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Abstract

Background: Complete transcriptional regulatory network inference is a huge challenge because of the complexity

of the network and sparsity of available data. One approach to make it more manageable is to focus on the inference

of context-specific networks involving a few interacting transcription factors (TFs) and all of their target genes.

Results: We present a computational framework for Bayesian statistical inference of target genes of multiple

interacting TFs from high-throughput gene expression time-series data. We use ordinary differential equation models

that describe transcription of target genes taking into account combinatorial regulation. The method consists of a

training and a prediction phase. During the training phase we infer the unobserved TF protein concentrations on a

subnetwork of approximately known regulatory structure. During the prediction phase we apply Bayesian model

selection on a genome-wide scale and score all alternative regulatory structures for each target gene. We use our

methodology to identify targets of five TFs regulating Drosophila melanogaster mesoderm development. We find that

confident predicted links between TFs and targets are significantly enriched for supporting ChIP-chip binding events

and annotated TF-gene interations. Our method statistically significantly outperforms existing alternatives.

Conclusions: Our results show that it is possible to infer regulatory links between multiple interacting TFs and their

target genes even from a single relatively short time series and in presence of unmodelled confounders and

unreliable prior knowledge on training network connectivity. Introducing data from several different experimental

perturbations significantly increases the accuracy.
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Background
A major challenge for computational systems biology is

the inference of gene regulatory networks (GRNs) from

high-throughput data such as gene expression time-series

[1-5]. This is particularly challenging when the available

time-series are short (i.e. contain few time points) and

multiple regulators interact through cooperative or com-

petitive mechanisms. An important first step towards

uncovering regulatory networks is the identification of
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the targets of regulatory factors, particularly transcrip-

tion factor (TF) proteins which control the transcription

rate of their target genes through DNA-binding associa-

tions. In this paper we develop a computational method

to infer the targets of a set of co-regulating TFs using

expression time-series data from a small number of con-

ditions. Our method is based on first learning the nature

of the TF activities by focussing on a well-characterised

subnetwork of targets and then performing genome-wide

scans to locate other targets of the TFs. A flexible regula-

tion model accounts for non-linear response, TF interac-

tions and protein/mRNA degradation. A Bayesian model

scoring procedure provides a principled framework for

comparing alternative regulation scenarios for each puta-

tive target gene and determining the statistical support for

direct regulator-target relationships.
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An experimental approach to identifying TF targets

might involve the design of mutant strains with the

TF perturbed (knocked out, knocked down or over-

expressed) and differences in the gene expression of all

putative targets analyzed [6-8]. When considering mul-

tiple regulators such experiments are difficult to design

since all combinations of regulators have to be probed. It

can also be very difficult to differentiate between direct

and indirect regulation from perturbation data. An alter-

native or complementary experimental approach is to

discover the binding sites of regulating TFs of interest

through chromatin immunoprecipitation (ChIP) experi-

ments [9,10] (ChIP-chip or ChIP-Seq). This provides an

excellent means to identify direct TF regulation. How-

ever, not all binding events show a clear relationship with

gene regulation [11] and bound enhancers that are not

close to a promoter region may be difficult to assign to

a particular target gene. To capture transient regulatory

events it is necessary to carry out a ChIP experiment

in time-series [12] and this may be prohibitively costly

and time consuming for multiple TFs. Gene expression

time-series data therefore remain an immensely useful

resource for uncovering the functional significance of reg-

ulatory interactions and to help confirm enhancer-target

relationships.

Many computational methods have been introduced to

infer or “reverse engineer” GRNs from time-series expres-

sion data [1,3-5]. Many of the proposed methods focus

on uncovering the regulatory network for a subset of reg-

ulatory genes that are assumed to form the core of a

regulatory network. This subset is typically identified as

a pre-processing step, e.g. all differentially expressed or

periodic TFs. Popular methods include state-space mod-

els [13], dynamic Bayesian networks [14] and ordinary

differential equation (ODE) models [15-17]; see [5] for a

recent review and comparative assessment on real and

synthetic time-series datasets. A related but more con-

strained problem than GRN inference is the identification

of the targets of one or a few TFs that are known to be

of functional significance [18-20]. Such an approach can

be applied to find targets genome-wide without very sub-

stantial filtering to reduce the set of putative targets. This

target identification problem is often not aimed at iden-

tifying the full GRN model since only a limited number

of TFs may be considered. However, genome-wide tar-

get identification is very useful for identifying regulated

pathways or processes, or for prioritizing targets for fur-

ther analysis (e.g. integrating with other evidence such as

ChIP or in situ expression data) or further experiments

(e.g. ChIP or perturbation experiments on high-ranking

targets). An example is the work of Barenco et al. [18] who

used Bayesian inference over a linear activation model

to rank targets of a single TF. They considered the case

of a TF activated by post-translational modification in

which case a small set of known targets are required to

learn the TF activity prior to ranking putative targets.

In subsequent work by Gao et al. [21], Gaussian pro-

cess inference techniques were developed for the same

model and for non-linear generalisations (Hill kinetics

activation and repression models) [21]. Honkela et al.

[20,22] extended the Gaussian process method for tar-

get ranking in the case of a TF under transcriptional

control by including a model of TF translation. In this

case a set of known targets is not required to fit the

model.

The target identification methods of Barenco et al. [18]

and Honkela et al. [20] are restricted to the case of a sin-

gle regulating TF. This is a useful simplification when data

are limited but often TFs interact to regulate their targets

through cooperative or competitive processes. Methods

that ignore such interactions may have reduced accu-

racy in identifying targets and cannot be used to identify

co-regulation of targets by multiple TFs. Other methods

have been developed which allow for regulation by mul-

tiple regulators. A popular method is the Inferelator [15]

which is based on fitting an ODE model with a sigmoidal

non-linear regulation function to all putative regulator-

target interactions. Sparse regression techniques are used

to identify the regulatory network by setting the influ-

ence of unsupported links to zero. The Inferelator was

one of the top performing methods for GRN inference

in recent Dialogue for Reverse Engineering Assessments

and Methods (DREAM) competitions for network infer-

ence [23] (DREAM 3 [24] and DREAM 4 [25]). Unlike

other GRN inference methods for time-series data, such

as state-space models [13], dynamic Bayesian networks

[14] and other ODE-based methods [17], the Inferelator

can be used for the more limited target identification task

since it models the single layer target-regulator network

in a decoupled manner. The highly efficient methods for

inference developed for the Inferelator allows the model

to be applied to large sets of regulating TFs, making this

an attractive and highly practical tool for target inference

from time-series data. The method is also quite general

and can incorporate steady-state expression data from

perturbation experiments.

In this contribution we show that combining the idea

of a training set of known targets with a non-linear reg-

ulation model can provide a very effective method for

target identification. A distinguishing feature of our work

is the use of a well-characterised (but not error-free)

subnetwork which is used to learn protein activities for

the regulating TFs of interest (an example of the recon-

structed TF activities is shown in Figure 1). This builds

on the work of Barenco et al. who learned a model of TF

activity from a set of known target genes [18]. We show

that our method allows useful predictions to be made

with only a single wild-type developmental time-series
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Figure 1 Illustration of how two TFs can cooperatively regulate a gene. Results are shown for a putative target gene FBgn0036752 that is

highly ranked as a joint target of the TFs Bagpipe (BAP) and Myocyte enhancer factor 2 (MEF2) by the proposed method. Red crosses show target

gene expression data (12 time points) from [33] and blue lines show model predictions and associated credible regions. In the top row we show the

activity profiles for each TF which are inferred during the training phase by fitting a regulation model on a network of known structure. In the

bottom row we show the model fit during genome-wide scanning for this target gene. We show the target mRNA concentration profile inferred by

fitted models of (a) regulation by BAP only, (b) regulation by MEF2 only and (c) regulation by BAP and MEF2. The candidate gene is confirmed as a

joint target by independent ChIP-chip studies [12].

of 12 time points, thereby providing a practical tool for

identifying context-specific regulatory targets. Our results

show highly statistically significant enrichment for ChIP-

confirmed bindings of the putative regulators in the same

system and significantly better enrichment than compet-

ing methods.

