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ABSTRACT Estimating the distance between two smartphones plays an important role in a host of
applications. For this purpose, smartphones emit and scan for Bluetooth Low Energy (BLE) signals. When
a device is detected, the distance is estimated by evaluating the received strength of these signals. The main
insight that is exploited for distance estimation is that the attenuation of a signal increases with the distance
along which it has traveled. However, besides distance, there are multiple additional factors that impact the
attenuation and hence disturb the distance estimation procedure. Among them, frequency-selective hardware
and signal propagation belong to the most significant ones. For example, a BLE device transmits packets
on three different frequencies (channels), while the transmit power and the receiver sensitivity depend on
the frequency. As a result, the received signal strength varies for each channel, even when the distance
remains constant. However, the information on which wireless channel a packet has been received is not
made available to a smartphone. Hence, this error cannot be compensated, e.g. by calibration. In this paper,
we for the first time provide a solution to detect the wireless channel on which a packet has been received
by a smartphone application. We experimentally evaluate our proposed technique on multiple different
smartphone models. Our results help to make distance estimation on smartphones more robust and accurate.

INDEX TERMS Bluetooth, bluetooth low energy, BLE, channel detection, contact tracing, neighbor

discovery, distance estimation, smartphone, android.

I. INTRODUCTION

Estimating the distance between two wireless devices has
been studied actively by the community, and techniques
such as ultra-wideband (UWB), WiFi fine time measure-
ments (FTM) and time-of-flight (TOF) have increased the
estimation accuracy considerably throughout the recent
years [1]-[5]. However, in many scenarios, at least one of
these two devices is a smartphone, on which such approaches
are mostly unavailable. Nevertheless, distance estimation
using smartphones plays a key role in a host of applications.
For example, location-based services, where e.g. a message
is pushed on each smartphone in proximity, are growing in
importance. Here, the main goal is estimating the distance
between a BLE device and a smartphone as accurately as
possible. Similarly, accurate distance estimation between a
phone and a gadget is essential when using a phone to search
for lost items, e.g. by using a keyfob that is applying the BLE
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find me profile [6]. Another important application that relies
on distance estimation are smartphone-based contact tracing
apps against the novel coronavirus [7]. Here, every device
continually transmits BLE packets and listens for incoming
transmissions. As soon as a packet from another device is
received, the distance between both of them is estimated [8].
Similarly, in indoor localization applications, multiple BLE
location beacons are installed in a building, and smartphones
attempt to determine their positions by estimating the dis-
tance from each of them, see e.g. [5]. Distance estimation
using smartphones has been studied thoroughly throughout
the last years, e.g. in [5], [9]-[12]. Currently, due to the high
relevance for contact tracing, analyzing and increasing the
estimation accuracy is receiving considerable attention by the
scientific community [13], [14].

A. DISTANCE ESTIMATION

As already mentioned, there are established standards for dis-
tance estimation, e.g. UWB combined with TOF, WiFi-FTM,
or TOF using BLE. As we describe in Section III, these
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techniques are not widely available on smartphones. Hence,
estimating the distance between a pair of phones relies on
sensing the attenuation using the following procedure.

One device transmits a packet with a certain transmit power
P;. This value is piggy-backed onto the packet. The wireless
signal then undergoes a certain path loss, which depends
on the distance along which the signal travels. The opposite
device will receive the packet with a certain power P;.. In free
space, a wireless signal traveling along a distance d between
a sender and a receiver will be received with a power of

A 2
P, =P, -GG, [-2-) , 1
—nao () 0

see [15]. In Equation (1), A = co/f is the wavelength of the
signal, where ¢ is the speed of light and f the frequency. G;
and G, are the gains of transmitter and receiver, respectively.
Since P, and P; are known by the receiver, the distance d can
be estimated by solving Equation (1) by d.

It is obvious that this principle only works for values of P,
above a certain threshold, below which a receiver cannot suc-
cessfully decode the incoming packet. Hence, the maximum
range within which distance estimation is possible is limited
by this threshold, G;, G,, the transmit power P; of the emitted
signals and the wireless propagation environment.

While Equation (1) holds true for ideal devices in free
space, in practical setups, distance estimation is aggravated
by multiple effects, of which the following ones are most
important.

« The antennas of both devices are usually directional and
hence, the orientation between both devices impacts P;
and P,. This implies that the estimated distance would
change if at least one of both devices was rotated by a
certain angle, even when the positions of both devices
remained the same.

« Human tissue attenuates the signal by a considerably
higher degree than free space. For example, the atten-
uation between the chest and the back of the human
body has been reported as 19.2dB [16]. As a result,
the estimated distance is strongly disturbed when human
tissue is within the direct signal path, and hence also by
how two human bodies are oriented relatively to each
other, and where the phones are worn on the body.

o Multipath propagation, e.g. caused by reflections on
surfaces, can lead to interference between the signal
traveled along the line-of-sight and reflected ones.

o Multiple transmission properties depend on the fre-
quency on which a packet is transmitted. We describe
these properties in the next section.

This paper is on mitigating the errors induced by frequency-
dependent effects. Existing approaches for distance estima-
tion on smartphones are unaware of the frequency on which a
packet has been received. As we will show in Section II, when
accounting for this, the accuracy of such distance estimation
procedures can be improved significantly.

On smartphones, the received power of a BLE signal is
available in the form of a received signal strength indicator
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(RSSI), which is provided by the Bluetooth radio. It is an inte-
ger value representing the received power in dBm. After con-
verting it into a linear unit (i.e., mW), it can be inserted into
Equation (1) for estimating the distance. We next describe
how this procedure is impacted by frequency-dependent
distortions.

B. CHANNEL-DEPENDENT RSSI

In the BLE protocol, which is used for distance estimation on
smartphones, advertising packets are sent on the 3 different
channels 37, 38 and 39, which are spread over almost the
entire frequency band used. They use center frequencies of
2.402 GHz, 2.426 GHz and 2.480 GHz [17]. Because of the
following effects, the RSSI depends on the channel on which
the packet is received.

1) Almost every device has frequency-dependent values
of G, and G;. In other words, a packet sent on a certain
channel (and hence frequency) will have a larger power
than when being sent on a different channel, and the
receiver will similarly sense different RSSI values for
the same actual signal power on different channels.

