
Identifying Students’ Characteristic Learning Behaviors in
an Intelligent Tutoring System Fostering Self-Regulated

Learning

François Bouchet, Roger Azevedo
Department of ECP
SMART Laboratory

McGill University
Montreal, H3A 1Y2, Canada

francois.bouchet
@mcgill.ca

John S. Kinnebrew, Gautam Biswas
Department of EECS/ISIS

Vanderbilt University
Nashville, TN 37203, USA

john.s.kinnebrew
@vanderbilt.edu

ABSTRACT
Identification of student learning behaviors, especially those
that characterize or distinguish students, can yield impor-
tant insights for the design of adaptation and feedback mech-
anisms in Intelligent Tutoring Systems (ITS). In this paper,
we analyze trace data to identify distinguishing patterns of
behavior in a study of 51 college students learning about a
complex science topic with an agent-based ITS that fosters
self-regulated learning (SRL). Preliminary analysis with an
Expectation-Maximization clustering algorithm revealed the
existence of three distinct groups of students, distinguished
by their test and quiz scores (low for the first group, medium
for the second group, and high for the third group), their
learning gains (low, medium, high), the frequency of their
note-taking (rare, frequent, rare) and note-checking (rare,
rare, frequent), the proportion of sub-goals attempted (low,
low, high), and the time spent reading (high, high, low). In
this paper, we extend this analysis to identify characteris-
tic learning behaviors and strategies that distinguish these
three groups of students. We employ a differential sequence
mining technique to identify differentially frequent activity
patterns between the student groups and interpret these pat-
terns in terms of relevant learning behaviors. The results of
this analysis reveal that high-performing students tend to be
better at quickly identifying the relevance of a page to their
subgoal, are more methodical in their exploration of the ped-
agogical content, rely on system prompts to take notes and
summarize, and are more strategic in their preparation for
the post-test (e.g., using the end of their session to briefly
review pages). These results provide a first step in identify-
ing the group to which a student belongs during the learning
session, thus making possible a real-time adaptation of the
system.

1. INTRODUCTION
Use of metacognition and self-regulated processes has been
identified as a key element for successful learning in gen-
eral [?; ?; ?; ?]. In the particular context of an intelligent
tutoring system (ITS), it means it is crucial to ensure that
students are actively using key self-regulated learning (SRL)
processes, which can be achieved through prompts, scaffold-

ing, and feedback. A major challenge is to make the ITS
more adaptive to individual learning characteristics, such as
browsing behavior and initiative in performing appropriate
SRL processes.

Using MetaTutor, an agent-based ITS that fosters the use
of SRL processes, we have collected a large amount of data
from students interacting with the system while they were
learning about the human circulatory system. In this paper,
our goal is to answer two questions: (1) how can students
be grouped according to their performance and their type of
interaction with the system? and (2) how do specific learn-
ing behaviors of high- and low-performing students differ, in
particular regarding their use of SRL processes in MetaTu-
tor?

In this paper, we propose to answer the first question us-
ing a clustering approach that groups students with similar
performance and scores on other system interaction metrics.
For the second question, we analyze members of the three
clusters (especially comparing high- and low-performing stu-
dents) with a differential sequence mining method [?], which
identifies statistically significant differences in frequent be-
haviors between clusters.

This paper is organized as follows. In section 2, we start by
discussing related work that combines clustering and pat-
tern mining techniques for analysis of data from computer-
based learning environments. In section 3, we introduce the
ITS used for data collection, MetaTutor, as well as theoret-
ical grounding of its key features, which encourage learners
to perform self-regulation monitoring and strategy as they
learn with the system. Section 4 describes the data col-
lected and the relevant events encoded as actions, as well
as the clustering performed to distinguish different types of
students. Section 5 presents the principles of the method
of differential sequence mining, its application to the data,
and the results obtained in terms of patterns of actions that
distinguish students from different clusters. Section 6 then
discusses the practical implications of those findings in terms
of potential modifications to the ITS, before concluding in
section 7.

