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Abstract: Recent modelling studies (Hadjipapas et al. [2009]: Neuroimage 44:1290-1303) have shown that
it may be possible to distinguish between different neuronal populations on the basis of their macro-
scopically measured (EEG/MEG) mean field. We set out to test whether the different orientation columns
contributing to a signal at a specific cortical location could be identified based on the measured MEG sig-
nal. We used 1.5deg square, static, obliquely oriented grating stimuli to generate sustained gamma oscil-
lations in a focal region of primary visual cortex. We then used multivariate classifier methods to predict
the orientation (left or right oblique) of the stimuli based purely on the time-series data from this one
location. Both the single trial evoked response (0–300 ms) and induced post-transient power spectra
(300–2,300 ms, 20–70 Hz band) due to the different stimuli were classifiable significantly above chance in
11/12 and 10/12 datasets respectively. Interestingly, stimulus-specific information is preserved in the
sustained part of the gamma oscillation, long after perception has occurred and all neuronal transients
have decayed. Importantly, the classification of this induced oscillation was still possible even when the
power spectra were rank-transformed showing that the different underlying networks give rise to differ-
ent characteristic temporal signatures. Hum Brain Mapp 31:1003–1016, 2010. VC 2009 Wiley-Liss, Inc.
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INTRODUCTION

A number of invasive [Gail et al., 2000; Henrie and
Shapley, 2005; Rols et al., 2001] and non-invasive [Adja-

mian et al., 2004; Hall et al., 2005; Muthukumaraswamy
and Singh, 2008] studies have characterised the gamma

band response to simple (grating) visual stimuli. This

response has an early evoked transient (0–300 ms), fol-

lowed by a sustained oscillation in the 30–70 Hz band

which persists for the duration of the (static) stimulus and

is dominant in, and retinotopically mapped to, primary

visual cortex. The role of this sustained gamma activation

remains unclear, as it persists long after neuronal transi-

ents have adapted, and the perception of the stimulus has

occurred. It has been speculated that it represents some

non-specific state of cortical activation [Henrie and Shap-

ley, 2005]. On the other hand, studies examining the syn-

chronization properties of gamma oscillations across local

cortical networks suggest quite the opposite, namely that
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gamma oscillations are highly stimulus/object-specific (see

Frien and Eckhorn, 2000a, Gail et al., 2000, Eckhorn et al.,

2004 for a review).
We hypothesized that exciting orientation specific subpo-

pulations of neurons (within the same cortical area) by the
same coherent visual object (coherent texture of the grating
stimulus) would give rise to a locally synchronous stimulus-
specific network in the gamma band. Following from this,
stimuli of different orientation are expected to give rise to
differential collective (synchronous) modes in a largely spa-
tially overlapping cortical network. This theoretical predic-
tion is supported by a recent modelling study looking at
networks of coupled systems (representing a rough analogy
to networks of coupled cortical modules), which was then
observed by a macroscopic spatially aggregate signal, in
rough analogy to the biophysical generation of MEG/EEG
signals [Hadjipapas et al., 2009]. We showed that informa-
tion about collective modes expressed in this spatially iden-
tical microscopic network of coupled systems can be
recovered from temporal properties of the macroscopic ag-
gregate signal. Hence, temporal properties of the macro-
scopic aggregate can differentiate between distinct collective
modes (distinct dynamics) in the underlying network. Con-
sequently, one should be still able to differentiate responses
to different stimulation by the temporal properties of aggre-
gate MEG signals, even if these responses arise from the
same area of cortex. Invasive studies of macaque LFPs
which offer superior spatial resolution seem to be in agree-
ment with this idea: the peak frequency of fast (gamma)
oscillations depends on stimulus orientation, such that stim-
uli of different orientation show a small but significant dif-
ference in peak gamma frequencies [Frien and Eckhorn,
2000a,b]. Our previous study [Hadjipapas et al., 2007] pro-
vided some empirical evidence supporting this idea in non-
invasive MEG measurements in man: it was shown that dif-
ferent spatial frequency grating stimuli could be distin-
guished through the spectral shape of the stimulus related
gamma response. A curious finding was that the stimulus-
discrimination ability improved as the analysis window
extended 4s beyond the initial transient, even though the
stimuli remained static; implying that the sustained portion
of the oscillation contained stimulus-related information.

Previous studies have shown the dependence of univari-
ate features of the gamma spectra (such as peak power or
frequency) on stimulus features such as motion [Siegel
et al., 2007], contrast [Hall et al., 2005; Henrie and Shapley,
2005], colour [Adjamian et al., 2008] or spatial frequency
[Adjamian et al., 2004]. To test whether we could identify
distinct populations of neurons based on the macroscopic
signal properties we sought to avoid stimuli modulated
along these dimensions. Additionally we were keen to be
able to ascribe any changes in signal to a relatively small
functionally homogeneous area of cortex, removing any
potential confound of changing source location from the
analysis. For example, in a previous study [Hadjipapas
et al., 2007] we used centrally fixated gratings of 6� eccen-
tricity. It could be argued that the different power spectra

observed were due to the mixing of signals from spatially
distinct (perhaps differentially spatial frequency sensitive)
regions of a large area of visual cortex (as opposed to the
interaction of different neuronal populations within the
same area). Thus we used small (1.5�) oblique grating
stimuli differing only in orientation (Fig. 1A). Such (or-
thogonal) stimuli have similar psychophysical detection
thresholds [Campbell et al., 1966]. Orientation columns are
arranged in a regular periodic pattern throughout V1 and
(in the primate) are known to repeat every 0.5 mm
[Hubel and Wiesel, 1974; McLoughlin and Schiessl, 2006].
That is, for any two stimuli we aimed to excite different
populations of cells within the same area of cortex. Given
that the estimated cortical area stimulated was relatively
small (between 9*9 mm and 20*20 mm, based on linear
extrapolation about the 0.75� point [Schira et al., 2007] and
integration under the foveal cortical magnification
curve presented in Schira et al. [2009] respectively), and that
the sustained portion of the gamma oscillation is known to
be constrained to primary visual cortex [Leopold et al.,
2003; Rols et al., 2001], together with the fact that these oscil-
lations are coherent over cortical distances of only a few
millimetres [Eckhorn et al., 1993; Leopold et al., 2003] made
the signal an ideal candidate for MEG beamformer analysis
[Hillebrand et al., 2005; VanVeen et al. 1997].

