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Abstract

In this paper we consider two semimartingales driven by Wiener processes

and (possibly infinite activity) jumps. Given discrete observations we sepa-

rately estimate the integrated covariation IC from the sum of the co-jumps.

The Realized Covariation (RC) approaches the sum of IC with the co-

jumps as the number of observations increases to infinity. Our threshold (or

truncated) estimator ˆICn excludes from RC all the terms containing jumps in

the finite activity case and the terms containing jumps over the threshold in

the infinite activity case, and is consistent. To further measure the dependence

between the two processes also the betas, β(1,2) and β(2,1), and the correlation

coefficient ρ(1,2) among the Brownian semimartingale parts are consistently

estimated.

In presence of only finite activity jumps: 1) we reach CLTs for ˆICn, β̂(i,j)

and ρ̂(1,2); 2) combining thresholding with the observations selection proposed

in [16] we reach an estimate of IC which is robust to asynchronous data.

We report the results of an illustrative application, made in a web ap-

pendix3, to two very different simulated realistic asset price models and we

see that the finite sample performances of ˆICn and of the sum of the co-jumps

estimator are good for values of the observation step large enough to avoid
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3see on http://www.dmd.unifi.it/upload/sub/persone/mancini/WebAppendix3.pdf
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the typical problems arising in presence of microstructure noises in the data.

However we find that the co-jumps estimators are more sensible than ˆICn to

the choice of the threshold. Finding criteria for optimal threshold selection is

object of further research.

Keywords: co-jumps, integrated covariation, integrated variance, finite

activity jumps, infinite activity jumps, threshold estimator.

1 Introduction

We consider two state variables evolving as follows

dX
(q)
t = a

(q)
t dt + σ

(q)
t dW

(q)
t + dJ

(q)
t , q = 1, 2

for t ∈ [0, T ], T < ∞ fixed, where a and σ are càdlàg stochastic processes; W (1) is a

standard Brownian motion and, for all t ∈ [0, T ], dW
(2)
t is a combination ρtdW

(1)
t +

√
1− ρ2

t dW (3), where W (3) is an independent standard Brownian motion, and ρ

a stochastic process with cadlag paths, in particular d < W (1),W (2) >t= ρtdt;

J (1), J (2) are possibly correlated pure jump processes. Given discrete observations

X
(1)
τj , X

(2)
νi , with observation times spanned in [0, T ], we are interested in the separate

identification of the integrated covariation ICT :=
∫ T

0
ρtσ

(1)
t σ

(2)
t dt, the covariation

between the two Brownian semimartingale parts, and of the sum of the co-jumps

∆J
(1)
t ∆J

(2)
t , the simultaneous jumps of X(1) and X(2), where, for each q = 1, 2, ∆J

(q)
t

denotes the size J
(q)
t − J

(q)
t− of the jump occurred at time t.

The recent empirical interest in co-jumps in financial econometrics ([9]) is moti-

vated by the problem of a correct assets price model selection. This has important
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consequences in forecasting, in option pricing, in portfolio risk management, and

even in the credit risk management, since a default of a firm is interpretable as

a jump in the firm value and contemporaneous defaults give a co-jump, implying

default dependence (contagion, [14]).

A commonly used approach to estimate
∫ T

0
ρtσ

(1)
t σ

(2)
t dt is to take synchronous and

evenly-spaced observations X
(1)
t0 , X

(1)
t1 , .., X

(1)
tn , X

(2)
t0 , X

(2)
t1 , .., X

(2)
tn , with tn = T, n ∈ IN

and to consider the sum of cross products
∑n

j=1 ∆jX
(1)∆jX

(2), where ∆jX
(q) :=

X
(q)
tj − X

(q)
tj−1

; however this estimate can be highly biased when the processes X(q)

contain jumps; in fact, as n → ∞, such a sum approaches the global quadratic

covariation

[X(1), X(2)]T =

∫ T

0

ρtσ
(1)
t σ

(2)
t dt +

∑
0≤t≤T

∆J
(1)
t ∆J

(2)
t ,

which also contains the co-jumps. To our aim it is crucial to single out the time

intervals where the jumps occurred.

A jump process J is said to have finite activity (FA) when a.s. only a finite

number of jumps can occur in each finite time interval. On the contrary J is said

to have infinite activity (IA). In the special case where J is a Lévy process and has

IA then a.s. infinitely many jumps occur in each finite time interval.

Our estimator of ICT is based on a threshold criterion (as introduced by [24])

allowing to identify all the time intervals ]tj−1, tj] where the path of a univariate

semimartingale jumped, if the jump component J has FA, and the intervals where

jumps over the threshold occurred, if the discretely observed realization of J has

infinite activity ([26]). Extending the application of the criterion to a bivariate

framework allows to derive an asymptotically unbiased estimator of ICT as well as

of the sum of the co-jumps occurred up to time T , of the regression coefficients
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betas, β(1,2) and β(2,1), and of the correlation coefficient ρ(1,2) between the Brownian

semimartingale components of the given processes. More precisely we construct the

following estimator

ˆICT,n :=
n∑

j=1

∆jX
(1)1{(∆jX(1))2≤rh}∆jX

(2)1{(∆jX(2))2≤rh}, h = T/n,

where only the variations under a given threshold function rh are taken into account.

Compared to the univariate case, the bivariate one presents at least the following two

further problems. First in general the observations X
(1)
τj , X

(2)
νi are not synchronous.

Secondly, in presence of infinite activity jumps the speed of convergence of our

estimator turns out to depend on the two J (q) jump activity indexes in a more

complicated way than in the univariate case. More importantly, the dependence

structure between the J (q)s also influences the speed. We will tackle the first point

in section 3.1, while the second one is dealt with in [29].

The first main result of our paper is showing the convergence in probability of ˆICT,n

to ICT , as the number n of observations tends to infinity. Not equally spaced but

synchronous observations are allowed for such a result. The second group of results

is given in presence of only FA jumps. Even when we only have non-synchronous

data we reach consistency by modifying our estimator in a similar way as in [16]

and [15]. When observations are evenly spaced, we prove a joint CLT delivering:

1. that ˆICT,n is asymptotically Gaussian and converges with speed
√

h, which

extends results in [4] who estimated ICT in absence of jumps; 2. consistent and

asymptotically Gaussian estimators of the βs and of ρ(1,2).

The threshold criterion originated in [24] to separate the continuous and the

jump parts of a univariate parametric Poisson-Gaussian model. The criterion was
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shown to work even in nonparametric frameworks in [25], [26] and [19].

The literature on non-parametric inference for stochastic processes driven by

Wiener processes plus jumps, based on discrete observations, is mainly devoted to

univariate cases. As for bivariate processes, [10] proposes to estimate ICT by a

weighted sum of the cross products ∆jX
(1)∆jX

(2) with a soft rejection weighting

function in place of our indicators; [6] and [22] explore two different tests for the

presence of co-jumps basically using cross multipower variations. A discussion on

such approaches follows in section 3. We adopt the threshold method here since it

has more favorable asymptotic properties (efficiency), as explained in more detail in

section 3.

An outline of the paper is as follows. In section 2 we illustrate the framework;

in section 3 we deal with the case where each component J (q) of X(q) has finite

jump activity. We show that ˆICT,n is asymptotically Gaussian (implying that it is

also consistent). We find a joint CLT allowing to estimate the βs and ρ(1,2) of the

Brownian semimartingale parts of our processes X(q), and we deal even with the non-

synchronous observations case. In section 4 we deal with the case where each J (q)

can have an IA semimartingale jump component J̃
(q)
2 . We show that our estimator

is still consistent. Since the given theory asserts that we can asymptotically identify

the quantities of our interest, in section 5 we report the results obtained in a web

appendix where we simulate realistic asset price models: we find that in fact the

finite sample performances of ˆICT,n and of the sum of the co-jumps estimator are

good even for time step between the observations large enough (five minutes) to avoid

considering microstructure effects on the data. Section 6 concludes and section 7

contains all the proofs and technical details.
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2 Framework and notation

Consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) where X(1) = (X
(1)
t )t∈[0,T ]

and X(2) = (X
(2)
t )t∈[0,T ] are two real processes defined by

X
(q)
t =

∫ t

0

a(q)
s ds +

∫ t

0

σ(q)
s dW (q)

s + J
(q)
t , t ∈ [0, T ], q = 1, 2 (1)

and

A1. dW
(2)
t = ρtdW

(1)
t +

√
1− ρ2

t dW
(3)
t , W (1) and W (3) are independent

standard Brownian motions.

A2. The coefficients σ(q) = (σ
(q)
t )t∈[0,T ], a(q) = (a

(q)
t )t∈[0,T ], q = 1, 2, and

ρ = (ρt)t∈[0,T ] are càdlàg adapted processes.

Processes J (q) are pure jump components. In the next section we assume they have

FA, i.e.

J
(q)
t =

N
(q)
t∑

k=1

γ
(q)

τ
(q)
k

, q = 1, 2,

as specified with more detail below, where N (q) = (N
(q)
t )t∈[0,T ] are any counting

processes with E[N
(q)
T ] < ∞. In section 4 each J (q) is assumed to be a pure jump

Itô semimartingale with possibly IA.

To begin with we assume to have equally spaced and synchronous observations.

The consistency results under not equally spaced but synchronous observations are

straightforward using Lemma 2.1 and Theorem 7.1 below. Generalization to not

equally spaced and not synchronous observations are dealt with in section 3. Let,

for each n, πn = {0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n = T} be a partition of [0, T ]. For sim-

plicity let us write tj in place of t
(n)
j . Define h := tj − tj−1 = T

n
, for every j = 1, .., n
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and n = 1, 2, ... Note that h → 0 if and only if n → ∞, so when computing the

limits of our interest we indifferently indicate one of the two.

A3. We choose a deterministic function, h 7→ rh, satisfying the following

properties

lim
h→0

rh = 0, lim
h→0

h log 1
h

rh

= 0.

For each q = 1, 2, the Brownian semimartingale part of X(q) is denoted by

D
(q)
t :=

∫ t

0

a(q)
s ds +

∫ t

0

σ(q)
s dW (q)

s .

As a consequence of the Paul Lévy result about the modulus of continuity of the

Brownian motion paths, we can control how quickly the increments of each D(q)

tend to zero. This is the key point to understand when ∆jX
(q) is likely to contain

some jumps. More precisely, the Paul Lévy law (see e.g. [23], p.114, Theorem 9.25)

implies that

a.s. lim
h→0

sup
j∈{1,..,n}

|∆jW
(p)|√

2h log 1
h

≤ 1, p = 1, 3. (2)

However even the modulus of continuity of the D(q)s paths share a similar prop-

erty, as it is stated in the following lemma (the proof, given in [26] is reported in

appendix).

Lemma 2.1. Under A2 we have that, given an arbitrary (possibly random) partition

{t0 = 0, t1, ..., tn = T} of [0, T ], then for sufficiently small h := supj=1..n |tj − tj−1|

we have a.s.

sup
j=1..n

|∆jD
(q)|√

2h log 1
h

≤ Kq(ω), q = 1, 2
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where K1(ω) :=
√

M1(ω) + 1, K2(ω) :=
√

2M2(ω) + 1 are finite random variables,

M1(ω) := sups∈[0,T ](σ
(1)
s )2(ω), M2(ω) := sups∈[0,T ]((σ

(2)
s )2ρ2

s + sups∈[0,T ]((σ
(2)
s )2(1 −

ρ2
s))(ω).