2. RELATED WORK
Analysis of trace log data from users’ interactions to better
understand their learning process and distinguish groups of
learners (e.g., efficient versus inefficient ones) has been an
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important area of research in educational data mining. For
example, Perera et al. [?] follow a 2-step methodology like
ours, as they start by using a clustering algorithm (k-means)
to identify strong groups of students collaborating in a soft-
ware development task using an open environment (TRAC).
The students are first clustered according to a set of at-
tributes extracted a posteriori, and then they use a mod-
ified version of the Generalized Sequential Pattern mining
algorithm [?] to identify frequent sequences of actions that
characterize the most successful groups. In [?], Romero et al.
also use a combination of clustering and sequential pattern
mining to identify different kinds of browsing behavior that
students exhibit in their learning environment, “AHA!”, in
order to provide them links to the most appropriate pages.

With gStudy, Nesbit et al. [?] are interested in the use of
self-regulation by students learning from multimedia docu-
ments. They apply sequential pattern mining to find com-
mon subsequences between groups of students, although they
do not perform any clustering beforehand. Martinez et al. [?]
pursue a similar approach and objective, as they aim to
discover frequent sequences of actions that distinguish a
group of students with high achievements from one with
low achievements. They use a combination of pattern min-
ing and clustering techniques to identify the most successful
strategies in the context of a collaborative learning tool on
a tabletop device. However, they first extract frequent pat-
terns of actions and then cluster them in order to examine
clusters of patterns associated with each group. Tang and
McCalla [?] also use sequence mining and then clustering
in their web learning environment, to facilitate instructional
planning and diagnose students behaviors.

3. METATUTOR ENVIRONMENT

3.1 General overview
MetaTutor is a multi-agent, adaptive hypermedia learning
environment, which presents challenging human biology sci-
ence content. The primary goal underlying this environment
is to investigate how multi-agent system can adaptively scaf-
fold SRL and metacognition within the context of learning
about complex biological content. MetaTutor is grounded
in a theory of SRL that views learning as an active, con-
structive process whereby learners set goals for their learn-
ing and then attempt to monitor, regulate, and control their
cognitive and metacognitive processes in the service of those
goals [?; ?; ?]. More specifically, MetaTutor is based on sev-
eral theoretical assumptions of SRL that emphasize the role
of cognitive, metacognitive (where metacognition is concep-
tualized as being subsumed under SRL), motivational, and
affective processes [?; ?]. Moreover, learners must regulate
their cognitive and metacognitive processes in order to inte-
grate multiple informational representations available from
the system. While all students have the potential to regu-
late, few students do so effectively, possibly due to inefficient
or a lack of cognitive or metacognitive strategies, knowledge,
or control.

As a learning tool, MetaTutor has a multitude of features
that embody and foster self-regulated learning (cf. Fig-
ure ??). These include four pedagogical agents which guide
students through the learning session and prompt students
to engage in planning, monitoring, and strategic learning
behaviors. In addition, the agents can provide feedback
and engage in a tutorial dialogue in an attempt to scaf-

fold students’ selection of appropriate sub-goals, accuracy
of metacognitive judgments, and use of particular learning
strategies. The system also uses natural language processing
to allow learners to express metacognitive monitoring and
control processes. For example, learners can type that they
do not understand a paragraph and can also use the inter-
face to summarize a static illustration related to the circula-
tory system. Additionally, MetaTutor collects information
from user interactions with it to provide adaptive feedback
on the deployment of students’ SRL behaviors. For exam-
ple, students can be prompted to self-assess their under-
standing (i.e., system-initiated judgment of learning [JOL])
and are then administered a brief quiz. Results from the
self-assessment and quiz allow pedagogical agents to pro-
vide adaptive feedback according to the calibration between
students’ confidence of comprehension and their actual quiz
performance.

During learning, MetaTutor is capable of measuring the de-
ployment of self-regulatory processes by allowing us to col-
lect rich, multi-stream data, including: self-report measures
of SRL, on-line measures of cognitive and metacognitive pro-
cesses (e.g., concurrent think-alouds), dialogue moves re-
garding agent-student interactions, natural language pro-
cessing of help-seeking behavior, physiological measures of
motivation and emotions, emerging patterns of effective prob-
lem solving behaviors and strategies, facial data on both ba-
sic (e.g., anger) and learning-centered emotions (e.g., bore-
dom), and eye-tracking data regarding the selection, organi-
zation, and integration of multiple representations of infor-
mation (e.g., text, diagrams). The collection of these vari-
ous data streams is critical to enhancing our understanding
of when, how, and why students regulate or do not reg-
ulate their learning and adapt their regulatory behaviors.
These data are then used to develop computational models
designed to detect, track, model, and foster students’ SRL
processes during learning.

