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Predicting, understanding, and controlling the mechanical behavior is the
most important task when designing structural materials. Modern alloy sys-
tems—in which multiple deformation mechanisms, phases, and defects are
introduced to overcome the inverse strength–ductility relationship—give raise
to multiple possibilities for modifying the deformation behavior, rendering
traditional, exclusively experimentally-based alloy development workflows
inappropriate. For fast and efficient alloy design, it is therefore desirable to
predict the mechanical performance of candidate alloys by simulation studies
to replace time- and resource-consuming mechanical tests. Simulation tools
suitable for this task need to correctly predict the mechanical behavior in
dependence of alloy composition, microstructure, texture, phase fractions, and
processing history. Here, an integrated computational materials engineering
approach based on the open source software packages DREAM.3D and DA-
MASK (Düsseldorf Advanced Materials Simulation Kit) that enables such
virtual material development is presented. More specific, our approach con-
sists of the following three steps: (1) acquire statistical quantities that describe
a microstructure, (2) build a representative volume element based on these
quantities employing DREAM.3D, and (3) evaluate the representative volume
using a predictive crystal plasticity material model provided by DAMASK.
Exemplarily, these steps are here conducted for a high-manganese steel.

INTRODUCTION

Controlling themechanical behavior is thekey task
when developing materials for structural applica-
tions. Replacing mechanical tests by simulation
studies to evaluate the mechanical performance of
candidate alloys is highly desirable as it enables a
significant reduction of resource allocation in the
alloy design process. However, in order to get reliable
results, the simulation tool needs to correctly predict
the mechanical behavior in dependence of alloy
composition, microstructure, and texture.

In this study, an integrated computational mate-
rials engineering (ICME) approach that enables
such virtual material development is presented. It
is based on the DREAM.3D1 and DAMASK2

(Düsseldorf Advanced Materials Simulation Kit)
software packages and consists of the following
three steps:

1. Acquire statistical quantities that describe a
microstructure.

2. Build a representative volume element (RVE)
based on these quantities using DREAM.3D.
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3. Evaluate the RVE using a predictive crystal
plasticity material model implemented in the
DAMASK framework.

Exemplarily, these steps are here conducted for a
high-manganese steel (HMnS).3,4 Like other mod-
ern high-performance alloys, HMnS combine multi-
ple deformation mechanisms to overcome the
inverse strength–ductility relationship.5,6 Besides
dislocation glide, both, transformation-induced plas-
ticity (TRIP) and twinning-induced plasticity
(TWIP), serve as additional deformation mecha-
nisms.7,8 From an engineering point of view, addi-
tional deformation mechanisms create the challenge
that they are influenced by several microstructural
and environmental parameters such as grain size,
texture, chemical composition, temperature, strain
rate, and the nonlinear interactions between them.
These complex interactions and influencing factors
can significantly hamper accelerated alloy design,
particularly when using the material under complex
loading and strain path conditions such as com-
monly encountered in engineering sheet-forming
applications. Hence, for complex engineering mate-
rials, it is indispensable to evaluate the performance
of potential microstructures by fast and reliable
simulations before conducting mechanical tests and
even before synthesizing prototype alloys. With
such simulation studies, a suitable regime in the
huge parameter space can be located beforehand in
order to conduct classical alloy prototyping and
mechanical tests only for target-oriented validation
of the computed domain.

In the proof-of-concept study presented here,
statistical microstructural quantities are retrieved
from an existing and experimentally well-charac-
terized material. This allows for a comparison of
calculated results with experimental data to evalu-
ate the capabilities of the approach. However, as
outlined below, using a predictive crystal plasticity
model and synthetic microstructure generation
raises the opportunity to use the procedure to also
investigate new materials with the aim of forecast-
ing suitable microstructures for different loading
states.

The study is organized as follows. First, to give
the reader a background of the investigated model
alloy, a concise synopsis on HMnS is provided. Next,
we explain how the microstructure features
obtained from the experimental characterization
are translated into appropriate statistical quanti-
ties. Then, it is discussed how these microstructure
measures are subsequently used for the generation
of representative microstructures using
DREAM.3D. After that, we explain the simulation
details of the crystal plasticity model implemented
into the DAMASK software package. Finally, after
presentation of the simulation results, we draw
conclusions and provide an outlook on how to
further improve and apply the methodology.