2) The path loss of a signal, i.e., its attenuation over a
certain distance, depends on the channel/frequency on
which the signal is transmitted, see Equation (1).

3) Packets sent on different channels propagate differ-
ently in the environment. BLE signals are reflected,
scattered and diffracted by objects in the surround-
ing. Hence, the signal reaching the receiving antenna
consists of multiple replicas of the transmitted signal,
which are called multipath components. These replicas
interfere with those transmitted along the direct path,
i.e., the line-of-sight. When interfering constructively,
the RSSI increases, whereas it is reduced in the case
of destructive interference. Whether constructive or
destructive interference occurs depends on the distance
between the sender and receiver, and the frequency of
the signal. Therefore, the estimated distance might be
drastically changed due to the received signal being
distorted by multipath propagation.

For achieving the maximum possible estimation accuracy,
these effects have to be mitigated when estimating the dis-
tance. If the channel on which a packet has been received
was known, frequency-specific values of G; and G, could
be used instead of relying on a mean value comprising all
possible frequencies. This would cancel the error induced
by frequency-dependent values of G; and G,. Also the error
induced by the frequency-dependent propagation, as given
by Equation (1), could be cancelled by inserting the wave-
length A that corresponds to the reception channel. Though
errors induced by multipath propagation cannot be fully
compensated (since multipath propagation is also present
when only one carrier frequency is used), the information on
which channel a packet has been received can nevertheless
be exploited to reduce this error. In particular, multipath
components cause fading. Hence, packets received on the dif-
ferent channels usually differ in their RSSI values. Therefore,
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when packets received on different channels are available,
the distance estimation error can be reduced by averaging
their RSSI values before carrying out the estimation, or by
applying more elaborate methods, as proposed e.g. in [18].

As we will show in Section II, utilizing the information
on the reception channel can indeed significantly increase
the estimation accuracy. This conclusion has also been drawn
from prior studies, e.g. [19].

C. UNAVAILABILITY OF CHANNEL INFORMATION

Existing approaches for distance estimation on smartphones
do not exploit any information on the channel on which a
packet has been received. This is because the BLE radio does
not relay the information on which channel a packet was
received to the smartphone’s operating system. Indeed, the
BLE host control interface, which is used for data exchange
between radio and smartphone, specifies that incoming
advertising packets are reported to the smartphone without
containing any channel information [17]. As a result, the
smartphone is not aware of the channel a packet has been
received on. We in the following briefly discuss multiple
potential workarounds, and why they do not help.

At a first glance, simply averaging over a large num-
ber of received packets could potentially cancel frequency-
dependent errors. However, computing the average RSSI over
multiple packets can only reduce frequency-dependent errors
notably, if their reception channels are known. Otherwise,
it cannot be guaranteed that the same number of packets
for each channel are forming the average, which will bias
the result. Furthermore, as we describe in Section IV, sub-
sequently received packets typically all belong to the same
channel, and packets belonging to another channel only
become available after several seconds. Hence, for obtaining
at least a similar number of packets for each channel with
a high probability, capturing needs to continue over large
amounts of time. Within such a time-frame, the distance
between two mobile devices will already have changed in
most cases. Hence, this does not cancel frequency-dependent
errors in practical scenarios.

Another potential workaround could be piggy-backing the
transmission channel on the payload of each packet. How-
ever, this requires low-level control over the transmitting
device and thus, most off-the-shelf devices and BLE stacks
cannot be used. In particular, estimating the distance between
a pair of smartphones is infeasible, because a smartphone is
unaware of the channel on which a particular packet is trans-
mitted, and therefore cannot piggy-back this information.

We conclude that though the information on the recep-
tion channel is very valuable for distance estimation, it is
unavailable on smartphones. This paper addresses this issue
by proposing a technique to retrieve the channel information
on a smartphone, which is described next.

D. PROPOSED SOLUTION
In this paper, we, for the first time, propose a technique to
detect on which channel an advertising packet was received
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on an Android smartphone. We thereby exploit undocu-
mented behavior of many wireless System-on-a-Chips (SoCs)
found in recent smartphones. In particular, after scanning
for incoming packets has been activated by an application
(app), we observe that on most smartphones we have tested,
scanning starts on channel 37. We can exploit this behavior
for obtaining the first channel on which the smartphone scans.
Furthermore, the time between two consecutive reception
windows is large and deterministic. Hence, we can then clas-
sify the channel of later received packets based on associating
their reception time with the time windows during which the
receiver listens for incoming packets. For example, if we
predict all points in time at which the receiver scans on
channel 37, we know that all packets received at these points
in time have also been transmitted on channel 37.

E. CONTRIBUTIONS

Compared to existing works, we make the following contri-
butions in this paper:

1) We show how exploiting the information on which
channel a BLE advertising packet has been received
leads to more accurate distance estimations and quan-
tify the achieved accuracy improvements using real-
world data.

2) We, for the first time, propose a technique to identify
the channel on which a BLE advertising packet has
been received on a smartphone.

3) We evaluate the detection probability of our proposed
method in detail. Our results suggest that the channel
of reception can be detected reliably in 100 % of all
attempts.

4) We test our proposed methodology on different smart-
phone models from different manufactures and show
that it is compatible with the vast majority of the phones
we have tested.

F. PAPER ORGANIZATION

The rest of this paper is organized as follows. In the next
section, we show how the accuracy of distance estimation can
be improved by utilizing the information on which channel
a packet has been received. We then provide an overview
on related work in Section III. In Section IV, we describe
how the procedure used for distance estimation in BLE,
called advertising and scanning, works. Next, in Section V,
we describe our proposed technique for channel detection.
We experimentally evaluate this technique in Section VI and
conclude our findings in Section VII.