3.2 Self-Regulated Learning with MetaTutor
This paper is theoretically-guided by contemporary models
of SRL that emphasize the temporal deployment of these
processes during learning [?]. As such, the goal is to use
multiple measures to detect, track, and model learners’ use
of cognitive, affective, and metacognitive (CAM) processes
during learning. As such, we use Winne and Hadwin’s model
[?; ?] because it proposes that learning occurs in four ba-
sic phases: (1) task definition, (2) goal-setting and plan-
ning, (3) studying tactics, and (4) adaptations to metacog-
nition. Their model emphasizes the role of metacognitive
monitoring and control as the central aspects of learners’
ability to learn complex material across different instruc-
tional contexts (e.g., using a multi-agent system to track
and foster SRL) in that information is processed and ana-
lyzed within each phase of the model. Recently, Azevedo
and colleagues [?; ?; ?; ?; ?] extended this model and pro-
vided extensive evidence regarding the role and function of
several dozen CAM processes during learning with student-
centered learning environments (e.g., multimedia, hyperme-
dia, simulations, intelligent tutoring systems).

In brief, our model makes the following assumptions: (1)
successful learning involves having learners monitor and con-
trol (regulate) key CAM processes during learning; (2) SRL
is context-specific and therefore successful learning may re-
quire a learner to increase/decrease the use of certain key

Proceedings of the 5th International Conference on Educational Data Mining 66



Figure 1: Annotated screenshot of MetaTutor (A: time remaining in the session, B: table of contents, C: current subgoals and
progression, D: embodied pedagogical agent, E: palette of monitoring and strategy actions)

SRL processes at different points in time during learning;
(3) a learner’s ability to monitor and control both inter-
nal (e.g., prior knowledge) and external factors (e.g., chang-
ing dynamics of the learning environment; relative utility of
an agent’s prompt) are crucial in successful learning; (4) a
learner’s ability to make adaptive, real-time adjustments to
internal and external conditions, based on accurate judg-
ments of their use of CAM processes, is fundamental to
successful learning; and; (5) certain CAM processes (e.g.,
interest, self-efficacy, task value) are necessary to motivate
a learner to engage and deploy appropriate CAM processes
during learning and problem solving. This model is best
suited for this project since it deals specifically with the
person-in-context perspective and postulates that CAM pro-
cesses occur during learning with a multi-agent system, which
will be useful in examining when and how learners will reg-
ulate their learning about the human circulatory system.
As such, the macro-level processes used in this paper are
reading, metacognitive monitoring, and learning strategies.

Reading behavior is critical since it is the most important
activity related to acquiring, comprehending, and using con-
tent knowledge related to the science topic. During reading,
learners need to monitor and regulate several key processes
such as: (1) selecting relevant content (i.e., text and dia-
grams) based on their current sub-goal; (2) spending appro-
priate amounts of time on each page, depending on their rel-
evance regarding their current sub-goal; (3) deciding when
to switch or create a new sub-goal; (4) making accurate
assessments of their emerging understanding; (5) conceptu-
ally connecting content with prior knowledge; (6) adaptively
selecting, using, and assessing the effective use of several
learning strategies including re-reading, coordinating infor-
mational sources, summarizing, making inferences, in order
to comprehend the material at various levels (i.e., declara-
tive, procedural, and conceptual knowledge); and, (7) mak-

ing adaptive changes to behavior based on a variety of exter-
nal (e.g., quiz scores, quality and timing of agents’ prompts
and feedback) and internal sources (e.g., affective experi-
ences including both positive and negative affective states,
perception of task difficulty). In sum, SRL involves the con-
tinuous monitoring and regulation of CAM processes during
learning with MetaTutor.

3.3 Participants and data collection
While data has been collected over a sample of 148 un-
dergraduate students from two large public universities in
North America, we consider for this study only a sub-sample
of 51 participants from the experimental condition that in-
cluded the most prompts from the pedagogical agents to
perform SRL actions and in which students were given some
adaptive feedback after having performed those actions. Par-
ticipants from other conditions did not receive a similar ex-
perience with the system, and therefore the values of the
variables considered (cf. section ??) were completely differ-
ent for them (e.g. they took less quizzes as they were not
prompted to self-regulate their learning). Considered logs
contained an average of 1072 events per session (σ = 255).

