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Identifying tagging SNPs for 
African specific genetic variation 
from the African Diaspora Genome
Henry Richard Johnston1, Yi-Juan Hu1, Jingjing Gao2, Timothy D. O’Connor3,4,5,  

Gonçalo R. Abecasis6, Genevieve L Wojcik7, Christopher R. Gignoux7,  

Pierre-Antoine Gourraud8, Antoine Lizee8, Mark Hansen9, Rob Genuario9, 

Dave Bullis9, Cindy Lawley9, Eimear E. Kenny7,10, Carlos Bustamante7, Terri H. Beaty11, 

Rasika A. Mathias11,12, Kathleen C. Barnes11,12, Zhaohui S. Qin1 & CAAPA Consortium†

A primary goal of The Consortium on Asthma among African-ancestry Populations in the Americas 

(CAAPA) is to develop an ‘African Diaspora Power Chip’ (ADPC), a genotyping array consisting of tagging 
SNPs, useful in comprehensively identifying African specific genetic variation. This array is designed 
based on the novel variation identified in 642 CAAPA samples of African ancestry with high coverage 
whole genome sequence data (~30× depth). This novel variation extends the pattern of variation 
catalogued in the 1000 Genomes and Exome Sequencing Projects to a spectrum of populations 
representing the wide range of West African genomic diversity. These individuals from CAAPA also 
comprise a large swath of the African Diaspora population and incorporate historical genetic diversity 
covering nearly the entire Atlantic coast of the Americas. Here we show the results of designing and 
producing such a microchip array. This novel array covers African specific variation far better than other 
commercially available arrays, and will enable better GWAS analyses for researchers with individuals 
of African descent in their study populations. A recent study cataloging variation in continental African 
populations suggests this type of African-specific genotyping array is both necessary and valuable for 
facilitating large-scale GWAS in populations of African ancestry.

The design of the African Diaspora Power Chip (ADPC) was a primary goal as part of the NIH-supported 
Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA). Because of the over-
all poor coverage for African specific-variants on commercially available GWAS arrays, amongst other difficul-
ties, relatively few GWAS have been performed in populations of African descent1,2, in part because they were 
underpowered to identify association with genes controlling risk for complex disease3. Previous GWAS stud-
ies in populations of African descent may have missed critical association signals because the single nucleotide 
polymorphisms (SNPs) genotyped on existing commercial arrays were selected for being informative among 
individuals of European ancestry, and generally do a poor job of tagging haplotypes and variants in individuals 
of non-European ancestry. This stems from the fact that the frequency of SNPs on currently available arrays is 
not well matched to the frequency of untagged variants in non-European populations. Essentially, the variant 
spectrum on current SNP arrays is flat, ensuring common genetic variants are well tagged, but making it difficult 
to tag low frequency SNPs (even though they may be highly polymorphic in non-European populations). This 
missing genetic variation in non-Europeans, however, consists largely of low frequency and rare variants, which 
will always be poorly covered by tagging SNPs with higher minor allele frequency (MAF). By building a large 
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catalog of novel African-specific genetic variants, and then designing an array to tag as many of these as possible, 
we provide researchers with a significantly improved tool for hunting genes associated with diseases in popula-
tions of African ancestry, including admixed populations.

Ongoing work in the CAAPA consortium (Table S1, S2, Figure S1) has included coverage analysis of the novel 
variation identified by CAAPA sequencing. This analysis has shown that only 69% of common SNP variants and 
41% of low-frequency SNP variants identified by CAAPA can be tagged by traditional GWAS arrays (at r2 > = 
0.8), such as the Illumina HumanOmni5 (which contains about five million SNPs)4. Ha, et al.5 suggested much 
lower coverage levels, with the OmniExpress chip (containing about 770,000 SNPs) effectively covering only 
8% of known variation within the YRI genome, while the much larger Omni 2.5 (containing about 2.5 million 
SNPs) still only covers 20% of known YRI SNPs based on their analysis. In contrast, variants of European (CEU) 
ancestry are 21% covered by the OmniExpress and 44% covered by the Omni 2.5. These are large differences in 
genomic coverage, and are supported by other studies with similarly pessimistic estimates of effective cover-
age among non-European populations6–8. Even the primary manufacturer of the Omni series genotyping chips, 
Illumina, refers to low coverage levels for their currently available commercial GWAS arrays in non-European 
populations. Table 1 It is important to note that there is no standardized definition for efficient ‘coverage,’ as each 
method uses a different set of SNPs to assess coverage levels. Regardless of the method used, however, contempo-
rary commercially available arrays do a poor job of tagging common haplotypes or ‘covering’ all genetic variation 
in non-European or admixed populations.