MODEL MATERIAL

The concept of HMnS is based on stabilizing the
face-centered cubic (fcc) austenite phase. This is
usually accomplished by adding a high amount of
manganese (15–30 wt.%). Small proportions of
carbon (0.05–1.00 wt.%), aluminium (0.0–3.0 wt.%)
and/or silicon (0.0–3.0 wt.%) can be added for tuning
the stacking fault energy and the oxidation layers.9

HMnS are considered to be part of the second
generation of advanced high-strength steels
(AHSS). The active deformation mechanism(s) in
HMnS mainly depend(s) on the stacking fault

energy (SFE), which is normally below 20 mJm�2

for TRIP steels and in the range between 20 mJm�2

and 40 mJm�2 for TWIP steels. In HMnS with SFE

values above 45 mJm�2, dislocation glide domi-
nates plastic deformation, whereas TRIP and TWIP
effects are suppressed.10,11 The selected TWIP steel
has a composition of 22.5Mn-1.2Al-0.3C wt.%. Its
SFE was determined by a subregular solution
thermodynamic model12 as approximately

25 mJm�2. Hence, deformation twinning is
expected to be the only active deformation mecha-
nism besides dislocation glide. Since the material
has been extensively investigated in previous
works,13–18 details on the production and post-
processing procedure15,19 are not repeated here.

INTEGRATED COMPUTATIONAL
MATERIALS ENGINEERING PROCEDURE

Experimental Characterization

From the initial material in hot-rolled condition,
six different microstructural states have been pro-
duced by imposing different (thermo-) mechanical
treatments. First, the material was cold-rolled to
30%, 40%, and 50% thickness reduction. From these
three states, recrystallized samples have been pro-
duced by subsequent annealing at 700� for 15 min
after 30% reduction and for 10 min after 40% and
50% reductions.

Details on sample preparation for the following
electron backscatter diffraction (EBSD) and x-ray
diffraction analyses used for the material charac-
terization can be found in an already published
study.15

A LEO 1530 field emission gun scanning electron
microscope operated at 20 kV accelerating voltage
and a working distance of 10 mm was used for
EBSD analyses. EBSD mappings were generated
with a step size of 0:28 lm. The HKL Channel 5
software was utilized for data post-processing and
the removal of wild spikes and non-indexed points,
taking at least five neighbor points into account.
Based on EBSD measurements, grain size distribu-
tions of the cold-rolled and subsequently recrystal-
lized state were retrieved. In contrast, the shape
and the mean grain size of the cold-rolled samples
were estimated from measurements on the material
in the hot-rolled state. EBSD band contrast maps of
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the 40% cold-rolled samples before and after recrys-
tallization are shown exemplarily in Fig. 1. The
typical grain morphology of cold-rolled material, i.e.
grains elongated along the rolling direction (RD)
and compressed along the normal direction (ND), is
shown in Fig. 1a. The smaller, equiaxed grains of
the recrystallized sample are displayed in Fig. 1b.

The crystallographic texture was characterized by
means of x-ray pole figure measurements. Three
incomplete (0� to 85�) pole figures—f111g; f200g,
and f220g—were acquired at the mid-thickness
layer of the sheet on a Bruker D8 Advance diffrac-
tometer, equipped with a HI-STAR area detector,
operating at 30 kV and 25 mA using filtered iron
radiation and polycapillary focusing optics. The
orientation distribution functions (ODFs) were cal-
culated in the MATLAB-based MTEX package.20,21

u2 ¼ 45� sections of the ODF of the six investigated
states are shown in Fig. 2. The corresponding
legend of the ideal texture components is given
elsewhere.22 With increasing rolling degree, the
texture transformed gradually from Cu-type to
Brass-type, as indicated by the decreasing
f112gh111i Cu texture component and the more

pronounced a-fiber (h110i kND) with a spread
towards the f552gh115i CuT texture component.
After recrystallization, the rolling texture was
retained but significantly weakened in intensity as
a result of the oriented nucleation and the formation
of recrystallization twins.23,24

The obtained grain size distribution data as well
as the orientation information obtained from the
experimental ODFs are then used as input to
generate the RVEs as outlined in the following.