The last result implies that a.s. if rh is larger than 2K2
q h log 1

h
(as it happens

under A3 for sufficiently small h) and if (∆jX
(q))2 > rh then we have (∆jX

(q))2 >

2K2
q h log 1

h
, and it is likely that some jumps occurred within ]tj−1, tj] and made

|∆jX
(q)| large. Application of Lemma 2.1 gives us the main tool for the construction

of our estimators in the next section.

Notation.

• For any semimartingale Z, ∆Zs = Zs − Zs− denotes the size of the jump of Z

at time s, while ∆jZ = Ztj − Ztj−1
denotes the increment of process Z in the time

interval ]tj−1, tj]

• ICt =
∫ t

0
ρsσ

(1)
s σ

(2)
s ds denotes the integrated covariation up to time t,

ˆICt,n =
∑

j=1..n: tj≤t ∆jX
(1)1{(∆jX(1))2≤rh}∆jX

(2)1{(∆jX(2))2≤rh}, with h = T/n, is its

threshold estimator

• IV
(q)
t =

∫ t

0
(σ

(q)
s )2ds denotes the integrated variance of process X(q), q = 1, 2, up

to time t and ˆIV
(q)

t,n =
∑

j=1..n: tj≤t(∆jX
(q))21{(∆jX(q))2≤rh} is its threshold estimator

• sometimes ∆jX
(q)1{(∆jX(q))2≤rh} is indicated briefly with ∆jX

(q)
?

• sometimes we write Plim to indicate the limit in probability.
st→ indicates

stable convergence in law of processes. See [21], ch. 8, sec. 5c, for the defini-

tion and properties of stable convergence in law, and [18] for statements of further

useful properties. We recall that stable convergence in law implies convergence in

distribution.
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3 Finite activity jumps: consistency and central

limit theorem

In this section we assume that J (q) is any FA jump process: for each q = 1, 2,

J
(q)
t =

∫ t

0

γ(q)
s dN (q)

s =

N
(q)
t∑

k=1

γ
(q)

τ
(q)
k

,

where N (q) = (N
(q)
t )t∈[0,T ] is a counting process with E[N

(q)
T ] < ∞, {τ (q)

k , k =

1, ..., N
(q)
T } denote the instants of jump of J (q) and γ

(q)

τ
(q)
k

denote the sizes ∆J
(q)
t of the

jumps occurred at τ
(q)
k . Denote

γ(q) = min
k=1,...,N

(q)
T

|γ(q)

τ
(q)
k

|.

A4. Assume P (γ
(q)

τ
(q)
k

= 0) = 0, ∀ k = 1, ..., q = 1, 2.

Remark 3.1. Condition A4 implies that a.s. γ(q) > 0.

Example 3.2. If J (q) are FA Lévy processes, then they are of compound Poisson

type ([12], Proposition 3.3, section 3.2): N (q) are simple Poisson processes with

constant intensities λ(q) and for each q the random variables γ
(q)

τ
(q)
k

are i.i.d., for

k = 1, ..., they are independent on N (q) and satisfy condition A4.

We recall that we are considering now deterministic equally spaced observation

times tj = jh, for h = T/n, j = 1.., n. We remark that the consistency and CLT we

reach in this section are valid in presence of general finite activity jump processes,

in that we do not need any assumptions on the law of the jump sizes, or of the

counting processes N (q), nor any assumption of independence.

Now we construct our threshold estimators.
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Definition 3.3. We define for r, l ∈ IN

v
(n)
r,l (X(1), X(2))t = h1− r+l

2

∑
j:tj≤t

(∆jX
(1))r(∆jX

(2))l,

w(n)(X(1), X(2))t = h−1
∑

j:tj+1≤t

1∏
i=0

∆j+iX
(1)

1∏
i=0

∆j+iX
(2).

and their analogous threshold versions

ṽ
(n)
r,l (X(1), X(2))t = h1− r+l

2

∑
j:tj≤t

(∆jX
(1))r1{(∆jX(1))2≤rh}(∆jX

(2))l1{(∆jX(2))2≤rh},

w̃(n)(X(1), X(2))t =h−1
∑

j:tj+1≤t

1∏
i=0

∆j+iX
(1)1{(∆j+iX(1))2≤rh}

1∏
i=0

∆j+iX
(2)1{(∆j+iX(2))2≤rh}.

v
(n)
r,l (X(1), X(2))T and w(n)(X(1), X(2))T are used in [4] to estimate ICT in the case

where X(q) are Brownian semimartingales. ṽ
(n)
r,l (X(1), X(2))T and w̃(n)(X(1), X(2))T

are modified versions for the case of models with jumps: by Theorem 7.1 they exclude

from the sums the terms containing jumps. Note that ṽ
(n)
1,1 (X(1), X(2))t = ˆICt,n, for

all t ∈ [0, T ].

In view of the practical applications of our estimator we are now interested in

the speed of convergence of ˆICT,n. We in fact reach even more. The first main result

of this section is a joint central limit theorem for the threshold estimators



ˆIV
(1) ˆIC

ˆIC ˆIV
(2)




which implies that in presence of finite activity jumps ˆICt,n converges to ICt for all

t ≤ T , at speed
√

h, h = T/n, and it allows to give estimators of standard depen-

dence measures between the Brownian semimartingale parts D(q) of our processes

X(q), such as the Brownian parts regression coefficients up to time t

β
(1,2)
t :=

ICt

IV
(2)
t

, β
(2,1)
t :=

ICt

IV
(1)
t
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and the Browninan parts correlation

ρ
(1,2)
t :=

ICt√
IV

(1)
t IV

(2)
t

.

Theorem 3.4 (Joint CLT, FA jumps). Under assumptions from A1 to A4, with

h = T/n, we have, as h → 0,

h−1/2




ˆIV
(1)

n − IV (1) ˆICn − IC

ˆICn − IC ˆIV
(2)

n − IV (2)


 st→ 1√

2




2Z11 Z12 + Z21

Z12 + Z21 2Z22


 ,

where Z is the 2× 2 process with components

Z11,t :=

∫ t

0

(σ(1)
s )2dB11s

Z12,t :=
∫ t

0
ρsσ

(1)
s σ

(2)
s dB11s +

∫ t

0

√
1− ρ2

s σ
(1)
s σ

(2)
s dB12s

Z21,t :=
∫ t

0
ρsσ

(1)
s σ

(2)
s dB11s +

∫ t

0

√
1− ρ2

s σ
(1)
s σ

(2)
s dB21s

(3)

Z22,t :=

∫ t

0

ρ2
s(σ

(2)
s )2dB11s+

∫ t

0

ρs

√
1− ρ2

s (σ(2)
s )2

(
dB12s+dB21s

)
+

∫ t

0

(1−ρ2
s)(σ

(2)
s )2dB22s

and B is a 2× 2-dimensional standard Brownian motion independent on the filtered

probability space (Ω,F , (Ft)t∈[0,T ], P ) where our model is defined.

Remark. The asymptotic conditional variances of the estimation errors h−1/2( ˆIV
(q)

T,n−

IV
(q)
T ) and h−1/2( ˆICT,n − ICT ) are explicitly given by

V ar(
√

2Zqq,T |F) = 2

∫ T

0

(σ(q)
s )4ds, q = 1, 2,

which is consistent with [26], and

V ar
(Z12,T + Z21,T√

2
|F

)
=

∫ T

0

(σ(1)
s )2(σ(2)

s )2(ρ2
s + 1)ds.

Moreover the conditional asymptotic covariance between the two estimation errors

h−1/2( ˆIV
(q)

T,n − IV
(q)
T ) and h−1/2( ˆICT,n − ICT ) is given by

Cov
(√

2Zqq,T ,
Z12,T + Z21,T√

2
|F

)
= 2

∫ T

0

(σ(q)
s )3σ(3−q)

s ρsds, q = 1, 2.
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Corollary 3.5 (Consistency, FA jumps). Under A1 to A4, as n → ∞, for all

t ∈ [0, T ]

ˆICt,n
P→ ICt,

if a.s. IV
(j)
t 6= 0 then

β̂
(i,j)
t,n :=

ˆICt,n

ˆIV
(j)

t,n

P→ β
(i,j)
t , (i, j) = (1, 2), (2, 1)

if a.s. IV
(1)
t IV

(2)
t 6= 0 then

ρ̂
(1,2)
t,n :=

ˆICt,n√
ˆIV

(1)

t,n
ˆIV

(2)

t,n

P→ ρ
(1,2)
t .

Corollary 3.6 (Speed of convergence of βs and ρ, FA jumps). If a.s. IV
(j)
t 6= 0 for

all t ∈ [0, T ] we have, for (i, j) = (1, 2) or (2, 1),

h−1/2
(
β̂(i,j)

n − β(i,j)
)

st→ Z12 + Z21√
2IV (j)

+
√

2Zjj
IC

(IV (j))2
.

If a.s. IV
(1)
t IV

(2)
t 6= 0 for all t ∈ [0, T ] we have

h−1/2

(
ρ̂(1,2)

n − IC√
IV (1)IV (2)

)
st→

Z12 + Z21√
2IV (1)IV (2)

− Z22IC√
2 IV (1)(IV (2))3/2

− Z11IC√
2 IV (2)(IV (1))3/2

.

Remark. The asymptotic conditional variances of the estimation errors h−1/2(β̂
(i,j)
T,n −

β
(i,j)
T ) and h−1/2(ρ̂

(1,2)
T,n − ρ

(1,2)
T ) are explicitly given by

V ar
(Z12,T + Z21,T√

2 IV
(j)
T

+
√

2Zjj,T
ICT(

IV
(j)
T

)2 |F
)

=

∫ T

0
(σ

(1)
s )2(σ

(2)
s )2(ρ2

s + 1)ds( ∫ T

0
(σ

(j)
s )2ds

)2 + 2

∫ T

0
(σ

(j)
s )4ds( ∫ T

0
(σ

(j)
s )2ds

)4

( ∫ T

0

ρsσ
(1)
s σ(2)

s ds
)2

+

4

∫ T

0
ρsσ

(1)
s σ

(2)
s ds( ∫ T

0
(σ

(j)
s )2ds

)3

∫ T

0

ρs(σ
(j)
s )3σ(i)

s ds, (i, j) = (1, 2) or (2, 1),
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and

V ar
( Z12,T + Z21,T

√
2

√
IV

(1)
T IV

(2)
T

−
√

2Z22
ICT

2

√
IV

(1)
T (IV

(2)
T )3/2

−
√

2Z11
ICT

2

√
IV

(2)
T (IV

(1)
T )3/2

|F
)

=

∫ T

0
(σ

(1)
s )2(σ

(2)
s )2(ρ2

s + 1)ds

IV
(1)
T IV

(2)
T

+
ICT

IV
(1)
T IV

(2)
T

(
ICT

∫ T

0
(σ

(1)
s )4ds

2(IV
(1)
T )2

+
ICT

∫ T

0
(σ

(2)
s )4ds

2(IV
(2)
T )2

−2
∫ T

0
(σ

(2)
s )3σ

(1)
s ρsds

IV
(2)
T

− 2
∫ T

0
(σ

(1)
s )3σ

(2)
s ρsds

IV
(1)
T

)
+

(ICT )2

(IV
(1)
T )2(IV

(2)
T )2

∫ T

0

(σ(1)
s )2(σ(2)

s )2ρ2
sds.

In [33] a threshold estimator of β̂(1,2) with reduced asymptotic variance is intro-

duced at the cost of using an auxiliary asset X(3).

The following proposition allows us to give a CLT for the standardized version

of the estimation error ˆICt,n − ICt.

Proposition 3.7 (Estimate of the standard error for ˆICt,n, FA jumps). Under

assumptions A1 to A4 we have, for all t ∈ [0, T ],

ṽ
(n)
2,2 (X(1), X(2))t − w̃(n)(X(1), X(2))t

P−→
∫ t

0

(1 + ρ2
s)(σ

(1)
s )2(σ(2)

s )2ds.

