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Abstract

T cell receptor (TCR) sequences are very diverse, with many more possible sequence 
combinations than T cells in any one individual1–4. Here we define the minimal requirements for 
TCR antigen specificity, through an analysis of TCR sequences using a panel of peptide and major 
histocompatibility complex (pMHC)-tetramer-sorted cells and structural data. From this analysis 
we developed an algorithm that we term GLIPH (grouping of lymphocyte interactions by paratope 
hotspots) to cluster TCRs with a high probability of sharing specificity owing to both conserved 
motifs and global similarity of complementarity-determining region 3 (CDR3) sequences. We 
show that GLIPH can reliably group TCRs of common specificity from different donors, and that 
conserved CDR3 motifs help to define the TCR clusters that are often contact points with the 
antigenic peptides. As an independent validation, we analysed 5,711 TCRβ chain sequences from 
reactive CD4 T cells from 22 individuals with latent Mycobacterium tuberculosis infection. We 
found 141 TCR specificity groups, including 16 distinct groups containing TCRs from multiple 
individuals. These TCR groups typically shared HLA alleles, allowing prediction of the likely 
HLA restriction, and a large number of M. tuberculosis T cell epitopes enabled us to identify 
pMHC ligands for all five of the groups tested. Mutagenesis and de novo TCR design confirmed 
that the GLIPH-identified motifs were critical and sufficient for shared-antigen recognition. Thus 
the GLIPH algorithm can analyse large numbers of TCR sequences and define TCR specificity 
groups shared by TCRs and individuals, which should greatly accelerate the analysis of T cell 
responses and expedite the identification of specific ligands.

Advances in high-throughput sequencing technologies now enable the routine analysis of 
millions of T cell receptors in a single experiment, but there has been no systematic way to 
organize groups of TCR sequences according to their likely antigen specificities. To address 
this problem, we first performed an analysis of all reported TCR–pMHC structures. We 
aligned the TCR amino acid sequences from all 52 TCR–pMHC structures, and calculated 
the proportion of all complexes within 5 Å for each position from the peptide antigen 
(Extended Data Fig. 1, Supplementary Table 2). This provided an a priori probability of 
contact and the results showed that the majority of these possible contacts were in the 
CDR3s, and only short, typically linear stretches of amino acids make contact with antigenic 
peptide residues (IMGT positions 107–116), whereas the stem positions of CDR3 (IMGT 
positions 104, 105, 106, 117, and 118) are never within 5 Å of the antigen5. We also note 
that whereas there is always at least one CDR3β contact, there are multiple cases in which 
no CDR3α contact is made, suggesting that the former is required, although typically both 
are involved (Extended Data Fig. 1). Collectively, the results suggested that sequence 
analysis focused entirely on high probability contact sites in CDR3 may provide a means of 
clustering TCRs by shared specificity.
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To evaluate whether specificity was principally mediated by these limited contact sites, we 
assembled a panel of eight pMHC tetramers, and used them to isolate specific T cells from 
4–13 blood bank donors for each HLA specificity, plus one tonsil sample for the class II 
specificity (33 total donors). These were immunodominant peptides from Epstein–Barr virus 
(EBV), cytomegalovirus (CMV), and influenza in the context of HLA backgrounds HLA-
A*0101, HLA-A*0201, HLA-B* 0702 or the class II molecule HLA-DRB1*0401 (Fig. 1a). 
Antigen-specific T cells were isolated using pMHC tetramers, and characterized using either 
single-cell TCRαβ sequencing or bulk TCRβ sequencing. In addition, 229 published TCR 
sequences of known specificity were obtained from the literature and from crystal structures 
in the Protein Data Bank6. In total, the training set consisted of 2,068 unique TCRs of 
known specificity (Supplementary Table 1). Although most specificities were recognized by 
hundreds of unique TCR sequences in each subject, a few subjects gave a limited oligoclonal 
response or had a single dominant clone against some specificities. For each of these 
specificities, almost all the TCRs were unique to an individual, consistent with their marked 
diversity (Fig. 1b).

The specificity of some TCRs could be predicted by global similarity (Fig. 1c). Searching 
just within the CDR3, the CDR3 sequences selected against a single specificity would often 
differ by only one amino acid, whereas this was not observed in a set of unselected TCRs. It 
was also noted that antigen-specific pools of TCRs were enriched for more similar CDR3s 
on average (differing by 2–4 amino acids), although those could not be individually asserted 
to be antigen-specific as naive TCR populations also occasionally produced TCRs with such 
a degree of similarity.

To further distinguish TCRs recognizing the same antigen from unrelated TCRs, we 
searched for the enrichment of amino acid motifs with lengths of 2, 3, and 4 in the high-
contact-probability region of CDR3β spanning IMGT positions 107–116. As the repertoire 
is created through a complex V(D)J recombination and nucleotide addition process, we 
developed a non-parametric resampling method for detecting the significant enrichment of 
local motifs. By this method, the similarity of receptors amongst antigen-specific repertoires 
were compared to repeat random subsampling from CDR3 length-distribution-matched 
unselected repertoires of 266,346 unique naive unselected CD4 and CD8 TCRs from 
thirteen healthy individuals to establish a ‘fold enrichment’ and ‘probability of enrichment’ 
of any motif above its expected frequency in the naive repertoire7,8. To avoid false positive 
conclusions drawn from PCR or read error, we separated biological replicates containing 
TCRs against the same specificity from different individuals and searched for enrichment of 
common motifs. Using this method, we could detect enriched motifs in CDR3s that were 
found within TCRs specific to a given pMHC from multiple individuals, but not in TCRs 
recognizing unrelated antigens (Fig. 1d).