A confounding aspect when applying target prediction

models for a limited number of regulators is the presence

of TFs that are unknown or other unmeasurable influ-

ences on the system. We show on simulated data that,

despite the presence of such confounding influences, our

model can reconstruct the influence of multiple regulators

of interest. We also show how data from additional con-

ditions can easily be incorporated to improve inference

when available.

Results and discussion

Overview of the method

Our approach is based on three main components: i)

the use of ODEs to model transcription, translation and

mRNA/protein decay, ii) a known set of TFs that reg-

ulate transcription and iii) data-driven inference of the

model parameters and network structures by using a fully

Bayesian statistical method [26]. To infer TF activities over

time, which can be considered functional parameters in

our model, we extend previously developed Gaussian pro-

cess inference techniques [20,21] to the case of multiple

TFs interacting through a non-linear regulation function.

Here we provide a brief description of the methodology

and introduce notation that is useful for the presentation

of the results. A detailed description is given in Methods

and the supplementary information.

Consider the following dynamical models for the time-

evolution of mRNA and TF protein abundances driven by

gene transcription and TF protein translation,

transcription
dmj(t)

dt
= bj + sjG

(

p1(t), . . . , pI(t); θ j
)

− djmj(t) .

This ODE model ties together the target gene mRNA

concentration mj(t), and the regulator TF protein activ-

ities pi(t). The translation model then relates the TF

protein activities to the corresponding TF mRNA levels

fi(t),

translation
dpi(t)

dt
= fi(t) − δipi(t) .

In the transcription equation, the TFs can jointly mod-

ulate the mRNA production rate of a target gene through

the response function G(·) (see Methods). The equation

also models mRNA degradation with rate dj while bj
represents a basal production rate and sj is a sensitivity

parameter. The response function takes a sigmoidal form

that non-linearly transforms the TF activities so that sat-

uration effects are taken into account and the TFs can

competitively or cooperatively activate or repress tran-

scription [27]. The response function also depends on

parameters θ j which determine the network structure and

regulation model coefficients. These parameters include

weights that can effectively model nth order reactions,

thus approximating the effect of, for example, TF dimeri-

sation. Similarly, the translation equation explains the

production rate of the active TF protein as a function of

its mRNA while accounting for the protein degradation
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with rate δi. We assume that the main rate-limiting step in

production of active TF protein is transcription. Thus the

TF activity can be considered equivalent to the TF protein

concentration. This is thought to be a reasonable assump-

tion for TFs in the Drosophila embryonic developmental

system considered later [28] but in other systems TFs

may be primarily regulated by post-translational modifi-

cations. In the Drosophila system there is significant evi-

dence for dimerisation of the TFs, see e.g. [29-32], but no

evidence of regulation by other post-translational modifi-

cations. In systems where TF activity is actively regulated

by post-translational modification, e.g. through phospho-

rylation by a signalling pathway, then the above translation

model would not correctly model changes in the concen-

tration of active TF protein in the nucleus. However, the

modelling framework that we propose can still be applied

by removing the translation equations and modelling the

TF protein activity as a driving latent function; see [21] for

examples of this approach to TF activity inference.

In many experiments the protein activities, pi(t), will

be difficult or impossible to measure. These continuous-

time profiles must be inferred along with the parameters

θ j, dj, bj, sj and δi. Importantly, some individual param-

eters in θ j quantify the interactions between TFs and

genes and the estimation of their values allows us to

infer the network structure, i.e. to identify the subset of

TFs that regulate the transcription of each gene. The full

continuous-time mRNA functions mj(t) and fi(t) are also

unobserved. A typical set-up is that we have noisy obser-

vations of these functions obtained at a set of discrete

time points through gene expression analysis. Fitting the

dynamical models to a biological system is carried out by

the following two phases (see Figure 2):

1. Training phase: Here, we use the dynamical models

to estimate the TF activities, pi(t), by using a small

set of training genes. The approximate structure of

this sub-network is assumed to be given so that for

these genes the regulating TFs are known to some

degree. All other model parameters are unknown and

are inferred from the data. In this phase both the

transcription model and the translation model are

used to estimate the TFs. Observations associated

with both the mRNA of the training genes and the

TF mRNAs are required. The training phase could be

carried out without the translation model in cases

where TF protein activity is regulated by

post-translational modification. Extensive

experimentation with artificial data reveals that,

when appropriate, combining a translation model

with TF mRNA observations greatly aids in

estimation of the TF activities.

2. Prediction phase: Once the TF activities have been

estimated, each test gene (for which the regulating

TFs are unknown) is processed independently and

the parameters (θ∗, d∗, b∗, s∗) are inferred. Here, only

the transcription model is needed while the

translation model is irrelevant. This phase is applied

on a genome-wide scale and aims to identify the

regulating TFs for each test gene.

The above phases can be applied to a situation where

prior biological knowledge provides information only

about a small set of well-studied genes for which the reg-

ulating TFs are known to some degree. These genes are

treated as the training data that are used to infer the activ-

ity profiles of the TFs. Typically, a full genome-wide list

of targets of the TFs is unknown. This is the motivation

behind the second phase which applies the trained mod-

els for genome-wide prediction of network links between

genes and TFs. An important property of the second phase

is that it is trivially parallelizable which allows for fast

computations. The algorithms for fitting the models are

based on Bayesian probabilistic inference and details are

given in the supplementary information.

We will illustrate our methodology using mesoderm

development in embryonic Drosophila melanogaster.

First, though, we create an artificial example that high-

lights the difficulties inherent in inference of transcription

networks directly from data.

Synthetic data

We consider an artificial gene network involving four tran-

scription factors: ANT, BEE, CAR and UNK. We will sim-

ulate data directly from our network, but when modelling

the data we will only consider three of these transcrip-

tion factors: ANT, BEE and CAR. This reflects a realistic

scenario where there is an unacknowledged confound-

ing transcription factor (UNK) affecting our system. We

simulated data associated with two experimental condi-

tions. The data are short unevenly sampled time-series of

10 time points. In our first experimental condition there

is considerable overlap between the TF concentrations of

ANT and BEE as shown in Figure 3(a), while in the sec-

ond experimental condition the overlap of BEE with ANT

is far less (Figure 3(b)). In both experimental conditions

there is considerable overlap between UNK and the three

acknowledged TFs.

The purpose of our experiment with simulated data

is to predict the set of regulating TFs for each gene

using artificially generated mRNA measurements. Since

the ground-truth network links are known, we can make

a rigorous assessment of the ability of the model to iden-

tify the target genes of each of the TFs, as well as an

assessment of the ability to predict non-regulation. The

modelling is split into two distinct phases as described in

the previous section. In the training phase, 30 genes with

approximately known connectivity were used for learning
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mRNA (observed with noise)

TF protein (unobserved)

Translation

Transcriptional regulation

(b): Prediction phase

(a):Training phase

Figure 2 The proposed procedure for regulatory network inference. The procedure is divided into two phases: (a) The training phase involves

learning the differential equation model parameters and inferring the unobserved TF protein activities on a sub-network of approximately known

structure. By adopting a Bayesian inference procedure we can determine the posterior distribution over TF protein activities supported by the data.

To close the system we place a Gaussian process prior distribution over the TF mRNA concentration functions [21]. (b) The prediction phase involves

scoring all alternative regulation models for each putative target gene (2I models for I TFs). During this phase we assume that TF activities have a

probability distribution given by the posterior distribution inferred during the training phase. The Bayesian evidence score is calculated for each

regulation model and the posterior probability of any regulatory relationship of interest, such as TF–target gene associations, is determined by

Bayesian model averaging.

the TF profiles. Specifically, to make the training phase

more realistic we added 15% noise to the ground-truth

network links in these 30 training genes. This resulted in

16 links between TFs and genes (in the initial ground-

truth network structure) to change so that some of these

links falsely became active and others were removed (i.e.

from active they became inactive). Notice that this noise

in the network links adds an extra model-mismatch in

addition to the presence of the UNK TF which is not

part of the model. In the prediction phase these pro-

files were used to rank other potential targets of the TFs

from the remaining 1000 genes. Full details on how the

data have been generated are given in Methods, while the

dataset is provided together with software that is available

online.

