysis methods, which has never been used in

any comparative study in the field. This approach avoids

the shortcoming of the target pathway approach which

focuses on the only one true positive, the target pathway.

However, a knockout is a severe perturbation of a com-

plex organism, and in some sense, most if not all pathways

will be affected to some degree. Given this, the problem

becomes philosophical: given that most of all pathways

will be affected to some degree, which pathways we want

the analysis to identify? Our proposed answer to this is

that we want the analysis to identify the pathways that

contain the cause of the phenotype, i.e., the KO gene. We

feel that this definition is reasonable because it satisfies

two conditions: (i) all “interesting” pathways according to

the definition above are truly interesting and (ii) there

is no other way to define “interesting” pathways without

including all other pathways or without using a completely

arbitrary decision threshold.

Our assessment using both human and mouse KO data

sets shows that the TB methods consistently provide bet-

ter results than the non-TBmethods in terms of ranks and

p values of target pathways, as well as the AUC.

We also evaluate the performances of pathway analy-

sis methods under the null hypothesis. It is interesting to

see that the total number of pathways biased toward 0 is

almost double the number of pathways biased toward 1

(696 pathways biased toward 0 versus 356 pathways biased

toward 1). In other words, majority of the pathway analysis

methods (except GSEA) tend to consider a given path-

way as significantly impacted when it is not truly impacted

(i.e., to report false positives).

More importantly, benchmarking methods based on

their performances under the null overcome the problem

of currently poor annotation of the pathways. In other

words, when analyzing two groups of healthy samples

(the true null hypothesis), a sound method (e.g., GSEA)

should not identify any pathway as significantly impacted,

regardless of its quality of annotation.

In order to obtain a better understanding of any of these

methods, both studies (the systematic assessment of the

methods using benchmark data sets, and the investigation

of the bias under the null) performed in this manuscript

should be considered. A method might perform better

than other comparative methods in terms of ranks and p

values of the target pathways, but that might be due to

its intrinsic bias toward 0. For example, PADOG achieves

the lowest median rank of the target pathways (Fig. 2a)

whereas CepaGSA achieves the lowest median p values

(Fig. 2b). However, from the second study, it appears that

an enormous number of the pathways (71 pathways for

PADOG, 78 pathways for CePaGSA) reported by these

two methods are biased toward 0 (Fig. 6). In other words,

those low p values are likely to be associated with false

positives most of the time. Similarly, GSEA appears to be

extremely unbiased and never yield false positives. How-

ever, GSEA also exhibits a low sensitivity, i.e., a reduced

ability to identify the true positives.

To choose the best pathway analysis method, one should

consider the following four crucial factors in order of

importance: (i) number of biased pathways; (ii) ranking of

the target pathways; (iii) AUC, accuracy, sensitivity, and

specificity; and finally (iv) p values of the target pathways.

The number of biased pathways is the most important

factor since a less biased method would yield fewer false

negatives and fewer false positives in the result. The sec-

ond important factor is the ranking of the target pathways.

In contrast to the ranking, an assessment of a method

based on the derived p values of the target pathways is not

as trustworthy because the p values are extremely sensi-

tives to these factors. For example, the low median p value

achieved by CePaGSA is due to the fact that this method

reports the majority of the pathways (61.82% in average)

as false positives in any given condition.

Choosing appropriate data sets is also a very impor-

tant but often neglected step while benchmarking path-

way analysis methods. The target pathways related to the

diseases or conditions of these data sets should have unbi-

ased null distributions of p value produced by all methods

studied. If the null distribution of p values of a target

pathway is not available, knowing the probability of that

pathway being biased toward 0 or 1 is also helpful. In an

attempt to provide this information, for each pathway, we

calculate the number of methods (out of the 13 methods

investigated) biased toward 0 or 1 (Fig. 7). The resulting

graph indicates that there is no such “ideal" unbiased path-

way. Each pathway is biased by at least 2 out of 13 inves-

tigated methods. Some pathways are biased by as many as

12 methods (out of 13 methods). The common character-

istic of these most biased pathways is that they are small

in size (less than 50 genes), except for “PPAR signaling
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Fig. 7 The number of methods biased for each pathway. The y-axis shows the KEGG pathways, while the x-axis indicates the number of methods

biased toward 0 and 1, respectively. Each horizontal line represents a pathway. The lengths of the blue and red lines show the number of methods

in this study biased toward 0 and 1, respectively. Pathways are sorted by the number of methods biased. There is no pathway that is unbiased for all

methods. The top 10 least and top 10 most biased pathways are shown by name

pathway” (259 genes) and “Complement and coagulation

cascades” (102 genes). In contrast, all pathways in the

top 10 least biased have more than 200 genes and up to

2806 genes. In essence, small pathways are generally more

likely to be biased than larger ones. The full list of path-

ways and their numbers of biased methods is provided in

Additional file 1: Table S3.

