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Identifying spatiotemporal 
patterns of COVID‑19 transmissions 
and the drivers of the patterns 
in Toronto: a Bayesian hierarchical 
spatiotemporal modelling
Nushrat Nazia1*, Jane Law1,2 & Zahid Ahmad Butt1

Spatiotemporal patterns and trends of COVID‑19 at a local spatial scale using Bayesian approaches 
are hardly observed in literature. Also, studies rarely use satellite‑derived long time‑series data on 
the environment to predict COVID‑19 risk at a spatial scale. In this study, we modelled the COVID‑19 
pandemic risk using a Bayesian hierarchical spatiotemporal model that incorporates satellite‑derived 
remote sensing data on land surface temperature (LST) from January 2020 to October 2021 (89 weeks) 
and several socioeconomic covariates of the 140 neighbourhoods in Toronto. The spatial patterns of 
risk were heterogeneous in space with multiple high‑risk neighbourhoods in Western and Southern 
Toronto. Higher risk was observed during Spring 2021. The spatiotemporal risk patterns identified 
60% of neighbourhoods had a stable, 37% had an increasing, and 2% had a decreasing trend over the 
study period. LST was positively, and higher education was negatively associated with the COVID‑19 
incidence. We believe the use of Bayesian spatial modelling and the remote sensing technologies in 
this study provided a strong versatility and strengthened our analysis in identifying the spatial risk of 
COVID‑19. The findings would help in  prevention planning, and the framework of this study may be 
replicated in other highly transmissible infectious diseases.

Abbreviations
DIC  Deviance information criteria
LSE  Land surface emissivity
LST  Land surface temperature
MCMC  Markov Chain Monte Carlo
NASA  National Aeronautics and Space Administration
NDVI  Normalized Difference Vegetation Index
NIR  Near infrared
pD  The probability of direction
RR  Relative risk
RTE  Radiative transfer equation
SARS  Severe acute respiratory syndrome
TIR  Thermal infra-red
TOA  Top of atmosphere
USGS  United States Geological Survey

COVID-19, caused by the coronavirus SARS-CoV-2, has complex transmission dynamics possibly generated by 
different risk factors such as demographic, social and environmental  factors1–4. It is highly transmissible by either 
direct contact with an infected individual or transmission via contaminated surfaces leaving the world in the 
last two years at a halt in many  aspects5. In Canada, over 3.4 million COVID-19 cases and over 37,485 COVID-
19 related deaths have been reported, with Ontario and Quebec reporting the highest cumulative cases in the 
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 nation6. Over 11.2 billion COVID-19 vaccine doses have been administered around the  world7, and at least 
89% population over the age of 5 years in Canada have received at least one dose (March 28, 2022)8. In Canada, 
Toronto continues to experience substantial COVID-19 incidence and hospitalization rates despite several inter-
ventions and mitigation efforts made by the local and provincial public health  officials9,10.

As momentum grows to end this global pandemic, understanding the disease trends, detecting hotspots, and 
identifying important risk factors at the community level is an imperative research effort. Temperature is often 
a significant risk factor for infectious diseases because a certain temperature can help a virus evolve  rapidly11. A 
county-level study in the USA found a strong negative influence of nighttime land surface temperature (LST) with 
COVID-19 using low-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) images of  202012. 
Another study found LST to be an important determining factor in the COVID-19 infection rate in Kolkata, 
 India13. Another study by Hassan et al. identified a strong positive relationship between COVID-19 and  LST14. 
This study showed that a 1 °C increase in LST is linked with a 36.1% increase in COVID-19 incidence rates in 
Bangladesh. Many prior studies have discussed the associations between temperature and COVID-1915; however, 
most of these studies have used short temporal periods, lower resolution images or have not performed a small 
area analysis. The results were diverse and often contradictory in different geographic areas, leaving a gap in 
understanding the impact of temperature on COVID-19 transmission in a small urban area.