We now are ready to present the central limit theorem for the standardized estima-

tion error.

Corollary 3.8 (CLT for the standardized version of ˆICt,n−ICt, FA jumps). Under

A1 to A4, for any t ∈ [0, T ], if a.s.
∫ t

0
(1 + ρ2

s)(σ
(1)
s )2(σ

(2)
s )2ds 6= 0 we have

ˆICt,n − ICt

√
h
√

ṽ
(n)
2,2 (X(1), X(2))t − w̃(n)(X(1), X(2))t

st−→ N ,

where N denotes a standard Gaussian random variable.

Remark. Under the further assumption that σ in turn is an Ito semimartingale,

in [18] a CLT for ˆICt,n is also shown and leads to consistent results.
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Remark 3.9 (Comparison in efficiency with other methods in the literature). In

the literature of the disentangling IC from the co-jumps at our knowledge there

exist only two other approaches: the Realized BiPower Covariation (RBPC, [6])

and the Realized Outlyingness Weighted Quadratic Covariation (ROWQC, [10]). In

both papers a CLT is shown to hold only in absence of jumps. A comparison in

the efficiency of RBPC and ROWQC is made in [10] for the univariate case under

a Brownian semimartingale model. We add here further information involving also

the threshold estimator (that we indicate by RTC, Realized Threshold Covariation)

to argue why the latter is preferable.

Firstly note that in the univariate case and in presence of jumps an estimator of

IV (1) is efficient (i.e. with minimum possible asymptotic variance, given n discrete

observations) if AVar, the asymptotic variance of the quotient of the estimation error

by
√

h, is 2×IQ
(1)
T , where IQ

(1)
T :=

∫ T

0
(σ

(1)
t )4dt (see [1] for the case of constant σ(1)).

The AVar of all the estimators RBPC (in absence of jumps), ROWQC (in absence

of jumps), RTC, as well as of the multipower variation estimators RMPV of IV (1)

(even in presence of jumps but with maximum power less than 1), equals a factor

θ times IQ
(1)
T , so the efficiency comparison is done through the magnitude of the

factors θRBPC , θROWQC , θRTC , θRMPV .

In the univariate case the threshold estimator is efficient ([26]), since θRTC = 2,

both in absence and in presence of jumps (both with finite activity and with infinite

activity but finite variation, [26], [27]). The Bipower Variation estimator (with

powers 1,1) is not efficient since in absence of jumps θRBPC = 2.609 ([5]) and in

presence of jumps it is even higher ([35]). As for the RMPVs that estimate IV
(1)
T

with at least three powers we have CLTs with factors θRMPV > 2.609 in all cases (see

14



[36] and the discussion in [26], section 3.3). As for ROWQC, in the univariate case it

consists in a weighted sum of squared increments of X(1). A measure of outlyingness

(w.r.t. the Brownian motion squared increments behavior) of each (∆jX
(1))2 is

given. Such a measure is a χ2(1) random variable when the increment comes from

a Gaussian process, so an increment is considered outlier (i.e. containing jumps) if

its measure is above a threshold k equal to the 1−α quantile of the χ2(1) law. The

higher is the outlyingness measure the smaller is the weight given to the increment

to contribute to ROWQC, on the basis of a chosen weighting function (called soft

rejection function, SR). The estimator efficiency in absence of jumps (table 2 in

[10]) heavily depends, in a decreasing way, on the choice of α, the minimimal θ

factor in absence of jumps is reached for α = 0 and is 2. Since the chosen SR

weighting function is w(z) = 1 ∧ (k/z), α = 0 means that ROWQC coincides with

the realized variance estimator RV. In presence of jumps ROWQC is consistent for

IV (1), however we cannot choose α = 0 since RV is biased, therefore we cannot have

an efficient ROWQC estimator.

In a bivariate framework, the AVar (the asymptotic variance of ( ˆICT,n−ICT )/
√

h)

is a quite complicated function of ρ2
t , σ

(1)
t , σ

(2)
t for RBPC in absence of jumps. For

instance it equals 8.46 × ∫ T

0
(1 + ρ2

t )(σ
(1)
t )4dt if (σ

(1)
t )2 ≡ (σ

(2)
t )2. On the contrary

for the threshold estimator, even in presence of (finite variation) jumps, we have

AV arRTC =
∫ T

0
(1 + ρ2

t )(σ
(1)
t )2(σ

(2)
t )2dt for any values of ρt, σ

(1)
t , σ

(2)
t . This is less

than AV arRBPC at least when (σ
(1)
t )2 ≡ (σ

(2)
t )2, as well as in all the other situations

we report in more detail in appendix (remark 7.2). In fact in [9], where the bipower

covariation test of [6] has been discussed, it is shown that, when dealing with large

portfolios, it is necessary to use a different global cross-variation index to get reliable
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results. For ROWQC the asymptotic variance AV arROWQC , in absence of jumps,

depends on the weighting function w and is minimal at AV arRTC , when w(z) = 1

for all z ≥ 0. Analogously as in the univariate case the latter weighting function

cannot be chosen in presence of jumps.

Remark 3.10 (Estimate of the co-jumps). By Corollary 3.5, clearly we have an

estimate of the sum of the co-jumps up to T simply subtracting ˆICT,n from the

quadratic covariation estimator:

n∑
j=1

∆jX
(1)∆jX

(2) − ˆICT,n
P−→

∑
0≤s≤T

∆J (1)
s ∆J (2)

s ,

as n →∞. Analogously we can obtain an estimator of the sum of the co-jumps up

to each time t ∈ [0, T ].

An estimate of each ∆J
(1)
s ∆J

(2)
s , with s ∈ [0, T ], can be obtained using

∆jX
(1)∆jX

(2) −∆jX
(1)1{(∆jX(1))2≤rh}∆jX

(2)1{(∆jX(2))2≤rh}, (4)

with j such that s ∈]tj−1, tj]. Alternatively, as we consider one single term, and not

the sum of n terms, even

∆jX
(1)1{(∆jX(1))2>rh}∆jX

(2)1{(∆jX(2))2>rh} (5)

or

∆jX
(1)∆jX

(2) (6)

estimate the co-jump ∆J
(1)
s ∆J

(2)
s , with s ∈]tj−1, tj], since |∆jX

(q)1{(∆jX(q))2≤rh}∆jX
(`)|

≤ 2
√

rh sups∈[0,T ] |X(`)|, q = 1, 2, ` = 3 − q, and |∆jX
(1)|1{(∆jX(1))2≤rh}|∆jX

(2)|×

1{(∆jX(2))2≤rh} ≤ rh tend to zero in probability as h → 0, by the pathwise bounded-

ness of each X(`) on [0, T ]. However in the web appendix we show that estimator
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(4) has the best finite sample properties, in terms of relative estimation error, in our

simulated Model 1 with finite activity jumps.

In presence of (even infinite activity) jumps in a bivariate model, [22] use B̂n :=

∑n
j=1(∆jX

(1))2(∆jX
(2))2 to estimate B :=

∑
s≤T (∆X

(1)
s )2(∆X

(2)
s )2: B̂n is not di-

rectly comparable (as for the efficiency) with the estimate of the sum of the co-jumps

∑
s≤T ∆X

(1)
s ∆X

(2)
s we give here, but it is an alternative, power-based, measure of

the occurred co-jumps, aimed to give a test for their presence.

3.1 Microstructures

Remark 3.11. Finite sample performance and microstructure noises. Our

theoretical results allow to estimate ICT and the sum of the co-jumps asymptotically

for h → 0, while in practice for very small values of h financial time series are affected

by microstructure noises which introduce a bias which is larger as h is smaller. In

the web appendix we implement our estimators on simulations of realistic financial

time series and we find that ˆICT,n and the sum of the co-jumps estimator have good

performances already with temporal mesh h corresponding to five minutes, a time

lag at which the impact of the microstructure noises on quadratic variation is known

to be immaterial ([7]).

Remark 3.12. Asynchronous observations. It is known that the problem of

the estimation of the covariation among two assets undergoes the so called Epps

effect, i.e. in the empirical applications the estimator tends to zero as the step size

h tends to zero. The asynchronicity among the observations of X(1) and X(2) is

considered one of the possible causes ([31]; [7], section 2.10.2). In fact some authors
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have tackled the problem of reaching a consistent estimator of the covariation even

when data are asynchronous and h → 0, under a Brownian semimartingale model.

In particular we connect our work to [15] and [16]. At the time scale of five minutes

the Epps effect probably does not affect our estimate of ICT . However even for

smaller h it is possible to make our estimator correctly converge to the integrated

covariation, as detailed below.

Assume we have access to the records {D(1)

τ
(n)
0

, D
(1)

τ
(n)
1

, ...D
(1)

τ
(n)

m(n)

}, {D(2)

ν
(n)
0

, D
(2)

ν
(n)
1

, ...D
(2)

ν
(n)

k(n)

}

of observations of two Brownian semimartingales D(1) and D(2), with the two stochas-

tic partitions 0 = τ
(n)
0 < τ

(n)
1 < ...τ

(n)

m(n) and 0 = ν
(n)
0 < ν

(n)
1 < ...ν

(n)

k(n) spanned

on [0, T ]. For simplicity let us write νi and τj in place of ν
(n)
i and τ

(n)
j . The

idea of Hayashi and Yoshida ([16]) is to select only some of the cross variations

(D
(1)
τj − D

(1)
τj−1)(D

(2)
νi − D

(2)
νi−1), in order to estimate ICT , and precisely the ones for

which there is an intersection between the time intervals ]τj−1, τj] and ]νi−1, νi].

Hayashi and Kusuoka ([15]) extended the consistency result to the case where the

observation times can be stochastic. We show here that using their result ([15],

Corollary 2.2) we in fact reach the same kind of consistency in the case of asyn-

chronous observations even in presence of finite activity jumps. The idea is very

simple: we first eliminate the jumps, using threshold technique, and then apply the

Hayashi and Yoshida estimator to the estimated continuous components D̂(q).

Recall that (X
(q)
a − X

(q)
b )? = (X

(q)
a − X

(q)
b )1{(X(q)

a −X
(q)
b )2≤rh}, for any two time

instants a and b, set h := supj=1..m(n)(τj − τj−1) ∨ supi=1..k(n)(νi − νi−1). We in fact

have the following

Theorem 3.13 (Asynchronous observations). Let A1 to A4 hold, 0 = τ0 < τ1 <

... < τm(n), 0 = ν0 < ν1 < ... < νk(n) be two sequences of stopping times such that
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τm(n) ↑ T , νk(n) ↑ T a.s., as n →∞ then as h → 0

∑

j=1..m(n),i=1..k(n)

(X(1)
τj
−X(1)

τj−1
)? (X(2)

νi
−X(2)

νi−1
)? 1{]τj−1,τj ]∩]νi−1,νi]6=∅}

P→ ICT .

4 Infinite activity jumps: consistency

In this section we allow the jump components of processes X(q) to have infinite

activity, and we consider the case where X(q) are general Itô semimartingales. Any

unidimensional Itô semimartingale has a representation as in (1) with each J (q)

decomposed as

J (q) = J
(q)
1 + J̃

(q)
2 ,

J
(q)
1t (ω) =

∫ t

0

∫
|γ(q)(ω,x,s)|>1

γ(q)(ω, x, s)µ(q)(ω, dx, ds),

J̃
(q)
2t (ω) =

∫ t

0

∫
|γ(q)(ω,x,s)|≤1

γ(q)(ω, x, s)µ̃(q)(ω, dx, ds),

(7)

where µ(q) is the Poisson random measure of the jumps of J (q), µ̃(q)(ω, dx, ds) =

µ(q)(ω, dx, ds) − dxds is its compensated measure, the coefficients a(q), σ(q), γ(q) are

predictable and
∫

1 ∧ (γ(q))2(ω, t, x)dx is a.s. finite (see [18], pp.3,4; [19], (2.11)).