We were particularly interested in whether differences
could be reliably detected in the stimulus related spectral
distributions when only utilizing the post-transient portion
of the gamma oscillation. We were also interested to see
whether any differences between the stimuli could be dis-
cerned from the single-trial evoked response, as based on
single neuron recordings in the primate, orientation selec-
tivity seems to be developed within the first 150 ms
[Celebrini et al., 1993; Muller et al., 2001].

METHODS

All participants had normal or corrected to normal
vision (four males, two females, aged between 23 and 52)
and were instructed to passively view the fixation spot.
The stimuli were generated on a VSG 3/2 graphics card,
presented on a gamma corrected Eizo Flexscan T562-T
CRT monitor with a refresh rate of 100 Hz. Stimuli were
stationary square wave gratings presented either to the
lower right or left of fixation (1.5 degrees in extent, 3cpd,
80% contrast) obliquely oriented at either þ45�(right) or
�45� (left oblique) to vertical (Fig. 1A). Randomly inter-
mixed (left or right oblique) stimuli were presented for 2.5
s and followed by a 2.5-s period of a uniform field of the
same mean luminance (baseline period). Subjects were
instructed to simply look at the fixation spot but no other
instructions were given (i.e. there was no attentional task).
The experiment comprised two (left and right visual field)
800-s runs each of which contained 80 presentations of
each stimulus type. MEG data were recorded on a 275
channel whole head system (CTF Systems Inc.) at a sample
rate 600 Hz with 150 Hz low-pass filter.
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Head motion was monitored using three coils attached
to the head and energised during the start and end of re-
cording. Experimental runs with head movement of
greater than 5 mm were discarded. Each individual sub-
ject’s data was coregistered with their anatomical MRI by
a matching a digitized head surface (including the three
coils) consisting of typically 500 points (Polhemus) to the
surface of the MRI.

Source Estimation

A beamformer spatial filtering algorithm [Robinson,
1999; VanVeen et al., 1997] was used to generate maps of
electrical power change on a 1 mm grid throughout the
brain. We compared the power in the 20–70 Hz band
between the baseline (�2.5 to 0s) and stimulus (0 to 2.5 s)
periods (Fig. 1B). The locations of the image peaks due to
both individual (e.g. left oblique vs. baseline) and com-
bined (left and right oblique vs. baseline) contrasts were
noted. The combined vs. baseline condition was simply
the contrast between all stimuli and baseline data seg-
ments. The orientation of the underlying dipolar source in
the beamformer scan was set to that which maximised
projected power as per [Sekihara et al., 2004]. We then

constructed a time-varying estimate of the electrical
activity for the peak location of the image based on a spa-
tial filter constructed from (a covariance matrix compris-
ing) baseline and combined conditions [Barnes and
Hillebrand, 2003]. That is the covariance window was �2.5
to 2.5 s, 20–70 Hz. In other words, there was no bias in the
spatial filter construction towards either orientation condi-
tion. These estimates were obtained independently for
right and left visual field presentation in each of the six
subjects. All subsequent analyses, including spectral esti-
mates and classification, were based on these time series
data. Time frequency representations at the location of in-
terest (as in Fig. 1B) were constructed as follows: single
trial data were convolved with Morlet wavelets (cycle
width ¼ 8 and resolution 2 cycles/s) and the resultant
wavelet energies for each time-frequency bin were aver-
aged across epochs. For each post-stimulus time frequency
bin a percentage change from the mean of the pre-
stimulus window (�2.3 to 0 sec) at that frequency was cal-
culated. Significant changes from the prestimulus to the
stimulus time window were assessed using a bootstrap
technique (500 iterations) and thresholded whereby non-
significant (P > 0.05) changes were set to 0.

Figure 1.

A: An example of the right oblique stimulus (a square, square

wave 3cpd grating of 1.5� side length) presented in the lower

left visual field. Subjects passively viewed the fixation spot (red

dot) whilst the stimuli were presented statically (without any

temporal modulation) from a background of the same mean

luminance for 2.5 s in random sequence. B: Sagittal T1 image

with stimulus induced gamma activity superimposed for a single

dataset (hemisphere 1). Red/orange colour shows power

changes (pseudo T, peak ¼ 4.5) between stimulus (right oblique,

left visual field) and baseline in primary visual cortex. C: Time

frequency representation of the response in visual cortex, non-

significant changes set to zero (see methods). Note that the

response starts with a broadband transient (0–300ms) corre-

sponding to the evoked response (D), and then evolves in a

gamma oscillation (30–60 Hz), which is sustained for the entire

duration of visual stimulation. D: Average filtered (20–70 Hz)

evoked response to stimulus, note that the stimulus onset tran-

sient has largely adapted after the first 300 ms.
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Classification

To investigate whether gamma oscillations reflect a stim-

ulus specific cortical state, we tested whether stimuli

of different orientation induce gamma oscillations with dis-

tinct post-transient spectral distributions. For each epoch

we calculated the spectral density in post-onset stimulus

(300–2,300 ms) periods. Spectral estimates were based on

the Matlab psd function using Welch’s average periodo-

gram method with a Tukey window function. We used the

maximum segment length (NFFT in Matlab) possible, (i.e.

spectral resolution at the expense of accuracy) using 1,200

and 180 samples for the post-transient and transient peri-

ods, respectively. This data was analysed in event-related

form by subtracting the pre-stimulus spectral density.
Classifier input data therefore consisted of epochs of

power spectral density or ranked spectral density within
the 20–70 Hz band. The rank transform simply replaced the
largest power frequency bin with the largest available rank
continuing to the lowest power bin which was assigned

rank 1. Each epoch was labelled according to stimulus type
(left or right oblique). To predict the stimulus orientation
(left or right oblique) based on the spectral characteristics
of the individual trials we used a linear support vector
machine (SVM, [Vapnik, 2009]) specifically the software
package (http://svmlight.joachims.org/) by Joachims et al.
[1999]. Briefly, based on the data labelled with two stimulus
conditions, the SVM classifier defines a separating hyper-
plane from training samples by maximizing the margin of
separation (i.e. the distance of the nearest sample to the
separating hyperplane) between two conditions. This opti-
mally trained classifier is used to predict the condition
membership of other unlabelled data samples. Significantly
higher than chance accuracy of this prediction indicates the
discriminability of recorded signal between two stimulus
conditions in the multidimensional pattern space.