Previous studies have also linked different socioeconomic and demographic factors to explain the heteroge-
neity in COVID-19 rates across space. Some studies have found that areas with low socioeconomic status, such 
as rate of  poverty16–20, rate of  education16,19,21,22, ethnicity  status16,20,23–28, immigration  status29–33, unemployment 
 rate21,27,34, and housing  conditions21,22,30, tend to experience higher rates of COVID-19 infections and morbidity 
due to the economic and health inequalities. A previous work by Vaz in  202135 found that the COVID-19 cases 
are not uniformly distributed in Toronto. Social injustice, socioeconomic vulnerability and population density 
were found to be related to the increasing spread and incidence of COVID-19. A work by Feng in 2021 has found 
that neighbourhood-level population density and low income have a significant effect on COVID-19 mortality 
 risk36. Another study of Toronto neighbourhoods by Choi et al. in 2021 found that several demographic and 
socioeconomic factors such as higher education rate, lower rates of immigrants (foreign-born residents) were 
significantly associated with decreasing the number of COVID-19  infections37. These past studies implied that 
these factors might disproportionately impact COVID-19 infection rates. Finally, analyzing the spatiotemporal 
trends of COVID-19 transmission to understand whether the disease risk trends show increasing, decreasing 
or stable patterns over the study period has also been understudied.

In this study, we used a Bayesian hierarchical spatiotemporal models to investigate the spatiotemporal pat-
terns of COVID-19 transmission in Toronto. The approach allows us to deal with uncertainties related to the 
data, the process and model  parameters38 since it has the capacity to account for missing data, measurement 
errors and ecological  bias39,40. Even though Bayesian models have a clear advantage, only a handful of  studies41–45 
in COVID-19 research has adopted Bayesian approaches to predict COVID-19 risk, identify trends and locate 
hotspots. Motivated by the recent increase in COVID-19 incidence in winter, this study scrutinizes the effect of 
weather and socioeconomic and demographic factors on COVID-19 using a small area analysis. Within the scope 
of this study, we will answer four research questions: (1) where were the hotspots of COVID-19, (2) what was the 
temporal patterns of risk in the study area, (3) was there a relationship between land surface temperature and 
COVID-19 while adjusting for socioeconomic and demographic factors, and (4) was there any spatiotemporal 
trend of COVID-19 transmission in Toronto (e.g., stable, increasing or decreasing)?

Methods
The study area. The study area is the metropolitan city of Toronto, located on the northwestern shore of 
Lake Ontario at an altitude of 175 m (43° 42′ 00″ N latitude and 79° 24′ 58″ W longitude). It is the capital city 
of the province of Ontario in Canada, with a total land area of 630  km2 and a high population density of 4692 
persons/km21. Toronto has a well-defined urban heat island with warmer temperatures, mostly at night and in 
winter, compared to the rest of the city’s surrounding  regions2–4. The average temperature of Toronto is 21.9 °C 
(81.3 °F), and the annual rainfall is 845 mm (33.3 in.), with July (17–25 °C/62 °F to 77 °F) the hottest and Feb-
ruary (average − 4.4 °C/24.1 °F) the coldest months of the  year5. The map of the study area was created using 
ArcGIS Desktop  software46 version 10.8.1 is provided in Fig. 1.

Geographic boundary, population, and case data. There were 140 geographically distinct neigh-
bourhoods in the study area. The digital data of the geographic boundaries for these neighbourhoods were 
acquired from the open data portal of the city of  Toronto47. We used the COVID-19 case data originally collected 
by Toronto Public Health and extracted from the provincial Case & Contact Management System (CCM)6 by 
the city of Toronto. The case dataset contains the demographic, geographic, and severity information for all con-
firmed and probable, sporadic, and outbreak-associated cases. We aggregated the daily case data from January 
2020 to October 2, 2020, by the 89 epidemiological weeks and at the neighbourhood level. The total population 
for each neighbourhood was collected from neighbourhood profiles using the census 2016 population dataset 
collected and released by Statistics  Canada48.

Demographic and socioeconomic variables. Previous studies have also linked different socioeco-
nomic and demographic factors to explain the heterogeneity in COVID-19 rates across  space13,14,16–29. Based 
on these past studies and data availability, we selected 11 potential demographic and socioeconomic variables 
under six categories (demographic, core housing need, race/ethnicity/minority status, education, economic and 
immigration status) for our model. These data were collected from the Toronto neighbourhood profile based on 
the 2016 census from Statistics  Canada8. The full descriptions of the variables are provided in Table 1.
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The land surface temperature (LST) data. We used Landsat imageries to retrieve the weekly average 
land surface temperature (LST) at the neighbourhood level for 89 consecutive weeks (January 19, 2021–Octo-
ber 2, 2022). The timing of these imageries was approximately 4 PM (GMT). We collected mostly Landsat 8 
imageries (75), and if the imageries for a particular week were not available in the Landsat 8, we used Landsat 
7 imageries instead. However, no images were available for two epidemiological weeks (week 45 of 2000 and 
week 7 of 2021). We used the average temperature of the previous and following week for these two weeks. 
The images were corrected using atmospheric correction parameters collected by the National Aeronautics and 
Space Administration (NASA) to improve estimation accuracy. The complete details of the LST retrieval process, 
image data, acquisition time, atmospheric parameters are summarised in Table S1 in Appendix 1 (Supplemen-
tary Information 2).