4. PRELIMINARY STEPS

4.1 Data preparation, coding and extraction
For the analysis performed here, as justified in section ??, we
abstracted the set of collected interactions into three broad
categories: reading, monitoring, and strategy (cf. Table ??
for The detailed list of actions extracted from the data).

4.1.1 Reading
A reading action (Read) is coded each time the student clicks
to display a new page of content to read. They can be split
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according to two combinatorial criteria, r and t, written as
Readrt , where:

• r stands for the relevance of the page with regard to
the student’s current subgoal (+ for a relevant page,
− for an irrelevant page, ∅ if no subgoal is currently
set and relevance can’t be determined);

• t stands for the time the student spent reading the page
(s if they remain less than 15 seconds, threshold under
which no SRL prompt can be triggered, l otherwise).

4.1.2 Monitoring
A monitoring action (Mon) is coded when the student per-
forms, or is prompted to perform, a monitoring action with
respect to their learning. This monitoring action could be
a judgment of learning (JOL) about what they have just
read, a feeling of knowing (FOK) regarding the content of
the page, an evaluation of the content (CE) relevance with
respect to their current subgoal, or an assessment of their
progress towards their current subgoal (MPTG). They can
also be split according to two combinatorial criteria, e and
i, written as Mone

i , where:

• e ∈ {+,−,∅} stands for the correctness of the moni-
toring evaluation performed by the student (+ if the
evaluation is right, − if it is wrong, ∅ if no direct eval-
uation is possible for the monitoring process);

• i ∈ {u, a} stands for the initiator of the action (u for
the user, a for the agent).

Following FOKs and JOLs, as well as when the student
claims to have finished a subgoal, students are asked to an-
swer a short quiz (of 3 to 10 questions). Those actions,
coded as Quiz , can be split along one dimension and are
then written Quizs, where s ∈ {+,−} stands for the success
or failure to pass the test (+ if the student obtained more
than 66% of correct answers, − otherwise).

4.1.3 Strategy
A strategy action (Str) is coded when the student uses a
strategy to self-regulate their learning, including when the
strategy is prompted by the agent, as well as when the user
independently decides to perform the action. Strategy ac-
tions include a summarization (SUMM) of the page, a coor-
dination of information sources (COIS) by viewing a related
image, an inference (INF) regarding the reading material,
a re-reading (RR) of a paragraph that was not well under-
stood, or notes taken about the reading material. This ac-
tion can also be split depending on the initiator of the action,
and is then written Stri, where i ∈ {u, a} as defined in 4.1.2.

Moreover, we distinguish a particular strategy consisting of
taking or checking notes in the embedded note interface or
using the electronic paper-based notepad provided next to
the workstation. These note actions are coded as Notes.

4.2 User clustering

4.2.1 Methodology
In a previous study [?], we ran a cluster analysis over a
subset of 13 variables extracted from the interaction log af-
ter the end of the student’s learning session: pretest and
posttest score, number of subgoal and page quizzes, mean

Table 2: Synthesis of clusters differences (italic means clus-
ters weren’t significantly different from one another accord-
ing to that variable when using an ANOVA with p < 0.05)

Variables
Score for each cluster

0 1 2
Pretest score M L H
Posttest score M L H
Session duration M M M
Reading duration H H L
Proportion of subgoals
attempted

L L H

Number of subgoals
changes

M L H

Number of subgoals
quizzes

M M M

Mean first score in
subgoal quizzes

M L H

Number of page quizzes M M M
Mean first score in page
quizzes

M L H

Number of note taking H L L
Number of note
checking

L L H

Time spent taking notes H L L

first score in subgoal and page quizzes, proportion of sub-
goals attempted among the 7 possible, number of subgoals
changes, total session duration, time spent reading content,
number of times the student took notes and checked notes,
and the duration of the note-taking episodes. This analy-
sis empoyed the Expectation-Maximization (EM) algorithm
as implemented in the Weka data mining package [?]. The
number of categories to find being undetermined a priori,
we used a 10-fold cross-validation, during which we incre-
mented the number of clusters (starting with 1) as long as
the loglikelihood averaged over the 10 folds was increasing
(i.e. we stopped as soon as the loglikelihood with N+1 clus-
ters was lower than with N clusters). We used 1000 different
initialization seeds for the EM algorithm, in order to com-
pensate for its tendency to get stuck into local optima, and
selected, among the 1000 partitions of students generated,
the most frequent one among the most frequently obtained
number of clusters (3).