Conditions A2 and A4’ below guarantee local boundedness properties of such co-

efficients.

A4’.
∫

1 ∧ (γ(q))2(ω, t, x)dx is locally bounded.

For each q = 1, 2, J
(q)
1 is a finite activity jump process of type J

(q)
1t =

∑N
(q)
t

k=1 γ
(q)

τ
(q)
k

, as

in section 3, but now the sizes |γ(q)

τ
(q)
k

| are all larger than 1; on the contrary J̃
(q)
2 has

generally infinite activity jumps, since generally
∫ T

0

∫
|γ(q)(ω,s,x)|≤1

dxds = +∞. J̃
(q)
2 is

a compensated sum of jumps which are bounded in absolute value by 1. Therefore,

for each q = 1, 2, J
(q)
1 accounts for the ”large” and rare jumps of X(q), while J̃

(q)
2

accounts for the frequent and small jumps.
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Example 4.1. If one of the two processes J (q) is a pure jump Lévy process, it

is always possible to decompose it as in (7) with γ(q)(ω, t, x) ≡ x but then the

compensator has the form ν(q)(dx)× ds, where ν(q) is the Lévy measure of J (q) and

is a deterministic σ-finite measure such that
∫
IR

1 ∧ x2 ν(q)(dx) < ∞ and generally

such that
∫
|x|≤1

ν(q)(dx) = +∞.

We prove that ˆICt,n is still a consistent estimator of ICt, for all t ∈ [0, T ], for any

cadlag adapted processes σ(q)s. For ease of notation we only consider IC up to time

T and evenly spaced synchronous observations (not evenly spaced but synchronous

observations, with h = supj |tj − tj−1|, and arbitrary t ∈ [0, T ] are straightforward).

As for the speed of convergence of ˆICt,n, in the presence of infinite activity jump

components, things are more complicated in that such a speed is determined both

by whether J̃
(1)
2 and J̃

(2)
2 are dependent or not and by the amount of jump activity

of each J̃
(q)
2 . In [29] we consider two Lévy infinite activity jump components J̃

(1)
2 and

J̃
(2)
2 with a dependence structure described by a convex family of Lévy copulas. We

find that, when J̃
(1)
2 and J̃

(2)
2 do depend, the speed is still

√
h only when the activity

of jump of both one processes is moderate (Blumenthal-Getoor index smaller than

1), otherwise the speed is less than
√

h (consistently with [27] in the univariate case).

We now state the main result in presence of infinite activity jumps.

Theorem 4.2 (Consistency in presence of IA jumps, synchronous observations).

Let (X
(1)
t )t∈[0,T ] and (X

(2)
t )t∈[0,T ] be two processes of the form (1), with J (q) as in (7).

Assume A1, A2, A3 and A4’. Then

ˆICT,n
P−→ ICT ,

as n →∞.
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The reason why the threshold estimator is still able to isolate IC is that now we

have

[X(1), X(2)]T =

∫ T

0

ρsσ
(1)
s σ(2)

s ds +
∑
s≤T

∆J
(1)
1s ∆J

(2)
1s +

∑
s≤T

∆J̃
(1)
2s ∆J̃

(2)
2s ,

and, as it is shown in the appendix, for all δ > 0 the threshold rh cuts off all the

jumps of the J
(q)
1 and the jumps of the J̃

(q)
2 larger, in absolute value, than

√
4rh + δ.

However as rh → 0, since δ is arbitrary, then every jump of each process J̃
(q)
2 is cut

off.

Remark. Under the further assumption that σ in turn is an Ito semimartingale,

in [18] the consistency of ˆICt,n in presence of IA jumps is also proved.

Remark 4.3. [Estimate of the sum of the co-jumps] Even in this framework of

infinite activity jumps, as a consequence of Theorem 4.2, the sum of the co-jumps

up to T is consistently estimated by

n∑
j=1

∆jX
(1)∆jX

(2) −
n∑

j=1

∆jX
(1)1{(∆jX(1))2≤rh}∆jX

(2)1{(∆jX(2))2≤rh}.

Estimate of a single co-jump ∆J
(1)
s ∆J

(2)
s , with s ∈]tj−1, tj], is not possible anymore,

since in general in each ]tj−1, tj] infinitely many co-jumps occur. We only can es-

timate the sum of the co-jumps within ]tj−1, tj], and in principle we could make it

using (4), (5) or (6). Their performance on simulations of Model 2 with infinite

activity jumps (in the web appendix) is good in terms of absolute estimation error

but it is not good in terms of relative error, due to the fact that the jumps are

very small. However we do not present the simulation results here since we think

that they are not empirically relevant. In fact if we are interested in checking the

existence of correlation in the jumps of two assets we need to estimate the sum of
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the co-jumps. If on the other hand we are interested in checking the presence of

contemporaneous shocks affecting two assets, then we need to estimate the large

co-jumps, which in fact constitute a FA process ([12], page 38, after (2.47)).

5 Implementation

The performance of our estimator depends on the choice of n (number of observa-

tions) and of the threshold rh we use. These choices can be assessed using simulations

of realistic models, which is done in the same spirit as for example [17] to show that,

for finite samples, the log version of the bipower variation has a better performance

than bipower variation; or in the same spirit as [3] who use simulations to choose

the threshold parameters α and $ as well as the parameters k, p and kn involved in

their estimators.

5.1 Choice of the threshold

In view of (3) we can expect that the optimal threshold rh has to depend on

sups∈[0,T ] |σ(1)
s |, sups∈[0,T ] |σ(2)

s |, which is what we are in fact estimating. Even for

the multipower variations the exponents ri have to be chosen depending on the

Blumenthal-Getoor index α of X (see e.g. [36]), which is unknown.

In a web appendix we check on simulations how sensitive the estimates of IC

are to the choice of rh in a class of powers of h, for fixed observation step h, and we

select a reasonable threshold that is then used to estimate IC. This is only a limited

investigation which is given as indicative, more sophisticated choices have been done

in the literature in univariate cases: in [28] (h = 1 day) the threshold to be compared
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to each (∆jX)2 is 9 times a GARCH forecast of the realized squared volatility process

made at time tj−1; in [13] an iterative estimation of IV is implemented, where at

each step the previously estimated squared volatility is plugged into the threshold,

until the estimate stabilizes; in [34] for each day tj the bipower variation estimator

of IV made in the previous day is plugged into the threshold that is compared with

|∆jX|.

Each model has its own optimal threshold, as it is typical of all non-parametric

estimators. Formal study of methods for optimal threshold selection in a given

model is object of further research.

Based on the figures and tables of the web appendix, taking daily units of mea-

sure and five minutes observations, rh = 1.01h0.99 appears to be a good choice for

estimating IC, in both the two very different models we implemented. In principle

there are many functions rh that satisfy conditions A3, however for h → 0 we have

that (2h ln 1
h
)/hβ → 0 for all β ∈]0, 1[, so that, consistently e.g. with [3] and [2],

the choice of a power chβ of h seemed to be natural. Among the powers hβ, the

closer β is to one, the closer is the speed of convergence (to zero) of hβ to the speed

of 2h log 1
h
. However, for values of h in the range [1/100000, 1/50] in fact we have

2h log 1
h

> hβ for all values β ∈ [0.9, 1]. This means that, in order to estimate IC,

thresholds like h0.9 or h0.99 or h0.999 exclude many observations which in fact would

be pertinent. If there are only rare jumps then a higher rh is better, since it includes

more squared increments due only to the Brownian semimartingale part. If, on the

contrary, J (q) has infinite activity then the variations ∆jJ̃
(q)
2 are usually quite small

and the relative ∆jX
(q) are included in ˆICn and give a spurious estimate of IC, so

rh has not to be too large.
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Despite the fact that the simulated Model 1 with FA jumps in the web appendix

has stochastic volatility, the chosen rh has a constant factor not depending on the

σ(q)s. A justification is that in realistic simulated models the values of σ(1) and σ(2)

usually range in a day within [0.01, 0.03], in daily units of time, so the constant

factor c=1.01 is about 6 times the mean expected value of (σ(q))2 in annual units of

measure. We expect that our selected threshold would not be good if the volatilities

values were of a very different magnitude order.

The simulated models on which we selected the threshold and which are presented

in detail in the web appendix are very different: in Model 1, proposed in [17], each

X(q) has stochastic volatility and a FA compound Poisson jump part while in Model

2, proposed in [11], each X(q) has constant volatility and the jumps follow a CGMY

dynamics and have IA. Our unit of measure is one day. The simulated models are

realistic since for Model 1 the parameters of the univariate X(q) are taken from [17].

A path of each σ varies most between 0.0128 and 0.0204 in a day. For Model 2

processes X(q) are constructed taking the parameters of the stocks HWP, MSFT

and GE in Table 2 of [11].

In Model 1 we have J̃
(q)
2 ≡ 0 while in Model 2 J

(q)
1 ≡ 0, q = 1, 2. In order to

effectively introduce non zero co-jumps, in each model J (q) are linear combinations

of independent jump processes of the same type. On the other hand between the

Brownian semimartingale parts of the X(q)s we have a constant correlation ρ =

corr(W (1),W (2)). We have taken the five minutes synchronous returns (T=1, h=

1/288, we considered a 24 hours open market) and constructed our daily threshold

estimator ˆICT,n. We simulated 1500 bivariate paths.

The average values of ICT and of the sum of the co-jumps are 1.2567 × 10−4
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and 9.6903 × 10−6 in Model 1 (with jump intensities λ(1) = 0.188, λ(2) = 0.236)

and 7.485× 10−3 and 5.8664× 10−4 in Model 2. For computational convenience, in

Model 1 we obtained J (1) and J (2) as combination of only 2 independent compound

Poisson jumps. Since such a scheme gave non-realistic proportions of the realized

quadratic covariation with ICT in Model 2, in this case we combined 3 independent

CGMY processes.

First of all for each model we implemented the estimator of ICT as rh varies in

order to select the threshold to use. We plotted the mean percentage relative bias

100
ˆICT,n − ICT

ICT

as β varies in [0.71, 0.99] and c = 0.01, .., 1.97 with step 0.04, in Model 1 with

λ(1) = 0.118, λ(2) = 0.236 and in Model 2 respectively, for h fixed. Values of c above

0.61 give the a constant relative error of 1% in Model 1 for all βs while in Model 2

a high value of β and a value of c around 1 have to be chosen. We remark that in

Model 1 lower values of the relative error could be reached (but for such a choices of

c, β the estimates in Model 2 would be worse). In fact values of c higher than 0.65

are such that all the observations are included in the estimator. However the jumps

are few and the generated estimation error of ICT is acceptable. We also plotted

the empirical densities and the relative QQ-plots of the normalized bias

NB :=
ˆICT,n − ICT

√
h
√

ṽ
(n)
2,2 (X(1), X(2))T − w̃(n)(X(1), X(2))T

(8)

as β is fixed to level 0.99 while c varies as before, in Model 1 with λ(1) = 0.118 and

λ(2) = 0.236 and in Model 2. As further checks we implemented both the NB in

Model 1 with no jumps (λ(1) = λ(2) = 0) for fixed β = 0.99 and c varying as before,
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and the NB for c fixed to level 1.01 as β varies in [0.71, 0.99] with step 0.02 in

Model 2. Model 2 is the most sensitive to the choice of the threshold level. The web

appendix also reports tables with the descriptive statistics of all the error measures

we considered, for both 5 minutes and 1 minute sample frequencies. We confirm the

choice of β = 0.99 and c=1.01.