Zonal statistics. Zonal statistics was performed in ArcGIS Desktop  software46 version 10.8.1 to calculate 
the average LST values for Retrieval of spectral radiance. We applied a mask comprised of the polygons (neigh-
bourhood boundaries) from the map of the city of Toronto and used the zonal statistics to calculate the average 
LST of all pixels by neighbourhood.

Variable selection. Variable selection was conducted using a two-step method to fit into the multivariable 
regression model. In the first step, we performed a Pearson’s correlation and generated a correlation matrix tak-

Figure 1.  Study area in Toronto, Ontario, Canada. The numbers inside the neighbourhoods represent the 
neighbourhood ID.
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ing account of all the potential risk factors to evaluate collinearity among these risk factors (Appendix 2, Fig. S1 
in Supplementary Information 2). Note that the presence of collinearity among the independent variables can 
result in model overfitting, unstable estimates and inaccurate variances, and consequently incorrect inferences 
about associations between explanatory and the response  variables56–59. We observed that the percentage of 
immigrants had a high correlation (> 0.7) with the percentage of the black population and the percentage of vis-
ible minorities. Since Choi et al.37, in a study conducted in our study area in Toronto, stated that the percentage 
of immigrants is an important risk factor in our study area in Toronto, we selected this variable over the percent-
age of the black population and percentage of visible minorities. The prevalence of low income was found to be 
strongly correlated with the rate of unaffordable housing and unemployment rate. Out of the three core housing 
need variables, the rate of unsuitable and the rate of unaffordable housing had a strong correlation with mul-
tiple variables. Since the rate of inadequate housing did not have a strong correlation with any other variables, 
we selected this (inadequate housing) variable over other housing variables. Among the correlated factors, we 
selected the prevalence of low income over the unemployment rate based on an earlier study in our study area 
that found low income to be strongly associated with COVID-1936. Finally since the LST and population density 
did not have a strong correlation with other factors, we kept both in the model.

In the second step, the six selected variables from the first step: land surface temperature (LST), the preva-
lence of low income, rate of higher education, inadequate housing, percentage of immigrants and population 
density per square kilometres, were fitted in a Bayesian variable selection method using BayesVarSel  package28 in 
 RStudio60 version 2021.09.0 to select the variables that fit best in our Bayesian hierarchical spatial model (Appen-
dix 2, Table S2 in Supplementary Information 2). The approach uses priors as proposed by Bayarri et al.61, com-
putes posterior probabilities of hypotheses or the models, and delivers tools in a coherent and complete analysis 
to properly summarise the  outputs62. This approach yielded LST,  higher education rate and  immigrant variables 
with higher posterior probabilities and marginal inclusion probabilities (Appendix 2, Table S2), suggesting that 
these three variables are very relevant, highly influential, and the best fit for our Bayesian regression models.

Standardization of the variables. Since the variables were in different units, such as raw values, per-
centages, and prevalence rates, we used the Z-transformation technique, where the mean for all values was sub-
tracted from each value and was then divided by the standard deviation of the values of the variables to obtain 
standardized values for the Bayesian model.

Bayesian spatiotemporal models. We performed four Bayesian hierarchical space–time models to 
investigate the long-term spatiotemporal effects of COVID-19 using two frameworks: space–time  separable38 
and the space–time inseparable  models38,63. Model 1 drew the space–time separable framework, while Models 2, 
3 and 4 drew the space–time inseparable modelling frameworks.

To model each outcome value yit , the COVID-19 case count observed in week t in the neighbourhood i 
(i = 1,….N and t = 1,…..T), the data model takes Poisson distributions as the likelihood in Eq. (1):

Specifically, Poisson mean, µit is a product of ni , the total number of populations in neighbourhood i, obtained 
from the 2016 census, is assumed to be time-variant, and θit , the underlying unknown COVID-19 risk in the 
neighbourhood i during week t. The space–time variability is partitioned into three components: spatial, tem-
poral and the space–time interaction effect. In Model 1, a space–time separable model is used that consists of 
the first two components (spatial, temporal), where the variability of data is not captured by the space–time 
separable structure. Models 2,3, and 4 capture the space–time inseparable structure proposed by Knorr-held63, 

(1)yit ∼ Poisson(µit)

Table 1.  Descriptions of the demographic and socioeconomic covariates (2016 Census).