When clustering TCRs by both global similarity (CDR3 differing by up to one amino acid) 
and local similarity (shared enriched CDR3 amino acid motifs: >10× fold-enrichment, 
probability <0.001), we found that most of the TCR sequences selected by a particular 
pMHC tetramer typically fell into one or a few related TCR groups (Fig. 2a). Furthermore, 
in the four cases in which there was a high-resolution crystal structure involving one of these 
dominant TCRs complexed to its pMHC ligand, the significantly enriched CDR3 motifs 
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corresponded to the contact residues with the antigenic peptide (Fig. 2a, b, Extended Data 
Fig. 2a). These were typically three to four amino acids in length and usually contiguous. 
Positions outside this central contact motif tended to tolerate more amino acid diversity. A 
positional weight matrix of amino acid diversity in the sequence group gives a high score to 
current group members and could be used to selectively recognize new group members 
(Extended Data Fig. 2b). In the case of the flu GIL antigen bound to HLA-A*0201, where 
we had αβ pairing from single-cell TCR sequencing, we found motifs for both α and β 
sequences (Fig. 2b). In the case of a DRB1*0401-restricted flu peptide specificity, the TCRα 
CDR3 did not give a clear sequence motif and the coordination of complementary charges is 
accomplished in multiple ways by different TCRs (Extended Data Fig. 2a). Thus we have 
largely relied on TCRβ sequences for our analysis. An analysis of positional motif 
enrichment and positional amino acid enrichment relative to the unselected repertoire 
highlighted the specific residues and their motif relationships that the structures indicate 
contribute the primary contacts of antigen recognition (Extended Data Fig. 2b). The results 
suggest that varying degrees of sequence convergence in each chain of the TCR heterodimer 
may provide some information regarding the relative importance of each chain for 
specificity.

Collectively, these results on our tetramer-sorted TCR ‘training’ data set formulated the 
parameters of a new algorithm, GLIPH (grouping lymphocyte interactions by paratope 
hotspots), to search for and automatically cluster TCR sequences into distinct groups 
according to their likely specificity. GLIPH combines global and local TCR sequence 
similarity, structural peptide antigen contact propensity, V-segment bias, CDR3 length bias, 
shared HLA alleles among TCR contributors, and clonal expansion bias, to identify and 
cluster TCR sequences in specificity groups — sets of TCRs that are likely to recognize the 
same or very similar pMHC ligands (Extended Data Fig. 3, Supplementary Discussion; 
available at https://github.com/immunoengineer/gliph).

We carried out three tests to validate GLIPH. First, we ran multiple benchmarks on our 
training set of 2,068 unique sequences spanning eight tetramer specificities (Fig. 1a). We 
found that local motifs clustered 10% of the TCR database, global CDR3 similarity 
clustered 12% of the TCRs into clusters, and local and global GLIPH combination placed 
14% of TCRs in clusters (clusters of minimum size 3 and shared Vβ; Extended Data Fig. 
4a). We observed more clusters forming and a higher percentage of TCRs clustered as the 
number of available input TCRs increased. GLIPH clustered less than 0.5% of TCRs when 
run on naive sequences, indicating a low false-positive rate. When run on a mixture of 8 
specificities, over 94% of clustered TCRs were correctly grouped with other TCRs of 
common specificity (Extended Data Fig. 4b). In comparison, clustering by global only, local 
motif only, contact probability agnostic, and an independent clustering algorithm CD-HIT, 
all were less effective or ineffective at successfully identifying TCRs of common specificity9 

(Extended Data Fig. 4c). Thus GLIPH produced more clusters with greater accuracy than the 
other methods. Finally, as a test of whether GLIPH could recognize new members of 
existing specificity groups, we ran GLIPH on replicates containing only half of the subjects 
(Supplementary Table 7), and then used those specificity groups to score TCRs in the other 
half of the subjects. GLIPH was able to successfully recognize new TCRs of known 
specificity groups in the circulating T cells of new donors, providing a basis for reading the 
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TCR repertoire (Extended Data Fig. 4d). The excess of specificity groups over the number 
of pMHCs also shows that there are multiple distinguishable TCR sequence solutions to a 
given ligand (Fig. 2a, Extended Data Fig. 4b), which was recently demonstrated in the 
context of an influenza CD8+ T cell epitope10.

Our second validation test evaluated the performance of GLIPH in a completely independent 
test set: TCR sequences from M. tuberculosis-specific CD4+ T cells isolated from 22 
subjects with a latent infection (Supplementary Table 3). In brief, peripheral blood 
mononuclear cells (PBMCs) were stimulated with a large collection of M. tuberculosis 
peptides (n = 300) which can elicit a CD4+ response or an M. tuberculosis lysate for 4 and 
12 h, respectively, and activated CD4+ T cells were selected on the basis of increased surface 
expression of CD154 or cytokine secretion11–13 (Extended Data Fig. 5b, c). Single cells 
were sorted into 96-well plates and amplified and sequenced for TCRαβ sequences, as well 
as scored for a panel of 18 cytokine genes using multiplex primers as previously described14 

(Extended Data Fig. 6). The majority of cells showed a TH1*-like phenotype including IFNγ 
and IL-2 production, no IL-17 production, and T-bet and RORC expression consistent with 
previous reports15,16. The TCRs from the samples were enriched for clonally expanded 
sequences compared with PBMC controls (Extended Data Fig. 7). We obtained 4,464 
independent TCRα and 5,711 TCRβ sequences from 22 individuals and analysed them with 
the GLIPH algorithm. GLIPH clustered 14% of all TCRs into 141 clusters of which 43 
contained at least three unique TCRs. We focused on clusters that contained TCRs from at 
least 3 individuals: 16 distinct TCR β specificity groups that were shared between three or 
more individuals and contained at least four uniquely derived TCRβ clones. Among that set, 
there were six specificity groups that exhibited significant V-gene bias (P < 0.05), CDR3 
length bias (P < 0.05), and were overrepresented in clonally expanded T cells (Fig. 3, 
Supplementary Table 5).