Il. HOW KNOWING THE RECEPTION CHANNEL
INCREASES THE ACCURACY

In the previous section, we have claimed that the accuracy
of distance estimation can be improved when the channel
on which a packet has been received is known. In this
section, we justify this claim using a practical experiment.
In particular, we measured the RSSI along with the exact
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FIGURE 1. Experimental setup: a Google Pixel 2 smartphone was used as
a stationary transmitter; a Google Pixel 3 was used as a receiver and
mounted on a mobile robot. The Google Pixel 2 was kept on a static
position, while the Google Pixel 3 moved along a large number of
different positions.

distance between two smartphones for a large number of
different positions in an indoor environment. We then parti-
tioned the resulting data into two sets. One of them was used
to calibrate a function that maps RSSI values to distances,
i.e., for generating a distance model. The remaining set was
used to verify the accuracy of estimating the distance using
this function. We have carried out this evaluation procedure
with and without utilizing the information on the reception
channel, and confront the results in this section. We thereby
show that the availability of the channel information leads
to a more accurate distance estimation. We next describe our
experimental setup.

A. EXPERIMENTAL SETUP

Figure 1 depicts the setup we have used for recording
RSSI and distance data. We used a Google Pixel 2 smart-
phone as a BLE transmitter, which remained at a fixed
position. The BLE radio of the smartphone was configured
using the ADVERTISE_MODE_LOW_LATENCY mode
(see Section IV for details), which implies that advertising
packets were sent with a period of 7, = 100 ms. We used
the highest supported transmit power to cover the maximum
range. A Google Pixel 3 smartphone was used as a receiver,
which was mounted on a mobile robot. Both smartphones
were located in an indoor environment, their height above the
ground was 67 cm.

The robot that carried the receiving smartphone was moved
to 340 different positions. At each such position, multiple
hundred RSSI values were sampled, while the robot did not
move during each measurement. Hence, each sequence of
measured values corresponds to a unique distance between
the sender and receiver, as well as to a unique orientation of
the receiver antenna.
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In addition to RSSI data, we also recorded accurate posi-
tion information. This was done using a camera-based setup,
consisting of 16 infrared cameras and infrared strobes. This
setup, based on a system from Vicon,' can locate objects in an
area of approximately 10 m x 4 m with a distance error of less
than 1 cm. The receiving and transmitting smartphones were
tagged with a reflector for being recognized by the cameras.
The resulting data was used as follows.

B. DATA PROCESSING

1) OVERVIEW

The data obtained from this experiment was then used to
evaluate the difference in the distance estimation accuracy
with and without the availability of the reception channel.
To this end, we first partitioned the data consisting of distance
and RSSI values into the following two sets.

o The data belonging to 140 different, randomly chosen
positions were assigned to the set S;,o40;. It was used to
generate a model that assigns a distance estimation to
every possible RSSI value.

o The data belonging to the remaining 200 positions,
denoted by S.,4;, was used for evaluating the accuracy
of this model.

We next describe how the model was generated, and then give
more details on evaluating this data with and without channel
information.

2) DISTANCE MODEL
Equation (1) characterizes the path loss of a wireless signal
traveling through free space as being inversely proportional to
the squared distance between the transmitter and the receiver,
i.e., d?. Practical scenarios always comprise the presence of
at least the earth surface, and the signal propagation there-
fore deviates from free space. To model such a propagation,
we use the following generalization of Equation (1).

P, =P;-G;G,K - dLV 2)
Here, y is the path loss exponent. It is used to account for
different environments. K is a constant fitting value. For the
case of free space, itis y = 2 and K = (A/47)?, and
Equation (2) becomes equal to Equation (1). Furthermore,
the received and transmitted power P; and P, are usually
expressed in dBm. The relation between a power P in dBm
and P in Watt is given by P = 10 - log1o Tirw mw We can easﬂy

solve Equation (2) by d and insert P, = 1 mW - 10710 and

P =1mW. IOP "0 This leads to the following equation,
which is usually referred to as the log-distance path loss
model, see e.g. [20], [21].

o (d(ﬁ))— Lp_ 1
B0\ ) = 105 T 10,
= a+b-b, 3)

A
P, + ” log,o (G/G,K)

1 https://www.vicon.com
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Here, P, is identical to the RSSI reported by the smartphone.
The parameters a and b account for the values of Gy, G, v,
and P;. Instead of obtaining them by computation, it is more
practical to determine them through regression.

To this end, we have computed the values of a and b that
minimize the mean squared error between Equation (3) and
the ground-truth distance when considering all data contained
in Sy0der- The details of this regression are described in the
Appendix.

With known values for a and b, Equation (3) translates
any RSSI value into a distance estimate. However, evaluating
it can be done in two different ways, based on whether the
channel on which a packet has been received is known or not.

In particular, when it is known on which channel a packet
has been received, we can generate 3 different models. For the
packets received on channel 37, we obtain a tuple of fitting
parameters (a37, b37). Inserting them into Equation (3) leads
to the distance model d37(13r). Similarly, we obtain separate
tuples (aszg, b3g) and (asg, b3g) for packets on channels 38
and 39, leading to the distance models d3g(13r) and d39(f’,).
Additionally, if the channel of reception is unknown, every
single RSSI measurement contained in Sy,qe;, irrespective
of its channel, is used to compute a tuple (augq, bagg). The
resulting parameter values (a, b), in dependence of the chan-
nel on which the considered packets were received, are given
in Table 1.

TABLE 1. Model parameters for the considered scenario.

| a | b
dage(Pr) | —2.3356 | —0.0378
ds7(P;) | —1.9855 | —0.0323
dag(Pr) | —1.9392 | —0.0321
dso(P;) | —2.5024 | —0.0395

In Figure 2, every circle represents the mean RSSI value
for all packets received on channel 37 that belong to the
same distance. We have considered all measurements in
Smodel and Seyq;. Similarly, every diamond represents chan-
nel 38 and every square channel 39. Every “x’’ represents
the mean RSSI for all measurements belonging to the same
distance irrespective of the channel. Furthermore, the dis-
tance models d37(P,), d3s(P,), d30(P,), dagg(P,), which have
been computed based on Sy,,4; as described above, are
depicted. As can be seen, these models differ significantly
from each other, which further underpins the hypothesis that
exploiting the channel information can increase the accu-
racy of the distance estimation procedure. We next evaluate
the accuracy achieved when either dagg(i’,), or the triple

(d37(P,), d3s(P,), dzo(P,)) is utilized for distance estimation.

3) COMPARISON OF ACCURACY

To quantify the accuracy of both possibilities, we have com-
puted the error E between the estimated distance d (Isr) and
the actual distance d for every RSSI/distance pair contained
in S, as follows.