There were 160 recorded epochs of data giving approxi-
mately 80 epochs of each stimulus type. In the cases of
unequal numbers of stimulus type (due to the random
ordering) the largest possible equal number of trials from
each condition was used. These trials were divided into 10

Figure 2.

Spectral power (top) and ranked power (lower panels) estimates

due to the post onset-transient sustained gamma activity (300–

2,300 ms) for three datasets (1,12,3). Mean spectra (across tri-

als) for condition 1 (right oblique stimuli) are in red/solid, spec-

tra for condition 2 (left oblique stimuli) are in blue/dotted, and

spectra for the baseline (�2,300 to �300 ms) are in green/

dashed. Error bars denote one standard error. Although the

baseline spectra fall monotonically with frequency, both left and

right obliquely orientated stimuli give rise to increases in spec-

tral power in the gamma band (30–60 Hz, see inset), which

show slightly different deviations from the monotonic decay.

Lower panels show the same data plotted according to the

ranked spectral bins (i.e. bin with smallest magnitude ranked 1)

on an epoch by epoch basis and then averaged. For A, B the

difference between these distributions suggests that the two

spectra have characteristically different shape (i.e. peak at differ-

ent frequencies) and do not differ solely in magnitude. This is

not the case for C where the differences observed in the power

spectra could have been due to simply greater power due to

one stimulus condition over the other.
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non-overlapping groups, each containing a maximum of
eight epochs of a given stimulus orientation. To estimate
classifier accuracy, nine groups were used to train and the
final group was used to test, and the training and test
groups were rotated (giving 10 test groups in total). The
order in which the data entered the classifier had an effect
on the peak achievable accuracy. At any iteration, the
order in which the features (frequency bins) entered the
classifier was determined by the training set (i.e. 90% of
the data). The features were ordered according to the max-
imum magnitude of the combined (left and right oblique
trials) average (across trials) training set. For example this
would mean that if the average power spectra of both
stimulus types across epochs peaked at 30 Hz, the 30-Hz
bin would be the first classifier feature. The ordering of
the input essentially corresponds to a feature selection
step, which in our case is based on the criterion of reactiv-
ity of the spectrum to the grating stimuli. The asymptotic
(all feature accuracy), which was independent of ordering,
was also recorded. Accuracy values were then averaged
across all ten test groups to get an estimate of mean classi-
fication accuracy (based on 160 test trials) as a function of
the number of features used.

To test how significantly different the percent correct
classification was from chance, the data epochs were ran-
domly shuffled (meaning that they were assigned incorrect
labels) 100 times, the training and testing repeated, and a
null distribution of mean classification accuracy created

(the dotted lines in Fig. 3 indicate the 95th percentile of
the null distributions).

Finally, we examined whether stimulus onset transients
(0–300 ms) could be classified according to the orientation
of the stimulus viewed. We did this in both spectral and
time-domains. The spectral methods were as above except
using a shorter length data segment (NFFT ¼ 180). The
time-series approach involved replacing the single trial
spectra used above with single trial filtered (20–70 Hz)
and dc corrected (based on pre-stimulus time) amplitude
time series. The classifier input order was again deter-
mined by maximum absolute amplitude and asymptotic
(order independent) classifier performance was computed.
Training and testing of the classifiers, calculation of their
mean accuracy and randomization procedures to obtain
the null distributions were identical to that undertaken for
classification of the spectral power and spectral rank.

RESULTS

Source Estimation

In all subjects electrical power change peaked in the con-
tralateral visual cortex for all stimulus contrasts. Figure 1B
shows for one subject the sagittal slice containing the peak
voxel when contrasting all epochs (combined condition) to
baseline. The difference in location between the image
peaks due to either stimulus in isolation (e.g. left vs.

Figure 3.

Classification accuracy as a function of the number of features

(frequency bins) used for classification in both power-based

(blue/diamonds) and ranked (green/squares) post-transient spec-

tra with corresponding 95% confidence intervals (dotted) for

hemisphere 1. In this case, the maximum accuracy for classifica-

tion of the power spectrum is reached after 22 features at 72%

whereas for rank it is reached at 24 features at 68% (compare

Table I).

Figure 4.

The features (spectral bins in A, time points in B) used to clas-

sify each subject’s data (until peak accuracy was reached). The

number of features corresponds to the values given in Tables I,

3 for A and B, respectively. The colour of each bin represents

and F test between conditions (normalised to 1 for each data-

set). Features not used by the classifier are set to zero. A: Note

that each pair of subsequent hemispheres are from the same

subjects and this can be broadly seen from where the spectral

difference between stimuli is expressed (see subject 2, hemi-

spheres 3,4 where the frequency drops). Note also however

that the spectral features used to make the classification,

although in broadly similar bands, are by no means identical

across hemispheres. B: Time samples used for the single trial

evoked response classification. Note that these tend to cluster

between 50–150 ms.
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baseline) to the peak formed when they were combined
(left and right vs. baseline) was on average 1.3 mm (r ¼
0.9 mm); that is, typically a displacement of 1 voxel (1 mm)
in two of the three dimensions. On average peak pseudo-t
values (l ¼ 4.1, r ¼ 1.87) in either condition were 97% (r
¼ 14%) of the combined; there was no significant difference
(t ¼ �0.56, df ¼ 11, P ¼ 0.58) between conditions. In stand-
ard space the mean (�standard deviation) location (in mm)
of the combined peak was x ¼ �11.5 � 13.7, y ¼ �91.5 �
3.1, z ¼ �11 � 10 and x ¼ 18.5 � 7.7, y ¼ �92 � 7.0, z ¼
�11 � 8.2 for left and right visual field stimulation respec-
tively (i.e. was consistent with contra-lateral primary visual
cortex). Mean full width half maximum (FWHM) at these
voxels, as determined by correlations between neighbour-
ing weight vectors [Barnes and Hillebrand, 2002], was
11.88 mm with standard deviation 2.83 mm.

Time Series

Figure 1C shows the characteristic (compare with inva-
sive recordings in primate cortex [Rols et al., 2001]) time-
frequency response to these stimuli at the combined peak
location in one hemisphere of a representative subject. The
colour code represents percent change from pre-stimulus
baseline. The response starts with a phase-locked stimulus
onset transient (the evoked response, see 1D) extending
from 10–80 Hz and evolves into a sustained gamma oscil-
lation which persists for the duration of the stimuli. The
highlighted box indicates the time-frequency window used
in all post-transient analysis.