Category Covariate Covariate description

Education Higher education rate Percentage of the population who are aged 25–64 years and have a higher level of education (having a university 
certificate, diploma or at least a bachelor’s degree)49

Economic

Unemployment rate Percentage of population in private households who are over 15 years and not employed in the labour force)50

Prevalence of low-income
The percentage of the population whose income falls below the low-income cut-off (LICO) table represents 
the poverty  line51,52 The cut-off thresholds represent the income levels at which these families or persons were 
expected to spend 20 percentage points or more of their after-tax income than average on food, shelter and 
 clothing51

Core housing need

Rate of unaffordable housing Percentage of households in a neighbourhood costs ≥ 30% of total before-tax income ton adequate  shelter53

Rate of inadequate housing Percentage of population in the neighbourhood not requiring any major repairs as reported by the  residents53

Rate of unsuitable housing Percentage of population in the neighbourhood without suitable accommodations according to the National 
Occupancy Standard (NOS)  standards53

Race/ethnicity/minority status

Percentage of black population The percentage of black population in a neighbourhood

Visible minority
Percentage of visible minority in a neighbourhood. Visible minority refers to a person who belongs to a visible 
minority group as defined by the Employment Equity Act, defining visible minorities as "persons, other than 
Aboriginal peoples, who are non-Caucasian in race or non-white in colour”54

Immigrants Percentage of the population born outside of Canada and who is, or who has ever been, a landed immigrant or a 
permanent  resident55

Demographic Population density The number of persons per square kilometre in a neighbourhood
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using three different space–time interaction effects that allow space–time inseparability. Table 2 and appendix 3 
(Supplementary Information 2) summarise the four Bayesian Space–Time Hierarchical models, including data, 
process, space–time interaction components, and full model  specifications31.

WinBUGS implementation. The space–time separable and the three space–time inseparable models were 
fitted with Markov Chain Monte Carlo (MCMC) with different initial values for each model with a burn-in 
period of 116,000 iterations and thinning rate of 10 to obtain the posterior distributions of model parame-
ters using WinBUGS software version 1.4. Mixings were observed using trace plots and autocorrelation plots. 
Convergence was evaluated by checking the Gelman–Rubin  statistic35 (Appendix 3 and Fig. S2 in Supplemen-
tary Information 2). After the burn-in period, a final run of 10,000 iterations for each chain was run to derive a 
final sample size of 20,000. The MCMC error of the model parameter estimates were < 5% of the corresponding 
posterior standard deviations suggesting that the total 20,000 iterations, 10,000 from each of the two MCMC 
chains, are sufficient to provide a good approximation of the posterior distribution.

Model selection. We assessed the Deviance information criteria (DIC) and the probability of direction (pD) 
values from the outputs to evaluate the goodness of fit for the four Bayesian hierarchical models and to select 
the best-fitted  model64.

Spatial, temporal and spatiotemporal relative risks (RR). The spatial, temporal and spatiotempo-
ral relative risk estimates were obtained from the Model 3 (selected as the best-fitted model) outputs. Spatial 
relative risk ( RRSpatial = exp(Si + Ui))

38 for neighbourhood i represents the average COVID-19 incidence rate 
over 89 weeks in neighbourhood i compared to the average COVID-19 incidence rate in Toronto. A map of the 
posterior means of the spatial relative risk was created using the ArcGIS Desktop software 10.8.146. The temporal 
relative risk ( RRTemporal = exp(vt))

65 at week t represents the average COVID-19 incidence rate for all neigh-
bourhoods in week i compared to the average COVID-19 incidence rate of the entire study period. The posterior 
mean of the temporal relative risk with its corresponding 95% credible intervals was plotted using RStudio 
 Software60 version 2021.09.0. The spatiotemporal effect term δ represents a change that cannot be reflected by 
spatial and temporal effects  only65. The spatiotemporal relative risk (RRSpatioTemporal = exp(δit))

65 represent the 
risk of COVID incidence rate in neighbourhood i and in time t compared to the overall incidence rate in entire 
study area and entire time period.

Joinpoint regression. We used the joinpoint regression using the Joinpoint software version 4.9.0.066,67, 
which uses the least-squares regression method to find the best-fit line from the temporal (weekly) pattern of the 
relative risk for COVID-19 derived from the Bayesian model. The joinpoint regression uses an algorithm that 
tests whether a multi-segmented line is a significantly better fit than a straight or less-segmented line. It involves 
fitting a series of joined straight lines on a log scale to the trends in the weekly relative risk of COVID-19. Line 
segments are joined at points called joinpoints. Each joinpoint denotes a statistically significant (P = 0.05) change 
in trend. The significance test uses a Monte Carlo Permutation method to find the best fit line for each segment. 
The temporal patterns of the relative risk was plotted using the JoinPoint software.