As an initial validation of the GLIPH-predicted specificity groups in the test set, these 22 
individuals were comprehensively HLA-typed by sequencing to determine whether the 
GLIPH-derived TCR clusters also correlated with shared HLA alleles (Supplementary Table 
6). We found 69 unique HLA class II alleles in our 22 subjects, but only one or two enriched 
candidate HLAs within the contributors to each GLIPH sequence group. To determine 
whether this predicted HLA restriction was correct, we chose three or four TCR 
heterodimers from different individuals from five different representative TCR specificity 
groups (I–V) that scored well for the GLIPH parameters (Fig. 3). Using a luciferase reporter 
assay17, we found that, as predicted, group I responded to the class II allele DQA1*0102/
DQB1*0602, group II responded to DRB1*1503, group III responded to DRB1*0301, group 
IV responded to DRB3*0301, and group V responded to DRB5*0101 (Fig. 4a–c, Extended 
Data Fig. 8).

To determine the M. tuberculosis peptide specificity, we used the IEDB HLA-II binding 
prediction algorithms to rank likely antigen candidates known to be in the M. tuberculosis 
megapool18, and then performed individual peptide stimulation assays on the HLA-matched 
APC cell line to quickly identify the target peptide for all TCR specificity groups (I–V) (Fig. 
4d, e, Extended Data Fig. 8). In each case, all or most TCRs in a given group recognized the 
same M. tuberculosis peptide (Fig. 4f–h).
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To analyse the determinants of specificity independently, we performed a glycine 
mutagenesis scan of TCR025, which confirmed that the GLIPH predicted contact motif was 
indeed critical, with even conservative single amino acid changes (A>G and L>G) being 
sufficient to abolish specificity but not residues flanking either side (Fig. 5a).

As our final validation test of the ability of GLIPH to identify specificity regions of a TCR, 
and predict the specificity of new TCRs using this information, we generated de novo TCRs 
against the M. tuberculosis DRB1*1503-restricted peptide Rv119515–29. From subject-
derived TCR CDR3 sequences identified by GLIPH as being convergent against this antigen 
(Fig. 5b), we calculated a CDR3 positional weight matrix (PWM) (Fig. 5c) to design TCRβ 
sequences (paired with the TCRα from known binder TCR025) as having the same 
specificity. From the GLIPH TCR PWM, we analysed the top 1,000 predicted CDR3β TCRs 
specific to M. tuberculosis DRB1*1503-restricted Rv119515–29. Some of these CDR3s were 
identical to those of observed binders, although in the context of TCR025 Vβ, Jβ, Vα, Jα 
and CDR3α, differed by at least 45 amino acids in the total TCR (Extended Data Fig. 9). We 
found that many predicted binders, none of which was found in our study, had better scores 
than the naturally derived TCRs obtained from subjects (Fig. 5d). From the GLIPH 
prediction set, we selected 10 of the best scoring predicted TCRs that were at least two 
amino acids different from TCR025, and 8 out of 10 TCRs demonstrated antigen-specific 
activation to Rv119515–29, with two such TCRs being significantly more active than 
TCR025 (Fig. 5e). This shows that GLIPH is able to predict new members of a specific 
group and even to improve sensitivity.

In summary, we find that the GLIPH algorithm can organize TCR sequences into distinct 
groups of shared specificity either within an individual or across a group of individuals. 
Second, it facilitates T cell antigen discovery as shown by our analysis of M. tuberculosis-
specific T cells. Third, the TCR motifs that GLIPH identifies allow one to read the T cell 
receptor repertoire directly from primary sequence data. In fact a fourth, and perhaps the 
most important, use of GLIPH is to analyse αβ T cell responses independently of knowing 
the epitope specificity and MHC restriction of the set of TCRs, at least with a set of 
sequences enriched for a particular pathogen, as shown here. The number and size of such 
clusters provides information as to the complexity of an immune response, or the presence 
of an important shared specificity across individuals. This could be very useful in analysing 
the T cell response to a vaccine or infection in a given cohort, quantifying how many distinct 
specificity groups are active in each individual, and determining whether this correlates with 
a particular outcome.

Methods

Data reporting

No statistical methods were used to predetermine sample size. The experiments were not 
randomized and the investigators were not blinded to allocation during experiments and 
outcome assessment.
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Antigen-specific T cells

Peripheral blood mononuclear cells (PBMCs) were obtained from 28 healthy blood 
donations of known HLA type at HLA-A, HLA-B, and HLA-DR loci and known infection 
status for EBV and CMV from the Stanford Blood Center. Cells were stained with 
fluorophore-conjugated pMHC tetramers of MHC HLA-A*0101, HLA-A*0201, HLA-
B*0702, or HLA-DRB1*0401 backgrounds. The tetramers were engineered to display 
peptides of EBV, CMV, or flu through photo-exchange of a surrogate peptide in the presence 
of a molar excess of a replacement peptide. For EBV HLA-A2, a commercial dextramer was 
also used. Cells were sorted by fluorescent activated cell sorting (FACS) to collect either as 
single-cells or bulk populations of antigen-specific cells in RT reverse-transcriptase one-step 
reaction solution (Extended Data Fig. 5a). During single-cell sorting, index sorting was 
applied to collect activity on a number of additional markers including CD45RA and 
CD62L. Sorting for tetramer specific cells was conducted on a BD Aria II (BD Biosciences). 
For single-cell sorting M. tuberculosis-specific CD4+ T cells using activation marker 
CD154, PBMCs were thawed in complete RPMI 1640 medium at 2 × 106 cells per ml and 
recovered 12 h before stimulation. PBMCs were stimulated with M. tuberculosis lysate (10 
μg ml−1) for 12 h in the presence of 1 μg ml−1 purified anti-CD49d antibody and anti-
CD154-PE. After stimulation, cells were harvested and stained with surface markers for 
sorting. For single-cell sorting cytokine-secreting cells, PBMCs were stimulated with either 
CFP10/ESAT-6 peptide pool or Megapool (2 μg ml−1 for each peptide) for 4 h in the 
presence of 1 μg ml−1 purified anti-CD49d antibody. Cells were collected and stained using 
the IL-2 or IFNγ Secretion Assay Kit (Miltenyi Biotec). Sorting was conducted on a BD 
FACSJazz cell sorter (BD Biosciences).