E = |dP,) —d| )
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FIGURE 2. Measured mean RSSI values and corresponding distance
models ds7(Pr), d3g(Pr), d3g(Pr), dagg(Pr)-

E,q accounts for the error when the reception channel is
unknown. It has been obtained by estimating the distance
of each sample in S,y using dyge (Isr). E.j, represents the esti-
mation error when the reception channel is known. It has been
obtained by evaluating the distance of each measurement in
SemlAWith the Arnodel for tpe corresponding channel, i.e., either
d37(Py), d3g(Py) or d3o(Pr).

The results of this are shown in Figure 3. As can be
seen, the CDF for E.;, approaches unity for lower errors
than E,g,. The maximum error of the channel aware distance
estimation (i.e., the maximum value of E.;) is 17.8 m. The
corresponding root mean square error (RMSE) is 2m. For
the distance estimation using dyge, We oObtain a maximum
error of 21.9m and a RMSE of 2.5m. These results sug-
gest that channel-aware distance estimation is significantly
more accurate than estimations with an unknown reception
channel.

IlIl. RELATED WORK
In this Section, we briefly summarize work related to distance
estimation using smartphones.

A. DISTANCE ESTIMATION IN STANDARD PROTOCOLS

Multiple wireless standard protocols, such as IEEE 802.11
(WiFi) or BLE, contain dedicated distance estimation pro-
cedures. In the following, we briefly describe why they do
not solve the problem of estimating the distance between
two smartphones. The recent WiFi IEEE 802.11-2016 stan-
dard specifies a signal propagation time-based protocol for
ranging, called FTM. It is more commonly known as the
WiFi Round Trip Time (RTT) protocol. However, only very
few smartphones already support it as of today [22], and it
remains unclear whether it will become widely supported in
the future. Even if all manufacturers decided to add support
for WiFi RTT in the future, it would take many years before
the probability of a random pair of phones meeting each
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FIGURE 3. CDFs of distance estimation errors. Eqgg corresponds to the
distance estimation error with unknown channel, whereas E
correspond to the errors when the channel is known.

other are both RTT-enabled becomes reasonably high. Sim-
ilarly, though TOF-based distance estimation has recently
been introduced into the latest Bluetooth standard, to the
best of our knowledge, this isn’t supported by any of the
available phones, yet. Even when future smartphones might
add support for it, recent studies [19] indicate that it is not
advantageous when the distance needs to be calculated based
on only a few received packets. Hence, particularly when one
of the two devices is potentially in motion and thus only a
few packets can be received before the distance changes, the
currently used RSSI-based procedure will remain important.
Similar to this, distance estimation techniques known from
other domains, such as TOF and UWB, are not available on
smartphones. Therefore, other solutions have been developed
for them, which are described next.

B. DISTANCE ESTIMATION USING SMARTPHONES

Estimating the distance between a pair of smartphones has
been studied using different techniques, such as correlating
the measurements of the ambient magnetic field by differ-
ent smartphones [23], acoustic ranging [24], or the RSSI of
the Bluetooth or IEEE 802.11 (WiFi) radio. Among these
approaches, RSSI-based methods have turned out to be the
most practical ones. Since BLE is only available in relatively
recent smartphones, early studies have focused on distance
estimation using WiFi or the ‘“legacy” Bluetooth, called
Bluetooth BR/EDR. For example, Comm2Sense [25] config-
ures smartphones as mobile WiFi-hotspots to estimate the
proximity of two devices based on the WiFi RSSI. Since set-
ting up mobile WiFi-hotspots on smartphones is inconvenient
for the user and the energy consumption of WiFi drains the
battery quickly, a large number of other approaches, e.g. [26],
[27], are built on the RSSI of Bluetooth BR/EDR. Whereas
the RSSI in Bluetooth BR/EDR is measured relatively to a
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“golden receive power range” [17], the BLE protocol speci-
fies that the RSSI is an absolute received power. In addition,
BLE is designed for scanning for incoming packets continu-
ously in the background. As a result, more recent approaches
on distance estimation build upon the BLE protocol. For
example, [9] uses 3 different approximation models, which
are selected based on a coarse classification of the estimated
distance. A large number of approaches, e.g. [28]-[30], have
studied the analysis of the sensed RSSI data. Furthermore, the
work in [14], [31] has experimentally evaluated the accuracy
of distance estimation using smartphones in the context of
contact tracing. However, the accuracy of the RSSI data itself
has always been considered as immutable. Hence, to the
best of our knowledge, detecting the channel on which a
packet was received for improving the accuracy of distance
estimation has not been considered previously to this work.

C. LOCALIZATION USING FINGERPRINTING

Instead of directly estimating the distance between two
devices, fingerprinting approaches [11], [32], [33] can recog-
nize different previously recorded device positions. In partic-
ular, a device can identify its position, if the RSSI matches a
corresponding, previously recorded fingerprint being unique
to this position. Such approaches typically require multiple
transmitting devices at static positions. Different works on
fingerprinting, e.g. [5], [11], [34], have also studied the fre-
quency dependent RSSI and conclude that the information
on which channel a packet has been received improves the
localization accuracy. In particular, [5] also shows that dis-
tance estimation becomes more accurate when the reception
channel is known. While fingerprinting approaches are state-
of-the art in scenarios with static anchor devices that provide
the necessary signals to be fingerprinted, they are not feasible
in mobile networks, in which most devices do not remain at
static positions. Hence, they cannot be used for estimating the
distance between two smartphones.

IV. ADVERTISING AND SCANNING IN BLE

Distance estimation using smartphones builds upon the fol-
lowing procedure for detecting devices in its surrounding.
It is provided by the BLE protocol [17] and referred to as
advertising and scanning. Every device periodically sched-
ules an advertising event once per T, time-units. T, is called
the advertising interval and is composed of a static part T, o
plus arandom delay p € [0, 10 ms]. In each such event, three
packets in a row are sent. The first of them is sent on channel
37 (which corresponds to a center frequency of 2.402 GHz),
the second one on channel 38 (2.426 GHz) and the third
one on channel 39 (2.480GHz) [17]. This is depicted in
Figure 4. Here, every arrow stands for an advertising packet.
Three such packets in a row on different channels form an
advertising event. The first event falls with a random offset of
@ into an instance of the sequence of scan windows, in which
we define the end of the scan window on channel 37 as the
origin.
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FIGURE 4. Advertising and scanning in BLE. Arrows depict advertising packets, which are grouped in advertising events of 3 consecutive packets on 3

different channels. The rectangles depict scan windows.