Table 2.  Summary of the four Bayesian space–time hierarchical models. where  beta1, beta2 and beta3 are 
the regression coefficients of higher education rate, percentage of immigrants and LST, respectively. Si is the 
structured, Ui is the unstructured, vt is the temporal and δit is the space–time interaction effect. σs , σu, σv , σδ are 
the standard deviation of the spatially-structured, spatially-unstructured, temporal and space–time random 
effect terms, respectively. 1/σ 2

s , 1/σ
2
u , 1/σ

2
v 1/σ

2
δ  are the precision parameters. ICAR  Intrinsic Conditional 

Autoregressive, RW Random Walk Model.

Model 1
Model 2
Type I

Model 3
Type II

Model 4
Type III

Framework Space–time separable Space–time inseparable

Data model
yit ∼ Poisson(µit ),µit = ni .θit
where Poisson mean, µit is a product of ni , the total number of populations in neighbourhood i is assumed to be time-variant, and θit , the underlying 
unknown COVID-19 rate in neighbourhood i during week t

Process model log(θ it ) =∝ +beta1 ∗ EDUit + beta2 ∗ IMMIit + beta3 ∗ LSTit + (Si + Ui)+ vt
log(θ

it
) =∝ +beta1 ∗ EDUit + beta2 ∗ IMMIit + beta3 ∗ LSTit

+(Si + Ui)+ vt + δit

The overall spatial 
components

S1:140 ∼ ICAR(Wsp , σ
2
S )

Ui ∼ N(0, σ 2
U )

Overall temporal 
component v1:89 ∼ ICAR(WRW1, σ

2
v )

The space–time 
interaction com-
ponent

δit = 0 δit ∼ N(0, σ 2
δ  ) δi,1:T ∼ RW(WRW1, σ

2
δ ) δi:N ,t ∼ ICAR(WSP , σ

2
δ )

The parameter 
model

σs ∼ Uniform(0.0001, 10), σu ∼ Uniform(0.0001, 10),
σv ∼ Uniform(0.0001, 10), σδ ∼ Uniform(0.0001, 10),
∝∼ Uniform(−∞,+∞)

Other vague priors beta1 ∼ Normal(0, 0.0001) , beta2 ∼ Normal(0, 0.0001) , beta3 ∼ Normal(0, 0.0001)
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Spatiotemporal risk trend analysis. The spatiotemporal trend of the relative risk over time (increas-
ing, decreasing, or stable) in the neighbourhoods was calculated in RStudio  Software0 and mapped in ArcGIS 
Desktop  software46 version 10.8.1. The neighbourhoods with a negative estimated coefficient were considered to 
have a decreasing trend over time, and the neighbourhoods with positive estimated coefficients were considered 
to have an increasing trend over time. The neighbourhoods with zero estimated coefficients were considered to 
have a stable trend over the study period.

Sensitivity analysis. Given that there is no such thing as the true  prior31, two additional models with two 
alternate prior assumptions than the original final model (Model 3) were run to perform a sensitivity analysis to 
examine the final model results. The first model was run with hyperprior distributions of Gamma (0.005, 0.005)68 
on the precision parameters ( 1/σ 2

s , 1/σ
2
u, 1/σ

2
v1/σ

2
δ
 ), and the second model was run with a uniform prior with 

a wider range (0.0001,1000)38 for the  σ s , σ u, σ v , σδ parameters (standard deviation of the spatially-structured, 
spatially-unstructured, temporal and space–time random effect term, respectively). The outputs from these two 
models with two different priors were compared to the outputs from the original model to ensure that our find-
ings were not sensitive to the original hyperprior specification.

The methodological framework for our study is shown in a flow diagram (Fig. 2).

Results
Descriptive statistics. We had 2,731,571 population in the study area based on the 2016 census data. A 
total of 179,072 (22,326 outbreak-associated and 156,746 sporadic) cases were reported in the 140 neighbour-
hoods during the study period. To avoid potential bias towards finding the high-risk clusters in the outbreak 
areas, our study excluded the outbreak-associated cases (12.4% of all cases), generally from healthcare (e.g., 
long-term care homes, hospitals) or congregated  settings7. We also excluded 2,423 (1.64%) cases due to missing 
neighbourhood information, leaving 154,323 sporadic cases for the analysis.