5.2 Estimates of IC and of
∑

0≤t≤T ∆J
(1)
t ∆J

(2)
t on simulations

To check the efficiency of the estimators of ICT and of
∑

0≤t≤T ∆J
(1)
t ∆J

(2)
t we

studied the percentage relative errors, where the threshold is the one previously

selected, and keeping T fixed equal to one day and h equal to five minutes. In

the web appendix we show the histograms of 100
( ˆICT,n−ICT )

ICT
in Model 1, with

λ(1) = 0.118, λ(2) = 0.236, and in Model 2. The relative summary statistics are

also reported. We conclude that ˆICT,n has good efficiency, even in Model 1 with no

jumps, since the percentage relative errors are around 1-2%. We remark that ˆICn

turns out to be quite robust in Model 1, since, as we noted before, the threshold

was not optimal in this case.

On the other hand estimation of the co-jumps is much more sensible to the choice

of the threshold. In the web appendix we plotted the following percentage relative

estimation conditional bias

100
(
∑n

j=1 ∆jX
(1)∆jX

(2) − ˆICT,n)−∑
0≤t≤T ∆X

(1)
t ∆X

(2)
t∑

0≤t≤T ∆X
(1)
t ∆X

(2)
t

in Model 1, λ(1) = 0.118 and λ(2) = 0.236 and in Model 2. Since for Model 1 the

jump frequencies give that only 180 generated paths (among 1500) do have co-jumps,

we conditioned to the occurrence of at least one co-jump within the day, i.e. what is
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computed is the distribution of the relative estimation bias for 1500 generated paths

of (X(1), X(2)) where some co-jumps occurred. We remark that in fact only one

co-jump occurred in each case. In Model 2, on the contrary, each generated daily

path of (X(1), X(2)) contains some co-jumps. Simulation of Model 2 is based on an

approximation of the CGMY model with a suitable compound Poisson process, and

we exactly know the jump instants of this last process.

The performance of the sum of the co-jumps estimator is good in Model 2, while

in Model 1 it is much worse, due to the non optimality of the choice of the threshold in

this model, as we already commented. We note that in a significant number of days

a co-jump occurred but the estimate is zero (the relative bias equals -100%), so our

estimator did not recognize the co-jump, thus for that day
∑

∆jX
(1)∆jX

(2) = ˆICn

which means that all the co-increments ∆jX
(1)∆jX

(2) are below the threshold. That

means that the chosen rh is too high in this model. Also in some days we have a

distortion in the estimation of the size of the occurred co-jumps (the relative bias

is close to -100%) since the estimator of the sum of the co-jumps is not zero but is

very small compared to the true sum of the co-jumps (one jump in fact).

We then change the threshold choice in Model 1 by exploiting that ˆICn is quite

robust to an even not really optimal threshold. After some trials we found that the

threshold 33 ˆICh0.99 (corresponding to c = 33σ(1)σ(2)ρ if σ(q) and ρ were constant,

and being roughly (4σ)2 if we further knew that our two stocks have roughly the

same volatility) seems to give the best estimates. In Model 1 this choice gives already

quite good results, but as announced a further study would have to be done before

reliably estimate the sum of the co-jumps of empirical data.
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5.3 Estimate of the single co-jumps

As we announced in remark 4.3 we report the results on estimating each single co-

jump only for Model 1 (FA jumps, λ(1) = 0.118, λ(2) = 0.236). We used here the

threshold function 33 ˆICh0.99 we selected at the end of the previous subsection. Our

goal was to check which is the most informative estimator among (4), (5) and (6).

We define by ĴJ t (joint jump) the estimate of ∆J
(1)
t ∆J

(2)
t . As above we con-

sidered 1 day time horizon and h equal to five minutes. The mean (on the 1500

simulated paths containing co-jumps) absolute error ĴJ t − ∆J
(1)
t ∆J

(2)
t is 2 × 10−6

(with SEE 4 × 10−6) for estimator (4), 10−8 (with SEE 10−8) for (5) and 6 × 10−7

(with SEE 2 × 10−7) for (6). However the relative errors
ĴJt−∆J

(1)
t ∆J

(2)
t

∆J
(1)
t ∆J

(2)
t

display a

worse behavior. In a table in the web appendix we reported the mean conditional

percentage relative error for estimators (4) and (5). Estimator (6) displays an even

worse performance than (5) and we did not report it. If the sizes of the jumps were

higher (higher σJ) the performance of the estimators would be better, as it would

be easier to recognize a co-jump. Estimator (4) is not bad and is preferable in any

case. A reason for the bias in the relative error levels is the not correct detection of

jump times: for σJ = 0.015, at a frequency of observation of 5 minutes, estimator (4)

finds about the 83% of the true co-jump times while for the 17% of the paths it does

not find the existing co-jumps. Estimator (6) has a much higher error in detecting

the realized co-jumps times. The co-jump times detection capability would improve

with a higher σJ level for both estimators.
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6 Conclusions

In this paper we introduce new estimators of the continuous part IC and of the

sum of the co-jumps in the quadratic covariation of two semimartingales X(q). To

capture the separate contributions to the quadratic covariation has important appli-

cations in finance (model selection, forecasting, option pricing, risk and credit risk

management).

The estimator ˆICT,n is constructed using a threshold criterion introduced in

[24], and consists in summing properly selected cross products of increments of the

two processes. Our estimator is consistent, as a consequence also the sum of the

co-jumps occurred within [0, T ] is consistently estimated. In presence of only FA

jumps even each single co-jump is consistently estimated, further a joint CLT for

ˆICT,n and the estimators ˆIV
(q)

T of the integrated variances is proved and delivers

the following important consequences:

1. estimator ˆICT,n is also asymptotically Gaussian with speed of convergence
√

h;

2. we construct asymptotically Gaussian estimators of the regression coefficients βs

and of the correlation coefficient between the Brownian semimartingale parts of the

two processes X(q).

We remark that a central limit theorem in presence of infinite activity jumps

is studied in a further paper ([29]) where we find that the speed of convergence of

ˆICT,n is determined both by whether the two processes J (q) are dependent or not

and by the amount of jump activity of each J (q).

Further we find that in presence of only FA jumps a slight modification of ˆICT,n

is consistent even when only non-synchronous observations are available.
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In a web appendix we assessed the choice of the threshold and checked the

performance of our estimators on two different kind of simulated models which

are taken from the financial literature. Model 1 has components with stochastic

volatilities and FA jumps, while Model 2 has components with constant volatilities

and IA jumps. We found that with five minutes observations the estimate of IC

is satisfactory in both models, using threshold rh = 1.01h0.99, which is ”optimal”

in Model 2 but not in Model 1. However ˆICn seems to be quite robust to the

threshold choice in Model 1. The sum of the co-jumps estimate is on the contrary

more sensible than ˆICn to the choice of the threshold, and rh = 1.01h0.99 gives

good results in Model 2, while to reach satisfactory results for Model 1 we needed

to consider rh = 33 ˆICnh
0.99. Estimation of the single co-jumps in Model 1 is better

done through (4) and is not bad. Deepening the investigation on proper threshold

selection is a necessary task but is beyond the scope of this paper.
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[31] Renò, R. (2003) A closer look at the Epps effect, International Journal of

theoretical and applied finance 6, 87-102

[32] Revuz, D., Yor, M. (2001) Continuous martingales and Brownian Motion,

Springer

[33] Todorov, V., Bollerslev, T. (2008) Jumps and betas: a new framework for

disentangling and estimating systematic risks, ssrn.com

[34] Todorov, V., Bollerslev, T. (2009) Tails, fear and risk premia, working paper

34



[35] Vetter, M. (2009): Limit theorems for bipower variation of semi-

martingales, working paper (availbale on http://www.ruhr-uni-

bochum.de/mathematik3/en/team/vetter.html)

[36] Woerner, J. (2006) Power and Multipower variation: inference for high fre-

quency data, in Stochastic Finance, eds A.N. Shiryaev, M. do Rosário Gross-

inho, P. Oliviera, M. Esquivel, Springer, 343-364

7 Appendix

Proof of Lemma 2.1. A stochastic integral
∫ ·
0
η

(p)
s dW

(p)
s , p = 1, 3, is a time changed

Brownian motion as soon as the integrand process η(p) is cadlag with
∫ +∞

0
(η

(p)
s )2ds =

∞ ([32], Theorems 1.9 and 1.10 of ch.5), i.e.
∫
]tj−1,tj ]

η
(p)
s dW

(p)
s = B

(p)

IV
(p)
tj

− B
(p)

IV
(p)
tj−1

,

where B(p) are Brownian motions and IV
(p)
t the integrated variances

∫ t

0
(η(p))2

sds up

to time t. Note that the increments of the drift part of each X(q) tend to zero more

quickly than
√

2h log 1
h

as h → 0, so for D(q) we can reach a result similar to (2), as

soon as the boundedness of the paths of a(q), σ(q) and ρ is guaranteed (which is the

case when they are càdlàg). In fact (as in [26])

sup
j=1..n

| ∫ tj
tj−1

a
(1)
s ds +

∫ tj
tj−1

σ
(1)
s dW

(1)
s |

√
2h log 1

h

≤ sup
j

| ∫ tj
tj−1

a
(1)
s ds|

√
2h log 1

h

+ sup
j

| ∫ tj
tj−1

σ
(1)
s dW

(1)
s |

√
2h log 1

h

≤

(9)

C1(ω)

√
h

log 1
h

+

+ sup
j

|B(1)

IV
(1)
tj

−B
(1)

IV
(1)
tj−1

|
√

2∆jIV (1) log 1
∆jIV (1)

sup
j

√
2∆jIV (1) log 1

∆jIV (1)

√
2M1(ω)h log 1

M1(ω)h

sup
j

√
2M1(ω) log 1

M1(ω)h√
2 log 1

h

,
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where C1(ω) := sups∈[0,T ] |a(1)
s (ω)|,M1(ω) := sups∈[0,T ](σ

(1))2
s(ω). By [23] (Theorem

9.25) and the monotonicity of the function x ln 1
x

it follows that as h → 0, the right

hand side has a limsup which is bounded by
√

M1(ω). As for the increments of

∫ T

0
σ

(2)
t dW

(2)
t =

∫ T

0
σ

(2)
t ρtdW

(1)
t +

∫ T

0
σ

(2)
t

√
1− ρ2

t dW
(3)
t , proceeding analogously as

above for each term, we reach that

lim sup
h

sup
j=1..n

| ∫ tj
tj−1

a
(2)
s ds +

∫ tj
tj−1

σ
(2)
s dW

(2)
s |

√
2h log 1

h

≤
√

2M ′
2(ω) + 2M ′′

2 (ω) :=
√

2M2,

where M ′
2(ω) := sups∈[0,T ]((σ

(2)
s )2ρ2

s)(ω), M ′′
2 (ω) := sups∈[0,T ]((σ

(2)
s )2(1 − ρ2

s))(ω).

The thesis follows.

The following theorem is the key result, in the finite jump activity case, validating

the idea that if (∆jX
(q))2 is larger than rh then some jumps occurred in ]tj−1, tj]

(and vice-versa). It is based on lemma 2.1 and we state it in the general case of

not equally spaced observations. This version is used for instance in the proof of

Theorem 3.13.