Recommendations for pathway analysis users

Based on the extensive testing and comparisons described

here, we can provide some guidance for researchers who

need to perform a pathway analysis. First and foremost,

one should decide what type of analysis they are interested

in. Topology-based (TB) methods provide a better abil-

ity to identify pathways that contain genes that caused

the phenotype or are closely related to it (such as KO

genes, or genes bearing variants that significantly affect

their function, etc.). A topology-based analysis is also

recommended when (i) it is important to consider how

various genes interact, (ii) one wishes to take advantage of

the sizes and directions of measured expression changes,

(iii) one wishes to account for the type and direction

of interactions on a pathway, (iv) one intends to predict

or explain downstream or pathway-level effects, and (v)

one is interested in understanding the underlying mech-

anisms. The topology-based approach that provided the
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best AUC across our 11 KO data set was the impact analy-

sis, as implemented in ROntoTools [65]. The same impact

analysis approach is also used in iPathwayGuide [73, 78].

A non-TB method may be more useful when one needs

to analyze arbitrarily defined sets of genes, rather than

pathways. In this category, GSEA provided the highest

AUC in our extensive testing. GSEA was also the most

unbiased method out of the 13 approaches benchmarked

in our studies.

The Fisher’s exact (FE) test or hypergeometric test is

arguably the most widely used method for enrichment

analysis. However, our results show that FE is not very

suitable in the context of pathway analysis. Figure 6 shows

that FE test performs the worst among the 13 compared

pathway analysis methods: 137 out of 150 pathways are

biased toward 0, that being very likely to often produce

false positives. This should be a strong cautionary note

to the users of other platforms using this test, such as

Ingenuity Pathway Analysis [74] or DAVID [27]. One

of the main reasons for the poor performance of the

FE test is that it assumes that the genes are indepen-

dent, while the genes on any pathway influence each

other as described by the pathway. Another reason is

that the FE test ignores the roles of genes situated in

key positions (e.g., a single entry point in a pathway), as

well as the number, direction, and type of various sig-

nals through which genes on the pathway interact with

each other.

Materials and benchmarking approaches

Selection of DE genes

In order to select the DE genes, we first calculate the gene-

level p values using the two sample t test. Subsequently,

we select the genes that have p values less than 5%. Finally,

the top 400 genes (around 10% number of genes present

in KEGG) with the highest unsigned log-fold changes are

considered as DE genes.

Ranks and p values of target pathways

Each data set is associated with a disease or condition

whose known mechanisms involved are described in a

pathway in KEGG, named target pathway. Ideally, a good

pathway analysis method would rank the target pathway

on top with a small p value. We perform each method on

the 75 data sets and put the resulting ranks and p values in

the violin plots for the comparison (Fig. 1).

Statistical measures

In a KO experiment, we consider the pathways containing

KO gene as true positives and the other pathways as true

negatives. With the definitions of true positives (TP), true

negatives (TN), false positives (FP), and false negatives

(FN) described in the “Ability to identify the pathways

containing the cause of the phenotype onmouse data sets”

section, one can calculate the accuracy, sensitivity, and

specificity as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

The receiver operating characteristic curve (ROC curve)

is a graphical representation of the relationship between

the sensitivity and the false positive rate (FPR = 1 −

specificity) for every possible p value cutoff, where sen-

sitivity is on the y-axis and FPR is on the x-axis. The

AUC, the area under the ROC curve, is one of the most

important evaluation metrics since it measures a test’s

discriminative ability.

Performances of methods under the null

Null hypothesis generation

As a starting point, we combine the control samples from

the 75 benchmark data sets to create a control sample pool.

It is important to stress that this set only contains sam-

ples from healthy individuals. For each analysis, we create

a simulated data set by randomly choosing 15 samples as

“disease” and 15 samples as “control” from the pool. For

each of the 13 pathway analysis methods, we create 2000

such simulated data sets and perform pathway analysis

separately on each of them, resulting in a list of 2000 p

values for each pathway under the null (Fig. 5).

Metric for bias identification

From all of the non-uniform distributions, we only focus

on the ones that are biased toward 0 (right-skewed or pos-

itively skewed) or 1 (left-skewed or negatively skewed),

since they are responsible for type I and type II errors.

We use Pearson’s moment coefficient to determine the

skewness of a distribution [79]. It is the third standardized

moment and is defined as:

γ1 = E

[

(

X − µ

σ

)3
]

=
µ3

σ 3
(4)

where µ is the mean, σ is the standard deviation, E is the

expectation operator, and µ3 is the third central moment.

If γ1 ≃ 0, then the distribution of p values is symmet-

ric, i.e., it is unbiased. To decide whether a distribution

is biased toward 0 or 1, we set a threshold of ±0.1. To

be more specific, γ1 > 0.1 indicates the distribution is

right-skewed (biased toward 0) and γ1 < −0.1 means it is

left-skewed (biased toward 1).
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Voichiţa C, Drăghici S. Methods and approaches in the topology-based

analysis of biological pathways. Front Physiol. 2013;4:278.

14. Fisher RA. The design of experiments. London: Oliver and Boyd; 1951.

15. Fisher LD, van Belle G. Biostatistics: a methodology for health sciences.

New York: Wiley; 1993.
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43. Drǎghici S, Khatri P, Tarca AL, Amin K, Done A, Voichiţa C, Georgescu C,
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