4.2.2 Results
Three clusters were obtained, which characteristics are sum-
marized in Table ??, where clusters 0, 1 and 2 are made of
21, 14 and 16 students, respectively. Generally, students
from cluster 2 scored high on pretest, posttest and inter-
mediary quizzes, spent less time than others reading while
attempting more subgoals, and took less notes and less time
taking them. In contrast, students from cluster 1 scored low
on pretest, posttest and intermediary quizzes, attempted
less subgoals and took few notes and less time to take them.
Students from cluster 0 occupied generally a intermediate
position in terms of performance and subgoal uses, but took
overall more notes and more time to take them. When using
a formula derived from [?] to evaluate learning gains (cf. [?]
for more details), we also found that students from cluster 2
had the most significant knowledge acquisition, as opposed
to those in cluster 1. For all those reasons, cluster 1 will
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Table 1: List of actions extracted from MetaTutor interaction logs

Category
Action
name

Description

Read

Read+s Student skims through a page relevant for their current subgoal for less than 15s
Read−s Student skims through a page irrelevant for their current subgoal for less than 15s
Read∅s Student skims through a page without having a subgoal set for less than 15s
Read+l Student reads a page relevant for their current subgoal for more than 15s
Read−l Student reads a page irrelevant for their current subgoal for more than 15s
Read∅l Student reads a page without having a subgoal set for more than 15s

Monitoring

Mon+
a Student is prompted to evaluate their knowledge, learning or the relevance of the content they

are reading, and evaluates correctly
Mon−

a Student is prompted to evaluate their knowledge, learning or the relevance of the content they
are reading, and is wrong in their evaluation

Mon∅
a Student is prompted to perform a monitoring action that doesn’t require an evaluation

Mon+
u Student takes the initiative of evaluating their knowledge, learning or the relevance of the content

they are reading, and evaluates correctly
Mon−

u Student takes the initiative of evaluating their knowledge, learning or the relevance of the content
they are reading, and is wrong in their evaluation

Mon∅
u Student takes the initiative of performing a monitoring action that doesn’t require an evaluation

Quiz+ Student passes a page or subgoal quiz (more than 66% of correct answers)
Quiz− Student fails a page or subgoal quiz (less than 66% of correct answers)

Strategy
Stra Student is prompted to deploy a strategy to self-regulate
Stru Student takes the initiative of using a strategy to self-regulate
Notes Student takes or checks notes using the embedded interface or a paper-based electronic notepad

be referred to as cluster L (for low), cluster 2 as cluster H
(for high) and cluster 0 as cluster M (for medium). The fact
that exactly three (as opposed to any other number) clus-
ters were extracted might sound unsurprising, but comes
from the fact that it was the best partition of the subjects
in the 13-dimension space considered.

5. DIFFERENTIAL SEQUENCE MINING

5.1 Method principles
To identify important activity patterns in a comparison be-
tween student clusters, we employ a differential sequence
mining technique [?]. This technique uses sequence mining
and two different measures of pattern frequency to identify
differentially frequent patterns between two sets of action
sequences. Differential sequence mining combines frequency
measures and techniques from sequential pattern mining [?],
which determines the most frequent action patterns across
a set of action sequences, and episode mining [?], which de-
termines the most frequently used action patterns within a
given sequence.

The sequential pattern mining frequency measure (i.e., how
many sequences/students exhibit the given pattern) is used
to identify patterns common to a group of students. We refer
to this as the “sequence support” (s-support) of the pattern,
and we call patterns meeting a given s-support threshold
s-frequent. In this analysis, we employ an s-support thresh-
old of 0.5 to focus on patterns exhibited by at least half
of a given group of students. The episode mining frequency
(i.e., the frequency with which the pattern is repeated within
an action sequence) is important for assessing the extent to
which a student relies on a particular pattern of activities.
For a given student, we refer to this as the “instance sup-
port” (i-support), and we call patterns meeting a given i-
support threshold i-frequent. To calculate the i-support of
a pattern for a group of students, we use the mean of the

pattern’s i-support values across all traces in the group.