For being able to receive incoming packets, every device
also listens to the channel by using so-called scan windows.
Every scan window has a duration of dy time-units, and
there is one such window every scan interval Ts. After every
instance of the scan window, the channel for the succeeding
window is toggled between channel 37, 38 and 39 in a round-
robin fashion. This is also depicted in Figure 4.

A device can detect the presence of another device, once
a packet from the remote device coincides with one of its
scan windows [35]. Most values for (7, T, ds) supported by
Android fulfill T, < d; (cf. Figure 4) and hence, the reception
of at least one packet is guaranteed in each scan window.

The Android operating system does not allow an app to
select these parameter values directly. Instead, an app can
chose between three different settings that determine 7}, and
three different ones that determine 7 and d;. These settings
are listed in Table 2.

TABLE 2. BLE parameterizations in Android.

Android Setting | Tals] | Tss] | ds|s]
SCAN_MODE_LOW_POWER - 5.120 | 0.512
SCAN_MODE_BALANCED - 4.096 1.024
SCAN_MODE_LOW_LATENCY - 4.096 | 4.096
ADVERTISE_MODE_LOW_POWER 1.000 - -
ADVERTISE_MODE_BALANCED 0.250 - -

ADVERTISE_MODE_LOW_LATENCY | 0.100 - -

It needs to be mentioned that there is no transparent
mapping between these settings and the corresponding val-
ues. First, the values that correspond to a certain setting
(e.g. SCAN_MODE_BALANCED) are not officially speci-
fied by Google. We have therefore obtained them from the
source-code of the latest version of Android.2 Second, the
values that are actually used could differ from those given
in Table 2 due to scheduling conflicts. In particular, the radio
might maintain other Bluetooth connections, and the points
in time at which other packets are exchanged might overlap
with those needed for advertising and scanning. In addition,
the Bluetooth radio is also used for WiFi on many devices,
which could lead to additional scheduling conflicts. However,
we found in our experiments that the values from Table 2
are actually used during normal operation, i.e., when no
scheduling conflicts are present.

For the sake of completeness, we here also mention
three other configuration options. First, the SCAN_MODE_
OPPORTUNISTIC setting can be used by an app to obtain

21n older Android versions, the parameter values of the scan modes are
different.
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scan results when scanning has been triggered by a different
app, without triggering the scanning itself. Second, a different
set of values for T and d is available when using batch scan-
ning, where multiple received packets are reported to the app
jointly after some time instead of immediately after discovery.
However, we could not find any documentation of this feature
and hence did not study it in detail in this paper. Third, Google
and Apple have drafted an Exposure Notification service [36]
for contact tracing. Here, an advertising interval of 200 ms to
270 ms is specified, while no values for T and dy are given.
However, only approved tracing apps can make use of this
interface. None of these additional options will supersede the
need for channel detection, as we propose in this paper.

V. CHANNEL DETECTION

In this section, we describe how the channel on which an
incoming packet is received can be detected on a smartphone.
As already mentioned, the BLE radio does not relay this
information to the smartphone’s operating system, since the
Bluetooth standard does not specify an interface for this.

According to the BLE specification [17], the channel on
which the radio scans is toggled after every scan window.
Thereby, the same order of channels 37, 38, 39, 37, ...is
always pursued. Though the BLE specification does not spec-
ify on which channel the radio has to scan first after its
activation, we could observe on different smartphone models
(see Section VI and Table 4) that when scanning is activated,
the device will always begin with channel 37. In other words,
after every reset of the BLE radio, also the channel to be
scanned on first will be reset to channel 37.

Let the point in time at which scanning was activated be
given by ¢. Then, incoming packets will only be received on
channel ¢ € {37, 38, 39}, if their reception time falls within
a time-interval I.(k) = [t (k) t, (k)] k = 1,2,3,4,...,
with

o) =1+3-(k—1)-Ts+ (c —37) - T
oty =1+3-(k=1)-Ty+(@—37)-Ty+ds. (5

Equation (5) directly follows from Figure 4. Therefore,
we can detect the channel on which a packet was received
by classifying the time of each packet reception into /37, Izg
or Izg.

The values for dy and 7T can be obtained from Table 2.
However, recall that especially in case of scheduling
conflicts, the phone might potentially deviate from this peri-
odic scheme. Though we could observe that the values
from Table 2 appear to be used in most cases (i.e., when
no scheduling conflicts are present), there might potentially
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be (slight) changes of these parameter values, or even dropped
scan windows or packets. In our experiments, the scan win-
dows always occurred at the expected points in time given by
Equation (5), even when WiFi was activated. However, some
of the transmitted packets were not received, indicating that
the scan windows were interrupted on a short-term basis for
carrying out WiFi communication. This does not negatively
impact channel detection, since the classification of reception
times according to Equation (5) remains unaffected. The
same holds true when packet transmissions are omitted or
their transmission times change due to scheduling conflicts.

Because the clocks of the smartphone and the Bluetooth
radio are not synchronized, they could drift against each
other. This might disturb the channel detection based on
Equation (5), since the classification is carried out within
an app that relies on the clock of the smartphone, whereas
the scan windows are scheduled using the clock of the
radio. To mitigate the effects of this, we slightly modify
the interval borders of I.(k) from Equation (5) to fc(k) =
[f.c(k), 1. c()], k =1,2,3,4,..., with

2:l,c(k)=t“l‘3'(k_1)'Ts‘i‘(c_37)’Ts‘l‘l‘g/z
?r,c(k):t+3~(k—1)-TS+(C—36)'TS—tg/2. 6)

Hence, for realizing a more robust detection, we here classify
each received packet by into which instance of Ty it falls,
even when being received outside of the (estimated) scan win-
dow. Further, #; is a guard time to compensate for the clock
drift, for which we propose a concrete value in Section VI.
In addition, for limiting this drift, we propose to regularly
re-start the scanning procedure after a certain period of time.
We evaluate after which amount of time such a re-start should
occur in Section VI.