M. tuberculosis-infected study participants

22 adolescent participants, aged 12 to 18 years, were randomly selected from a previous 
cohort study, which enrolled in the town of Worcester, approximately 100 km from Cape 
Town, South Africa, between 2005 and 2007 (ref. 19). This study was approved by the 
Faculty of Health Sciences Human Research Ethics Committee of the University of Cape 
Town and Human Research Protection Program (HRPP) at Stanford University. Written 
informed consent was obtained from the parents of adolescents and assent was obtained 
from adolescents. Venous blood was collected for PBMC isolation, QuantiFERON TB Gold 
In-tube (Qiagen) (QFT) and a tuberculin skin test was administered. All samples used in this 
study were from asymptomatic QFT-positive adolescents. PBMCs were obtained by density 
gradient centrifugation using Ficoll and cryopreserved using freezing medium containing 
90% fetal bovine serum and 10% DMSO. The 22 participants were HLA typed at Sirona 
Genomics (now Immucor inc.), under supervision of M. Mindrinos.

Cell lines and reagents

The Jurkat 76 T cell line, deficient for both TCRα and TCRβ chains, was provided by S.-A. 
Xue (Department of Immunology, University College London). The NFAT reporter stable 
cell line (J76-NFATRE-luc) was constructed using lentiviral transfer of pNL(NlucP/NFAT-
RE/Hygro) (Promega) into Jurkat 76 cell. The K562 cell line was obtained from the ATCC 
and cultured under standard conditions. Artificial antigen presenting cells were constructed 
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using lentiviral transfer of different HLA alleles (gBlock ordered from IDT) into K562 cells. 
These cell lines were used without further authentication. All cell lines were tested for 
mycoplasma and verified negative. Anti-CD4-APC, anti-CD69-APC/Cy7, and anti-TCR α/
β-FITC abs were purchased from BioLegend. Anti-CD3-PB, purified anti-CD49d and anti-
CD154-PE Abs were purchased from BD Biosciences.

Antigens

M. tuberculosis CFP10/ESAT-6 peptide pool: 22 peptides spanning the length of the CFP10 
molecule and 21 peptides spanning the length of the ESAT-6 molecule were purchased from 
PEPscreen (Sigma). Each peptide was 15 amino acids long and overlapped its adjacent 
peptide by 11 residues. Peptide was dissolved in DMSO at 100 μg ml−1 and then mixed 
together to make CFP10/ESAT-6 peptide pool. Megapool peptides containing 300 epitopes 
from 90 M. tuberculosis proteins were provided by A. Sette (La Jolla Institute for Allergy & 
Immunology). M. tuberculosis whole-cell lysate (strain H37Rv) was provided by Bei 
Resources.

Sequencing of single-cell TCRs

Single cells were sorted into 96-well plates containing 12 μl of oneSTEP RT reaction buffer. 
The cells were then amplified for TCRβ and TCRα sequences, using multiplex primers, a 
DNA-nesting and multiplex process as previously described14,20. During the PCR priming, 
DNA multiplex barcodes were attached to each amplicon such that 96-well plates of single 
cells were processed on a single MiSeq 2 × 300 bp sequencing run.

Bulk sequencing of TCRs

Bulk collections of tetramer-specific T cell populations were collected into RLT lysis buffer 
(Qiagen). RNA was extracted from the pool and subjected to amplification and DNA 
multiplex barcoding through the use of previously described multiplex primer sets and a 
previously described plate-based multiplex priming reaction. Using this method, up to two 
96-well plates of samples could be sequenced in parallel on a single MiSeq 2 × 300 bp 
sequencing run to generate nearly 21 million reads.

Computational analysis of single-cell and bulk TCR sequences

Fastq reads were paired-end assembled and converted to fasta. The fasta sequence files were 
demultiplexed to assign every read to a plate and well. All reads were separated into subsets 
of 10,000 reads or less per file. Each file was submitted for parallel analysis using the 
previously described VDJFasta algorithm14,20–22. For single-cell samples, the total 
population of reads is analysed within each given well, identifying a single cell only if 
empirically determined boundary cutoffs of dominance for a single TCRβ and TCRα clone 
are encountered, as previously reported8. The resulting full sequence for the TCRα chain(s) 
and TCRβ chain are then combined with any index FACS phenotypic markers specific to 
these single cells.
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Computational error correction of bulk TCR sequences by replicates

PCR error, PCR contamination, read error and sample swaps can all contribute to error when 
performing bulk sequencing. To mitigate errors in bulk sequencing, RNA from each sample 
was split and processed as duplicate technical replicates. Comparison of clone frequencies 
across replicates established confidence intervals in apparent clone frequencies, allowed 
calculation of R2 reproducibility of clone frequencies across replicates, and enabled 
elimination of PCR and sequencing read errors resulting in a clone appearing only in one 
replicate. Any clones not encountered across replicates were rejected, assumed to be either 
read errors or too low in abundance for reliable recovery across replicates. As each replicate 
was sequenced to an average depth of 10,000 reads, this procedure resulted in the reliable 
recovery of all clones with frequencies 5 × 10−4. Within a sample, TCR reads differing from 
another more frequent clone by only one nucleotide were assumed to be read errors of the 
more abundant species and were collapsed into that higher-frequency read.