We observed a sharp increase in COVID-19 cases in late December of 2000, which declined in early January 
2021 (Fig. 3a). Again, a sharp increase in the cases was observed in late March (week 13) of 2021, which declined 
in late May of the same year. The highest number of cases (> 7500 cases) were observed in April 2021.

Model selection. We fitted the data in four Bayesian Space–Time Hierarchical Models and compared the 
models (Table 3). The DIC values from the space–time inseparable models (Model 2–4) are much lower than 
the space–time separable model (Model 1), suggesting that the inseparable models (Model 2, 3 and 4) are better 
supported by the observed data, confirming the need to incorporate the space–time interaction  component38. 
Finally, by comparing Model 2, 3 and Model 4, we found that Model 3 has the smallest pD, and DIC values, 
suggesting that Model 3 (space–time inseparable model with type II interaction) is the most parsimonious, and 
therefore was selected as our final model.

Figure 2.  Flow diagram of the methodological framework.
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Figure 3.  (a) The weekly number of COVID-19 cases (excluding the outbreak cases) between January 21, 
2020, and October 2, 2021. (b) Temporal Relative Risk ((RRTemporal = exp(vt)) of COVID-19 in Toronto 
neighbourhoods between January 21, 2020, and October 2, 2021. (c) The spatiotemporal trend of the relative 
risks (RRSpatioTemporal = exp(δit)) in Toronto between January 21, 2020, and October 2, 2021.
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Regression outputs. Between January 21, 2020, and October 2, 2021, using the parameter estimates (mean 
[ δit]  ×  1000) from the final model, the average COVID-19 rate per 1000 population per neighbourhood in 
Toronto is estimated to be 6.1 (95% CI 6.0–6.3). Table 4 reports the estimated relative risks by exponentially 
transforming the regression covariates associated with the three covariates from the Model 3 regression outputs. 
Based on the outputs, we observed that higher education was negatively associated (95% CI 0.67–0.78), and LST 
(95% CI 1.01–1.17) was positively associated with COVID-19 incidence. An increase of one standard deviation 
in the higher education rate in a neighbourhood was associated with a 28% (95% CI 22–33%) standard deviation 
decrease in the COVID-19 incidence rate. An increase of one standard deviation in average LST in a neighbour-
hood was associated with a 9% (95% CI 1–17%) standard deviations increase in the COVID-19 incidence in 
Toronto. COVID-19 incidence was not found to be associated with the immigrants (95% CI 0.98–1.05), as the 
95% CI contains 1. Therefore, the percentage of immigrants does not appear to be a strong risk factor for explain-
ing variability in the COVID-19 incidence in our study (Table 4).

Temporal relative risk. Figure 3b presents the posterior mean and 95% uncertainty band of the temporal 
relative risk ((RRTemporal = exp(vt))

65 during the study period, which shows that the highest risk (RR > 9) was 
observed between March 14, 2021, and April 17, 2021. A total of 46 (51%) weeks out of the total 89 weeks expe-
rienced a relative risk of less than one during our study period.

Joinpoint regression results. Figure  3c represents the temporal patterns of relative risk for COVID-
19 from January 21, 2020, to October 2, 2021 (89 consecutive weeks). The line displays five joinpoints (6 line 
segments or trends), indicating a significant change in the relative risk six times during the study period. For 
instance, the relative risk of COVID-19 was increased by 77% per week from the beginning to the 11th week. The 
risk was then decreased by 11% by the 30th week, then was increased by 60% until the 36th week, then increased 
only by 4% until the 69th week, then it decreased by 39% until the 75th week, and it again increased by 14% by 
the end of the study period.

Spatial relative risk. The posterior means of the relative risks (spatial) of COVID-19 in the Toronto neigh-
bourhoods are presented in Fig. 4a. A high risk (RR > 1.5) was observed in northwestern and southern (Neigh-
bourhood # 77) Toronto. A moderate level of risk (RR > 1.05) was observed in different neighbourhoods in 
western Toronto. Eastern Toronto mostly experienced a low risk of COVID-19.

Spatiotemporal relative risk trends. While evaluating the trends of the spatiotemporal relative risks 
(RRSpatioTemporal = exp(δit))

65 we observed that only three neighbourhoods (Neighbourhoods # 40,137 and 49) 
had a decreasing trend of the relative risk during the study period (Fig. 4b). A total of 84 (60%) neighbourhoods 
had a stable trend, and 53 (37%) neighbourhoods had an increasing trend in the study area.