Theorem 7.1. ([26], FA jumps) Under the assumptions from A1 to A4, given an

arbitrary partition {t0 = 0, t1, ..., tn = T} of [0, T ], then a.s. for sufficiently small,

but strictly positive, h := supj=1..n |tj − tj−1| (depending on ω) we have

1{(∆jX(q))2≤rh} = 1{∆jN(q)=0}, j = 1, 2, ...., n, q = 1, 2.

Proof of Theorem 3.4 [Joint CLT, FA jumps] By Theorem 7.1 a.s. for

sufficiently small h we have, for all t ∈ [0, T ],

h−1/2


∑

tj≤t

∆jX
(1)
? ∆jX

(2)
? − ICt


=h−1/2


∑

tj≤t

∆jX
(1)∆jX

(2)1{∆jN(1)=0,∆jN(2)=0} − ICt



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= h−1/2


∑

tj≤t

∆jD
(1)∆jD

(2) −
∫ t

0

ρsσ
(1)
s σ(2)

s ds


− h−1/2

∑
tj≤t

∆jD
(1)∆jD

(2)1{∆jN(2) 6=0}

−h−1/2
∑
tj≤t

∆jD
(1)1{∆jN(1) 6=0}∆jD

(2) +h−1/2
∑
tj≤t

∆jD
(1)1{∆jN(1) 6=0}∆jD

(2)1{∆jN(2) 6=0}.

Each one of last three sums tends a.s. to zero as h → 0, since it contains at least

one 1{∆jN(q) 6=0} and for any q = 1, 2 we have

Plim
n→∞

∣∣∣h−1/2
∑
tj≤t

∆jD
(1)∆jD

(2)1{∆jN(q) 6=0}
∣∣∣ ≤ Plim

n→∞
K1(ω)K2(ω)

√
h log

1

h
N

(q)
T = 0.

In particular for D(1) ≡ D(2) we have

Plim
n→∞

h−1/2


∑

tj≤t

(∆jX
(q))2

? − IV
(q)
t


 = Plim

n→∞
h−1/2


∑

tj≤t

(∆jD
(q))2 − IV

(q)
t




Therefore

h−1/2




ˆIV
(1)

n − IV (1) ˆICn − IC

ˆICn − IC ˆIV
(2)

n − IV (2)


 (10)

has the same limit in distribution as

h−1/2




∑
tj≤·(∆jD

(1))2 − IV (1) ∑
tj≤· ∆jD

(1)∆jD
(2) − IC

∑
tj≤· ∆jD

(1)∆jD
(2) − IC

∑
tj≤·(∆jD

(2))2 − IV (2)


 .

Note that for all t

∑
tj≤t

∆jD
(1)∆jD

(2) − ICt =
∑
tj≤t

(
∆jD

(1)∆jD
(2) −∆j < D(1), D(2) >

)
(11)

and, along the lines of [7] (proof of Theorem 1, sec. 3.1), using Itô formula we know

that

d(D(1)D(2)) = D
(1)
− dD(2) + D

(2)
− dD(1) + d < D(1), D(2) >,

so

∆j(D
(1)D(2)) =

∫ tj

tj−1

D
(1)
s−dD(2)

s +

∫ tj

tj−1

D
(2)
s−dD(1)

s + ∆j< D(1), D(2) > .
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Therefore

∆jD
(1)∆jD

(2) = ∆j(D
(1)D(2))−D

(1)
tj−1

∆jD
(2) −D

(2)
tj−1

∆jD
(1)

=

∫ tj

tj−1

D
(1)
s−dD(2)

s +

∫ tj

tj−1

D
(2)
s−dD(1)

s +∆j< D(1), D(2) > −D
(1)
tj−1

∆jD
(2)−D

(2)
tj−1

∆jD
(1),

so that (11) equals

∫ t

0

(
D

(1)
s− −

∑
tj≤t

D
(1)
tj−1

1{s∈]tj−1,tj ]}
)
dD(2)

s +

∫ t

0

(
D

(2)
s− −

∑
tj≤t

D
(2)
tj−1

1{s∈]tj−1,tj ]}
)
dD(1)

s

= A
(n)
12,t + A

(n)
21,t,

where

A(n) =




∫ ·
0

(
D

(1)
s− −D

(1)
[ns−]

n

)
dD

(1)
s

∫ ·
0

(
D

(1)
s− −D

(1)
[ns−]

n

)
dD

(2)
s

∫ ·
0

(
D

(2)
s− −D

(2)
[ns−]

n

)
dD

(1)
s

∫ ·
0

(
D

(2)
s− −D

(2)
[ns−]

n

)
dD

(2)
s


 .

As special cases, for each q = 1, 2

∑
tj≤t

(∆jD
(q))2 − IV

(q)
t =

∑
tj≤t

(
(∆jD

(q))2 −∆j < D(q), D(q) >
)

=

2

∫ t

0

(
D

(q)
s− −

n∑
j=1

D
(q)
tj−1

1{s∈]tj−1,tj ]}
)
dD(q)

s = 2A
(n)
qq,t.

By Theorem 5.5 in [20] we have that

h−1/2A(n) st→ Z√
2
,

with Z as in (3). It follows that, as n →∞, (10) converges stably in law to

1√
2




2Z11 Z12 + Z21

Z12 + Z21 2Z22


 .

Proof of Corollary 3.6 [Speed of convergence of βs and ρ, FA jumps]

For all t ∈ [0, T ] we have

h−1/2

(
β̂

(i,j)
t,n − ICt

IV
(j)
t

)
= h−1/2

ˆICt,n − ICt

ˆIV
(j)

t,n

+ h−1/2ICt

IV
(j)
t − ˆIV

(j)

t,n

ˆIV
(j)

t,nIV
(j)
t

,
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therefore

h−1/2

(
β̂(i,j)

n − IC

IV (j)

)
st→ Z12 + Z21√

2 IV (j)
− IC

√
2Zjj

(IV (j))2
.

As for ρ̂
(1,2)
n , note preliminarily that Theorem 3.4 implies that h−1/2

(√
IV (j) −

√
ˆIV

(j)

n

)

converges stably, since, t by t,

h−1/2

(√
IV (j) −

√
ˆIV

(j)

n

)
=

h−1/2
(
IV (j) − ˆIV

(j)

n

)

√
IV (j) +

√
ˆIV

(j)

n

st→ − Zjj√
2 IV (j)

.

As a consequence

h−1/2

(
ρ̂(1,2)

n − IC√
IV (1)IV (2)

)
=

h−1/2
ˆICn − IC√
ˆIV

(1)

n
ˆIV

(2)

n

+ h−1/2IC


 1√

ˆIV
(1)

n
ˆIV

(2)

n

− 1√
IV (1)IV (2)


 .

The first term converges stably to Z12+Z21√
2 IV (1)IV (2)

, while the second term equals

h−1/2IC√
ˆIV

(1)

n


 1√

ˆIV
(2)

n

− 1√
IV (2)


 +

h−1/2IC√
ˆIV

(1)

n IV (2)


1−

√
ˆIV

(1)

n√
IV (1)


 =

h−1/2IC√
ˆIV

(1)

n




√
IV (2) −

√
ˆIV

(2)

n√
ˆIV

(2)

n IV (2)


 +

h−1/2IC√
ˆIV

(1)

n IV (2)IV (1)

(√
IV (1) −

√
ˆIV

(1)

n

)

st→ − Z22IC√
2 IV (1)(IV (2))3/2

− Z11IC√
2 IV (2)(IV (1))3/2

.

Proof of Proposition 3.7 [Estimate of the standard error for ˆICn,

FA jumps] For t = T it is sufficient to show that as n →∞

ṽ
(n)
2,2 (X(1), X(2))T

P−→
∫ T

0

(2ρ2
t + 1)(σ

(1)
t )2(σ

(2)
t )2dt,

and

w̃(n)(X(1), X(2))T
P−→

∫ T

0

ρ2
t (σ

(1)
t )2(σ

(2)
t )2dt.
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For t < T the proof is analogous with
∑n

j=1 replaced by
∑

j:tj≤t . By Theorem 7.1

we can write

Plim
n→∞

ṽ
(n)
2,2 (X(1), X(2))T = Plim

n→∞
h−1

n∑
j=1

(∆jD
(1))21{∆jN(1)=0}(∆jD

(2))21{∆jN(2)=0}

= Plim
n→∞

v
(n)
2,2 (D(1), D(2))T − Plim

n→∞
h−1

n∑
j=1

(∆jD
(1))2(∆jD

(2))21{∆jN(1) 6=0}

−Plim
n→∞

h−1

n∑
j=1

(∆jD
(1))2(∆jD

(2))21{∆jN(2) 6=0}

+Plim
n→∞

h−1

n∑
j=1

(∆jD
(1))21{∆jN(1) 6=0}(∆jD

(2))21{∆jN(2) 6=0}.

By Theorem 2.1 in [8],

Plim
n→∞

v
(n)
2,2 (D(1), D(2))T =

∫ T

0

(2ρ2
t + 1)(σ

(1)
t )2(σ

(2)
t )2dt,

whereas the other terms are all zero. In fact for any q = 1, 2

Plim
n→∞

h−1

n∑
j=1

(∆jD
(1))2(∆jD

(2))21{∆jN(q) 6=0} ≤ Plim
n→∞

K2
1(ω)K2

2(ω)h
(

log
1

h

)2

N
(q)
T = 0.

(12)

Now we deal with w̃(n)(X(1), X(2))T . Analogously as before

Plim
n→∞

w̃(n)(X(1), X(2))T

= Plim
n→∞

h−1

n−1∑
j=1

[
1∏

i=0

∆j+iD
(1)(1− 1{(∆j+iN(1) 6=0})

1∏
i=0

∆j+iD
(2)(1− 1{(∆j+iN(2) 6=0})

]
,

which coincides with the sum of Plim
n→∞

w(n)(D(1), D(2))T with a finite number of terms

which are shown to be negligible. By Theorem 2.1 in [8], Plim
n→∞

w(n)(D(1), D(2))T =

∫ T

0
ρ2

t (σ
(1)
t )2(σ

(2)
t )2dt, while the other terms are given by the product of

∏1
i=0 ∆j+iD

(1)

∏1
i=0 ∆j+iD

(2) with at least one of the indicators 1{∆j+sN(q) 6=0}, for an s ∈ {0, 1}.

Therefore the limit in probability of each such term is zero as in (12).
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Proof of Corollary 3.8 [CLT for the standardized version of ˆICt,n −

ICt, FA jumps]. By Theorem 3.4 we have

h−1/2
(

ˆICn − IC
)

st→ 1√
2

(∫ ·

0

2σ(1)
s σ(2)

s ρsdB11s +

∫ ·

0

σ(1)
s σ(2)

s

√
1− ρ2

s

[
dB12s + dB21s

])
.

The variance of the last term at time t is
∫ t

0
(1 + ρ2

s)(σ
(1)
s )2(σ

(2)
s )2ds. By Proposition

3.7 we then obtain that

ˆICt,n − ICt

√
h
√

ṽ
(n)
2,2 (X(1), X(2))t − w̃(n)(X(1), X(2))t

st→ N ,

where N is a standard Gaussian r.v..