Structural analysis of TCR positional antigen contact probability

All amino acid sequences for all solved PDB structures were downloaded and scored against 
the TCR profile HMM with an e-value cutoff of <1 × 10−5, and blasted against a reference 
database of MHC sequences with an e-value cutoff of <1 × 10−10. Sequences from structures 
containing both an MHC and TCR were aligned. Every residue in every TCR of such 
sequences was annotated as potential-contact if within 5 Å of peptide in the pMHC complex 
as determined by Modeller 9.17 and confirmed manually using UCSF Chimera. Using these 
data, an average positional contact probability was generated for each homologous position 
in the TCR sequence alignment. The positional contact probabilities were used as a 
weighting scheme to influence importance of convergence motifs at homologous positions 
by GLIPH. It was observed that CDR3β contacts were limited to IMGT positions 107–116 
irrespective of whether the four solved structures containing convergence group 
representatives in Fig. 2a and Extended Data Fig. 2a were withheld from the data set when 
calculating contact probability.

Naive reference repertoire generation

For this study, the naive control data set consists of 162,165 non-redundant V-J-CDR3 
sequences from CD45RA+RO− naive T cells from two individuals7, 83,910 non-redundant 
V-J-CDR3 sequences from CD4 naive T cells from 10 healthy controls, and 27,292 non-
redundant V-J-CDR3 sequences from CD8 naive T cells from 10 healthy controls8, for a 
total of 268,955 unique naive V-J-CDR3 sequences from 12 individuals. CDR3 length 
distributions and CDR3 3mer motif composition were comparable in all reference sets 
(Extended Data Fig. 10).

Calculating TCR global convergence

Global similarity is defined as the CDR3 hamming distance (number of CDR3 amino acid 
differences) between two TCRs using the same Vβ segment and having a same-length 
CDR3. In order to identify a global similarity cutoff below which two TCRs can be assumed 
to share a common specificity, GLIPH performed repeat random CDR3-length stratified 
resampling of an unselected naive TCR reference set. Using a sampling depth s of TCRs 
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equal in size to the query set, GLIPH performs a large number (default, 1,000) of random 
samplings of s naive TCR sequences. For each sampling, each TCR in the set is compared to 
every other sample, and the lowest global similarity is recorded. The proportion of all TCR 
similarity distances is then taken as a probability of observing TCRs of that level of global 
similarity by chance in absence of selection. (For more details, see Supplementary 
Methods.)

Calculating TCR local convergence

Within any set of T cell receptors, a collection of all continuous 2mers, 3mers, 4mers and 
5mers can be extracted and evaluated for their frequency within the set. Positive selection of 
each observed motif can be quantified by comparison to expected motif frequency 
distributions obtained during repeat resampling from an unselected repertoire (default 1,000 
random resamplings; Extended Data Fig. 10). A fold-change of enrichment can be 
calculated as the observed frequency of the motif over the expected frequency of the motif 
as observed in repeat random samplings from the naive distribution. A probability of non-
enrichment can be calculated as the proportion of random subsample simulations that obtain 
an unselected sample where the motif is at an equal or higher frequency than found in the 
observed set. Local convergence analysis is only performed within residues with at least a 
5% probability of antigen contact (positions 107–116). Amino acid motif frequencies in the 
TCR sets were comparable in content and highly correlated in degree, with the result being 
that GLIPH results are robust to the specific naive TCR reference set used (Extended Data 
Fig. 10b).

If each motif could only be observed in a given sequence once, then the distribution of 
sampling motif frequency means become normally distributed and this result is equivalent to 
calculating the frequencies of all motifs in the reference database, and then calculating one-
sided confidence intervals for expected frequencies of any given motif in the reference 
database at any given sampling depth:

(1)

where n is the sample set non-redundant CDR3 sample size, y is the motif mean frequency, 
OS indicates one-sided confidence interval, t is the t-distribution critical value, and s is the 
s.d. estimate at that sampling depth for the motif, as

(2)

(see Supplementary Methods).

Glanville et al. Page 10

Nature. Author manuscript; available in PMC 2018 February 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Generating and scoring GLIPH specificity groups

After analysing global convergence cutoffs and local convergence motifs, GLIPH clusters all 
TCRs, creating an edge between TCRs that share either global similarity below the 
significance cutoff (that is, differ by less than 2 amino acids), or share a significant motif 
(that is, share a motif ‘RSS’ that is >10-fold enriched and <0.001 probability of occurring 
than this level of enrichment in naive TCR pools). Clusters can be optionally filtered for 
shared V-gene usage, where only edges between TCR members with the most common V-
gene are kept. These resulting clusters are GLIPH specificity groups.

GLIPH specificity groups can be provided a score that combines the analysis of CDR3 
motifs, enrichment of common V-genes, enrichment of a limited CDR3 length distribution, 
enrichment of clonally expanded clones, enrichment of shared HLA in donors, and cluster 
size. V-gene enrichment and CDR3 length distribution enrichment analysis is performed by 
calculating the Simpson diversity index for V-genes/CDR3-lengths within clonal members 
of GLIPH specificity groups, and calculating the probability that a random selection of TCR 
sequences of the same size would generate a Simpson score equal or superior to the 
observed score

(3)

Enrichment of clonal expansion is similarly calculated as the probability that a random set of 
equal size from the same data set would have at least this same number of expanded 
members. When HLA data are available, enrichment of HLA is calculated for each HLA 
allele found in at least two members in the GLIPH convergence group, in each instance 
calculating the probability that this particular HLA would be as enriched in a set of this size 
by random chance as is observed in the selected set. Global similarity is scored as previously 
defined. Local similarity significance is calculated as previously described. Finally, GLIPH 
cluster size can be scored by evaluating the probability of a network of that size forming by 
random chance in an unselected repertoire sampled at equal depth. The summary score of 
any GLIPH cluster is a combination of all individual scores, calculated as either a 
probability conflation

(4)

where P (X = C) is the probability that X belongs to class C, given N independent tests Pi, or 
the first principal component (Supplementary Methods, Supplementary Table 4). For 
specificity groups based on local motifs, V-gene usage, CDR3 length and clonal expansion 
appear as independent variables. However, it should be noted that for specificity groups 
defined by global similarity, the CDR3 length, and to some extent V-gene usage, are no 
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longer truly independent variables. (GLIPH available at https://github.com/immunoengineer/
gliph; for more details, see Supplementary Methods.)