Representative Volume Element Generation
Using DREAM.3D

The DREAM.3D software1 was used to generate
the RVEs using statistics extracted from the exper-
imental data following a procedure outlined else-
where.25,26 DREAM.3D has been extensively used to

Fig. 1. EBSD band contrast maps of the high-manganese steel
material. (a) After 40% thickness reduction by cold rolling. (b) After
40% thickness reduction by cold rolling and subsequent recrystal-
lization at 700� for 15 min.
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Fig. 2. u2 ¼ 45� sections of the orientation distribution function of
the six material states. The color code indicates orientation density
f(g); T is the texture index.
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characterize experimentally acquired microstruc-
tures and generate microstructure-based models
for subsequent simulations.27–32 Since it produces
3D virtual volumes, the experimentally obtained
data were extrapolated from 2D to 3D based on
some underlying assumptions. First, the diameter of
the sphere-shaped grains in the original (hot-rolled)
state was determined experimentally. These
spheres were then assumed to deform isomorphi-
cally during 30%, 40%, and 50% thickness reduction
to yield the grain morphology of the solely cold-
rolled states. In contrast, the grains in the cold-
rolled and subsequently recrystallized states were
assumed to be nearly equiaxed, i.e. the measured
diameters (d) along RD, ND, and transverse direc-
tion (TD) are similar (0:8<dND=dRD <dTD=
dRD <1:0). The average grain diameters for each
state were then determined by calculating the mean
lineal intercept in 2D and extrapolating to 3D by the
relationship d3D ¼ 1:5d2D. The crystallographic tex-
ture in each state was used directly from the
calculated ODFs. The microstructure was simplified
in such a way that a single orientation was assigned
to each grain and no internal orientation gradients
exist for either cold-rolled nor cold-rolled and
recrystallized states. It is important to note that
the constructed volume elements are microstruc-
turally representative, and multiple instantiations
will produce volumes with similar microstructural
characteristics. However, the volumes can be ter-
med properly representative only if multiple instan-
tiations yield similar simulated properties (Fig. 3;
Table I).

Crystal Plasticity Simulation Using DAMASK

We used a dislocation-based crystal plasticity
constitutive model from the DAMASK package
suitable for capturing the mechanical characteris-
tics of the investigated material class.8 This consti-
tutive formulations introduced in DAMASK for the
prediction of the mechanical response of TWIP and
TRIP steels is capable of reproducing the active
deformation modes depending on the SFE of the
material. It is important to realize that the SFE can
be directly computed from ab initio simulations.
Hence, a bridge from the atomistic scale to the
component scale can be established, and the model
is predictive with respect to the chemical composi-
tion. As can be seen from Tables II and III, almost
all other parameters of the crystal plasticity model
also have a clear physical meaning, physics-related
upper and lower bounds, and can be determined
from small-scale simulations or microstructure
characteristics.

The same material parameters as used in a
previous study15 have been applied with the excep-
tion of the grain size d and initial values for the
edge dislocation density qe, the dipole dislocation
density qd, and the twinned volume fraction ft.

For the cold-rolled and recrystallized samples, the
average grain size diameter is determined from the
RVE characteristics given in Table I: first, the aver-
age grain volume is computed as the RVE size
divided by number of grains, followed by the calcu-
lation of the diameter of a sphere with this volume.

Table I. Grain morphology properties of the
generated representative volume elements

State Size/lm3 Grain count Shape

30% CR 640.0 4086 Ellipsoidal
30% CR + RX 128.0 3959 Spherical
40% CR 640.0 4041 Ellipsoidal
40% CR + RX 64.0 4585 Spherical
50% CR 640.0 4044 Ellipsoidal
50% CR + RX 51.2 4664 Spherical

CR cold-rolled, RX recrystallized.
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Fig. 3. Representative volume elements for the six different states
colored according to the inverse pole figure along ND. Cold-rolled
and recrystallized states are scaled to the same size (640 lm along
each direction) as the cold-rolled state (see gray square in the lower
left corner of the corresponding cold-rolled state).
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For the cold-rolled states, ellipsoidal grain shapes
are assumed which result from the rolling of the
initially spherical grains with diameter d ¼ 27 lm.
The shortest axis of the ellipsoid (along ND)
dND ¼ 27lm� 3=2� e with e 2 f0:3; 0:4; 0:5g is
taken as the limiting size that determines the mean
free path for dislocation glide.