Usage of the most recent imputation panels can significantly improve the coverage of African variants, but this 
practice is still hamstrung by the lack of low-frequency variants on genotyping arrays (MAF <  5%). Imputation 
of low-frequency variants is most efficient and accurate when the SNP to be imputed has a similar minor allele 
frequency as the genotyped SNP, so a relative lack of low frequency variants on an array can render imputation of 
similar frequency variants difficult [Marchini and Howie, 2010].

To address this shortcoming, the ADPC was designed using the whole-genome sequencing results on 642 
CAAPA samples, including 328 African Americans, 125 African Caribbean subjects, 164 African ancestry indi-
viduals with some Latino ancestry, and 25 individuals from Nigeria. The whole genomes of these individuals were 
sequenced using the Illumina HiSeq 2000. A total of 47.9 million biallelic SNPs were identified in these CAAPA 
samples. Of those, 15.6 million variants have a MAF greater than or equal to 1%.

To create an affordable array for large-scale chip-based studies, 700,000 variants was the maximum size of 
the array. A MAF of 1% was chosen as the preliminary cutoff to limit the initial pool of variants to be tagged. In 
addition, using 1% as the MAF cut-off eliminated concerns about potential false positive variant calls for rare 
variants derived from the sequence data9. Additionally, the ADPC is designed to be used in conjunction with 
the OmniExpress array, a low-cost GWAS array popular among researchers, leveraging the high MAF coverage 
available from OmniExpress and freeing the ADPC to focus on low frequency variants.

To narrow the pool further, SNPs with poor Illumina design scores (proprietary scores which attempt to give 
a numeric representation of the likelihood that a marker will work properly on the array) were removed from 
consideration as potential tag SNPs. MaCH10 and minimac11 were used to determine which CAAPA variants were 
well-imputable based on the 1000 Genomes Phase I African Reference Panel and variants from the OmniExpress 
array. Those SNPs that could be imputed well (r2 >  0.8) were removed from the pool of SNPs needing to be tagged.

Fugue12 was then used to determine the pairwise linkage disequilibrium (LD) between each pair of SNPs 
in the remaining set of SNPs. These LD estimates were used by FESTA13, a TagSNP selection program, to select 
SNPs using a rather strict r2 threshold of 0.8. A total of 1,004,268 TagSNPs were selected. Among them, 4,000 
were removed because they were too similar in their probe design to function well on the array. Limited by the 
capacity of the array, only TagSNPs with an MAF > = 1.6% were retained for inclusion on the array. Raising the 
MAF floor was deemed to be the best approach to thinning the TagSNP pool as it was unbiased. Additional con-
tent was then added including both SNPs previously found to be associated with African-specific diseases but not 
previously selected as TagSNPs and approximately 600 additional SNPs in the human leukocyte antigen (HLA) 
region. HLA SNPs added to the array are relevant for HLA imputation and analyses of diseases or phenotypes 
related to immunity. These SNPs represent a pruned selection of SNPs with high tagging power, directly through 
LD, as well as SNPs preferentially selected by existing SNP-based HLA imputation algorithms14. Finally, a “GWAS 
fingerprint” that includes 274 markers, identical to that used on the Illumina HumanExome array, was added 
to enable researchers to ensure accurate sample labeling and analysis, while facilitating sample tracking across 
experiments. In final count, 627,998 variants were included on the ADPC array Fig. 1.

Array Type

MAF Category

<0.010 (non-singletons) >0.010 >0.025 >0.050

HumanExomev1-2 0.031 0.032 0.034 0.035

HumanCore-12v1-0 0.127 0.152 0.203 0.256

HumanCoreExome-12v1-0 0.148 0.172 0.221 0.271

OmniExpress-12v1-1 0.210 0.249 0.326 0.395

OmniExpressExome-8v1-1 0.226 0.263 0.337 0.403

Table 1.  Illumina projected coverage of African variants on several commercially available GWAS arrays.
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Results
Based on the combination of OmniExpress and the ADPC, coverage is exceptionally good in both the 1000 
Genomes African and admixed African populations. Figure 2 The average r2 for all variants is greater than 0.8 
at ≥ 1% MAF. Coverage is slightly better amongst admixed African populations than continental African pop-
ulations, which is useful for the study of African Americans in particular. It is also not surprising, given that we 
had only one continental African population, compared to 15 African-admixed populations. In all populations, 
this represents a much better coverage level than with previous commercially available arrays, and represents an 
important step forward for studies of individuals of African descent.