Predicting specificity and de novo TCR specificity design with GLIPH

For a given convergence group, an N-terminal positional weight matrix (PWM) can be 
constructed of the CDR3 by creating a left-justified alignment of CDR3 amino acid residues 
(Fig. 5b) and tabulating the frequency of each amino acid at each homologous position (Fig. 
5c). A score of any TCR sequence to the PWM can then be calculated as the product of the 
probability of each amino acid in the scored sequence at the homologous position in the 
PWM, employing pseudocounts of 0.5% for any amino acid not observed in the PWM input 
alignment (Fig. 5d). When attempting to identify new members of an existing GLIPH 
specificity group, only the first 10 N-terminal amino acid positions are used during scoring: 
this allows recognition of new TCRs of different lengths from the PWM, and leverages an 
observation that the conserved motifs always appear to be fixed a specific length from the N 
terminus and within the first 10 amino acids (Extended Data Fig. 4d).

(5)

where PWM is the positional weight matrix of amino acid frequencies per position, i is the 
amino acid position in the PWM, and ai is the frequency of amino acid a at position i in the 
PWM. The resulting score s can be normalized by comparison to a large set of naive TCRs 
as

(6)

where s is the PWM score of a TCR under evaluation (Formula 5), N is the set of naive TCR 
database (200,000 for Extended Data Fig. 4d), Sn is the PWM score of naive TCR n of set N, 
and Ps is the probability of that PWM score occurring in naive TCRs. To account for V-gene 
mismatch, a V-gene mismatch penalty v is applied during scoring (v = −2 in Extended Data 
Fig. 4d).

When attempting to de novo synthesize new members of an existing GLIPH specificity 
group, a global PWM of CDR3s of the same length is used. The top 1,000 highest predicted 
scoring TCRs are emitted from the PWM by stochastic sampling, and TCRs with the highest 
scores are preferentially tested (Fig. 5d, e). For normalization, the resulting score can be 
compared to a distribution of a large number of naive sequences scored against the same 
PWM, to produce a probability of membership.
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Lentiviral TCR transduction

Plasmids for lentiviral transduction were provided by the Crabtree laboratory in Stanford 
University. Lentiviral transduction was performed as previously described23. In brief, TCRα 
chain, P2A linker and β chain fusion gene fragments were ordered from IDT and cloned into 
MCS of N103 vector (nLV Dual Promoter EF-1a-MCS-PGK-Puro). A GFP marker was also 
included through T2A linker. HEK-293T cells were plated on 10-cm dishes at 5 × 106 cells 
per plate 24 h before transfection. The culture medium was changed before transfection. 
Lentiviral supernatants were prepared by co-transfection of 293T cells, using 10 μg of 
transfer vector, 7.5 μg of envelope vector (pMD2.G), 2.5 μg of packaging vector (psPAX2) 
and 75 μl PEI (Sigma). The culture medium was replaced 16 h after transfection and viral 
supernatant was collected 48 h later. The viral supernatants were filtered through a 0.45 μm 
SFCA syringe filter (Corning) and concentrated by centrifuge with 100 K Amicon Ultra-15 
filter (Millipore). Concentrated viruses were used for J76-NFATRE-luc cell transduction 
using spinoculation for 2 h in the presence of 6 μg ml−1 polybrene (Sigma). 48 h after 
transduction, expression of the TCR was analysed by flow cytometry and both GFP and 
TCR positive cells were sorted for epitope screen.

Epitope screen

For peptide screen, 100 μl TCR transduced J76-NFATRE-luc cells (106 per ml) were co-
cultured with 100 μl HLA-transduced K562 cells (106 per ml) in a 96-well plate. Peptide 
pool or individual peptide was added to the well at 2 μg ml−1. After 8 h incubation, cells 
were collected and luciferase activity was measured using Nano-Glo Luciferase Assay 
(Promega). Fold induction of luciferase activity was calculated referring to unstimulated 
samples.

Code availability

The open source code is available at GitHub (https://github.com/immunoengineer/gliph).

Data availability

All data that support the findings of this study are provided as Supplementary Data.
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Extended Data

Extended Data Figure 1. TCRs specific to common antigens show motifs within a limited region 
of CDR residues with high structural contact propensity
a, Probability of IMGT TCR CDR positions being within 5 Å of peptide antigen, as 
tabulated from 52 published crystal structures of TCR–pMHC interactions (Supplementary 
Table 2), and displayed as a heat map on representative TCR 2j8u. Positions with less than 

25% contact probability are shown in black. b, Alignment of 52 non-redundant (<95% 
amino acid identity between any pair) TCR sequences from TCR–pMHC PDB structure 
complexes. Positions within 5 Å of peptide antigen are indicated in dark blue. Linear set of 
3–5 amino acids in CDR3β observed in almost every structure, which TCRβ–CDR3 IMGT 
positions 108–111 being in contact in 90% of TCR structures. Minimal contacts observed by 
CDR1 and CDR2 of either chain. TCRs are clustered into five general contact modes 
according to contact profiles of all six CDRs.
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Extended Data Figure 2. Crystal structure representative of TCR specificity groups
a, Class II single-cell paired α/β sequencing with crystal structure representative indicating 
variable CDR3β length and discontinuous role of CDR3α. Discontinuous negatively 
charged residues in structure 1J8H coordinate lysine-positive charges in peptide; negatively 