The initial values of q
0
e , q

0
d, and f 0t are derived

from the results of a plane strain compression
simulation15 by calculating the average over all 12
slip and 12 twin systems at the respective deforma-
tion level, i.e. neglecting any partitioning to specific
systems.

Simulations are performed using a spectral
method34 coupled with DAMASK.2,35,36 The RVEs
are subjected to uniaxial tension at a loading rate of

1� 10�3s�1. The microstructures representing the
cold-rolled states are loaded along all three direc-
tions (RD, ND, TD) to investigate the anisotropy
introduced by the preceding deformation. As no
such anisotropy is expected for their recrystallized
counterparts, owing to the weak crystallographic
textures37 and the absence of grain shape effects,
those are loaded only along RD. The final strain
levels have been adjusted to the experimentally

obtained values for the cold-rolled states and are set
to a true strain of e ¼ 0:16 for simulation in cold-
rolled and recrystallized conditions.

SIMULATION RESULTS OBTAINED
BY DAMASK

Stress–strain curves of the tensile tests conducted
along RD are shown in Fig. 4 for all investigated
material states. The significant hardening intro-
duced by the cold rolling is clearly captured by the
model, with the yield point of the sample with 50%
thickness reduction being more than 1.0 GPa higher
than for the states with preceding recrystallization
heat treatment. Moreover, the effect of the different
grain sizes among the cold-rolled and recrystallized
conditions can also be seen, i.e. the 30% cold-rolled
and recrystallized sample hardens less than the
50% cold-rolled and recrystallized sample. Compar-
ing these results with the experimental results
(lines marked by dots)15*, a good qualitative agree-
ment in the elastic–plastic deformation regimes, i.e.
before damage is expected to set in, can be observed.
Also, the evolution of the twin volume fraction ft

Table II. Values of the parameters and their symbols used in the crystal plasticity model8 for all simulations

(a) Elasticity

C11 = 175 GPa C12 = 115 GPa C44 = 135 GPa

(b) Dislocation glidea

Parameter Symbol Value Unit

Burgers vector magnitude bs 2.56 9 10�10 m
Activation energy slip Qs 1.5 9 10�19 J
Activation energy climb Qc 2.0 9 10�19 J
Activation volume climb Vc 1.7 9 10�29 m3

Obstacle profile top p 1.0
Obstacle profile bottom q 1.0
Mean free path in multiples of ...
...dislocation spacing is 45.0
...twin spacing it 1.0
Self-diffusion prefactor D0 4.0 9 10�5 m2s1

Minimum dipole spacing Canni 8.96 9 10�08 m
Velocity prefactor m0 1.0 9 104 ms�1

Solution strengthening ssol 2.0 9 107 Pa

(c) Twinning

Burgers vector bt 1.47 9 10�10 m
Nucleus width Lt 2.56 9 10�7 m
Avg. twin thickness tt 5.0 9 10�8 m
Activation volume cross-slip Vcs 5.0 9 10�32 m3

Profile width exponent A 13.96
SFE CSF 25.0 mJm�2

aInteraction coefficients for hardening are obtained by discrete dislocation dynamics simulations.33

*Figure 11.
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(not shown here) follows the experimental observa-
tions: essentially, there is no twinning activity at
the simulated deformation levels15**. The yield
stress values for the cold-rolled and recrystallized
state are, however, lower by approximately 180
MPa and the hardening rate is underestimated.

When analyzing the stress–strain curves pre-
dicted for tensile tests along the three different
loading directions given in Fig. 5, it can be seen that
a significant anisotropy is introduced in the cold-
rolled state. This behavior is especially pronounced
for 50% thickness reduction. Except for the the 30%
cold-rolled and recrystallized state, where only
small anisotropy is observed, loading along RD
gives the softest response.