To assess the predictive ability of the model with respect

to the amount of information present in the data, we con-

sider three experiments. In the first experiment only data

from the first experimental condition are used, in the sec-

ond experiment only data from the second experimental

condition are used, while in the third experiment all data

from both conditions are considered.

Using data from one experimental condition

Here, we assume the synthetic mRNA data are produced

by a single experimental condition, i.e. either the first or

the second condition mentioned earlier. When consider-

ing the first condition the true TF profiles for ANT, BEE,

CAR and UNK are shown in the left plot of Figure 3(a)

and the corresponding TF mRNA functions are shown

in Additional file 1: Figure S1(a). The remaining three

plots in Figure 3(a) show the TF activities estimated in

the training phase by using 30 genes with approximately

known network connectivity and unknownmodel param-

eters. The coloured solid lines show the estimated means

and the shaded areas represent 95% posterior credible

regions around the estimated means. Plots showing how

the model fits the mRNA data in the training phase are

presented in Additional file 1: Figures S2 and S6 and all

corresponding ODE parameters are shown in Additional

file 1: Figures S9 and S10.

Figure 3(a) shows that ANT and BEE have very simi-

lar profiles. This is a realistic scenario, but this type of

ambiguity can have a negative effect on the estimated

TF activities and the predictive accuracy of the model.
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(c) Combination of both experimental conditions

Figure 3 TF concentrations inferred by the model in the synthetic data. The plots in panel (a) (the four plots in the first row) illustrate the

estimation of the TF activity using only the first experimental condition. The left plot shows the ground-truth TF activities that generated the

observed data. In particular, the coloured solid lines show the three TFs, which were assumed to be known (blue: ANT, red: BEE, green: CAR) and the

black dotted line displays the unknown factor UNK. The remaining three plots in panel (a) show the TFs estimated at the training modelling phase.

Here, the coloured lines display the estimated means of ANT, BEE and CAR and the shaded areas show 95% credible regions. The plots in panel (b)

display the exactly analogous plots with those of (a) with the difference that the second experimental condition was considered instead of the first.

The plots in panel (c) illustrate the estimation of TFs by using simultaneously both experimental conditions. The plots in the first row of (c) display

the estimates for the first experimental condition, while the plots of the second row display the estimates for the second experimental condition .

In particular, the estimation of these two TFs, shown in

the second and third plot from the left in Figure 3(a), is

rather uncertain (as indicated by the very large shaded

area that represents uncertainty). Moreover, the fact that

the profiles of these TFs overlap significantly with each

other yields poor performance when predicting the net-

work links. The ROC curves in Figure 4 show accuracy

when predicting the individual TF links (first three plots

from the left) and overall performance when predict-

ing single links (last plot). In all panels the solid red

line is the ROC curve associated with the performance

of the model when using the first experimental condi-

tion. Notice that for ANT and BEE the performance is

only slightly better than random (diagonal dotted black

line). For CAR the performance is better since the pro-

file of this TF overlaps much less with those of ANT and

BEE.

From the above experiment we can conclude that it

is rather difficult to accurately predict network links

between TFs and genes from experimental data obtained

under conditions that do not disambiguate sufficiently the

functionality of the TFs during the transcription process.

Roughly speaking, the “similarity” of some TFs causes

the observed mRNA data to be well explained by alter-

native hypotheses associated with the presence/absence

of these similar TFs and makes it hard to statistically

identify which of those TFs were actually driving the

regulation process.
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Figure 4 ROC curves for predicting the network connections in the synthetic data. Red curves show the results by using only the first

experimental condition, blue curves show the results by using only the second experimental condition, while green curves correspond to the results

when both experimental conditions are used. The diagonal black dotted line is the performance based on random prediction. The first three plots

from the left show the ROC curves for predicting the individual TF links and the last plot shows the overall performance, i.e. for predicting any link .

We now consider a second series of observed mRNA

measurements associated with an alternative simulated

experimental condition comprising a perturbation of the

biological system that better disambiguates the two (pre-

viously overlapping) TFs in terms of their influence in

gene transcription. We first use only these new data

instead of the data associated with the first experi-

mental condition. This alternative perturbation changes

significantly the protein activity for BEE as shown on

the left plot in Figure 3(b), while ANT, CAR and UNK

are assumed to behave similarly to the first experimen-

tal condition. The estimated TFs are shown in the plots

of the remaining three columns of Figure 3(b) and model

fits in the training mRNA data for this second condi-

tion are plotted in Additional file 1: Figures S3 and S7

and all associated ODE parameters are shown in Addi-

tional file 1: Figures S11 and S12. The blue ROC curves

in Figure 4 show predictive performance when using

this second experimental condition. As the blue curves

indicate, the performance now improves compared to

the results obtained by using the first condition (red

curves). This is expected since the second condition dis-

ambiguates more efficiently the TF activities than the

first condition. In the next section we will see that the

performance can be further improved when the models

are fitted simultaneously to data from both experimental

conditions.

Combining the data from both experimental conditions

In our third experiment we fit the models using all data

from both experimental conditions. Figure 3(c) shows the

TFs that generated the mRNA data for both experimen-

tal conditions (plots in the first column from the left) and

the estimated TFs (plots in the remaining three columns).

Each row of Figure 3(c) corresponds to each of the two

conditions. Model fits in the training mRNA data are

plotted in Additional file 1: Figures S4 and S8 and all asso-

ciated ODE parameters are shown in Additional file 1:

Figures S13 and S14.

Including data from both experimental conditions

allows for a more confident estimation of the TF profiles.

To see this, we can contrast the second up to fourth plots

in the first row of Figure 3(c) with the corresponding plots

of Figure 3(a)-(b). The credible regions when simultane-

ously using both experimental conditions are significantly

smaller, which implies higher confidence.

Furthermore, we obtain a significant increase in the pre-

dictive performance when identifying network links. As

the green coloured ROC curves in Figure 4 reveal, the

performance when predicting single network links is sig-

nificantly improved. Finally, we can exploit the ability of

the model to predict a simultaneous regulation of the tar-

get gene by two or more TFs. Additional file 1: Figure S5

displays the predictive ROC curves for all three TF pairs

in this example.

Drosophila data

In this section we apply our method to a dataset of three

independently repeated time-series of 12 time points

collected hourly throughout Drosophila melanogaster

embryogenesis in wild-type embryos [33]. For preprocess-

ing of the data we followed [20]. We study five TFs that

are key regulators of mesoderm and muscle development

in Drosophila: Tinman (TIN), Biniou (BIN), Twist (TWI),

Bagpipe (BAP) and Myocyte enhancer factor 2 (MEF2)

[12].We identified an initial set of 92 genes from [12] asso-

ciated with a curated subset of ChIP-bound enhancers

that have well characterised effects on expression (see

Methods). Many of these genes display expression pro-

files that cannot be fully explained using the five studied

TFs. To remove these confounding targets, the training

modelling phase (based on these 92 genes) was robusti-

fied as follows. We first performed a preliminary fit of a

robustified model using a noise model including both a

component extracted from microarray preprocessing as

well as an additive learned component. We then selected

genes that had sufficiently small additive learned variance

(see Methods), resulting in 25 genes. These were then
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Figure 5 The estimated TF activities and predicted TF mRNAs from the training modelling phase in Drosophila data. The five plots in the

first row display the estimated TFs of the third replica. Each blue solid line represents an estimated mean TF activity and the shaded area represents

95% credible regions around the mean. The five plots in the second row display the predicted TF mRNAs (blue solid lines and shaded areas)

together with the observed data represented by red crosses (means) and vertical lines (two-standard deviations around the means provided by the

microarray preprocessing stage) .

used in final training with only noise from preprocess-

ing included in the model. Figure 5 shows the inferred

profiles for all five TFs (first row) together with the corre-

sponding predicted TF mRNAs (second row) for the third

replica of the time-series. The TF profiles and predicted

TF mRNAs for the remaining two replicas are shown in

Additional file 1: Figure S15. Model fits in the training

mRNA target gene data are shown in Additional file 1:

Figure S18 (showing genes included in final training) and

Additional file 1: Figure S19 (showing genes excluded from

final training) in the supplementary information while

ODE parameters are shown in Additional file 1: Figures

S20 and S21.