charged residues indicated in orange in alignment when found. b, Positional amino acid bias 
in flu HLA-A2 dominant motif CDR3β and CDR3α convergence group, normalized by 
amino acid diversity in the unselected repertoire. Enrichment of RS(S/A) motif in TCRβ 
compared with naive distribution. Enrichment of SQ at IMGT positions 112, 113 in TCRα, 
with enrichment of glycine at multiple positions.
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Extended Data Figure 3. Three-step GLIPH algorithm
GLIPH searches for global and local (motif) CDR3 similarity in TCR CDR regions with 
high contact probability. Motif significance and global similarity cutoffs are established by 
repeat random sampling against an unbiased reference pool of TCRs. Second, all identified 
global and local relationships between TCRs are used to construct clusters of TCR 
specificity groups. Third, each specificity group is analysed for enrichment of common V-
genes, CDR3 lengths, clonal expansions, shared HLA alleles in recipients, motif 
significance, and cluster size. Enrichment probability is obtained by calculating the 
probability of obtaining at least the observed Simpson diversity index measure for that 
feature compared with a random sampling of equal size from the source data set. The 
resulting features are combined into a specificity group score for each group.
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Extended Data Figure 4. Benchmark of GLIPH subcomponents and complete algorithm on 
random naive TCRs or a mixed training set pool of pMHC tetramer+ TCRs of 8 known 
specificities
a, GLIPH clusters up to 14.5% of tetramer+ TCRs, while clustering less than 0.5% of naive 
TCRs, a combination of global CDR3 similarity and local motif enrichment resulting in 

more clustering than either individually. b, The cluster results of applying GLIPH to the 
mixed pool of tetramer-sorted TCRs. Each node is a TCR, their specificity indicated by 
colour. Edges between TCRs indicating a GLIPH-predicted shared specificity; light grey 
indicate shared local motif, and dark grey indicate shared global similarity. Over 95% of 

cluster members are grouped with other TCRs of the same specificity. c, GLIPH components 
evaluated for percentage of TCRs clustered versus percentage of correct specificity 
assignments. Global CDR3 clustering by hamming dist = 1 or dist = 2 are reported. Global 
CDR3 similarity clustering by CD-HIT, with clustering cutoffs 0.8 or 0.9 reported. Local 
motif similarity clustering with and without structural constraints reported. Complete 
GLIPH, including global CDR3 identity, local CDR3 motif similarity, structural constraints 
and clustering scoring, resulted in 14.5% of TCRs clustering with 95% of cluster members 
correctly grouped with other TCRs of shared specificity. For global similarity, distance 1 
resulted in effective grouping of TCRs whereas distance 2 resulted in predominantly mixed 
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clusters. For local motifs, effective TCR clustering could only be obtained when structural 
contact probability masks were applied. Similarly, although CD-HIT was not effective at 
clustering TCRs by common specificity when provided the entire TCR sequences, when 
offered only the high contact probability CDR3s, it was able to perform effective clusters 

provided an appropriate clustering threshold. d, When run on replicate A containing TCRs 
from half of study subjects, GLIPH produced specificity groups whose positional weight 
matrices (PWMs) could then be used to score the TCRs from replicate B subjects (equations 
(5) and (6) in Methods). GLIPH scoring identifies new TCRs of correct specificity from new 
subjects.

Extended Data Figure 5. Platform for PBMC stimulation and characterization of antigen-
specific TCRs
a, Gating strategy used for isolating and sorting tetramer-positive T cells. b, Frozen PBMCs 
from QFN+ donors are thawed, recovered and stimulated with either M. tuberculosis lysate 
or peptide pool. Antigen-specific T cells are single-cell-sorted into 96-well plate for TCR 

amplification using established protocol14. c, Gating strategy used for isolating and single-
cell sorting antigen-specific T cells.
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Extended Data Figure 6. Phenotypic analysis of clonal expanded M. tuberculosis-specific CD4+ T 
cells
a, Gating strategy for isolating antigen-specific T cells. PBMC from one QFN+ donor 
(02/0259) was stimulated with M. tuberculosis lysate and then stained with activation 
markers CD69 and CD154. Antigen-specific CD4+ T cells were sorted by gating on 
CD69+CD154+ population. Alternatively, PBMCs were stimulated with megapool peptide 
library. Antigen-specific CD4+ T cells were isolated using cytokine capture assay, IL-2 or 

IFNγ. b, 18-parameter (parameters listed on right side) phenotypic analysis of M. 
tuberculosis-specific CD4+ T cells from all the 22 donors. Individual T cells are grouped by 
TCR sequence; each colour on the bar above the heat maps represents a distinct and clonal 
expanded TCR sequence. The majority of cells presented a TH1*-like phenotype including 
IFNγ and IL-2 production, T-bet and RORC expression, as is characteristic of previously 
reported M. tuberculosis responses.
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Extended Data Figure 7. Clonal expansion of M. tuberculosis-specific CD4+ T cells
Clonal analysis of M. tuberculosis-specific CD4+ T cells from all the 22 donors using 
different selection strategy, including stimulation by ESAT6/CFP-10 pool (C/E Pool) or 
Megapool followed by cytokine capture assay and M. tuberculosis lysate stimulation 
followed by CD154+ selection. Each dot represents a distinct TCR sequence and the count 
represents the number of repeat. PMA/ionomycin stimulation was used as a non-specific 
stimulation control.
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Extended Data Figure 8. Epitope screen using luciferase assay
a, Each individual peptide from megapool was tested against J76-NFATRE-luc cell 
expressing TCR025 in co-culture with K562 expressing DRB1*1503. Column 1–300: 
individual peptide from Megapool, column 301: CD3/CD28 stimulation as positive control. 
Peptides predicted to be in the top 15 percentile of binding to each HLA by the MHC-II 
Consensus method are indicated by grey bars. Mean ± s.d. (n = 3, biological replicates) are 

shown. The insert table shows the restricted HLA type and responding peptides. b–d, A 