Given the good qualitative agreement between
the experimentally observed and simulated average
responses, the simulation results can be used to

study the spatial stress and strain distributions.
With typical experimental equipment, these quan-
tities cannot be readily determined at all (in the
case of stress), or the acquisition requires significant
efforts (in the case of strain, where, e.g., digital
image correlation techniques are needed38–40). The
local distributions of equivalent true strain (evM)
and stress (rvM) at the final loading state, i.e. at
e ¼ 0:16 for the 30% cold-rolled and recrystallized
sample are shown in Fig. 6. We observe a significant
and broad range in the distribution of stress and
strain—not only among different grains but also
within individual grains. Even though a quantita-
tive agreement to the experimental stress–strain
response cannot be achieved without tedious model
parameter fitting, the quantitative analysis of the
stress and strain distribution gives helpful insights
for the development of improved alloys.
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reduction is indicated by the intensity from bright (30%) to dark
(50%). Experimental results are marked by additional dots.
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Table III. Values of the parameters (grain size: d;
edge dislocation density q

0
e ; dipole dislocation

density q
0
d; twinned volume fraction f 0t ) used in

the crystal plasticity model8 adjusted for specific
material states

State d/lm q
0
e=m

�2
q
0
d=m

�2 f 0t

30% CR 28.35 4.5 9 1013 8.1 9 1013 0.0033
30% CR + RX 10.04 1.0 9 1012 1.0 0.0
40% CR 24.29 7.0 9 1013 1.4 9 1014 0.0039
40% CR + RX 4.78 1.0 9 1012 1.0 0.0
50% CR 20.25 9.2 9 1013 1.7 9 1014 0.0041
50% CR + RX 3.80 1.0 9 1012 1.0 0.0

CR cold-rolled, RX recrystallized.

Fig. 6. Local quantities mapped onto the deformed configuration of
the 30% cold-rolled and recrystallized representative volume ele-
ment at e ¼ 0:16 along RD. The cubic box shows the shape of the
representative volume element in undeformed configuration. (a)
Eq. strain evM . (b) Eq. stress rvM .

**Figure 13.
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CONCLUSION AND OUTLOOK

The presented ICME approach can assist, accel-
erate, and guide the design of new alloys and
suitable processing pathways. Based on statistical
descriptions of microstructures, RVEs are created
on the basis of which the material’s performance is
evaluated. The use of DREAM.3D enables
microstructure RVE generation at high fidelity,
incorporating statistical features which can be
evaluated using the spectral solver and physical-
based crystal plasticity laws for specific materi-
als8,41,42 available in DAMASK. Such a strictly
microstructure-oriented ICME approach enables
the drastic reduction in the number of experiments
typically required in alloy, microstructure, and
process development.

To further strengthen the link between measured
microstructural features and generated RVEs, addi-
tional statistical quantities can be taken into
account. Features that might have an influence on
the mechanical behavior could be the in-grain
orientation distribution (especially for the cold-
rolled states), the grain-to-grain misorientation in
the form of a misorientation distribution function,43

and the exact grain shape. While incorporating
rules to construct microstructures based on these
additional pieces of information is a challenging
task by itself, for a comparison with experimental
results, data acquisition efforts will also increase.
For both crystallographic features, the experimen-
tal characterization would need to be expanded to
obtain not only global orientation information but
also spatially resolved and neighborhood-sensitive
quantities�. Similarly, measurement complexity for
a more exact grain shape determination requires
statistically relevant 3D information, e.g., from
EBSD measurements conducted on mutually
orthogonal surfaces.

The employed crystal plasticity model has
revealed its predictive capabilities for different
chemical compositions and various temperatures.8

Most of the parameters used in this model have a
physical meaning and can be obtained from small-
scale simulations. However, two weak points in the
model can be identified that are deemed to impede a
quantitative agreement with experimental results.
First, the grain size is only considered as a fixed
average value to limit the mean free path for
dislocation slip and does not affect the local hard-
ening based on dislocation density gradients. Out of
the various approaches of taking gradients into
account, the physically most sound approaches are
based on the flux of dislocations.42,44 While, on the
one hand, the associated computational costs pro-
hibit the use of such constitutive models for large-
scale simulations as presented here, on the other
hand the effect on macroscopic properties is

probably not that pronounced.45 Secondly, solid
solution strengthening is also not implemented in
a physics-based way and its temperature depen-
dence is neglected in the current approach.8

Another area of current research where progress
will increase the quality of the results is the
coupling of damage and crystal plasticity models.
As damage is the dominating mechanism for the
highly cold-rolled states, their behavior cannot be
captured correctly within the current simulation
framework. Nevertheless, current approaches of
implementing damage models into DAMASK46,47

will allow the tackling of this challenge in the near
future.
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