Prediction of network connections

Once the TF activities have been estimated, we use the

model to predict the regulator TFs for a set of 6003 test

genes which exclude the 92 genes used in the training

phase. A web-based browser that displays how the model

fits the mRNA data of test genes is available online at

[34]. Full posterior probabilities of all alternative models

for all test genes are included in Additional file 2. This

set includes all genes in the data that are not classified

as weakly expressed according to the criterion explained

previously [20]. We followed an approach to evaluation of

predictive performance similar to one described in [20]. A

number of predictions is evaluated by considering for each
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(a)Predicting regulation by one TF (b)Predicting regulation by two TFs

Figure 6 Enrichment of confident regulator predictions for ChIP binding. Plots show percentage of top ranked confident regulator predictions

that had confirmed bindings by predicted regulators within 2000 base pairs of the putative target gene. Predictions were ranked by the posterior

probability of (a) regulation by any single regulator; or (b) joint regulation by any two regulators. Both plots include rankings according to the

marginal posterior probability of a set of regulators being active computed over all 32 models (dark blue bars), posterior probability over a restricted

set of models ignoring all other TFs leaving 2 models for single regulator and 4 models for two regulators (light blue bars) as well as maximum

likelihood-based baseline model (yellow bars) and the Inferelator (red bars), compared to predicting regulators uniformly at random (blue line; link

probability 0.5). p-values of results statistically significantly different from random are denoted by ‘***’: p < 0.001, ‘**’: p < 0.01, ‘*’: p < 0.05 .
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Table 1 Link-specific ChIP evaluation bootstrap results

Predicting regulation by single TFs

Top 50 Top 100 Top 200

P32 P2 ML Inf P32 P2 ML Inf P32 P2 ML Inf

P32 *** * P32 ** ** P32 ** **

P2 *** ** P2 + *** *** P2 *** **

ML ML ML

Inf Inf Inf

Top 400 Top 800 Top 1600

P32 P2 ML Inf P32 P2 ML Inf P32 P2 ML Inf

P32 * *** P32 + *** P32 * ***

P2 ** *** P2 * *** P2 * ***

ML * ML *** ML ***

Inf Inf Inf

Top 3200

P32 P2 ML Inf

P32 *** *** ***

P2 * ***

ML ***

Inf

Predicting regulation by TF pairs

Top 50 Top 100 Top 200

P32 P4 ML Inf P32 P4 ML Inf P32 P4 ML Inf

P32 ** + P32 * . P32 + *

P4 ** + P4 * + P4 + *

ML ML ML

Inf . Inf Inf

Top 400 Top 800 Top 1600

P32 P4 ML Inf P32 P4 ML Inf P32 P4 ML Inf

P32 * ** P32 + *** P32 **

P4 + ** P4 * *** P4 ** * ***

ML ML . ML +

Inf Inf Inf

Top 3200

P32 P4 ML Inf

P32 *

P4 *** ** ***

ML * ***

Inf

The results of 100,000-fold bootstrap resampling of the data set of observed genes to assess significance of differences in ranking method performance. The methods

studied are: P32 = Posterior-32 method, P2 = Posterior-2 method, P4 = Posterior-4 method, ML = ML Baseline method, Inf = Inferelator. For each pair of methods, the

marks in the tables show how often the method on the corresponding row dominated the one on the corresponding column. The marks are interpreted as follows: ‘.’:

> 80% dominance, ‘+’: > 90% dominance, ‘*’: > 95% dominance, ‘**’: > 99% dominance, ‘***’: > 99.9% dominance, ‘-’: comparison not applicable.

gene a predicted set of regulators correct if all TFs in the

set had evidence of binding within 2000 base pairs of the

corresponding gene in the ChIP-chip data in [12]. Differ-

entmethods can be compared based on the corresponding

percentage enrichments. It should be noted that this val-

idation is still far from perfect since bound enhancers

can regulate transcription from a distance greater than

the conservative limit considered here. We also perform
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similar evaluation using TF-gene links in the Drosophila

Interaction Database (DroID) [35]. This database in not

specific to development and may thus include links that

are not active in our data. We only include the 5521 test

genes with some predicted TF regulators in the database.

We compare two variants of our proposed method to a

maximum-likelihood-based baseline method, the Infere-

lator 1.1 [15] and a simpler sparse regression approach

(see Methods).

In the plots of Figure 6, we consider inferring single TF

and TF-pair regulators with ChIP evaluation. The single-

TF ranking is constructed by computing for each gene

the marginal posterior probability of the event that a cer-

tain TF is a regulator. Since we have five TFs, there are

five probabilities of this type for each gene. We compute

the posterior probabilities in two ways: either averag-

ing over all models weighted by their marginal likelihood

(“Posterior-32”) or using just the selected and null mod-

els (“Posterior-2”). The resulting 5 × 6003 probabilities

are sorted in decreasing order and Figure 6(a) displays

the enrichment results at different cutoffs of this list. The

predictions of both these methods are significantly bet-

ter than random (p < 0.01 or less in all cases using tail

probability in a hypergeometric distribution) and clearly

outperform the maximum likelihood baseline and the

Inferelator. We also carried out empirical bootstrap tests

for each pair-wise comparison of methods which confirm

that the proposedmethods outperform the other methods

statistically significantly in most cases (see Table 1).

For the TF-pair regulator rankings, we compute the

marginal posterior probabilities for all possible pairs of

TFs for each gene. The counterpart of Posterior-2 now

includes four models: the pair, both partners individually

and the null, and is denoted by “Posterior-4”. Otherwise

the ranking lists are computed exactly as in the case of

single-TF regulators but now for the 10 × 6003 possi-

ble TF-pair models. Figure 6(b) displays the results. The

figure again shows statistically highly significant enrich-

ment of binding of predicted regulators near the corre-

sponding target genes. The enrichment is lower than it

was for single-TF predictions, which is expected since

the task of identifying regulating pairs of TFs is harder

but may also be partly due to an increased number

of false negatives in the validation data. The Bayesian

methods based on posterior probabilities are consistently

more accurate than the maximum likelihood baseline.

In most cases the more restricted set of models seems

to yield better results. Nevertheless, there are some TFs

for which the opposite is true, as illustrated by the cor-

responding results, broken down for each TF, that are

shown in Additional file 1: Figures S16 and S17. This

may be because the more restricted posterior probabili-

ties are less sensitive to misspecification of prior proba-

bilities of network links. Currently all TFs are assumed

to regulate every gene with prior probability 0.5, which

is unrealistic. Unfortunately it is nontrivial to construct

better alternatives without significant extra information

because the TFs are heavily correlated. We did not wish

to use the ChIP data for constructing such a prior since

this was required as independent data for validating the

results.