The differential sequence mining technique first uses a se-
quential pattern mining algorithm to identify the patterns
that meet a minimum s-support constraint within each group
[?]. To compare the identified frequent patterns across groups,
we calculate the i-support of each pattern for each student
(in each group). Using a t-test, we filter the s-frequent pat-
terns to identify those for which there is a statistically signif-
icant difference in i-support values between groups. Com-
paring the mean i-support value for each pattern between
groups then allows us to focus the comparison on patterns
that are employed significantly more often by one group than
the other.

This comparison produces four distinct categories of fre-
quent patterns: two categories where the patterns are s-
frequent in only one group, illustrating patterns primarily
employed by the respective groups, and two categories where
the patterns are common to both groups but used signifi-
cantly more often in one group than the other. The patterns
in each of these qualitatively distinct categories are (sepa-
rately) sorted by the difference in mean group i-support1 to
focus the analysis on the most differentially frequent pat-
terns [?].

5.2 Application to the data
In order to identify patterns more closely related to changes
in students’ knowledge and understanding, we decided to fo-
cus mainly on clusters H and L, as defined in section 4.2.2.
Moreover, to further identify the patterns most character-
istic of students in cluster H (resp. L) we identified dif-
ferentially frequent patterns with respect to the other two

1Even though a pattern may not be s-frequent in a group
of action sequences, it can still occur in some sequences in
the group, so an i-support value can be calculated (or the
i-support is 0 if the pattern does not occur in any trace in
the group).
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clusters M and L (resp. M and H) in a secondary analysis.

We employed an s-support threshold of 50% in this analy-
sis, to consider all the patterns that were exhibited by at
least half of the students in a given cluster, and a standard
value of 0.05 for the t-test cutoff p value. We tried to pre-
liminarily group sequences of identical actions together, but
the results obtained were not very different from the ones
without grouping, as the data extracted do not display long
sequences of similar actions – therefore, those results are
not reported here. Similarly, although we also considered
the possibility of using gaps of one or more actions when
identifying patterns, we discarded this analysis because the
frequency of events collected in the log is low, which means
that even a gap of only one action could mean that two ac-
tions of a pattern are actually separated by a rather long
period of inactivity.

5.3 Results
The Table ?? displays the patterns with the highest differ-
ence of S-support between clusters H and L (positive value
in column 3) as well as between clusters L and H (negative
value in column 3), provided that difference is statistically
significant (i.e. a t-test p value below 0.05 in column 4).
It also displays a selection of interesting patterns, which
differed in a statistically significant way between the two
clusters. Columns 6 to 11 provide the results obtained for
that selection of patterns using two different samples of stu-
dents: first (columns 6 to 8), cluster H alone and a merge
of clusters L and M, and then (columns 9 to 11), cluster L
alone and a merge of cluster H and M. Columns 5, 8 and
11 show, for the two considered samples, if only one or both
of them were having a s-support above 50% for the consid-
ered pattern. Values N/A are used when the pattern is non
statistically significant for the two considered samples.

The following observations can be made:

– According to pattern 1, when prompted to use a strategy
(regardless of the one suggested by the agent), students in
cluster H reacted by taking notes more often than students
in cluster L. We already knew that students in cluster H had
received significantly more prompts from the system, and
taken less notes overall than those in cluster L (but checked
them more often). This pattern seems to suggest that the
reason might be that the notes they were taking mainly came
from prompts from the agents. Moreover, since when they
type a summary, students are offered the possibility to add
it to their notes, it appears that students from cluster H
must have preferred that strategy, which also would explain
why they spent less time with the note-taking interface open
(since the summary is typed in a different text box, and the
note-taking interface is opened only to add the already typed
text). Finally, the fact that the difference for this pattern is
significant for cluster H vs. L, H vs. M&L and H&M vs. L
indicate that the degree to which one relies on the prompt
for notes or summaries to take notes is directly correlated to
the belonging to one of the three clusters (i.e. this behavior
is observed more in cluster H than in M, and more in M
than in L).
Similarly, pattern 3 indicates that after a note-taking event,
students from cluster H often moved on to another relevant
page, which they read for an extended period. Pattern 5,
which is a combination of patterns 1 and 3, confirm the idea
that students from cluster H had a very methodical approach
to navigating through the content: they selected a relevant