The top panels in Figure 2A–C shows the mean spectra
for the baseline and the post-onset transient sustained

gamma activity for both conditions projected through the
same (combined) spatial filter for three subjects (hemi-
spheres 1,12,3, respectively). Although the baseline spectra
fall off with frequency the two stimuli produce slightly
different modulations of the gamma band spectra. The
lower panels show the ranked spectra for the same data.
The rank spectra remove all amplitude variations and so
only differences due to spectral shape are apparent. The
rank spectra quantify the spectral shape of the induced
response, which can be thought of as a measure of the rel-
ative reactivity of the signal spectrum to the stimulus
across the frequency space [Hadjipapas et al., 2007].

In dataset C, for example, there is no difference in the
rank spectra and so it is possible that the difference
between the two stimulus conditions observed in the top
panel is due purely to one stimulus giving a larger gamma
band response (peaking at the same characteristic frequen-
cies). In datasets A,B however the two different stimuli
give rise to rank spectra with distinct deviations from the
monotonically decreasing baseline. The differences
between rank spectra suggest that the amplitude differen-
ces observed (top panel) are in part due to a change in the
shape of the spectral response.

Classification

Post-transient

We attempted to classify single trial epochs (as left or
right oblique stimuli) based on single trial post-transient
(300–2,300 ms) power and rank spectra. Figure 3 shows
the mean classification accuracy of single trial power (blue

TABLE I. Accuracy of classification for post-transient (300–2,300 ms, 20–70 Hz) power (left) and rank spectra

(right) at optimal number of features (max accurate) with corresponding significance level (Pmax) from

randomisation testing and number of features (spectral bins) used

Hem

Power spectrum, post transient Rank spectrum, post transient

Max
accurate Pmax

N. Features
(of 99)

Asym0

accurate Pasym

Max
accurate Pmax

N. Features
(of 99)

Asym
accurate Pasym

1 72 0 22 68 0 68 0 24 66 0

2 73 0 31 70 0 68 0 75 66 0

3 67 0 56 62 0.0101 56 0.0808 6 50 0.5152
4 64 0 6 56 0.1111 61 0 1 52 0.3434
5 63 0 71 60 0.0202 62 0 69 59 0.0202

6 55 0.1212 65 45 0.7172 54 0.2323 8 47 0.6768
7 71 0 24 69 0 58 0.0303 95 57 0.0606
8 65 0 91 63 0 59 0 4 58 0.0808
9 56 0.0505 6 52 0.3434 58 0.0606 27 56 0.1212
10 64 0.0101 12 59 0.0505 58 0.0707 10 48 0.7172
11 59 0.0202 17 58 0.0505 63 0 22 55 0.0808
12 65 0 54 61 0.0101 67 0 7 65 0

Summary 64.5 10/12 38 60.25 7/12 61 8/12 29 57 3/12

Significant (P < 0.05) classifications in bold font. Also shown are asymptotic (i.e. using all frequency bins) accuracy and significance lev-
els (Pasym). Bottom row contains a summary statistic which is the mean value for accuracy and feature columns and the fraction of sig-
nificant (P < 0.05) hemispheres for significance levels.

r Duncan et al. r

r 1008 r



diamonds) and rank spectra (green squares) in a single
dataset as a function of the number of frequency bins (fea-
tures) used. Typically classification accuracy improves up
until a certain number of features are input and then
begins to fall off again to chance levels as the classifier
becomes over-trained. The 95th percentile classifier accu-
racy when the stimulus labels were randomly assigned is
indicated by dotted lines. The classification accuracy
peaked significantly above chance for the spectral power
and rank distributions in 10 and 8 of the 12 datasets,

respectively (Table I). The mean accuracies were 64.5%
and 61.0% for power and rank respectively being signifi-
cantly greater for power (t ¼ 2.3573, df ¼ 11, P < 0.038).
The mean number of features (spectral bins) required to
reach maximum accuracy were 38 and 29 for power and
rank-power respectively, although this difference was not
significant (t ¼ 0.689, df ¼ 11, P ¼ 0.504). Given that each
feature corresponded to a 0.5 Hz wide spectral bin this
meant that both methods required on average approxi-
mately 17 Hz (one third of the 50 Hz bandwidth available)

TABLE II. Maximum and asymptotic (all feature) accuracy with significance levels of classification for transient

(0-300ms,20–70Hz) spectra power (left) and rank (right) spectra

Hem

Power spectrum, transient Rank spectrum, transient

Max
accurate Pmax

N. Features
(of 15)

Asym
accurate Pasym

Max
accurate Pmax

N. Features
(of 15)

Asym
accurate Pasym

1 53 0.1010 4 52 0.3838 55 0.0303 3 49 0.5859
2 60 0 4 54 0.1818 53 0.1515 2 52 0.3333
3 50 0.3030 1 45 0.7980 51 0.3030 5 43 0.9091
4 66 0 4 58 0.0505 59 0 5 57 0.0606
5 66 0 10 64 0 54 0.1111 3 51 0.3737
6 52 0.1818 1 46 0.7980 57 0.0404 4 42 0.9293
7 60 0.0101 8 58 0.0606 53 0.0909 1 52 0.3434
8 50 0.4949 2 43 0.8788 55 0.0808 2 42 0.8788
9 58 0.0606 12 58 0.0606 57 0.1010 6 53 0.3030
10 62 0 10 56 0.0707 57 0.1515 13 57 0.1313
11 55 0.0606 1 45 0.7172 55 0.0707 1 44 0.8182
12 62 0 7 58 0.0404 55 0.0808 2 48 0.6970

Summary 57.8 6/12 5 53 2/12 55 3/12 4 49 0/12

Also shown is the number of frequency bins (features) required to reach maximum accuracy. Significant (P < 0.05) classifications in
bold font. Bottom row contains summary statistic which is the mean value for accuracy and feature columns and the fraction of signifi-
cant (P < 0.05) hemispheres for significance levels.