We also compute the a posteriori most probable regu-

lator model for each gene, which we refer to as the maxi-

mum a posteriori (MAP) model. Figure 7 shows results of
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(a) Validating both positive and negative predictions (b) Validating only positive predictions

Figure 7 Enrichment of binding of predicted regulator TFs near genes. The plots show the percentage enrichment of top-ranking genes with

ChIP-chip evidence of binding of all the predicted regulators. In (a) only genes with exactly correct binding profile (both positives and negatives) are

considered correct predictions. In (b) only positive predictions are required to be correct and additional bound TFs are ignored, but genes predicted

to be unregulated are ignored completely. Genes are ranked by the posterior probability of the most likely model. The compared methods are the

posterior probability over all 32 models (dark blue bars), the maximum likelihood-based baseline method (light blue bars), the Regression method

(yellow bars) and the Inferelator (red bars), which are compared to predicting regulators uniformly at random (blue line; link probability 0.5). As the

Inferelator offers no clear method for ranking the genes, its results are only shown for all 6003 genes. p-values of results statistically significantly

different from random are denoted by ‘***’: p < 0.001, ‘**’: p < 0.01, ‘*’: p < 0.05 .
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the ChIP evaluation based on the MAP regulator configu-

ration for every gene, ranked by the posterior probability

of this most probable model. Because there is no clear way

to rank the genes with the Inferelator, the accuracy is only

shown for the complete list of all genes. Additionally we

compare the results against a more straightforward sparse

regressionmethod (“Regression”; seeMethods for details).

Figure 7(a) displays results for full validation of both

positive and negative predictions. The results of the pro-

posed method are statistically very significantly better

than random, while the maximum likelihood baseline and

the Inferelator are no better than random guessing. The

regression method does poorly at first but ends with a

much higher accuracy than all others. The main reason

for this is that it makes a higher fraction of negative

predictions; all other methods make many fewer predic-

tions for genes being unregulated by all TFs while such

cases are fairly common based on our validation data.

This behaviour is expected for the probabilistic method,

which has a uniform prior over regulating TF combina-

tions. Under this prior, the prior probability for a gene to

be unregulated is only 1/32. If a more sensible prior is

used, for example, by considering the empirical prior from

the binding frequencies in the validation data, the pro-

posed method can attain even higher accuracy than the

regression method (results not shown). According to the

bootstrap testing, the proposed method is statistically sig-

nificantly better than the alternatives in all cases except

regression with ≥ 3200 top predictions (p < 0.01; see

Table 2 for full results).

Because of frequent non-functional binding [11], it

makes sense to ignore additional bound TFs. In this

case negative predictions cannot be validated, only posi-

tive ones. Figure 7(b) shows the validation results in this

Table 2 Full model ChIP evaluation bootstrap results

Validating both positive and negative predictions

Top 200 Top 400 Top 800

MAP ML Reg Inf MAP ML Reg Inf MAP ML Reg Inf

MAP *** ** - MAP *** *** - MAP *** *** -

ML - ML - ML -

Reg + - Reg - Reg -

Inf - - - - Inf - - - - Inf - - - -

Top 1600 Top 3200 Top 6003

MAP ML Reg Inf MAP ML Reg Inf MAP ML Reg Inf

MAP *** *** - MAP *** - MAP *** ***

ML - ML - ML

Reg * - Reg *** *** - Reg *** *** ***

Inf - - - - Inf - - - - Inf *

Validating only positive predictions

Top 200 Top 400 Top 800

MAP ML Reg Inf MAP ML Reg Inf MAP ML Reg Inf

MAP . *** - MAP ** *** - MAP *** *** -

ML ** - ML *** - ML *** -

Reg - Reg - Reg -

Inf - - - - Inf - - - - Inf - - - -

Top 1600 Top 3200 Top 6003

MAP ML Reg Inf MAP ML Reg Inf MAP ML Reg Inf

MAP *** *** - MAP *** *** - MAP *** * ***

ML *** - ML *** - ML ***

Reg - Reg - Reg *** ***

Inf - - - - Inf - - - - Inf

The results of 100,000-fold bootstrap resampling of the data set of observed genes to assess significance of differences in ranking method performance. The methods

studied are: MAP = MAP GP method, ML = ML Baseline method, Reg = regression baseline method, Inf = Inferelator. For each pair of methods, the marks in the tables

show how often the method on the corresponding row dominated the one on the corresponding column. The marks are interpreted as follows: ‘.’: > 80% dominance,

‘+’: > 90% dominance, ‘*’: > 95% dominance, ‘**’: > 99% dominance, ‘***’: > 99.9% dominance, ‘-’: comparison not applicable.
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case. Genes with a MAP model with no regulation were

ignored because they would all be judged as “correct” here,

biasing the accuracy results. The figure again shows sta-

tistically significant enrichment of binding of predicted

regulators near the target genes. The proposed Bayesian

method based on posterior probabilities is clearly more

accurate than the maximum likelihood baseline and also

more accurate than the regression method in all cases.

According to the bootstrap testing, the proposed method

is statistically significantly better than the alternatives in

all cases except maximum likelihood baseline 200 top pre-

dictions (p < 0.01, except p < 0.05 for regression with

6003 top predictions; see Table 2 for full results). The

computation times of the different alternatives are listed

in Table 3.

Similar evaluation for DroID validation is shown in

Figures 8 and 9. In Figure 8 the relative order of the meth-

ods is mostly the same as in Figure 6, but the percentage

enrichments of all methods are significantly lower. This

may be due to incompleteness of the DroID database. The

number of annotated TF-gene interactions in DroID is

roughly similar to the number of genes with ChIP binding

for TWI, but much lower for all other TFs. The num-

ber of genes with more than one regulator is even more

significantly lower in DroID. As the ChIP data was gath-

ered using the same protocol for all TFs, it seems more

likely to contain balanced information for all TFs. Never-

theless, the most probable regulator combination results

in Figure 9 show very high accuracy for our MAPmethod,

which is very clearly superior to all other methods, except

regression when using the full list of genes. Bootstrap

testing results are presented in Tables 4 and 5.

Parameter estimates

The protein degradation rates and the corresponding pro-

tein half-life estimates from the model are presented in

Table 6. The estimates are unusually short for proteins in

general, but they are in line with recent research demon-

strating that Twist homologue has a very short half-life

in the mouse [36]. As other studied TFs are from the

same protein family, it is plausible they could share simi-

lar half-lives. Cell division also contributes to the effective

degradation rate and it is also possible that diversification

during development can lead to a higher effective decay

rate since the proportion of cells with tissue-specific TF

Table 3 Running times

MAP-32 Baseline Regression Inferelator

5911.50 2236.36 0.96 0.25

Running computer times (in seconds) of different methods for scoring all

possible 32 models (combinations of five TFs) in a single target gene (out of the

6003 genes) in the Drosophila data.

activity reduces over time. These effects will also increase

the effective target mRNA degradation rates.

Discussion
It may be thought that a typical short time-series expres-

sion dataset contains only very limited information about

the structure of a GRN. In a meta-analysis of methods

proposed in the DREAM 2 competition [37], the authors

in [4] found time-series data to be much less informative

for network inference than data from a similar number of

perturbation experiments. However, in the datasets con-

sidered there many of the time-series experiments are

rather uninformative about expression changes given the

level of noise in the data and uninformative selection of

sampled time points. We would argue that the success of a

method for analysis of time-series data will depend greatly

on how informative the profiles of the regulatory species

are. In our synthetic example we clearly demonstrated

how inference is sensitive to confounding by highly sim-

ilar temporal profiles of regulating TFs, so it is certainly

desirable to have access to data from diverse experimental

conditions where available. Yet with an animal system the

available perturbations may be severely limited and the

wild-type under normal conditions is of great interest for

understanding healthy function. Methods for learning the

structure of a regulatory network from one or a few short

time course experiments are of great practical importance

for uncovering a condition-specific GRN.