page, read it until being prompted by the agent to take notes
or summarize it, performed that action, and then moved on
to a new relevant page. Incidentally, it also indicates their
effectiveness in identifying a page relevant to their current
subgoal simply from its title (since that is all they can see
before opening it). This latter hypothesis is itself reinforced
by the observation that patterns 10 and 11, relative to a
brief visit on an irrelevant page or to a succession of brief
visits to irrelevant pages, is characteristic of students from
clusters M and L, as opposed to students from cluster H who
seem to not even need to open the pages to figure out they
are irrelevant to their current subgoal.

– Pattern 2 simply confirms what we already knew about the
tendency of student in cluster H to have answered correctly
more often to intermediate quizzes (for a page or a subgoal).
It also significantly distinguish members of cluster H from
those in cluster M&L considered together.

– Patterns 4 & 7 are relative to pages viewed when the
students did not have any active subgoal set. Pattern 4
indicates that students in the cluster H have visited more
pages for a long time without having a subgoal set, which
is confirmed by pattern 7 which also indicate an alternation
between short and long reads when no subgoals were set. As
we also know that students from cluster H attempted more
subgoals overall than students in the cluster L, it cannot
mean that they have simply refused to set additional sub-
goals once they had finished their original ones (e.g., in an
attempt to get rid from the system prompts and feedback),
but rather that: a) they might have spent some time review-
ing pages already read before taking the posttest, and/or b)
instead of setting a final subgoal when they did not have
much time left, they took some time to review the pages
they had not yet explored.
This hypothesis can be confirmed by looking at the tempo-
ral distribution of those two patterns: for students in cluster
H, the median time is of 108 and 112 minutes (for an overall
session of approximately 120 minutes), which means that
it’s during the last 15 minutes of their learning session that
students were displaying that kind of browsing behavior,
clearly distinct from the ones they had displayed earlier in
the session.

– Pattern 6 indicates that students in cluster H seemed to
more often estimate properly their level of understanding of
the content or the relevance of the page they were visiting
when it was relevant for their current subgoal. While this
pattern is only marginally significant when comparing clus-
ters H and L, it is statistically significant when comparing H
to M&L, confirming that it is specific of students in cluster
H. It tends to show that not only other students had diffi-
culties to identify the relevance of a page from its title, but
that even once they had been able to spend some time read-
ing its content, they were less prone to correctly evaluate its
relevance or their understanding of it.
This hypothesis seems to be confirmed by the complemen-
tary pattern 8, which indicates that students from cluster L,
when they were on a page irrelevant for their subgoal for a
long time and got prompted to evaluate its relevance (the
only prompt they can get on a non-relevant page), tended
to be wrong in their evaluation.
If we consider again the temporal distribution of those two
patterns, we can notice that the median time, for students in
cluster L, is of 50 and 45 minutes, i.e. less than the median
time of the session (60 minutes). We can therefore assume

Proceedings of the 5th International Conference on Educational Data Mining 70



Table 3: Significant and most frequent patterns differentiating clusters

# Pattern
Cluster H vs. L Cluster H vs. M&L Cluster H&M vs. L

I-Supp.
Diff

t-test
(p value)

S-Freq.
Cluster

I-Supp.
Diff

t-test
(p value)

S-Freq.
Cluster

I-Supp.
Diff

t-test
(p value)

S-Freq.
Cluster

1 Stra≺ Notes 3.93 0.002 Both 3.28 0.005 Both 2.30 0.007 Both
2 Quiz+ 3.10 0.036 Both 2.09 0.046 Both 2.30 0.086 Both
3 Notes≺ Read+l 2.86 0.004 Both 2.35 0.012 Both 1.71 0.012 Both
4 Read∅l 2.63 0.039 H 2.27 0.050 H 1.48 0.107 H&M
5 Stra≺ Notes≺ Read+l 2.38 0.001 Both N/A N/A N/A 1.27 0.017 Both
6 Read+l ≺ Mon+

a 1.96 0.065 Both 1.96 0.048 Both 0.85 0.304 Both
7 Read∅s ≺ Read∅l 1.33 0.050 H 1.23 0.061 H N/A N/A N/A