TABLE III. Maximum and asymptotic (all feature) accuracy with significance levels of classification for transient

(0–300 ms, 20–70 Hz) evoked response amplitude and ranked amplitude

Hem

Evoked response transient Rank evoked response transient

Max
accurate Pmax

N. features
(of 180)

Asym
accurate Pasym

Max
accurate Pmax

N. features
(of 180)

Asym
accurate Pasym

1 61 0.0202 25 50 0.4646 59 0 22 52 0.3333
2 59 0.0404 70 53 0.3535 56 0.1414 56 54 0.2323
3 56 0.1414 83 46 0.7677 55 0.2020 16 47 0.7172
4 68 0 7 62 0.0101 66 0 42 56 0.2121
5 60 0 6 50 0.5354 53 0.0808 3 51 0.4343
6 60 0 2 52 0.3333 57 0.0707 9 50 0.4949
7 63 0.0101 25 56 0.1515 59 0.0303 8 52 0.2929
8 59 0.0404 15 51 0.4343 53 0.2626 20 49 0.5859
9 64 0 34 58 0.0707 62 0.0101 127 58 0.0505
10 64 0 80 53 0.2323 65 0 24 52 0.3131
11 72 0 38 67 0 73 0 6 65 0

12 62 0.0101 93 58 0.0303 61 0.0202 8 60 0.0303

Summary 62.3 11/12 40 55 3/12 60 7/12 28 53.8 2/12

Also shown is the number of time-samples (features) required to reach maximum accuracy. Significant (P < 0.05) classifications in bold
font. Bottom row contains summary statistic which is the mean value for accuracy and feature columns and the fraction of significant
(P < 0.05) hemispheres for significance levels.
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to reach optimal classification. We were interested to find
out which features the classifier was exploiting in order to
reach maximum accuracy. Figure 4A shows the spectral
bins which were used to reach maximal classification accu-
racy (for power) in each subject. The colour code of the
bins (red max, blue min) depicts the univariate F statistic
between stimulus conditions for each feature (normalised
for each subject). For example for the dataset shown in
Figure 3 (hem 1) 22 features were used to reach maximal
classification accuracy (for power), the position of these
features in the frequency spectrum however depends on
the input order to the classifier (see methods). Figure 4
shows that these features (i.e. those leading up to the max-
imum in Fig. 3) were predominantly in the 40–50 Hz band
with the 52 Hz bin showing the largest univariate differ-
ence between stimuli. Bins not assigned a colour were not
used in the optimal classification (i.e. the addition of these
features caused the classification accuracy to decline). Each
subsequent pair of hemispheres belongs to the same sub-
ject. There is some variation in the frequency bins chosen
for classification (which were based on the difference
between combined stimulus conditions and baseline
power) expected from gamma band variations in the gen-
eral population [Muthukumaraswamy et al., 2009]. In all
but one subject (hemispheres 3,4) features within the 40–60
Hz band were used and typically showed the largest
mean difference between stimulus conditions. Also, data
from any pair of hemispheres appears to show such spec-
tral differences at broadly similar frequencies. However it
is worth noting that in any pair of hemispheres the differ-
ences between features are not identical; i.e. the spectral
signature of the gamma change is specific to that location
and not to the individual.

Using the complete bandwidth (Pasym, Table I), it was
possible to classify 7 out 12 datasets using power spectra
and only 3 out 12 with rank spectra; suggesting that at a
certain point extra frequency bins (i.e. the white space in
Fig. 4) contribute only noise to the classification.

Given the apparent differences (in Fig. 2) we attempted
to distinguish between conditions on an epoch by epoch
basis by using common univariate spectral metrics of peak
frequency, peak power deviation from baseline and total
power deviation from baseline. We used the same classi-
fier framework but with a single rather than multiple fea-
tures per epoch. At best it was possible to classify at
maximum one of the 12 datasets at above chance levels.
The results are shown in Table AI, Appendix. This is con-
sistent with our aim to remove any stimulus related tun-
ing effects (such as one stimulus causing a larger power/
frequency of response).

Transient Power

We went on to examine whether similar amounts of in-
formation were contained in the stimulus transient by
training new classifiers on both spectral (power and rank-
power) and time-amplitude (evoked response) single trials

in the same 20–70 Hz band but crucially using data from
the first 300 ms only (see Methods). Note that as there is
much less data (300 ms instead of 2 s) in these transient
periods the results are not directly comparable with the
post-transient analysis.

The results for the stimulus transient classifiers based on
spectral power and rank-power are shown in Table II. In
this case with only 6 and 3 of 12 hemispheres respectively
for power (mean ¼ 57.8%) and rank (mean ¼ 49%) classi-
fying above chance. Both methods required on average
five features (at 3.33 Hz per bin approximately 17 Hz) to
reach maximum accuracy.

Transient Time-Series

The results of the classifiers based on the filtered (20–70
Hz) single trial evoked responses (in the first 300 ms) are
shown in Table III. Significant classification was possible
for 11 and 7 out of 12 datasets using amplitude and
ranked time-samples, respectively; with corresponding
overall mean accuracies of 62.3% (amplitude) and 60%
(rank). The improvement in using amplitude rather than
ranked time-series data to classify was significant (t ¼
3.44, df ¼ 11, P < 0.005). The average number of samples
(out of a possible 180) to reach maximum accuracy for am-
plitude and rank were 40 and 28 respectively, and these
were not significantly different (t ¼ 0.8336, df ¼ 11, P ¼
0.433). This corresponded to approximately 60 ms of the
total 300 ms. In summary, for the transient (0–300 ms) por-
tion of the response, using both amplitude and phase in-
formation (in the single trial evoked response) produced
significantly greater classifier accuracy than the use of am-
plitude information alone (in the form of spectral power)
(t ¼ 4.2, df ¼ 11, P < 0.0015).

Figure 4B shows the features (times samples) used in
the optimal classification of the single trial evoked
response (amplitude). Colour codes show maximal univar-
iate F statistic differences in averaged evoked response
amplitude at this latency (normalised for each subject).
Note that these samples, based on the difference between
the combined average evoked response and baseline, clus-
ter in between 50 and 150 ms. On the basis of this figure
we were interested whether similar classification accuracy
could be achieved using only the first 100 ms of single trial
evoked response data. Indeed (Table AIV) it was possible
to distinguish between the single trial responses to either
grating significantly above chance in 10 and 8 of the 12
hemispheres for amplitude and ranked data, respectively.

DISCUSSION

We present two main findings. The first is that we can
use MEG to probe two spatially overlapping cortical net-
works through the use of multivariate classifiers in both
single trial induced and evoked responses. The second is
that the orientation of static visual stimuli can be

r Duncan et al. r

r 1010 r



distinguished by the induced sustained gamma oscillation
(300–2,500 ms) in the absence of any onset transient (0–300
ms).