Many methods for the inference of GRNs from gene

expression data require much more data, and data from a

much greater diversity of experiments, than we consider

here [1-3]. However, several approaches have been pro-

posed for identifying the targets of a specific TF given

data from time-series experiments collected under one

or two conditions [18-20]. The methods in [18] and [20]

rank targets by fitting simple linear activation differential

equationmodels for a single regulating TF. Thesemethods

do not account for the more general and realistic scenario

of non-linear regulation by multiple TFs. The method

in [19] does allow for regulation by other unknown fac-

tors, modelled by fitting a sparse linear regression model,

but assumes measurements of the TF protein are avail-

able. Here we introduced a much more general method,

where a model of non-linear regulation by multiple TFs

is used to predict which set of TFs regulate each putative

target on a genome-wide scale. Bayesian inference meth-

ods provide a principled approach for (i) dealing with an

underdetermined inference problem by Bayesian parame-

ter averaging, (ii) scoring alternative networks by Bayesian

model selection and (iii) predicting TF-target associations

by Bayesian model averaging. Our results demonstrate

that even with very limited time-series information the

method is able to correctly identify which of the closely

related TFs regulate the given target. This is clearly a more
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(a) Predicting regulation by one TF (b) Predicting regulation by two TFs
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Figure 8 Enrichment of confident regulator predictions for DroID interactions. Similar to Figure 6 but using DroID database TF-gene

interactions instead of ChIP binding for validation .

challenging task that is not addressed in [18] and [20].

Additional information, even just independent estimates

of decay rates of different transcripts, would certainly

make the task easier, as demonstrated in [38] and also our

results on synthetic data.

The Inferelator is an effective method for target iden-

tification which also uses a non-linear regulation model

that accounts for regulation by multiple TFs [15]. The

Inferelator is applicable more generally since it uses less

prior information about the system than we are assuming.

Two important assumptions were made in the analy-

sis of the Drosophila data; we assumed knowledge of a

well-characterised sub-network of the GRN, which is

used to learn the TF activity profiles during the training

phase, and in the present application we restrict our-

selves to models of activation. Our results demonstrate

improved performance over the Inferelator but it should

be acknowledged that we are solving a more restricted

class of problem. Our method is also much more com-

putationally demanding (see Table 3); it is applicable to

genome-wide scanning for a small set of TFs but would

not be applicable for a very large set of regulating TFs

in the current implementation. Nevertheless, our results

demonstrate that the inclusion of additional domain

knowledge or prior assumptions, where available, can

improve performance over more general methods. Prob-

abilistic modelling provides a useful framework for the

inclusion of such prior knowledge.

Inference of continuous-time TF activity profiles from

short time-series is an ill-posed problem. We resolve this

through introduction of a Gaussian process prior that

effectively assumes smoothness of the underlying func-

tions [21]. While this assumption appears reasonable for

the TFs studied here, there are situations where the TF

is activated very rapidly through signalling, e.g. in a sen-

sory GRN [39]. In these situations an alternative model

better suited for fast transitions such as that presented in

[40] may be preferable. Alternatively, the Gaussian pro-

cess could be transformed to provide a sharper switching

behaviour by passing it through a sigmoidal non-linearity

(cf. Gaussian process classification [41]) and the current

inference methodology would remain applicable.

Carrying out Bayesian inference over non-linear sys-

tems with functional parameters is very challenging. For

parameter inference we have made use of state-of-the-art

methods for Markov chain Monte Carlo (MCMC) over

(a)Validating both positive and negative predictions (b) Validating only positive predictions
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Figure 9 Enrichment DroID interactions predicted regulator TFs. Similar to Figure 7 but using DroID database TF-gene interactions instead of

ChIP binding for validation .
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Table 4 Link-specific DroID evaluation bootstrap results

Predicting regulation by single TFs

Top 50 Top 100 Top 200

P32 P2 ML Inf P32 P2 ML Inf P32 P2 ML Inf

P32 *** P32 . *** * P32 * *** **

P2 ** P2 *** + P2 *** +

ML ML ML

Inf * Inf * Inf .

Top 400 Top 800 Top 1600

P32 P2 ML Inf P32 P2 ML Inf P32 P2 ML Inf

P32 * *** *** P32 *** *** *** P32 *** *** ***

P2 *** * P2 *** ** P2 *** ***

ML ML ML *

Inf . Inf Inf

Top 3200

P32 P2 ML Inf

P32 *** *** ***

P2 ** **

ML +

Inf

Predicting regulation by TF pairs

Top 50 Top 100 Top 200

P32 P4 ML Inf P32 P4 ML Inf P32 P4 ML Inf

P32 *** . P32 *** P32 *

P4 *** . P4 *** . P4 . ** +

ML ML ML

Inf Inf . Inf +

Top 400 Top 800 Top 1600

P32 P4 ML Inf P32 P4 ML Inf P32 P4 ML Inf

P32 P32 P32

P4 * * * P4 *** * * P4 *** ** *

ML ML ML .

Inf Inf Inf *

Top 3200

P32 P4 ML Inf

P32

P4 *** ** **

ML +

Inf *

Same as Table 1 but for DroID evaluation.

functional degrees of freedom [42]. We have developed a

novel fast method for calculating the Bayesian evidence

score that allows us to carry out genome-widemodel scor-

ing (see supplementary information). Our method is very

easily parallelizable within the prediction phase and can

therefore be considered a practical contribution to the

functional genomics toolkit.

The data used here are very limited and therefore one

must accept that the method will make many false pre-

dictions. To improve accuracy, predictions based on the



Titsias et al. BMC Systems Biology 2012, 6:53 Page 15 of 21

http://www.biomedcentral.com/1752-0509/6/53

Table 5 Full model DroID evaluation bootstrap results

Validating both positive and negative predictions

Top 200 Top 400 Top 800

MAP ML Reg Inf MAP ML Reg Inf MAP ML Reg Inf

MAP *** *** *** MAP *** *** *** MAP *** *** ***

ML ML ML . .

Reg Reg Reg

Inf Inf Inf

Top 1600 Top 3200 Top 6003

MAP ML Reg Inf MAP ML Reg Inf MAP ML Reg Inf

MAP *** *** *** MAP *** *** MAP

ML ** ML *** ML

Reg ** Reg *** *** Reg

Inf Inf Inf

Validating only positive predictions

Top 200 Top 400 Top 800

MAP ML Reg Inf MAP ML Reg Inf MAP ML Reg Inf

MAP *** *** *** MAP *** *** *** MAP *** *** ***

ML ** + ML *** * ML *** ***

Reg Reg Reg

Inf Inf + Inf *

Top 1600 Top 3200 Top 6003

MAP ML Reg Inf MAP ML Reg Inf MAP ML Reg Inf

MAP *** *** *** MAP *** *** *** MAP

ML *** *** ML *** *** ML

Reg Reg *** Reg

Inf Inf Inf

Same as Table 2 but for DroID evaluation.

analysis of expression data can be combined with evi-

dence from complementary sources (ChIP data, in situ

expression data, sequence motifs) to identify a confident

regulatory network structure. For example, [20] show how

the accuracy of model-based prediction improves greatly

when additional evidence from spatial expression data is

considered. The Bayesian framework presented here pro-

vides a very natural means for integrating other sources

of data or prior knowledge for network inference. For

example, it would be straightforward to associate alterna-

tive regulatory structures (e.g. those in Figure 2(b)) with

different prior probabilities derived from ChIP-chip bind-

ing patterns. These priors could be used to re-weight the

Bayesian model averaging scheme used to calculate the

probability of network structures. We do not pursue this

approach here because we want independent ChIP-chip

validation of our method’s performance. Alternatively,

given time-series ChIP data, one could include binding

observations directly in the model. This would have the

advantage that one could model measurement errors for

both the expression and ChIP experiments.

Conclusion
We have introduced a computational approach for

genome-wide inference of the targets of multiple regu-

lating TFs given time-series gene expression data. Using

a time course measuring changes in wild-type expres-

sion during the embryonic development of Drosophila

we were able to show that the method makes predic-

tions which are significantly enriched for TF and TF-pair

binding identified using ChIP-chip experiments on the

same system. Our method works by fitting and scoring

differential equation models of transcriptional regulation.