Algorithm 1 shows the pseudo-code of our proposed algo-
rithm for detecting the channel on which a packet was
received. In order to limit the power consumption of the
smartphone, the algorithm starts the BLE scanner using
the SCAN_MODE_LOW_POWER setting (c.f. Line 4 in
Algorithm 1). As soon as BLE signals are detected, the
main part of the algorithm is executed and the BLE scan-
ner is re-started using the SCAN_MODE_LOW_LATENCY
setting (c.f. Line 9-12 in Algorithm 1). We remember the
timestamp ¢ when scanning was re-started. Note that this
timestamp does not perfectly coincide with the actual re-start
of the BLE scanning procedure, since there might be delays
and/or jitter. The effect of such misalignments are miti-
gated through the guard time #; in Equation (6). All subse-
quent packets are handled in the inner while loop starting in
Line 13 of Algorithm 1. For each such packet, the reception
time is computed and ¢ (i.e., the time when scanning was
started) is subtracted. The resulting time difference is used by
the ClassifyChannel()-function, which infers the channel of
reception by evaluating Equation (6). After Max-Scan-Time
(cf. Line 16 in Algorithm 1) has passed, the scanning proce-
dure is re-started to limit the clock drift between smartphone
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and radio, as already explained. The guard time ¢, compen-
sates for any clock drift before this re-start.

In the next section, we evaluate the accuracy of channel
detection using this algorithm on different smartphone mod-
els and for different re-start intervals of the BLE scanning
procedure.

Algorithm 1: Android BLE Channel-Detector

1 dolnit = true;
2 while / do

3 if doInit then
4 Scan-Mode = SCAN_MODE_LOW_POWER;
5 ReStartScan();
6 dolnit = false;
7 Channel-Detection = false;
8 if BLE signals detected then
9 Channel-Detection = true;
10 Scan-Mode =
SCAN_MODE_LOW_LATENCY;
11 ReStartScan();
12 t = GetSystemTime(); // see Eg. (6)
13 while Channel-Detection do
14 if BLE signal received then
/+ classify BLE signal into
237, 238 or 239 using Eqg. (6)
*/
15 ClassifyChannel(t, GetSystemTime());
16 if GetSystemTime() - t > Max-Scan-Time then
17 ReStartScan();
18 t = GetSystemTime() ; // see Eqg. (6)
19 if No signals detected then
20 dolnit = true;
21 break;

VI. EVALUATION

In this section, we evaluate the proper functioning of our
proposed technique for channel identification and the accu-
racy of Algorithm 1. Towards this, we first describe our
experimental setup and then give experimental data.

A. EXPERIMENTAL SETUP

In order to evaluate our approach and Algorithm 1 on dif-
ferent smartphone models, we have set up the following test
environment. Four Raspberry Pis,? denoted as R(i), i =
1...4 continuously transmitted BLE advertising packets.
Each Raspberry Pi was configured to transmit on a different
set of channels, viz., R(1) on channel 37, R(2) on channel
38, R(3) on channel 39 and R(4) on all three channels,

3In our experiments with Samsung Galaxy S5 and Xiaomi MI-A2 smart-
phones, these Raspberry Pis were replaced by Bluegiga BLE112 radios,
which carried out the same tasks as the Raspberry Pis.
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as also shown in Table 3. The advertising interval was set
to 100ms, which is way below d; (cf. Table 2). Hence,
multiple advertising packets will fall into every scan win-
dow. Note that 7, = 100ms is used by the ADVERTISE_
MODE_LOW_LATENCY setting on Android smartphones.
Therefore, though having been obtained using Raspberry Pis
as senders, our results remain valid when packets are sent
using smartphones. It is worth mentioning that we have tested
our proposed methodology also with all other advertising
intervals supported by Android (viz., 100 ms and 1000 ms),
and found it to be working successfully irrespective of the
value of T, used.

In BLE, the services a device offers are advertised with
the payload of its packets. Such services are identified by
unique identifiers, so-called Universally Unique Identifiers
(UUIDs). We have assigned a different UUID to the packets
of each Raspberry Pi. Note that this is only possible when
a Raspberry Pi is used, which provides direct access to the
BLE API. On a smartphone, it is not possible to emit packets
only on a certain, adjustable set of channels. Hence, this
technique cannot be used to detect the advertising channel
when two smartphones estimate their distance. We use it as a
ground-truth for our evaluation instead.

TABLE 3. Experimental setup with 4 Raspberry Pis advertising on
different channels.

Raspberry Pi | Channel | Center Frequency in [GHz]

R(D) 37 2.402
R(2) 38 2.426
R(3) 39 2.480
R(4) 37,38,39 2.402, 2.426, 2.480

B. RESULTS
1) BEHAVIOR OF THE BLE RADIO
Figure 5a shows the reception times of all packets in an
experiment using the SCAN_MODE_LOW_LATENCY set-
ting. Figure 5b depicts the results from an experiment in
which the SCAN_MODE_BALANCED setting was used.
Both experiments were carried out using a Google Pixel 3
smartphone. The individual measurements lie in such a close
proximity that they appear as lines rather than as individual
points, since the time between two adjacent packets is short.
We have sorted the packets by their UUIDs, which identify
their channel. The different background colors in the figure
depict the estimated instances of the scan interval and their
channel, as given by Equation (6). Assuming that scanning
started on channel 37, red indicates that in this interval, the
scan window was listening on channel 37. Similarly, green
corresponds to channel 38 and blue to channel 39. Note that
the colors of the depicted received packets do not follow this
scheme, since they would be indistinguishable if they had the
same color as the background.

In both experiments, scanning was activated at time
t =0s. In the SCAN_MODE_LOW_LATENCY setting,
as can be seen in Figure 5a, the received packets follow
the pattern predicted by Equation (6), which is exploited
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by Algorithm 1. In particular, starting from time ¢ = Os,
packets are received on channel 37 for T time units. Next,
a sequence of packets is received on channel 38, then channels
39,37,38,39,....