Remark 7.2. [Efficiency comparison between the Bipower and threshold covariation

estimators]

Let us consider T = 1 (one day) and constant coefficients ρ, σ(1) and σ(2). We

have AV arRTC = (1 + ρ2)(σ(1))2(σ(2))2, both in absence and in presence of finite

variation jumps, while AV arRBPC is a more complicated function of ρ2, σ(1), σ(2)

and it has to be considered only in absence of jumps. Using that the coefficients

σ2
1, σ

2
2, σ1,2 in [6] are respectively (σ(1))2, (σ(2))2, ρσ(1)σ(2) here, we reach

AV arRBPC(ρ2, σ(1), σ(2)) = µ4
1

{
2ϑ(1)

[
(σ(1))4+(σ(2))4+2(σ(1))2(σ(2))2+4ρ2(σ(1))2(σ(2))2

]

−2ϑ(ρ+,−)
[
(σ(1))4 + (σ(2))4 + 2(σ(1))2(σ(2))2 − 4ρ2(σ(1))2(σ(2))2

]}
,

where µ1 =
√

2/π,

ρ+,− =
σ(1) − σ(2)

√
(σ(1))4 + (σ(2))4 + 2(σ(1))2(σ(2))2 − 4ρ2(σ(1))2(σ(2))2

∈ [−1, 1],

and ϑ : [−1, 1] → [0, 2.609] is an even function (specified in [6]) which is increasing

in [0,1] and with ϑ(0) = 0, ϑ(1) = 2.609. We checked that

AV arRTC(ρ2, σ(1), σ(2)) ≤ AV arRBPC(ρ2, σ(1), σ(2)), ∀ρ ∈ [−1, 1] (13)
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in the following cases:

• if (σ(1))2 = (σ(2))2, in which case ϑ(ρ+,−) = 0, and

AV arRBPC(ρ2, σ(1), σ(2)) = 8.4594(1 + ρ2)(σ(1))4;

when (σ(1))2 6= (σ(2))2 in the following cases:

• if ϑ(ρ+,−) = 1 or ϑ(ρ+,−) = 2.609;

• if σ(1) = 0.0981 and σ(2) = 0.3815, the constant parameters values of Model

2 in Table A: in the web appendix we plotted AV arRBPC(ρ2, 0.0981, 0.3815) and

AV arRTC(ρ2, 0.0981, 0.3815) as functions of ρ2 and we saw that (13) still holds for

all values of ρ2 ∈ [0, 1].

Note that the function AV arRBPC(ρ2, σ(1), σ(2)) keeps the same value if we ex-

change the roles of σ(1) and σ(2), so we verified that

• analogous plots turn out when taking all combinations of constants (σ(1), σ(2)),

with σ(1) > σ(2) and each σ(q) ranging from 0.01 to 0.5 with step 0.01.

Proof of Theorem 3.13 [Asynchronous observations] Note that we can

assume that the Brownian semimartingale parts D(q) of X(q) are bounded on [0, T ]

([19]), so they belong to IL8. Using Theorem 7.1 in the not evenly-spaced observa-

tions case with h := supj=1..m(n)(τj−τj−1)∨ supi=1..k(n)(νi−νi−1), a.s. for sufficiently

small h we can write

∑

j=1..m(n), i=1..k(n)

(X(1)
τj
−X(1)

τj−1
)? (X(2)

νi
−X(2)

νi−1
)? 1{]τj−1,τj ]∩]νi−1,νi]6=∅} =

∑

j=1..m(n), i=1..k(n)

(D(1)
τj
−D(1)

τj−1
)1{N(1)

τj
−N

(1)
τj−1

=0}(D
(2)
νi
−D(2)

νi−1
)1{N(2)

νi
−N

(2)
νi−1

=0}1{]τj−1,τj ]∩]νi−1,νi]6=∅}

=
∑

j=1..m(n), i=1..k(n)

(D(1)
τj
−D(1)

τj−1
)(D(2)

νi
−D(2)

νi−1
)1{]τj−1,τj ]∩]νi−1,νi]6=∅}
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−
∑

j=1..m(n), i=1..k(n)

(D(1)
τj
−D(1)

τj−1
)(D(2)

νi
−D(2)

νi−1
)
[
1{N(1)

τj
−N

(1)
τj−1

6=0} + 1{N(2)
νi
−N

(2)
νi−1

6=0}

−1{N(1)
τj
−N

(1)
τj−1

6=0,N
(2)
νi
−N

(2)
νi−1

6=0}

]
1{]τj−1,τj ]∩]νi−1,νi] 6=∅},

The first sum of the r.h.s. tends to ICT in probability by Corollary 2.2 in ([15]),

with f ≡ g ≡ 1, while each sum in the second term is dominated in absolute value,

for a suitable q, by

sup
j
|D(1)

τj
−D(1)

τj−1
| sup

i
|D(2)

νi
−D(2)

νi−1
|N (q)

T ,

which tends a.s. to zero as h → 0, by Lemma 2.1.

The following facts are used within the proof of Theorem 4.2.

Without loss of generality (as in [19], Lemma 4.6) we can assume that

A5.
∫

x∈IR
1 ∧ (γ(q))2(ω, t, x)dx is bounded.

Lemma 7.3. For each q = 1, 2 we have the following.

1. If processes a and σ are càdlàg then, under A3, a.s., for small h, 1{(∆jD(q))2>rh} =

0, uniformly in j.

2. Under A5 we have that, for each j = 1, .., n, E[(∆jJ̃
(q)
2 )2] ≤ Kh, for a positive

constant K.

Proof. Part 1. is a consequence of Lemma 2.1.

Part 2.

E
[
(∆jJ̃

(q)
2 )2

]
= E[

∫ tj

tj−1

∫

|γ(q)|≤1

(γ(q))2dxds] :

since, by assumption A4’,
∫
|γ(q)|≤1

(γ(q))2dx is bounded, the last term above is dom-

inated by Kh for some positive constant K.
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The following lemma generalizes analogous results given in [26] from the frame-

work of Lévy jumps to the one of Itô semimartingale jumps.

Lemma 7.4. The following facts hold.

1. Let us consider any sequence πn of partitions {0, t1, .., tn = T} of [0, T ], n ∈ IN,

such that maxj=1..n |tj − tj−1| → 0 as n → ∞. For each q = 1, 2, as long as

J̃
(q)
2 is a semimartingale, we can find a subsequence nk for which a.s., for

any δ > 0 there exists a sufficiently large k such that for all j = 1, .., nk on

{(∆jJ̃
(q)
2 )2 ≤ 4rhk

} we have

(∆J̃
(q)
2,s )2 ≤ 4rhk

+ δ, ∀s ∈]tj−1, tj].

2. Under A3 and A4’, for each q = 1, 2, we have
∑n

j=1 P{∆jN
(q) 6= 0, (∆jJ̃

(q)
2 )2 >

4rh} → 0 as h → 0.

Proof . Statement 1 is a consequence of the fact that ([30], Theorem 25.1)

there is a subsequence nk such that, defined hk = T/nk,
∑[t/hk]

j=1 (∆jJ̃
(q)
2 )2 tends to

∑
s∈[0,t](∆J̃

(q)
2,s )2 a.s. uniformly w.r.t. t ∈ [0, T ], as k → ∞, where [x] denotes the

integer part of x. Since a.s.

sup
j=1..nk

|(∆jJ̃
(q)
2 )2 −

∑

s∈]tj−1,tj ]

(∆J̃
(q)
2,s )2|

= sup
j=1..nk





[ [tj/hk]∑

`=1

(∆`J̃
(q)
2 )2 −

∑

s∈[0,tj ]

(∆J̃
(q)
2,s )2

]− [ [tj−1/hk]∑

`=1

(∆`J̃
(q)
2 )2 −

∑

s∈[0,tj−1]

(∆J̃
(q)
2,s )2

]




≤ 2 sup
t∈[0,T ]

[ [t/hk]∑
j=1

(∆jJ̃
(q)
2 )2 −

∑

s∈[0,t]

(∆J̃
(q)
2,s )2

] → 0,
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we in fact have that a.s. for all j = 1, .., nk each squared increment (∆jJ̃
(q)
2 )2 is,

uniformly on j, arbitrarily close to
∑

s∈]tj−1,tj ]
(∆J̃

(q)
2,s )2. More precisely, a.s. for all

δ > 0 we can find a sufficiently large k such that

sup
j=1..nk

∣∣∣∣∣∣
(∆jJ̃

(q)
2 )2 −

∑

s∈]tj−1,tj ]

(∆J̃
(q)
2,s )2

∣∣∣∣∣∣
< δ,

so, for all j such that (∆jJ̃
(q)
2 )2 ≤ 4rh we have

∑

s∈]tj−1,tj ]

(∆J̃
(q)
2,s )2 ≤ sup

j=1..nk

∣∣∣∣∣∣
(∆jJ̃

(q)
2 )2 −

∑

s∈]tj−1,tj ]

(∆J̃
(q)
2,s )2

∣∣∣∣∣∣
+ (∆jJ̃

(q)
2 )2 ≤ 4rh + δ.

In particular for any s ∈]tj−1, tj] with j such that (∆jJ̃
(q)
2 )2 ≤ 4rh, each squared

jump size (∆J̃
(q)
2,s )2 is bounded by 4rh + δ.

Statement 2. The predictable compensator of N
(q)
2,t :=

∑
s≤t 1|∆J

(q)
s |>1

=
∫ t

0

∫
|γ(q)(ω,s,x)|>1

µ(dx, ds) and the predictable quadratic variation of J̃
(q)
2 are of the

form Λ
(q)
t =

∫ t

0
λ

(q)
2,sds and Λ

′(q)
t =

∫ t

0
λ
′(q)
2,s ds respectively. Assumption A4’ guarantees

that both λ
(q)
2,s =

∫
|γ(q)|>1

1 dx and λ
′(q)
2,s =

∫
|γ(q)|≤1

(γ(q))2 dx are bounded, and therefore

we can use exactly the same argument as in [2], eq. (62), with δ = 1 and ζ =
√

12rh,

and replacing M(δ) =
∫ ∫

|x|≤1
xµ̃(dx, dt) with our J̃

(q)
2 . We conclude that

n∑
j=1

P{∆jN
(q) 6= 0, (∆jJ̃

(q)
2 )2 > 4rh} = O(nh

h

rh

).

For any δ > 0 denote by Z
(q),δ
hk

the following pure jump plus drift semimartingales

having only jumps bounded in absolute value by
√

4rhk
+ δ, q = 1, 2:

Z
(q),δ
hk,t :=

∫ t

0

∫

|γ(q)|≤
√

4rhk
+δ

γ(q)µ̃(q)(dx, ds)−
∫ t

0

∫
√

4rhk
+δ<|γ(q)|≤1

γ(q) dxds, t ≥ 0.

By Lemma 7.4 we have that for any δ > 0, for sufficiently large k the indices j for

which (∆jJ̃
(q)
2 )2 ≤ 4rhk

are such that the increment (∆jJ̃
(q)
2 )2 coincides with the
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increment (∆jZ
(q),δ
hk

)2 of Z
(q),δ
hk

, since (∆jJ̃
(q)
2 )2 does not contain jumps larger than

√
4rhk

+ δ.

Lemma 7.5. For each q = 1, 2

Plim
n→∞

n∑
j=1

(∆jJ̃
(q)
2 )21{(∆j J̃

(q)
2 )2≤4rh} = 0

Proof Consider the sequence of partitions πn = {0, T/n, 2T/n, .., T}. Take

any subsequence πn`
. By Lemma 7.4, point 1, a.s. there exists a sub-subsequence

n`k
such that for any δ > 0 and k sufficiently large then for all j = 1, .., n`k

on

(∆jJ̃
(q)
2 )2 ≤ 4rh`k

we have (∆jJ̃
(q)
2 )2 = (∆jZ

(q),δ
h`k

)2. Denote

S(q)
n :=

n∑
j=1

(∆jJ̃
(q)
2 )21{(∆j J̃

(q)
2 )2≤4rh}.