Initially we use the model to infer the temporal pattern
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Table 6 Inferred protein degradation rates

Degr. (1/h) half-life (h)

TIN (0.81, 1.19, 1.66) (0.42, 0.58, 0.86)

BIN (0.62, 0.80, 1.08) (0.64, 0.87, 1.12)

TWI (3.79, 4.62, 5.79) (0.12, 0.15, 0.18)

BAP (3.08, 5.41, 8.27) (0.08, 0.13, 0.23)

MEF2 (0.57, 0.80, 1.67) (0.41, 0.86, 1.20)

Inferred protein degradation rates (first row) for the five TFs and the

corresponding estimates for the half-life of each protein (second row). Recall that

the formula for the half-life is log(2)/δ where δ is protein degradation rate. Each

triple (a, b, c) of values corresponds to 5% percentile, median and 95% percentile.

of TF protein activity given a small subnetwork of mostly

known structure. Subsequently we score alternative tar-

get gene regulation models to make genome-wide target

predictions. By using a fully Bayesian procedure we are

able to automatically balance model complexity with

data fit when scoring alternative models. Our method

is readily parallelizable in the prediction phase, making

it a practical tool for genome-wide network inference.

On artificial data we showed that our method is able to

cope with the existence of unknown regulating TFs that

are not modelled and we showed that data from more

diverse experimental conditions can help disambiguate

between TFs that have similar profiles in a single condi-

tion. However, as our Drosophila example shows, even

a single wild-type time course can be highly informative

about the underlying regulatory network if the TFs of

interest are changing over time. By combining the model

predictions with other independent sources of evidence,

e.g. from ChIP and spatial expression patterns, it will

be possible to identify a confident condition-specific

regulatory network.

Availability

Software and a web-based browser displaying results

in the Drosophila experiment are both available online

at [34].

Methods

Dynamical models

The transcription and translation equations are ordinary

differential equations (ODEs) having the general form

given in the beginning of the Results section. The response

function G(·) non-linearly transforms the TF protein

activities {pi(t)}
I
i=1, and has the following sigmoidal form:

G(p1(t), . . . , pI(t);wj,wj0) =
1

1 + e−wj0−
∑I

i=1 wji log pi(t)
.

Here, the I-dimensional real-valued vector wj =
[

wj1 . . .wjI

]⊤
stores the interaction weights between the

jth target gene and the I TFs. These interaction weights

quantify the network links so that when wji = 0 the

link between the jth gene and the ith TF is absent. When

wji is negative or positive the TF acts as a repressor or

activator respectively. wj0 is a real-valued bias parameter.

The set of scalar parameters θ j in the response function

G(·) is defined to be θ j = {wj,wj0}. Since the transcrip-

tion ODE model is linear with respect to mj(t), it can

be solved explicitly as shown in the supplementary infor-

mation. The above transcription ODE model generalizes

previous single-TF models that were used to estimate the

concentration function of a single latent TF [18,21,43].

While a sigmoidal form for the response functionG(·)was

considered in all our experiments, our algorithms could

easily be adapted to handle different forms for G(·).

Furthermore, the simple linear translation equation can

be solved explicitly as shown in the supplementary infor-

mation. Finally, the parameters {θ j, dj, bj, sj, δi} are model

parameters in theODEs which need to be estimated under

the constraint that {dj, bj, sj, δi} attain non-negative real

values, while θ j = {wj,wj0} can attain both positive and

negative real values. When we search for TFs that act only

as activators, wj is constrained to be non-negative.

A more detailed description of the ODE models is given

in section 2 of the supplementary information.

Training modelling phase

The dynamical models contain a set of unknown quanti-

ties: the transcription model parameters {θ j, dj, bj, sj}
J
j=1,

where J is the number of target genes, the unobserved

TF protein activities {pi(t)}
I
i=1 and the TF protein degra-

dation rates {δi}
I
i=1. To estimate these quantities in the

training modelling phase we consider a Bayesian prob-

abilistic approach. More precisely, the observed mRNA

data are used to construct likelihood functions that

explain how the data are generated from the dynamical

models. Together with the mRNA data for each train-

ing gene j we also have a binary vector xj ∈ {0, 1}I

that specifies the regulatory network structure for that

gene so that xji = 1 indicates the presence of the link

between the gene and the i TF, while xji = 0 indi-

cates the absence of the link. Prior distributions are

assigned to all unknown quantities. The prior over each

protein activity pi(t) was defined through the transla-

tion ODE and the placement of a suitable prior on the

TF mRNA function, fi(t), through the use of Gaussian

processes; see e.g. [41]. Bayesian inference in the train-

ing modelling phase was performed by Markov chain

Monte Carlo (MCMC) techniques [44] where all the above

unknown quantities were inferred using suitable MCMC

updates.

A more detailed description of the training mod-

elling phase is given in section 3 of the supplementary

information.
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Prediction modelling phase

The prediction phase involves independently processing

each test gene and probabilistically predicting its regulat-

ing TFs. Let ∗ denote a test gene so that y∗ is the associated

vector of observed mRNA measurements. This gene can

be regulated by any combination of I TFs. Let x∗ ∈ {0, 1}I

be the binary vector that indicates the subset of the TFs

that regulate gene ∗ which takes 2I possible values. To

infer the network links, it suffices to compute the posterior

probability for each value of the discrete random variable

x∗. Using Bayes’ rule this probability is

p(x∗|y∗,Y) =
p(y∗|x∗,Y)p(x∗|Y)

∑

x p(y∗|x,Y)p(x|Y)
, (1)

where Y indicates the data used in the training modelling

phase. To obtain the above, we need to compute the pre-

dictive density p(y∗|x∗,Y) for any possible combination

of regulating TFs, i.e. any value of x∗, together with the

associated probabilities p(x∗|Y). While p(x∗|Y) could be

computed by the frequencies of the known connectivity

vectors in the training genes, this is unreliable since the

small set of training genesmay not be representative about

the prior distribution of links between TFs and genes.

Therefore, we set these probabilities to uniform values

so that the posterior probability in Equation (1) becomes

proportional to its predictive density value p(y∗|x∗,Y).

This latter quantity is intractable since it requires an inte-

gration over the parameters (θ∗, d∗, b∗, s∗). We approxi-

mate it using a novel fast approximation to a marginal

likelihood, described in detail in section 4.1 in the supple-

mentary information, that follows ideas similar to Chib’s

approximation [45].

Given the estimated probabilities p(x∗|y∗,Y), with x∗ ∈

{0, 1}I , any query related to the regulating TFs of target

gene ∗ can be answered. For instance, in the results we

made use of the following quantities:

• Maximum a posteriori (MAP) network configuration:

This is the most probable setting xMAP
∗ for the

network links obtained by

xMAP
∗ = argmax

x∗

p(x∗|y∗,Y). (2)

• Marginal probability of a single link: The link

between the test gene and the ith TF is present with

posterior probability

p(x∗i = 1|y∗,Y) =
∑

x∗:x∗i=1

p(x∗|y∗,Y). (3)

Similarly we can compute the marginal probability

p(x∗i = 1, x∗j = 1|y∗,Y) for a pair of links.

A more detailed description of the prediction mod-

elling phase is given in section 4 of the Supplementary

Information.

The “Maximum Likelihood Baseline” method

This method, that was used in the experiments in

Drosophila, follows exactly the same structure as the

Bayesian approach with the following two differences.

Firstly, the model parameters (such as kinetic parameters

in the ODEs) were not treated using a Bayesian man-

ner and instead they were obtained based on maximum

likelihood which provides point estimates. Secondly, each

protein function, pi(t), was deterministically estimated by

the translation ODE model and by setting the driving

TF mRNA function, fi(t), to a piece-wise linear interpo-

lation function computed from the TF mRNA observa-

tions. Apart from the above differences, prediction using

the baseline method is done exactly analogously to the

Bayesian case.