Additional analysis of SNP coverage at ≥  1% MAF in the CAAPA population was conducted to ensure our 
array will enable researchers to have sufficient power to identify novel associations between disease phenotypes 
and low frequency variants specific to African populations. Despite raising the MAF threshold for TagSNPs to 
1.6%, we report coverage of all variants with MAF greater than or equal to 1% to give a full picture of the low 
frequency coverage the ADPC can provide. Genome-wide, the OmniExpress array is estimated to tag 20% of 
CAAPA variants at r2 =  0.9, 26% at r2 =  0.8 and 39% at r2 =  0.5. All selected variants of the ADPC, alone, are esti-
mated to tag 12% of known variants at r2 =  0.9, 16% at r2 =  0.8, and 31% at r2 =  0.5. The combination of these two 
arrays is estimated to tag 29% of all CAAPA variants at r2 =  0.9, 37% at r2 =  0.8, and 56% at r2 =  0.5, an improve-
ment of about 50% more variants tagged over the OmniExpress array across the three thresholds Table 2.

While we consider these coverage statistics strong, they only refer to the coverage for variants identified 
through whole-genome sequencing in CAAPA. This is the most difficult possible test set, since coverage of more 

Figure 1. The ADPC design pipeline, describing the steps taken to whittle ~15 million novel African SNPs 
into a 627k African-targeted GWAS array. 
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common variants in the 1000 Genomes data is not included here. We use this information to give researchers 
an accurate view of the coverage available for the wealth of novel, low frequency genetic variation identified by 
CAAPA’s whole-genome sequencing.

Using ~12,000 samples from the CAAPA consortium for the initial run of the ADPC array, ~495,000 out 
of 700,000 variants passed Illumina’s QC thresholds. This relatively high marker failure rate is not unexpected, 
however, because the array is comprised of nearly 100% novel markers, never before manufactured. The 494,094 
markers successfully manufactured performed excellently, with missing genotype rate averaging only 0.3%.

Figure 2. Estimated imputation coverage of variants tagged by the ADPC content as part of the MEGA 
array. (a) Coverage in 1000 Genomes African populations is > = 0.8 r2 down to 1% MAF. (b) Coverage in 1000 
Genomes admixed African populations is > = 0.8 r2 down to 1% MAF
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An important and unique feature of the ADPC is the significantly skewed MAF spectrum of variants on the 
array Fig. 3. Compared to OmniExpress, the ADPC contains vastly more low frequency variants (Figure S2). This 
was not a conscious decision in the design process. Instead, it is the result of trying to tag a set of variants not pre-
viously tagged by commercially available genome-wide marker arrays. As a result, the combination of the ADPC 
and OmniExpress is an efficient pairing that increases coverage of the full MAF spectrum for novel variants and 
dramatically improves the imputation power for low frequency variants.

The ADPC content is currently available as part of the MEGA array through Illumina. That array combines 
the APDC content described here plus a GWAS backbone based on OmniExpress, plus additional content from 
around the world to provide a single use array for researchers. Through the use of this array, researchers will have 
greater statistical power to find associations with complex diseases in populations of African ancestry, which has 
several practical benefits. This array will provide additional value from its tremendous improvement in the qual-
ity of imputed genotypes across the genome. At the same time, new researchers will be able to determine power 
before starting a study in populations of African ancestry, using the combination of the ADPC and OmniExpress 
on the MEGA array, leading to smaller sample sizes needed, and more studies being possible.

Discussion
In this paper, we present the African Diaspora Power Chip, an affordable genotyping array that dramatically 
increases the coverage of genetic variants specific to African populations (and their descendants). Through the 
use of this array, researchers can now be better powered to detect disease associations in populations of African 
ancestry. For the CAAPA consortium, this means using the ADPC to genotype > 13,000 Asthma cases and con-
trols from 9 populations across the Americas.

Although this array was designed to meet the specific needs and timeline of the CAAPA consortium, and may 
not represent the ideal for a strictly African-based SNP array, its content is available to researchers now as part of 
the MEGA array and has demonstrably increased coverage in variants of West African ancestry. This is, of course, 
the most common African admixed population in African Americans or other members of the African diaspora, 
so it is especially well positioned to be useful in studies of admixed African Americans. This population, which 
has been under-covered by previously existing arrays should benefit greatly from the SNP content now available. 
Furthermore, the CAAPA consortium has released an imputation reference panel, based on the results of our 
whole-genome sequencing experiment, and it is available through the Michigan Imputation Server (https://impu-
tationserver.sph.umich.edu/index.html), and maximizes coverage provided by the ADPC content.

Our immediate plans are to assess the coverage provided by the ADPC content in populations of African 
descent not originating in West Africa. Of specific interest to geneticists are populations in East and North 
Africa. In the future, through the use of the MEGA array, the number of meaningful results from GWAS studies 

Coverage of CAAPA variants >=1% MAF

r2 OmniExpress Alone ADPC Alone Combined

0.9 20% 12% 29%

0.8 26% 16% 37%

0.5 39% 31% 56%

Table 2.  Projected coverage for the ADPC among CAAPA variants >=1% MAF, with and without 
OmniExpress pairing, for the whole genome.