. . .
8 Read−l ≺ Mon−

a -0.54 0.039 L N/A N/A N/A -0.25 0.360 L
9 Read+s ≺ Read−l -0.65 0.012 L N/A N/A N/A -0.53 0.038 L
10 Read−s ≺ Read−s N/A N/A N/A -1.77 0.030 M&L N/A N/A N/A
11 Read−s -3.49 0.149 Both -2.56 0.036 Both -2.39 0.321 Both

that, at least, students from cluster L have been slightly
improving their capacity to evaluate their learning and the
relevance of a page over time.

– Pattern 9 confirms the previous observation that students
in cluster L really had issues to see the relevance of a page
with regard to their subgoal: they did not simply end up
going to random pages that were irrelevant to their subgoal,
or ignored the subgoal they had set, but instead, they ap-
peared to sometimes skim through a relevant page, miss its
relevance, and end up instead spending a long time on a
page that wasn’t irrelevant to their subgoal. This tendency
is shared, to some extent, with students from cluster M,
as the results of clusters H vs. M&L are also statistically
significant.

– A final observation can be made regarding the tendency
of a student to obey system prompts: if we run the same
analysis without distinguishing the correctness of the eval-
uation of students monitoring (i.e. by considering actions
Mona = Mon+

a ∪Mon−
a and Monu = Mon+

u ∪Mon−
u ), we

observe that the pattern Mona≺ Monuis significantly more
frequent for students in cluster H, which tends to indicate
that when prompted to perform an optional monitoring ac-
tion (most likely, a MPTG, since otherwise there should be
a Quiz action following the Mona), they are more prone to
accomplish the suggested action.

6. DISCUSSION
To summarize the results obtained in the previous section,
we can conclude that students from cluster H are more in-
clined to follow the system prompts and to follow the sug-
gestions to take notes or summarize what they have just
learned. Further, they are more prone to keep applying the
same method for each page they read, are better at iden-
tifying a page relevant to their subgoal from its title, and
are more strategic in their preparation for the posttest (e.g.,
they usually use their last 10 to 15 minutes to briefly review
various pages). From an ITS design point of view, the fact
that these students used system prompts to effectively reg-
ulate their learning tends to indicate that the frequency of
Strategy prompts should probably not be reduced. However,
as they seem good at distinguishing relevant pages from ir-
relevant ones, they might need less scaffolding regarding the
Monitoring processes. On the other hand, students from
cluster L appear particularly unable to identify pages rele-

vant to their subgoal, which is probably linked to their lower
prior knowledge. For them, it seems that additional scaffold-
ing from the system would certainly be beneficial. However,
even when prompted to monitor their learning, they tend to
be mistaken in their evaluation. Therefore, it could be nec-
essary to go further than the methods currently employed to
suggest ways in which they can better evaluate the relevance
of a page.

7. CONCLUSION, FUTURE DIRECTIONS
In this paper, we have presented a two-step analysis of data
collected with an ITS designed to foster self-regulated learn-
ing. First, the clustering of students using Expectation Max-
imization has allowed us to distinguish three clusters of stu-
dents with different prior knowledge on the topic, learning
performance, and strategies. We then described a set of ac-
tions extracted from the system interaction trace log and
employed a sequence mining technique to identify differen-
tially frequent activity patterns. We used the identified pat-
terns to characterize students from different clusters with
particular emphasis on those that had the highest and the
lowest learning gains. We have been able to identify patterns
of actions that suggest students with high prior knowledge
and high learning gains tended to be more compliant with
system prompts, using them to validate their progression.
Further, these students were better at identifying pages rel-
evant to their subgoals from the page title and tended to
have a phase at the end of the session during which they
reviewed the content in preparation for the posttest.

The analysis performed here will allow us to more accu-
rately identify the group to which a student belongs during
their use of MetaTutor and dynamically adapt the scaffold-
ing and feedback mechanisms accordingly. Another future
research direction will involve the use of other channels of
data collected while students use MetaTutor (eye-tracking
information, affective data extracted from video captures,
and think-aloud data) in order to enhance our identification
and understanding of phases when low-performing students
are unable to properly monitor their learning.
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