Sensitivity test results. The sensitivity test models with Gamma (0.005, 0.005)68 priors for the precision 
parameters and uniform (0.0001, 1000)38 priors for standard deviation parameters are equally appropriate, giv-
ing almost identical posterior distributions of the parameters and model fit (DIC values) compared to outputs of 
the original model (Model 3), presented in Appendix 4 in the Supplementary Information 2. Therefore, we can 
conclude that an apparently innocuous uniform prior that we have used in our final model is not introducing 
substantial information into the model fitting.

Map Validation. We mapped the spatial patterns of COVID-19 cases during the post-study period (October 
3–31, 2021) to visually compare the spatial patterns of risk identified from the Bayesian spatiotemporal model 
(Fig. S3 in Appendix 5 in Supplementary Information 2). As observed, the spatial risk obtained from the Bayes-

Table 3.  Comparison of the four space–time models.

Bayesian model Space–time inseparable? Space–time interaction type pD DIC

Model 1 No NA 246.697 66,280.700

Model 2 Yes Type I 5017.320 56,711.300

Model 3 Yes Type II 3231.73 55,479.100

Model 4 Yes Type III 4626.760 57,043.700

Table 4.  Estimated relative risks [ exp(βk)] and 95% CI.

Relate Risk (RR) Posterior Estimates of Risk (95% CI)

RREDU (Higher Education) 0.72 (0.67–0.78)

RRIMMI (Immigrants) 1.02 (0.98–1.05)

RRLST (LST) 1.09 (1.01–1.17)
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ian model was higher in the northwestern and southern neighbourhoods of Toronto. In these neighbourhoods, 
a higher number of cases were also reported during the post-study period. The map of the spatiotemporal trend 
showed an increasing pattern in the eastern, southwestern and central neighbourhoods. These neighbourhoods 
experienced a higher number of cases during the post-study period. In Northwestern Toronto, the trend was 
stable but observed a higher spatial risk, indicating that the area remained at higher risk throughout the study 
period. This region also showed a higher number of cases during the post-study period.

Figure 4.  (a) A map of the estimated overall spatial pattern based on the posterior means of the spatial relative 
risks (RRSpatial = exp(Si + Ui)) for COVID-19 in the Toronto neighbourhoods, January 21, 2020–October 
2, 2021. (b) The spatiotemporal trend of the relative risks (RRSpatioTemporal = exp(δit)) in Toronto between 
January 21, 2020, and October 2, 2021. The numbers inside the neighbourhood represents the neighbourhood 
identification number.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9369  | https://doi.org/10.1038/s41598-022-13403-x

www.nature.com/scientificreports/

Discussion
In our study, we observed spatial, temporal, and spatiotemporal trends of COVID-19 in Toronto and identified 
the key factors associated with the transmission of the disease. Overall, the trend and transmission patterns of 
the disease were heterogeneous over space and time. Only three neighbourhoods experienced a decreasing spa-
tiotemporal risk trend in the area. Most neighbourhoods experienced either stable or increasing spatiotemporal 
risk during the study period. We also observed several high-risk neighbourhoods in the western and southern 
parts of Toronto, and the risk in those neighbourhoods remained constant throughout the study period. Since 
educational status and LST were associated with the risk, we believe these factors might have influenced to remain 
those areas at high risk throughout the study period.

The temporal risk was particularly high in the early spring of 2021, suggesting that the temperature during 
the season could have influenced the transmission of the disease in that part of the country. However, some other 
factors, such as an increase in mobility or travel patterns during the long weekend in March  202169, could also 
influence the increase of the disease in spring. The disease risk remained high for more than half of the study 
period. We observed a lower risk during early summer (June–July) of 2020 and 2021, which could be due to 
an increased time spent in outdoor settings leading to a decreased COVID-19  risk70. We identified significant 
changes in the risk of COVID-19 six times across the study period with varying trends. These changes suggest 
that the temporal trend of the epidemic of COVID-19 is different from other coronavirus diseases, such as the 
SARS (severe acute respiratory syndrome) epidemic in 2003, where the number of reported SARS cases has 
increased exponentially over time, and the outbreak lasted approximately 6  months71–74.

The findings of the positive association of COVID-19 with LST in our study are consistent with the findings of 
an earlier  study9. One reason behind this could be that high LST favours the coronavirus. Furthermore, Toronto 
is the most densely populated urban city in Canada. A recent study conducted in Phoenix, Arizona and Dal-
las, Texas, in the United States by Moss and  Kar75 concluded that the urban areas that are susceptible to a high 
Urban Heat Index, as measured by LST, are primarily occupied by vulnerable population groups. Therefore, it 
is possible that an excess vulnerable population in an area creates a higher LST in the neighbourhood, resulting 
in an increase in the risk of COVID-19 in our study area.