similar screen was also performed for TCR054 (b), TCR098 (c) and TCR088 (d).
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Extended Data Figure 9. Amino acid alignment of naturally occurring and de novo group II 
TCRs
Amino acid alignment presents first the TCRβ chain followed the TCRα chain for naturally 
occurring group II natural TCRs n1–n10 from Fig. 5b (n denotes natural) and de novo TCRs 
De9–De18 from Fig. 5e. All segment identities are reported for each sequence in the 
sequence headers. Positional conservation is coloured as dark blue if conserved, and light 
blue or white if variable.
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Extended Data Figure 10. Comparison of CDR3 length and 3mer motif composition of naive 
TCR reference set
The naive control data set consists of 162,165 non-redundant V-J-CDR3 sequences from 
CD45RA+RO− naive T cells (labelled with the author name ‘Warren’)7, 83,910 non-
redundant V-J-CDR3 sequences from CD4 naive T cells from 10 healthy controls, and 
27,292 non-redundant V-J-CDR3 sequences from CD8 naive T cells from 10 healthy 

controls8, for a total of 268,955 unique naive V-J-CDR3 sequences. a, b, Analysis of CDR3 

length distributions (a) and motif frequency distributions (b) indicates that the three naive 
reference sets have very similar CDR3 length distributions and 3mer amino acid motif 
frequency distributions (r = 0.99, r = 0.95, and r = 0.94 Pearson correlation coefficients for 
CD4 × CD8, CD4 × Warren, and CD8 × Warren, respectively).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characteristics of TCRs reactive to common antigens across individuals
a, MHC–tetramer-sorted antigen-specific TCR repertoires of common pathogen epitopes as 
well as public sources (n = 2,068). Diversity is calculated as the Shannon entropy of 
observed clones, where clone counts are the number of individuals expressing each clone. 

Percentage of all clones that were found in more than one individual reported as public. b, 
Representative Venn diagram of tetramer EBV-BMLF1280–288-GLC-specific clonal overlap 

in three HLA-A*0201+/EBV+ donors. c, Minimum Hamming distance of CDR3βs in MHC–
tetramer-sorted antigen-specific pools, rendered non-redundant within each subject, 
compared with equal-sized randomly sampled naive control pools. s.d. of 100 repeat random 

samples of control TCRs reported on bars (*P < 0.01 Chi-square test). d, CDR3s in MHC–
tetramer-sorted antigen-specific pools are enriched for a subset of motifs. Replicates A and 
B consisting of TCRs from different sets of donors (Supplementary Table 7) reproduce the 
same motifs with correlated enrichment assessed by Pearson correlation coefficient.
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Figure 2. Crystal structure representatives of TCR specificity groups reveal the structural basis 
for antigen-specific paratope convergence
a, Network analysis of tetramer+ CDR3 clusters indicates relationships between TCRs 
(nodes) sharing global CDR3 similarity (black edges) or local CDR3 motifs (grey edges: 
motifs >10 fold enriched, 0.001> probability of enrichment by chance). Grey arrows indicate 
representative specificity group, accompanied with representative CDR3 alignment and 
crystal structure. Significant motif residues are highlighted in red in both CDR3 alignments 
and structure. In alignments: low contact probability, grey. In structures: MHC, grey; 

peptide, orange; TCRβ, light blue; TCRα, cyan. b, Single-cell paired α/β sequencing with 
crystal structure representative reveals coordinated motifs in both TCRβ and TCRα CDR3 
that define paratope specificity.
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Figure 3. TCR specificity groups and predicted HLA-restriction among M. tuberculosis-infected 
subjects
CDR3 α/β amino acid sequences from five GLIPH TCR specificity groups. Yellow-coloured 
boxes highlight the predicted common HLA class II alleles for each specificity group 
(combinatorial sampling probability <0.013 DRB1*15 for group II, probability <0.007 
DRB1*03 for group III, probability <0.03 DRB3*03 for group IV, probability <0.02 
DRB1*15/DRB5*01 for group V). Green-coloured boxes highlight the TCRs that have been 
validated in vitro. Red outlines indicate actual HLA as determined by reporter assay.
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Figure 4. Identification of common antigen recognition by TCR specificity groups
a, Group I TCRs were tested against candidate HLA alleles using CFP10/ESAT-6 pool (C/E 

Pool). b, c, Group II (b) and group III (c) TCRs were tested using megapool. Negative 
control, PBS; positive control, CD3/CD28 stimulation. Mean ± s.d. (n = 3, biological 

replicates) shown. *P < 0.05 and **P < 0.005 two-tailed Student’s t-tests. d, Individual 
peptides from C/E Pool tested against TCR001. Top 15th percentile of NetMHC-predicted 

DQA1*0102 binding indicated by grey bars. Insert table shows identified peptide antigen. e, 

Restricted HLA types and responding peptides for group II and III TCRs. f–h, Dose-
dependent response of group I, II and III TCRs to their corresponding epitopes. Mean ± s.d. 
(n = 3, biological replicates) shown.
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Figure 5. Mutagenesis validation and de novo TCR design
a, Glycine scan of CDR3β of TCR025 (group II). Each mutant was stimulated by 
DRB1*1503-restricted Rv119515–29, as well as a CD3/CD28-positive control. Mean ± s.d. 

(n = 3, biological replicates) shown. b, Group II CDR3β sequences with common CDR3 

length. c, Positional weight matrix (PWM) reports observed CDR3β positional amino acid 

frequencies from (b). d, Top 1,000 theoretical TCRs and scores from PWM (equation (5) in 
Methods). Top 10 predicted TCRs (De18–De09) shown in red. Natural TCRs obtained from 

donors shown in yellow. e, De18–De09 were stimulated by DRB1*1503-restricted 
Rv119515–29. Blue indicates modified amino acids and red dash line indicates the basal 
activity. Mean ± s.d. (n = 3, biological replicates) shown. Activity compared to TCR025, *P 
< 0.01 two-tailed Student’s t-test.
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