Figure 3. Projected minor allele frequency histograms for the ADPC and OmniExpress arrays overlayed 
with one another. The disparity between the arrays is significant, and represents very different tagging 
approaches. This makes them well suited to complement each other.

https://imputationserver.sph.umich.edu/index.html
https://imputationserver.sph.umich.edu/index.html
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conducted in populations of African descent should increase significantly, providing a more accurate picture of 
causal disease variants in this group. This will enable personalized medicine techniques to be applied to a much 
larger subset of Americans than is currently feasible.

Methods
All study participants in the whole genome sequencing study provided written informed consent for the use 
of their DNA in genetic studies. A careful review was conducted to verify that the consents, study methods, 
and experimental protocols were consistent with the activities of this study. All methods were performed in 
accordance with the relevant guidelines and regulations. Institutional review board approval was obtained at 
Johns Hopkins University (GRAAD, BAGS, BIAS, HONDAS, PGCA), Howard University (GRAAD), Columbia 
University (REACH), Wake Forest University (SARP), Morehouse School of Medicine (COPDGene), Henry 
Ford Health System (SAPPHIRE), the University of California, San Francisco (coordinator center for SAGE II 
and GALA II), the Western Institutional Review Board for the recruitment in Puerto Rico (GALA II Puerto 
Ricans), Baylor College of Medicine from Texas, Albert Einstein College of Medicine Yeshiva University, Jacobi 
Medical Center, the North Central Bronx Hospital from New York (GALA II Dominicans), Children’s Hospital 
and Research Center Oakland and Kaiser Permanente-Vallejo Medical Center (SAGE II), Vanderbilt University 
(BREATHE, VALID), the University of Chicago (CAG, AEGS), University of the West Indies, Mona campus 
(JAAS) and Cave Hill Campus, Barbados (BAGS), The University of Cartagena (PGCA), the Universidad Católica 
de Honduras in San Pedro Sula (HONDAS), the Federal University of Bahia and endorsed by the National 
Commission for Ethics in Human Research in Brazil (BIAS, SCAALA), and The University of Ibadan, Nigeria 
(AEGS).

The 642 individuals in the data freeze were sequenced using Illumina’s Hi-Seq 2000 equipment and the reads 
were 100 bp, paired-end runs. Assembly was performed by the Consensus Assessment of Sequence and Variation 
(CASAVA) package, which is the Illumina in-house assembly and variant calling technology. The SNP-caller 
implemented in CASAVA uses a probabilistic model to ultimately generate probability distributions over all dip-
loid genotypes for each site in each genome. A set of MAXGT quality scores is thus generated for each genomic 
site, corresponding to the ‘consensus quality’ in the SamTools SNP calling method15. These quality scores are then 
parsed based on a set of consortium-wide rules in order to determine the likely set of variants.

Data processing to generate a 691-sample VCF file for each chromosome from the Illumina MAXGT 
single-sample SNP VCF files provided in Illumina’s standard deliverable package was performed at Knome, Inc. 
(Cambridge, MA, USA). The individual VCF files only contained calls for variants, not ref/ref homozygotes. To 
generate a multi-sample VCF file, these individual VCF files were merged using VCFTools16 (v0.1.11), then using 
custom scripts, a multi-sample VCF file was backfilled to include homozygous reference genotypes and depth 
of coverage from the sites.txt files. Custom QC scripts confirmed the multi-sample VCFs and the single-sample 
VCFs had the same number of heterozygous and homozygous alternate genotypes. VCFtools was used to confirm 
all subjects were included in each multi-sample VCF. The multi-sample VCF was generated including the 48 sam-
ples from the SCAALA (Salvador, Brazil) group, but these samples were subsequently dropped from all analyses, 
leaving 642 individuals, and variants unique to SCAALA were removed from the variant pool. Mathias et al.4.

To pare down the list of variants needing to be tagged, several exclusion sets were created, starting with design 
score analysis. The segment extending 60 base pairs up and down stream from each variant position were sur-
veyed to determine which side of the variant would create a better probe and a design score was calculated, on 
a 0–1 scale, representing the estimated success rate for the variant. Any variant scoring below 0.5 was removed. 
Variants already on the OmniExpress array were also excluded.

To determine which CAAPA variants could be well imputed, the software packages MaCH10 and minimac11 
were employed. All CAAPA samples were first pre-phased by MaCH; subsequently variants still remaining in the 
tagging pool were imputed in minimac, a low-memory, computationally efficient variant of MaCH, specifically 
designed for haplotype-to-haplotype imputation. Variants were imputed using the 1000 Genomes Phase I African 
Reference Panel as the reference.
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