Our study also finds that the higher education rate has a negative association with COVID-19, which is in 
line with the findings from earlier  studies16,19,21,22. It is likely that people with higher education may understand 
and follow public health messages as well as have the option to work remotely and maintain social distancing, 
resulting in lower incidences of COVID-19 in areas with a higher number of educated people. Additionally, a 
study by Mondal et al. in 2021 found that higher education levels were associated with a higher likelihood of 
vaccine  acceptance76, suggesting that intervention with health education may play a key role in fighting this 
pandemic. Various public health programs such as COVID-19 awareness and health education programs in 
neighbourhoods with low education may also help reduce the fast transmission rates in those neighbourhoods.

In our study, we used higher spatial and temporal resolution satellite images to extract LST. We also used 
atmospheric corrections methods on these images by adopting Sobrino et al. in 2008’s Land Surface Emissivity 
(LSE)  model77, which provided a high estimation accuracy. Our findings may advocate for maintaining disease 
surveillance and planning for an effective public health program. Most of the earlier  studies11,78–82 explored 
the relationship between ambient temperature or LST and COVID-19 at a broader spatial scale (provincial or 
state) and used a shorter period with a very limited number of images to extract LST without any atmospheric 
 corrections13. We believe that our study filled the gap in the existing literature by using higher spatial and tem-
poral resolution satellite imageries at a local spatial scale, which is more spatially representative and may have 
provided a more accurate estimate due to the use of the atmospherically corrected data on LST.

The validation results of the spatiotemporal patterns of risk using the data of the post-study period suggest 
that the Bayesian model could predict spatial patterns of risk for COVID-19 in our study area. Therefore, the 
findings of our study can be useful for increasing awareness of the disease and preparing public health interven-
tions aimed at targeted prevention and control of COVID-19. Given limited resources available, efforts could 
focus on the high-risk neighbourhoods, as observed in our study.

Our study has several limitations. First, we could not find data on air pollution or human mobility patterns 
at the neighbourhood level, which could be important contributors to influencing the COVID-19 incidence. 
Second, we had 1.6% of cases with missing neighbourhood information and 12.4% cases were outbreak cases, 
which were not included in our analysis. Additionally, COVID-19 is often asymptomatic, under-reported83 or 
lacks accurate information on the onset of the COVID-19, limiting the capacity of the analysis. However, the 
Bayesian spatiotemporal hierarchical models allowed us to compensate for the missing/unobserved covariates 
or missing data by incorporating the structured, unstructured random effects into the  model63. In particular, 
the Type II space–time interaction in our final model implied that the missing covariates have smoothly varying 
structures through time and have no structure over space since they are highly localized in their effect on the 
 outcome63. Third, our study has an ecological study design where the data were aggregated at the neighbour-
hood level, which may create issues such as ecological  fallacy84. Therefore, these results cannot be interpreted 
at the individual level.

Despite these limitations, our study, due to its strong versatility and complex hierarchical modelling, is still 
convincing and has provided important information that may improve our understanding of the transmission 
patterns of COVID-19 and the associated risk factors. Also, our model is superior to the frequentist method 
that is more frequently used, as the Bayesian approach allowed us to compensate for the missing covariates in 
the models in identifying spatial patterns of risk. Therefore, we believe that using the Bayesian spatiotemporal 
model and the long-time series satellite-derived environmental data for modelling disease transmission have 
advanced our understanding of the disease risk in space.
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Conclusions
Several conclusions can emerge from our study. First, the Bayesian analysis has shown that Bayesian regression 
with spatial (structured and unstructured), temporal and spatiotemporal random effects provided an effective 
framework for understanding COVID-19 disease transmission. Second, the spatiotemporal risk remained high 
for the entire study period and constantly high for the high-risk neighbourhoods. However, the temporal risk 
fluctuated over time in the study area. Third, higher education and LST played an important role in predicting 
COVID-19 incidence. Therefore, it is important to take those factors into account while planning intervention 
strategies. Fourth, the framework presented in this study may help make an early warning system for COVID-
19 incidence and assist public health authorities in controlling and preventing outbreaks of similar diseases. 
Finally, the methodological framework applied here can also be used in other small area-level studies on infec-
tious diseases.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files).
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