We confirm that the macroscopic aggregate MEG signals
arising from a constrained cortical area can be further bro-
ken down to classify different microscopic sub-populations
of neurons within that area as suggested by theoretical
predictions [Hadjipapas et al., 2009]. This is true not only
for the evoked response but also for on-going oscillations.
We believe that this could represent an exciting technolog-
ical step, as by using the information in the time-series we
were able to distinguish between two spatially coincident
populations of neurons. That, is better exploiting the tem-
poral information in the virtual sensor by using multivari-
ate methods, one can improve the discrimination
capability of the MEG measurement beyond source local-
ization by identifying functionally diverse behaviours (dis-
tinct response modes of the underlying network) within
the same source signal. This approach can be seen as a
temporal analogue of approaches used in recent fMRI
studies [Haynes and Rees, 2005; Kamitani and Tong, 2005]
where stimulus classification is achieved by measuring
spatial amplitude changes due to non-uniform spatial sam-
pling of (rather than non-uniform network dynamics
between) orientation columns. We should emphasize at
this point that such an approach applied to MEG/EEG
data has potential to provide insights into the underlying
cortical physiology. Importantly, using ranked spectral
bins enabled us to confirm that our findings were due to a
spectral shape, and not just magnitude, change [Hadjipa-
pas et al., 2007]. Although, we note that the classification
was consistently more powerful when the magnitude in-
formation was used. Given that there may be a number of
ways that network dynamics may differ in response to
varying stimulation and also due to the complex relation-
ship between network dynamics and observed aggregate
[Hadjipapas et al., 2009], it is also expected that there may
be a number of candidate temporal features of the
observed aggregate signals, which in turn, may provide
richer or poorer descriptors of the underlying network
state. Two approaches lend themselves to inform the ques-
tion of which the relevant temporal features of the aggre-
gate signal may be. Firstly, one could derive a theoretical
expectation regarding the differentiation of dynamics in
the network response and additionally, derive an expecta-
tion regarding which features of the aggregate signal may
best capture such dynamics. This approach would require
a detailed large-scale biophysical model and also a
detailed model of the measurement function relating net-
work dynamics to the observed aggregate signal [Friston
et al., 2003; Hadjipapas et al., 2009; Moran et al., 2007,
2009]. Both steps entailed in such an approach are rather
challenging, as the amount of detailed knowledge of the
biophysics required is still lacking at the large scales inves-
tigated here but perhaps such theoretical predictions may
become feasible (and would then be immensely informa-
tive) in the future. Alternatively, one could utilize a more

empirical approach and aim to identify temporal features
of the measured aggregate MEG/EEG signal that allow for
the most robust discrimination between different response
modes in the same local network. Here, we start to
attempt this by using a number of different candidate tem-
poral features (power in gamma band, peak frequency,
spectral pattern, rank spectrum, phase-locked and non-
phase locked, transient or sustained components etc.) and
in such way gain more insights in what the relevant tem-
poral signal features may be. Clearly, in this paper we
have by far not exhausted the possibilities but in contrast,
merely have taken a first step in this direction.

Of interest for the near future is the optimization of
network descriptors using higher-order statistical and non-
linear properties. Of particular relevance is perhaps the
estimation of a phase variable of the gamma responses:
this does represent a challenge as gamma responses are
distinctly broadband phenomena, i.e. these are not
necessarily akin to the classical concept of oscillations
characterised by a single peak frequency, and therefore
the extraction of a (generalised) phase variable is
non-trivial.

We also note that the relatively modest classification
accuracies reported here could indeed be improved upon
if classification were the only aim. However, the main goal
in this article was to elucidate functional aspects of the
post-transient sustained gamma oscillation rather than
achieve maximal stimulus classification. Furthermore, in
the context of our analysis we should note that improve-
ments in the classification will come from identification of
the relevant characteristic time-frequency differences
between conditions. We should stress that the inclusion of
more data does not necessarily help the classification
(compare p_asym to p_max in the tables). We also tried
including all data (0–0.3 s, 20–70 Hz), but this had little
effect and even degraded the accuracy slightly (Table AII).
This is related to the issue of a selection of an appropri-
ately sparse dataset for training (see [Ganesh et al., 2008;
Yamashita et al., 2008] for a discussion of the fMRI case).
Essentially, if we increase the number of features fed to
the classifier, we run into the danger of overfitting the
training data: the classifier focuses on insignificant parts of
the data and will not generalise very well to unseen test
data. Analogously, if the input data is has too few dimen-
sions, there is the danger of under fitting (that is the classi-
fier becomes too general and can no longer recover the
true mapping between data and labels). This trade off can
be seen in Fig. 3. In fact, the most promising results were
obtained when we split the post-transient data into low
(20–45 Hz) and high (45–70 Hz) gamma, Tables AIII, AIV,
respectively. These data showed that using high-gamma
features significant classification could be achieved for
both power and ranked data in 10/12 hemispheres (i.e. an
improvement on the broadband data). Therefore, the fea-
ture selection step is critical and in this case rather con-
servative (as we simply ordered features according to
mean departure from baseline).
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To what extent could our results have been due to one
of the stimuli activating another cortical area whose activ-
ity inadvertently mixed in with the signal at this location
of interest? All MEG source inversions rely on estimating
electrical activity through a weighted contribution of a
finite number of sensors. The spatial resolution of the
beamformer is high (due to its adaptive weights) com-
pared to other techniques based on weights determined
purely by geometry [Hillebrand et al., 2005]. In our data
we verified that the contrast of either condition (for two
well-matched stimuli for which the mapping to the cortex
is well understood) alone (versus baseline) produced
peaks in the same location of visual cortex. We are there-
fore able to say with some confidence that we are classify-
ing the stimuli based purely on temporal effects, rather
than mixing of signals from other area of cortex. However,
there is certainly a caveat here for future work in that if
one of the stimuli gave rise to activity in a different area
of cortex this could be inadvertently mixed (via the weight
vectors) into the data. Indeed this was one of the reasons
we were keen to confirm findings from previous work
which used full-field stimuli [Hadjipapas et al., 2007]. One
key point here is that there is no reason why the classifica-
tion and the beamformer image stage should not be com-
bined. This would involve simply substituting the
beamformers univariate test for total power change with a
multivariate test to look for combinations of frequency
bins which covary with the experimental design (similar
to framework proposed by Soto et al., [2009]). This would
help directly establish whether differences between stimuli
existed at any other cortical location.