The “Regression” method

In the experiments in Drosophila (Figure 7), we made use

of a simple method for predicting the regulators of a target

gene based on linear regression that predicts themRNA of

target gene from the TF mRNA. In particular, for a target

gene j this linear model is

mjn =

I
∑

i=1

wjifin + wj0 + ǫn, ∀n,

where mjn is the observed mRNA of the target gene at

time tn, {fin}
I
i=1 the corresponding observed TF mRNA

values, ({wji}
I
j=1,wj0) are parameters to be inferred and

ǫn is Gaussian noise. Notice that, {wji}
I
j=1 are interaction

weights and wj0 is a bias parameter. Network inference in

this linear model reduces to finding the non-zero interac-

tion weights. This problem would typically require sparse

optimization methods based on ℓ1 regularization as con-

sidered in [46]. However, in our case such algorithms are

not needed since the number of TFs is small (I = 5) and

hence we can enumerate all possible 32 regression mod-

els and select the best model using cross-validation. In the

results reported in Figure 7, we firstly computed for each

gene the MSE scores on held-out data (using 12-fold cross

validation) for all 32 models. Subsequently, we selected

the model with the smallest MSE score for each gene and

finally we ranked all genes based on the latter MSE scores

(in ascending order) to produce the rankings shown in

Figure 7.

Application of the Inferelator 1.1

We compared our method against Inferelator 1.1 [15]

which is available for download at http://err.bio.nyu.edu/

inferelator/. This is the most recent version for which

source code is available and which can be easily used for

http://err.bio.nyu.edu/inferelator/
http://err.bio.nyu.edu/inferelator/
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new data. We set each gene in its own cluster but other-

wise used the default settings. We interpreted the maxi-

mum of the absolute values |βi| of all weights correspond-

ing to a specific regulator alone or in combination with

another as the counterpart of the posterior probability

for ranking the predictions. For pairs, the corresponding

value was max(|β3|, min(|β1|, |β2|)), where β1 and β2 are

the weights of the components (x1, x2) of the pair and β3

is the weight of min(x1, x2) (see Eq. (6) in [15]). Combin-

ing information from independent and interaction terms

like this significantly increased the performance of the

method. Ranking by |βi| was also used in DREAM3 chal-

lenge submission of the Inferelator team [47].

Preprocessing of the Drosophila data

As previously described [20].

Training set for the Drosophila data

The training set was constructed from the training set

of 310 ChIP cis-regulatory modules (CRMs) collected

in [12] (Additional file 1: Table S8). The modules were

mapped to genes using the CRM activity database in [12]

(Additional file 1: Table S4). Multiple CRMs for a gene

were combined by taking the union of detected binding.

Weakly expressed genes as defined in [20] were excluded,

leaving a training set of 92 genes with well-characterised

TF binding profiles.

Bootstrap significance testing of rankingmethod

performance differences

100, 000-fold bootstrap resampling was used to assess sta-

tistical significance of performance differences between

different ranking methods. For each fold, the set of testing

genes was resampled with replacement from the full set of

6003 genes. Top-ranked predictions within the resampled

set were evaluated as usual and the fraction of folds where

each method outperformed each other was tabulated.

Reduced training set for the Drosophila data using a

robustifiedmodel

Since in the Drosophila data the target genes can be

influenced by unknown factors that are not part of the

model, we considered a robustified training procedure

that filtered out genes not explained by the model. This

procedure allowed us to reduce the initial set of 92 genes

to 25 genes and was carried out as follows. Firstly, we

performed a training phase using all 92 genes so that the

likelihood functions had both preprocessing noise vari-

ances and additive gene-specific adaptive variances. Then,

genes having large inferred adaptive variances, which indi-

cates that these genes cannot be explained well by the

five-TF model, are excluded so that finally a subset of 25

genes was retained. Then, the whole training phase was

repeated using only the selected genes and without the

additive variances this time. The selection involved setting

a threshold, which was set to 0.01, so that genes hav-

ing estimated adaptive variance larger than this threshold

were excluded. The threshold value was chosen to be

smaller than the average value of the preprocessing vari-

ances, which represent estimates of the actual observation

noise in the gene expression measurements.

Robust fitting was also used in the prediction phase so

that each test gene was fitted using a likelihood function in

which the variance parameter was the sum of a fixed pre-

processing noise variance and an adaptive variance. Again

this allowed us to compensate for themodelmismatch and

the presence of other confounding factors which, while

they could regulate the gene expression, are not part of the

model. More details on the robustified fitting are given in

Section 3 and 5.2 of the Supplementary Material.

DroID validation

We downloaded the TF-gene interaction database from

DroID (http://www.droidb.org, release 2011 11). Genes

with no interactions in the database were excluded from

the validation to avoid possible problems due to annota-

tion incompatibilities.

Generation of the synthetic data

We generated synthetic mRNA time-series data that cor-

respond to 1030 target genes and four transcription fac-

tors: ANT, BEE, CAR and UNK. The TF activities are

depicted in the first column of Figure 3(c). For both

experimental conditions, the TF activities have been gen-

erated by simulating the translation ODE equation by

assuming certain profiles for the TF mRNA functions,

{fi(t)}
4
i=1, which were chosen to have the profiles shown in

Additional file 1: Figure S1, and with protein degradation

rates 0.994, 0.945, 0.640, 1.2 for the four TFs respectively.

ANT, BEE and CAR are assumed to be known factors

for which observations of their TF mRNA activities are

available. UNK is assumed to be a confounding factor

whose presence and origin is not known. Given these

TF mRNA functions, {fi(t)}
3
i=1, noisy “observations” were

obtained at ten non-uniformly spaced time points, tk ∈

{0, 1, 2, 3, 5, 7, 9, 11, 14, 18}, by adding zero-mean Gaussian

noise with variance 0.025fi(tk) to the value fi(tk). Negative

values were truncated to zero.

Table 7 mRNA degradation rates

mRNA degrad. rates Protein degrad. rates
(5%,median,95%) (ANT, BEE, CAR, UNK)

(0.123, 0.610, 4.807) (0.994, 0.945, 0.640, 1.200)

Median value (with 5% and 95% percentiles) across all mRNA degradation rates

of the 1030 artificially generated genes. The exact values for the protein

degradation rates used to simulate the data are also given.

http://www.droidb.org
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To generate mRNA observations for the target genes,

we simulated the transcription ODE, given the known

TF activities and by using model parameters (θ j, dj, bj, sj)

selected as follows. Each interaction weight wji for the

TFs ANT, BEE and CAR was selected from the distribu-

tion 0.5N (0.5, 1) + 0.5δ0 which with 0.5 probability sets

the interaction weight to zero and with equal probability

selects a value drawn from a Gaussian distribution with

mean 0.5 and unit variance. The interaction weight for

UNK was selected from 0.25N (0.5, 1) + 0.75δ0. Notice

that when wji = 0, the ith TF does not regulate the

jth gene. The above procedure generates random sets of

regulating TFs so that on average each target gene has

approximately two regulating TFs. Each bias parameter

wj0 was drawn from the Gaussian N (0, 1). The kinetic

parameters (dj, bj, sj) plus an initial condition parameter aj
(see supplementary information) were selected randomly

from an empirical distribution obtained by applying the

dynamical models to the 6095 genes (the 92 training

genes plus the 6003 test genes) in the Drosophila data.

This was done to obtain kinetic parameters that pro-

duce realistic mRNA profiles that closely resemble real

gene expression data. Summaries of the values of these

parameters are given in Table 7. Given the above sim-

ulated mRNA functions the observations are obtained

at the ten non-uniformly spaced time points, mentioned

earlier, by adding zero-mean Gaussian noise with vari-

ance 0.025mj(tk) to the valuemj(tk). Negative values were

truncated to zero.

Additional files

Additional file 1: Supplementary Information. More detailed

technical description of the methods and supplementary figures

[4,20,21,26,33,39,42,44,45,48-65].

Additional file 2: Posterior probabilities of alternative regulation

models for Drosophila.
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