In contrast, when using the SCAN_MODE_BALANCED
setting, we found that the first “‘regular’ scan window begins
after a certain offset #, from the starting time, which is
indicated by the white background color in Figure 5b. Before
t, has passed, the smartphone scans using an unpredictable
pattern. In the situation exemplified in Figure 5b, the device
first scans on channel 37 and then on channel 38, each for an
amount of time that exceeds d;. After ¢, has passed, the device
re-sets to channel 37 and the scheme as given by Equation (5)
begins. Hence, if the offset 7, would be known, the channel
could be classified correctly according to Equation (6). How-
ever, our measurements with different smartphone models
showed that this offset 7, varies every time the scanning
procedure is started, and in addition depends on the smart-
phone model. This justifies that our algorithm is built upon
the SCAN_MODE_LOW_LATENCY setting for detecting
the channel of an incoming BLE signal, despite this setting
being the most power-hungry one on Android devices. Since
we only switch to this mode for short amounts of time after
an initial reception (i.e., until the channel has been identified
and a sufficient number of packets for computing the distance
have been received), the energy overhead of this will be
acceptable. Recent results [8] show that - depending on the
smartphone model - the battery of the smartphone is drained
by between 5 % and 20 % earlier compared to when Bluetooth
is switched off, if the SCAN_MODE_LOW_LATENCY set-
ting is used during all times. Since we only use this mode
for small fractions of the time, the reduction of the battery
runtime will be way below this.

It is worth mentioning that though it needs almost 10s
until a packet has been received on all 3 channels at least
once, distance estimation can be done earlier, since not all
channels need to be exploited. The improvement in accuracy
stems from the information on which channel a packet has
been received.

2) CLASSIFICATION ACCURACY

While Figure 5 shows that the behavior of the BLE radio
on multiple smartphone models appears to be suitable for
channel detection, in which fraction of all attempts can the
channel be classified correctly using Algorithm 1? In order
to evaluate the success rate of the channel detection algo-
rithm, which we call the detection accuracy, Figure 6 shows
the fraction of packets for which the channel was detected
correctly as a function of the time since the last re-start of the
scanning procedure for the Google Pixel 2 and Google Pixel
3 smartphones. Both smartphones continuously recorded
the received BLE packets of the Raspberry Pis for 24 h.
Scanning was re-started every 30 min. This re-starting was
necessary because the Android operating system automat-
ically switches from the SCAN_MODE_LOW_LATENCY
to the SCAN_MODE_OPPORTUNISTIC setting after
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TABLE 4. Tested Android devices.

Classification
Device Name Model Compatible Accuracy Android Version Comments
Google Pixel 2 Pixel 2 v 100 % 10 -
Google Pixel 3 Pixel 3 v 100 % 10 -
Google Pixel 4a (5G) Pixel 4a (5G) v 100 % 11 -
Google Pixel 5 Pixel 5 v 100 % 11 -
OnePlus 5 ONEPLUS A5000 v 100 % 9 -
Samsung Galaxy S5 SM-G900F v 99.5% 8.1.0 Older API: Ts = 55, Lineage OS.
Xiaomi MI-A2 M1804D2SG v 100 % 9 -
Xiaomi Mi 9T Pro MI1903F11G v 100 % 10 -
Huawei P20 lite ANE-LX1 X - 9 Different scan intervals, no channel reset
Samsung Galaxy M20 SM-M205FN X - 10 Different scan pattern, no channel reset
iPhone 6s MNI1E2LL/A X - 13.5.1 (i0S) No channel reset
| | = ==N
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FIGURE 5. Sequence of received packets classified by their channel of
reception on the Google Pixel 3 smartphone. The different background
colors indicate the estimated channel based on Equation (6). Four
Raspberry Pis transmitted BLE advertisement packets on different
frequencies/channels, see Table 3. Unique UUIDs allowed us to detect on
which channel a packet was received.

30min of continuous scanning. In the SCAN_MODE_
OPPORTUNISTIC setting, the device only schedules
scan windows when a different app explicitly trig-
gers the scanning (i.e., by using a different mode than
SCAN_MODE_OPPORTUNISTIC), which would have
interrupted our measurements.

We used a guard time of 7, = Os and t;, = 0.2, respec-
tively. As can be seen in Figure 6, by using a guard time of
tg = 0.2's, we obtain a detection accuracy of 100 % for more
than 10 min of contiguous scanning without re-starting for the
Pixel 3 smartphone, and 15 min for the Pixel 2 smartphone.
For a guard time of t, = Os, the initial detection accuracy
is slightly reduced to around 97 %. When scanning is carried
out for more than 10 min without reset, the detection accu-
racy gradually becomes smaller for both values of ;. This
is caused by clock drift between the smartphone and radio,
as already described. We therefore propose to set #, to 0.2s
and Max-Scan-Time in Algorithm 1 to 10 min. In general,
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FIGURE 6. Probability of classifying the channel correctly (detection
accuracy) as a function of the scanning time without re-starting for the
Pixel 2 and Pixel 3 smartphones. Two guard times tg = 0s and 0.2 s were
applied. The BLE scanner was re-started at t = 0s.

for a larger value of t,, Algorithm 1 can be run for a longer
time without the need of a reset of the scanning procedure.
On the other hand, an increasing number of packets need to
be discarded, if 7, is increased.

3) DIFFERENT SMARTPHONE MODELS

We have shown that our proposed algorithm works in princi-
ple, but will it work for all smartphone models from different
manufacturers? Since the observation of smartphones always
starting on channel 37 after a reset is an unspecified behavior,
this requires further investigation. For answering this ques-
tion, we have tested different smartphone models for their
compatibility with our proposed methodology. In particular,
we have tested whether they always start scanning on chan-
nel 37 and then switch to the next channel after every instance
of T;. We also evaluated the detection accuracy for each of
them. Table 4 summarizes the results of this experiment.
Out of 11 smartphones from different manufacturers we have
tested, Algorithm 1 is compatible with 8. Table 4 shows the
classification accuracy for a recording time of 7min and
a guard time of z, = 0.2s, similarly to Figure 6. Here,
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FIGURE 7. Sequences of received packets classified by their channel of
reception over time in the SCAN_MODE_LOW_LATENCY setting for the
Samsung Galaxy S5 and the Huawei P20 Lite smartphones. The different
background colors in the upper part of the figure indicate the estimated
channel of the scan intervals given by Equation (6).

we re-started the scanning procedure after every minute, since
we feel that a 1 min time-frame is practical for estimating the
distance between a pair of phones. We obtained a classifi-
cation accuracy of 100% for 7 of the 8 compatible devices,
while the accuracy for the remaining smartphone (viz., the
Galaxy S5) is only reduced by 0.5 %. These results can be
further improved when tweaking the parameters 7, and the
interval after which the scanning is re-started individually
for each smartphone model. For most smartphones, a clas-
sification accuracy of 100 % can be maintained for a longer
duration than 1 minute (cf. Figure 6).