Although the original motivation for this paper was to test
whether post-transient oscillations differed spectrally we
note that the best classification accuracy was obtained from
the single-trial evoked response data (Fig. 4b). A large body
of literature exists showing that the onset transient is infor-
mation rich [Buracas et al., 1998; Celebrini et al., 1993; Heller
et al., 1995; Muller et al., 2001; Panzeri et al., 2001; Reich
et al., 2001; VanRullen and Thorpe, 2002]. Celebrini et al.
[1993] show that the orientation selectivity at the level of cort-
ical neurons in the awake primate is developed at the start of
the neuronal response (varying from 40to 150 ms) but typi-
cally at 50–70 ms. Similarly Muller et al. [2001] show that the
orientation selectivity of a neurons in anesthetized primates
is fully developed by 150 ms. Our results are broadly consist-
ent with these findings with discrimination between stimuli
possible, with both ranked and unranked data, as early as
the first 100 ms in 10/12 datasets (Table AV). Analagous
with the gamma band explanation we would attribute these
subtle multivariate differences in the evoked response (mean
field) to different populations of contributing neurons (with
different optimal orientation specificity).

Recent EEG studies have shown that saccadic eye move-
ments also give rise to electrical activity in the gamma
range [Yuval-Greenberg, 2008, 2009]. In MEG, which is of
course reference free, this confusion does not arise; the
basic (left-right) retinotopy and the similarity of the time-

frequency plots to invasive primate recordings in V1 [Gail
et al., 2000; Rols et al., 2001] are corroborating factors.
Also, the gamma activity observed here is of sustained
(rather than clearly transient) nature as in the case of ocu-
lar EMG due to saccades shown by Yuval Greenberg and
colleagues. Here, we did not measure eye movements and
therefore we could not exclude the possibility that the
gamma activity indeed could be indirectly influenced by
micro-saccades in the sense that these could modulate the
gamma amplitude by means of refreshing the visual input,
as suggested by the recent invasive findings in [Bosman
et al., 2009].

The presence of static stimulus related information in
the post-transient oscillation was initially surprising to us
as most literature on invasive recordings at the neuronal
level suggests the stimulus information is contained solely
in the earliest parts of the neuronal response [Buracas
et al., 1998; Celebrini et al., 1993; Heller et al., 1995; Muller
et al., 2001; Panzeri et al., 2001; Reich et al., 2001; Van-
Rullen and Thorpe, 2002]. Our results are in apparent con-
trast with those of [Gray and Singer, 1989] who report that
the peak frequency of LFP oscillation and oscillation fre-
quency of single cells in the cat did not change signifi-
cantly as a result of changing stimulus orientation (or
direction of stimulus movement). Furthermore, [Gray
et al., 1990] showed that in 13 out of 18 single cell record-
ings (exhibiting oscillatory responses) in the cat there was
no difference (>4 Hz) in oscillation frequency for stimuli
of differing orientation. This observation would however
be quite consistent with our findings, as we are suggesting
that the changes in spectra are due to different collective
response modes in networks of interacting neurons, rather
than the same set of neurons changing their frequency.
Indeed, studies in the macaque Frien and Eckhorn [2000a]
and Frien et al. [2000b] found that peak LFP (and multi-
unit activity (MUA)) frequency was dependent on moving
stimulus orientation in the high (gamma) frequencies. The
aforementioned studies showed a small (�1 Hz) but sig-
nificant difference in the peak gamma frequencies between
an optimal orientation (determined by a previous charac-
terization of the receptive field of the recording site on the
basis of peristimulus histograms of the MUA) and its or-
thogonal orientation. Interestingly, in Frien et al. [2000b],
the most pronounced difference in average peak frequen-
cies (across trials) was seen in the sustained gamma band
responses, while this difference was much smaller during
the stimulus onset transient. Although invasively recorded
LFP allows characterization of different populations of
neurons at a millimetre scale, it is possible that the consid-
erable spatial summation of many such sub-networks giv-
ing rise to the macroscopic MEG/EEG (we estimate that
our stimulus subtends an area of 1–2 cm2 in primary vis-
ual cortex) will inevitably result in a broader spectrum in
which the information is contained at many rather than a
single frequency component. Indeed in this study we
show that although univariate spectral measures do not
distinguish between stimulus features at this scale, a
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multivariate approach quantifying the spectral shape
(across a bandwidth of approximately 17 Hz) can be used
to successfully predict stimulus orientation above chance
at a single-trial level. Why this stimulus specific informa-
tion should be preserved at a network level long after the
initial transient remains an exciting question.
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TABLE AI. Classification results using a single classifier feature based on univariate

properties of the signal

Hem Peak frequency Peak power Mean power

1 0.9899 0 0.7980
2 0.0404 0.7172 0.2121
3 0.7980 0.3232 0.6162
4 0.8990 1.0000 1.0000
5 0.6061 0.1010 0.2525
6 0.3131 0.3636 0.1010
7 0.3434 0.1616 1.0000
8 0.8081 0.2828 0.3030
9 0.1111 0.3232 0.3434

10 0.2020 0.7374 0.8081
11 0.4141 0.1212 0.3737
12 0.6061 0.1414 0.8485

Summary 1/12 1/12 0/12

The table shows significance levels for classification based on peak frequency, peak power and
total power (deviation from baseline) of the post-transient gamma spectrum (20–70 Hz, 300–2,300
ms) across epochs in each dataset. Significance levels of P < 0.05 are in bold font. The summary
row gives the total number of hemispheres in which classification performance significantly (P <

0.05) above chance was found. Note that in general (at best 1/12 cases) one is not able to discrimi-
nate between gamma spectra using these basic univariate descriptors.