Therefore

0 ≤ Plim
k→∞

S(q)
n`k

≤ Plim
k→∞

n`k∑
j=1

(∆jZ
(q),δ
h`k

)2

= Plim
k→∞

∫ T

0

∫

|γ(q)|≤√4rh`k
+δ

(γ(q))2dxds =

∫ T

0

∫

|γ(q)|≤
√

δ

(γ(q))2dxds.

Since a.s.
∫
|γ(q)|≤1

(γ(q))2dx < ∞, the last term above tends a.s. to zero as δ → 0,

which implies that Plim
k→∞

S
(q)
n`k

= 0.

Since then from any subsequence of S
(q)
n we can extract a sub-subsequence tending to

zero in probability, we in fact have that the whole sequence S
(q)
n → 0 in probability,

as we need.

Proof of Theorem 4.2. We decompose ˆICT,n−ICT into the sum of five terms

and we show that each term tends a.s. to zero, as n → ∞. We need some further

notation. Recall that for each q = 1, 2

D
(q)
t =

∫ t

0

a(q)
s ds +

∫ t

0

σ(q)
s dW (q)

s ,
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and denote Y
(q)
t := D

(q)
t + J

(q)
1t , so that we have X

(q)
t = Y

(q)
t + J̃

(q)
2t , q = 1, 2.

We now add and subtract
∑n

j=1 ∆jY
(1)1{(∆jY (1))2≤9rh}∆jY

(2)1{(∆jY (2))2≤9rh} from

ˆICT,n−ICT . The threshold 9rh is needed to reach, after (15), that on {(∆jX
(q))2 ≤

rh, (∆jY
(q))2 > 9rh} we have |∆jJ̃

(q)
2 | ≥ 2

√
rh, and then that on {(∆jX

(q))2 ≤ rh,

(∆jJ̃
(q)
2 )2 > 4rh}, through (16), we have ∆jN

(q) 6= 0. We reach

| ˆICT,n − ICT |

=
∣∣∣

n∑
j=1

(∆jY
(1)+∆jJ̃

(1)
2 )1{(∆jX(1))2≤rh}(∆jY

(2)+∆jJ̃
(2)
2 )1{(∆jX(2))2≤rh}− ICT

∣∣∣

≤
∣∣∣

n∑
j=1

∆jY
(1)1{(∆jY (1))2≤9rh}∆jY

(2)1{(∆jY (2))2≤9rh} − ICT

∣∣∣

+
∣∣∣

n∑
j=1

∆jY
(1)∆jY

(2)
(
1{(∆jX(1))2≤rh}1{(∆jX(2))2≤rh}−1{(∆jY (1))2≤9rh}1{(∆jY (2))2≤9rh}

)∣∣∣

+
∣∣∣

n∑
j=1

∆jY
(1)∆jJ̃

(2)
2 1{(∆jX(1))2≤rh}1{(∆jX(2))2≤rh}

∣∣∣ (14)

+
∣∣∣

n∑
j=1

∆jJ̃
(1)
2 ∆jY

(2)1{(∆jX(1))2≤rh}1{(∆jX(2))2≤rh}
∣∣∣

+
∣∣∣

n∑
j=1

∆jJ̃
(1)
2 ∆jJ̃

(2)
2 1{(∆jX(1))2≤rh}1{(∆jX(2))2≤rh}

∣∣∣.

The first term tends to zero in probability by Corollary 3.5. The second term

coincides with

∣∣∣
n∑

j=1

∆jY
(1)∆jY

(2)
[
1{(∆jX(1))2≤rh,(∆jX(2))2≤rh,(∆jY (1))2>9rh}

+1{(∆jX(1))2≤rh,(∆jX(2))2≤rh,(∆jY (2))2>9rh}

−1{(∆jX(1))2≤rh,(∆jX(2))2≤rh,(∆jY (1))2>9rh,(∆jY (2))2>9rh}

−1{(∆jX(1))2>rh,(∆jY (1))2≤9rh,(∆jY (2))2≤9rh} − 1{(∆jX(2))2>rh,(∆jY (1))2≤9rh,(∆jY (2))2≤9rh}
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+1{(∆jX(1))2>rh,(∆jX(2))2>rh,(∆jY (1))2≤9rh,(∆jY (2))2≤9rh}
]∣∣∣. (15)

All these terms tend a.s. to zero. In fact for the first three ones note that on

{(∆jX
(q))2 ≤ rh, (∆jY

(q))2 > 9rh} we have
√

rh ≥ |∆jX
(q)| ≥ |∆jY

(q)| − |∆jJ̃
(q)
2 |

and thus |∆jJ̃
(q)
2 | ≥ |∆jY

(q)| − √rh > 3
√

rh −√rh = 2
√

rh. Moreover on

{(∆jX
(q))2 ≤ rh, (∆jJ̃

(q)
2 )2 > 4rh} we have that ∆jN

(q) 6= 0. Actually, since

2
√

rh − |∆jY
(q)| < |(∆jJ̃

(q)
2 )2| − |∆jY

(q)| ≤ |∆jX
(q)| ≤ √

rh

then

Kq

√
2h log

1

h
+ |∆jJ

(q)
1 | ≥ |∆jD

(q)|+ |∆jJ
(q)
1 | ≥ |∆jY

(q)| > √
rh, (16)

so

|∆jJ
(q)
1 | > √

rh


1−Kq

√
2h log 1

h

rh


 :

since a.s. for sufficiently small h the quantity 1−Kq

√
2h log 1

h
/rh is positive, then

in fact |∆jJ
(q)
1 | > 0, so that ∆jN

(q) 6= 0.

As a consequence the probability that each one of the first three terms of (15) is non

zero is dominated by
∑n

j=1 P{∆jN
(q) 6= 0, (∆jJ̃

(q)
2 )2 > 4rh} which tends to zero as

h → 0 by Lemma 7.4, part 2.

As for the last three terms of (15) note that on {(∆jY
(q))2 ≤ 9rh} we have a.s., for

h small such that ∆jN
(q) ∈ {0, 1},

∆jN
(q) ≤ |∆jJ

(q)
1 | = |∆jY

(q) −∆jD
(q)| ≤ |∆jD

(q)|+ |∆jY
(q)|

≤ |∆jD
(q)|+ 3

√
rh ≤ Kq

√
2h log

1

h
+ 3

√
rh → 0, q = 1, 2,

hence, for small h on {(∆jY
(q))2 ≤ 9rh} we have ∆jN

(q) = 0, j = 1, .., n. Therefore

{(∆jX
(q))2 > rh, (∆jY

(q))2 ≤ 9rh} ⊂ {(∆jD
(q) + ∆jJ̃

(q)
2 )2 > rh} ⊂ {(∆jD

(q))2 >

48



rh

4
} ∪ {(∆jJ̃

(q)
2 )2 > rh

4
}, q = 1, 2; however, by Lemma 7.3 part 1, a.s., for small h,

1{(∆jD(q))2>
rh
4
} = 0, thus the last three terms of (15) are dominated by

n∑
j=1

|∆jD
(1)∆jD

(2)|1{(∆j J̃
(q)
2 )2>

rh
4
}

for a suitable q. However this last term tends to zero in probability, since

n∑
j=1

|∆jD
(1)∆jD

(2)|1{(∆j J̃
(q)
2 )2>

rh
4
} ≤ K1K22h log

1

h

n∑
j=1

1{(∆j J̃
(q)
2 )2>

rh
4
}

and, using lemma 7.3 part 2, E[2h log 1
h

∑n
j=1 1{(∆j J̃

(q)
2 )2>

rh
4
}] = 2h log 1

h

∑n
j=1

P{(∆jJ̃
(q)
2 )2 > rh

4
} = O(

2h log 1
h

rh
nh).

We now show that the third and fourth terms of the right hand side of (14),

which are similar, tend to zero in probability. We have

n∑
j=1

∆jY
(1)∆jJ̃

(2)
2 1{(∆jX(1))2≤rh}1{(∆jX(2))2≤rh}

=
n∑

j=1

∆jY
(1)∆jJ̃

(2)
2

[
1{|∆jX(1)|≤√rh,|∆j J̃

(1)
2 |≤2

√
rh}1{|∆jX(2)|≤√rh,|∆j J̃

(2)
2 |≤2

√
rh}

+1{|∆jX(1)|≤√rh,|∆j J̃
(1)
2 |>2

√
rh}1{|∆jX(2)|≤√rh,|∆j J̃

(2)
2 |>2

√
rh} (17)

+1{|∆jX(1)|≤√rh,|∆j J̃
(1)
2 |>2

√
rh}1{|∆jX(2)|≤√rh,|∆j J̃

(2)
2 |≤2

√
rh}

+1{|∆jX(1)|≤√rh,|∆j J̃
(1)
2 |≤2

√
rh}1{|∆jX(2)|≤√rh,|∆j J̃

(2)
2 |>2

√
rh}

]
.

As before on {(∆jX
(q))2 ≤ rh, (∆jJ̃

(q)
2 )2 > 4rh} we have that ∆jN

(q) 6= 0, so, for

each one of the last three terms of (17), the probability it is different from zero is

dominated by
n∑

j=1

P{∆jN
(q) 6= 0, (∆jJ̃

(q)
2 )2 > 4rh} → 0.
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Now we show that the first term of (17) is asymptotically negligible. Note that on

{|∆jX
(q)| ≤ √

rh, |∆jJ̃
(q)
2 | ≤ 2

√
rh} a.s. for small h we have ∆N

(q)
j = 0; in fact a.s.,

for small h we have ∆jN
(q) ∈ {0, 1}, and

∆jN
(q) ≤ |∆jJ

(q)
1 | = |∆jX

(q) −∆jD
(q) −∆jJ̃

(q)
2 |

≤ √
rh + sup

j
|∆jD

(q)|+ 2
√

rh → 0,

for all j = 1, .., n, for q = 1, 2. So we have

Plim
n→∞

∣∣∣∣∣
n∑

j=1

∆jY
(1)∆jJ̃

(2)
2 1{|∆jX(1)|≤√rh,|∆j J̃

(1)
2 |≤2

√
rh}1{|∆jX(2)|≤√rh,|∆j J̃

(2)
2 |≤2

√
rh}

∣∣∣∣∣

≤ Plim
n→∞

n∑
j=1

|∆jD
(1)∆jJ̃

(2)
2 |1{|∆j J̃

(2)
2 |≤2

√
rh}.

By the Cauchy-Schwarz inequality, last term is dominated by

Plim
n→∞

√√√√
n∑

j=1

(∆jD(1))2

√√√√
n∑

j=1

(∆jJ̃
(2)
2 )21{|∆j J̃

(2)
2 |≤2

√
rh}

≤
√∫ T

0

(σ
(1)
s )2ds Plim

n→∞

√
S

(2)
n = 0,

by Lemma 7.5.

It remains to consider the last term of (14), which is rewritten as in (17) with

∆jJ̃
(1)
2 ∆jJ̃

(2)
2 in place of ∆jY

(1)∆jJ̃
(2)
2 , so that last three terms converge to zero in

probability as before. As for the first term

Plim
n→∞

n∑
j=1

∆jJ̃
(1)
2 ∆jJ̃

(2)
2 1{(∆jX(1))2≤rh,(∆j J̃

(1)
2 )2≤4rh}1{(∆jX(2))2≤rh,(∆j J̃

(1)
2 )2≤4rh}, (18)

we remark that it is bounded in absolute value by

Plim
n→∞

n∑
j=1

|∆jJ̃
(1)
2 |1{(∆j J̃

(1)
2 )2≤4rh}|∆jJ̃

(2)
2 |1{(∆j J̃

(2)
2 )2≤4rh} ≤ Plim

n→∞

√
S

(1)
n

√
S

(2)
n = 0,

by Lemma 7.5.
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