Below, we discuss multiple smartphone models that exhib-
ited an abnormal behavior in detail.

a: SAMSUNG GALAXY S5

The Samsung Galaxy S5 we have tested used an older version
of Android, in which the scan intervals that were actually used
differ from the ones in the most recent Android version. Nev-
ertheless, our proposed algorithm works successfully when
adjusting T;. The results of this experiment are shown in
Figure 7a. Similarly to Figure 5, the received packets are
classified by their channel of reception in Figure 7a. In our
experiment, the SCAN_MODE_LOW_LATENCY setting
was used. As can be seen, when adjusting the scan interval,
the channel can be tracked reliably over time.

b: HUAWEI P20 LITE

The Huawei P20 lite and the Samsung Galaxy M20
smartphones were the only two Android smartphones we
have tested, on which our proposed methodology did not
work. In our experiments, we found that the Huawei P20
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FIGURE 8. Two different sequences of received packets classified by their
reception channel over time for the Samsung Galaxy M20 smartphone.
Here, the SCAN_MODE_LOW_LATENCY setting was used.

Lite smartphone used a scan window between 100 ms
and 200 ms. Figure 7b depicts the results of this exper-
iment with a Huawei P20 smartphone, in which the
SCAN_MODE_LOW_LATENCY setting was used. As can
be seen, the channel is switched much more frequently than
expected. However, we could not identify a predictable tog-
gling behaviour of the Huawei P20 smartphone in our experi-
ments. Hence, our algorithm was not able to classify the BLE
signals into i37, f3g or i39 using Equation (6).

¢: SAMSUNG GALAXY M20

Figure 8 depicts the received packets classified by their recep-
tion channels in two different experiments using the Samsung
Galaxy M20 smartphone. The Samsung Galaxy M20 smart-
phone also uses scan windows of length d; = 4.0965s in the
SCAN_MODE_LOW_LATENCY setting. However, as can
be seen, the channels are toggled in a different order than
specified by the BLE specification. For example, in the upper
part of the figure, the device started scanning on channel 38,
then switched to channel 39, then to channel 37 and then
to 39 again. The lower part of the figure depicts another such
abnormal scanning sequence. In addition to this abnormality,
the starting channel is not reset when the scanning procedure
is re-started.

d: APPLE IPHONE 6S

We also wrote a dedicated Apple iOS app for testing our
approach on such devices. Using this app, we could reveal
the following behavior on an iPhone 6s. After resetting the
scanning procedure, the device always continues to scan on
the channel on which it had scanned at the time it was
stopped. Clearly, this prevents using our proposed method-
ology. In addition, the scan windows were scheduled in an
unpredictable manner in our experiments. In particular, the
scan interval appeared to increase over time. Furthermore,
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unlike on Android, iOS does not allow an app to choose
among different settings that determine 7 and ds. Finally,
transmitting in the background, i.e., when the screen is
locked, is not possible on iOS.

VII. CONCLUDING REMARKS

As a part of the Bluetooth Low Energy (BLE) standard,
the host control interface (HCI) specifies how a Bluetooth
radio on a smartphone communicates with the phone. As a
result of this specification, the information on which wireless
channel a packet has been received is not made available to
a smartphone. Fortunately, as we have shown in this paper,
the behavior of BLE radios used on many recent smartphone
models allows for reliably detecting the channel indirectly,
since the radio always starts scanning on channel 37 after a
re-start. Hence, we in this paper, for the first time, proposed
a solution to reliably detect the wireless channel on which a
packet has been received on a smartphone. We also showed
that the channel on which the smartphone scans can be
tracked over time by an Android application after re-starting
the BLE scanning procedure. The proposed technique was
experimentally evaluated on multiple different smartphone
models. In particular, we showed that a probability of detect-
ing the correct channel of 100 % can be obtained for the
Google Pixel 2 and Google Pixel 3 smartphones, and similar
probabilities for other smartphone models.

The information on which channel a packet has been
received is highly relevant for distance estimation. In partic-
ular, the error induced by the frequency-dependent gains G,
and Gy, as well as the frequency dependent signal propagation
in free space, can be cancelled easily. Also the issue of
multi-path propagation, which can occur especially in indoor
environments, can be mitigated when the channel on which a
packet was received is known. Our proposed approach there-
fore helps towards reliably estimating the distance between
two phones.

APPENDIX

Similar to [5], the parameters a and b of Equation (3) can be
estimated as described in the following. We obtain the sum of
the model error squares from Equation (3) as

E(a, b) = NZM (10210 (dP,) ~ oy (3))”
j=1

In the equation above, Ny is the number of calibration mea-
surements, d is the actual distance, d; (P, ) 1s the estimated
distance and Pr,j is the measured received signal strength
indicator (RSSI) value of the jth calibration point. Equiva-
lently to [5], from the criterion of least squares estimation,
E(a, b) has to be minimized, hence,

9@ b) _ 2 NXM: (a +bP, j —log, (‘Ai/)) =0 ®

da
j=1
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and

Ny
9E(a, b) ) N .
2 jz_l (a +bPyj —logyg (‘é)) Prj=0 )

From Equation (8) and Equation (9) we obtain
Ny Ny
aNy +bY_ Pry =) logiq (&) (10)
j=1 j=1
Ny Ny
aY P+ P2 = Zloglo ( ) L (D)
j=1 j=1

which can be written in matrix representation as

M . m —x (12)
where
_ Ny
Num > Prj
_ J=1

M=, N , (13)

Z P”J Z P%]

=] =1

X = Zloglo() Zloglo(a)A (14)

Finally, we can calculate a and b by

[Z] =M! .x. (15)
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