APPENDIX

TABLE AII. Accuracy of classification for post-stimulus (0–2,300 ms, 20–70 Hz) power (left) and rank spectra (right)

at optimal number of features (max accurate) with corresponding significance level (Pmax) from randomisation

testing and number of features (spectral bins) used

Hem

Power spectrum, all data Rank spectrum, all data

Max
accurate Pmax

N. Features
(of 99)

Asym0

accurate Pasym

Max
accurate Pmax

N. Features
(of 99)

Asym
accurate Pasym

1 64 0.0101 24 62 0.0101 65 0 50 57 0.0808
2 73 0 19 72 0 59 0 99 59 0

3 60 0.0202 97 60 0.0202 58 0.0303 28 53 0.2626
4 57 0.0909 14 54 0.2020 55 0.0909 11 53 0.2121
5 73 0 63 68 0 60 0.0303 99 60 0.0303

6 58 0.0505 60 53 0.2727 58 0.0808 55 56 0.1414
7 69 0 16 66 0 61 0.0101 99 61 0.0101

8 67 0 6 61 0.0202 60 0.0202 6 53 0.3030
9 61 0.0101 14 54 0.2222 52 0.2222 3 49 0.5556
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TABLE AIII. Identical analysis on post-transient spectra (300–2,300 ms) to that of Table I except using only the

low (20–45 Hz) gamma band only

Hem

Power spectrum, post-transient 20–45 Hz Rank spectrum, post-transient 20–45 Hz

Max
accurate Pmax

N. Features
(of 49)

Asym0

accurate Pasym

Max
accurate Pmax

N. Features
(of 49)

Asym
accurate Pasym

1 59 0 14 54 0.2626 57 0 4 49 0.5253
2 73 0 6 71 0 61 0 20 61 0

3 66 0 18 62 0 58 0 1 49 0.5657
4 64 0 6 54 0.1818 59 0 6 55 0.1515
5 56 0.1010 40 55 0.1313 60 0.0202 48 59 0.0303

6 54 0.0808 2 46 0.7778 52 0.2121 2 42 0.9293
7 67 0 25 65 0 51 0.3333 5 40 0.9697
8 62 0 6 57 0.0505 58 0 6 53 0.3333
9 51 0.4646 43 49 0.5859 54 0.2323 8 51 0.4343
10 62 0 10 56 0.1717 60 0.0101 35 58 0.0707
11 55 0.1111 9 51 0.3535 53 0.2222 8 51 0.4040
12 62 0 32 59 0.0202 66 0 10 62 0

Summary 60.9 8/12 17.6 56.6 4/12 57.4 8/12 12.75 52.5 3/12

Note that the performance is slightly degraded.
Significant classifications (P<0.05) are in BOLD font.

TABLE AIV. Identical analysis on post-transient spectra (300–2,300 ms) to that of Table I except using only the high

(45–70 Hz) gamma band only

Hem

Power spectrum, post-transient 45–70 Hz Rank spectrum, post-transient 45–70 Hz

Max
accurate Pmax

N. Features
(of 49)

Asym0

accurate Pasym

Max
accurate Pmax

N. Features
(of 49)

Asym
accurate Pasym

1 71 0 15 67 0 67 0 32 66 0

2 73 0 16 71 0 61 0.0202 6 57 0.0606
3 55 0.1212 10 51 0.4040 57 0.0303 3 52 0.3636
4 55 0.0909 5 44 0.8485 59 0.0202 2 51 0.4848
5 65 0 8 61 0 58 0.0606 49 58 0.0606
6 55 0.0202 3 50 0.4949 56 0.0101 1 52 0.3030
7 69 0 6 65 0 59 0.0202 27 55 0.1717
8 65 0 21 65 0 56 0 2 54 0.1919
9 61 0.0303 49 61 0.0303 59 0.0202 20 58 0.0707
10 64 0 12 59 0.0404 57 0 6 50 0.4444
11 66 0 26 63 0 65 0 49 65 0

12 59 0 8 54 0.1919 58 0.0505 37 56 0.0808
Summary 63.2 10/12 14.9 59.3 8/12 59.3 10/12 19.5 56.2 2/12

Note that the performance is marginally enhanced with significant classification for 10/12 (as opposed to 8/12) rank spectra.
Significant classifications (P<0.05) are in BOLD font.

TABLE AII. (Continued)

Hem

Power spectrum, all data Rank spectrum, all data

Max
accurate Pmax

N. Features
(of 99)

Asym0

accurate Pasym

Max
accurate Pmax

N. Features
(of 99)

Asym
accurate Pasym

10 71 0 72 67 0 63 0 14 61 0.0202

11 57 0.0606 30 50 0.4848 55 0.1616 16 51 0.3333
12 65 0 41 59 0.0303 71 0 42 68 0

Summary 64.5 9/12 38 60.5 8/12 59.75 8/12 43.5 56.75 3/12

Significant (P < 0.05) classifications in bold font. Also shown are asymptotic (i.e. using all frequency bins) accuracy and significance lev-
els (Pasym). Bottom row contains summary statistic which is the mean value for accuracy and feature columns and the fraction of signifi-
cant (P < 0.05) hemispheres for significance levels. Note that generally performance degraded from when using spectral estimates
based on purely post-transient data (Table I).
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TABLE AV. The same analysis as for Table III but using data from only the first 100 ms of the evoked

response transient

Hem

Evoked response transient 0–100 ms Rank evoked response transient, 0–100 ms

Max
accurate Pmax

N. features
(of 62)

Asym
accurate Pasym

Max
accurate Pmax

N. features
(of 62)

Asym
accurate Pasym

1 58 0.0606 47 54 0.2222 59 0 9 51 0.3535
2 63 0 39 60 0.0202 61 0.0202 36 58 0.0707
3 52 0.2323 3 47 0.6364 53 0.2727 26 52 0.3535
4 68 0 7 60 0.0404 63 0 6 58 0.0404

5 60 0.0202 6 49 0.6263 56 0.0505 6 49 .5455
6 60 0 2 55 0.2121 58 0.0707 7 56 0.1616
7 61 0.0202 14 50 0.4949 62 0 54 57 0.0303

8 59 0.0303 15 51 0.3333 55 0.1010 17 48 0.5859
9 62 0.0101 43 58 0.0606 63 0.0101 31 62 0

10 64 0 18 62 0 62 0.0101 14 61 0

11 63 0.0101 12 58 0.0707 66 0 26 58 0.1212
12 61 0.0101 16 60 0.0202 61 0.0202 8 55 0.1818

Summary 60.92 10/12 18.5 55.33 4/12 59.9 8/12 20 55.4 4/12

Table shows maximum and asymptotic (all feature) accuracy with significance levels of classification for transient (0–100 ms, 20–70 Hz)
evoked response amplitude and ranked amplitude.
Significant classifications (P<0.05) are in BOLD font.
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