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Abstract: Ambient vibration tests are conducted widely

to estimate the modal parameters of a structure. The

work proposes an efficient wavelet-based approach to

determine the modal parameters of a structure from its

ambient vibration responses. The proposed approach

integrates the time series autoregressive (AR) model

with the stationary wavelet packet transform. In addi-

tion to providing a richer decomposition and allow-

ing for an improved time–frequency localization of

signals over that of the discrete wavelet transform, the

stationary wavelet packet transform also has significantly

higher computational efficiency than the wavelet packet

transform in terms of decomposing time-shifted signals

because the former has a time-invariance property. The

correlation matrices needed in determining the coefficient

matrices in an AR model are established in subspaces

expanded by stationary wavelet packets. The formula-

tion for estimating the correlation matrices is shown for

the first time. Because different subspaces contain sig-

nals with different frequency subbands, the fine filtering

property enhances the ability of the proposed approach

to identify not only the modes with strong modal in-

terference, but also many modes from the responses of

*To whom correspondence should be addressed. E-mail: cshuang@

mail.nctu.edu.tw.

very few measured degrees of freedom. The proposed ap-

proach is validated by processing the numerically sim-

ulated responses of a seven-floor shear building, which

has closely spaced modes, with considering the effects

of noise and incomplete measurements. Furthermore, the

present approach is employed to process the velocity re-

sponses of an eight-storey steel frame subjected to white

noise input in a shaking table test and ambient vibration

responses of a cable-stayed bridge.

1 INTRODUCTION

Capable of reflecting the dynamic characteristics of a
structure, modal parameters identified from its mea-
sured dynamic responses can offer a valuable reference
to efforts to update structural design models (Garcı́a-
Palencia and Santini-Bell, 2013; Lozano-Galant et al.,
2013) and perform vibration control (Adeli and Saleh,
1997; Kang et al., 2012), health monitoring (Yuen and
Katafygiotis, 2006; Soyoz and Feng, 2009; Hu et al.,
2013), and damage assessment (Jiang and Adeli, 2007;
Osornio-Rios et al., 2012) of a particular structure. Iden-
tification of modal parameters from dynamic responses
can be carried out in either the frequency, time or
time–frequency domains. The development of typical
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approaches of system identification in the frequency
and time domains can be found in many text books (i.e.,
Ljung, 1999; Schoukens and Pintelon, 1991). Recently,
Sirca and Adeli (2012) provided an excellent review of
representative works on structural system identification
published in journals since 1995. The paper includes
191 references and classifies the methods of system
identification as conventional model-based approaches,
biologically inspired approaches, signal processing
based approaches, chaos theory, and multiparadigm
approaches.

Owing to its flexibility, ambient vibration test is often
undertaken to attain the required dynamic responses
of a structure. Because the excitation for ambient vi-
brations includes natural forces (e.g., wind, tidal waves,
and earthquakes tremors), the input forces are too com-
plicated to measure. Numerous algorithms have been
developed to identify modal parameters of a structure
from its ambient vibrations. These algorithms work in
either the frequency, time or time-frequency domains.
Although generally simple, the methods in the fre-
quency domain (Bendat and Piersol, 1993; Yan and
Ren, 2012) do not work well for structural systems with
heavy damping and strong modal interference (Lardies
and Ta, 2011).

In the time domain, the random decrement tech-
nique (Cole, 1971; Vandiver et al., 1982; Huang and
Yeh, 1999) is typically applied to convert ambient vi-
bration responses into free decay responses, which are
also called Randomdec signatures. The modal parame-
ters from the free decay responses are then identified by
using either the Ibrahim time-domain scheme (Ibrahim
and Mikulcik, 1973; Ibrahim and Pappa, 1982) or
the least-squares complex exponential method (Brown
et al., 1976; Vold and Russell, 1983). Although the in-
put forces are assumed to be white noise, Huang and
Yeh (1999) demonstrated theoretically that the Ran-
domdec signatures converted from velocity or displace-
ment responses of a system are equivalent to the free
decay responses of the system, whereas Randomdec
signatures converted from acceleration responses are
not. The ambient vibration responses are also of-
ten processed directly using the time series models,
autoregressive (AR) (Wang and Fang, 1986; Huang,
2001; Liu et al., 2011) and autoregressive moving av-
erage (ARMA) (Loh and Wu, 1996; Lardies, 2010),
stochastic subspace approaches (Huang and Lin, 2001;
Ali and Okabayashi, 2011; He et al., 2008), natural
excitation technique with the eigensystem realization
algorithm (NExT-ERA) (Dionysius and Yozo, 2007;
Caicedo, 2011), and blind source separation meth-
ods (Zhou and Chelidze, 2007; Mcneil, 2011; Hazra
et al., 2012). The input forces for ambient vibration re-
sponses of structures are assumed to be white noise

in the AR model, stochastic subspace approaches and
NExT-ERA; this assumption is quite acceptable in
civil engineering applications. The ARMA model and
blind source separation methods do not make such
a strict assumption and are more complicated than
the AR model, stochastic subspace approaches and
NExT-ERA.

Wavelet transformations provide time–frequency
analyses and offer alternative signal analysis methods
by presenting information in the time and frequency
domains simultaneously. Wavelet transformations were
first applied to structural system identification about
two decades ago. Discrete wavelet transforms (Robert-
son et al.,1998; Huang et al., 2005), wavelet packet trans-
forms (Jiang and Adeli, 2004; Jiang et al., 2007; Chen
et al., 2013), continuous wavelet transforms (Schoen-
wald, 1993; Ruzzene et al., 1997; Gouttebroze and
Lardies, 2001; Kougioumtzoglou and Spanos, 2013;
Hsu, 2013), and wavelet neural networks (Hung et al.,
2003; Jiang and Adeli, 2005, 2008; Adeli and Jiang, 2006,
2009; Lin et al., 2012; Kodogiannis et al., 2013) were em-
ployed to system identifications using the dynamic re-
sponses and inputs of structures or the free vibrations
of structures.

Wavelet-based approaches and Hilbert transform
methods are also particularly used for identifying modal
parameters of a structure from its ambient vibration re-
sponses. Most of these approaches collaborate with the
random decrement technique. To determine the modal
parameters from the Randomdec signatures, Yang
et al. (2004) employed Hilbert–Huang transform
(Huang et al., 1998), whereas Lardies and Goutte-
broze (2002) proposed a method based on the wavelet
ridges of continuous Morlet wavelet transform. Yang
and Miyamoto (2006) presented a comparative study of
estimating modal parameters from Randomdec signa-
tures by using the approach of Lardies and Gouttebroze
(2002) and the improved Hilbert–Huang transform. In
another comparative study, Lardies and Ta (2011) de-
termined the modal parameters of a cable-stayed bridge
by using a modified approach of Lardies and Goutte-
broze (2002) and a subspace algorithm. Based on the
approach of Huang and Su (2007), which combines the
autoregressive with exogenous input (ARX) model with
the continuous wavelet transform and was developed
to identify the modal parameters of a structure un-
der an earthquake, Chen and Ou (2011) processed the
ambient vibration responses of a cable-stayed bridge.
Without using the random decrement technique, Hazra
and Narasimhan (2010) directly determined the modal
parameters of a building from its ambient vibration
responses by using an approach that combines second-
order blind identification technique with the station-
ary wavelet transform. Notably, the approaches, which
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were developed for processing the forced and free
vibration responses, are theoretically applicable to pro-
cess the Randomdec signatures. Nevertheless, the ref-
erence degree of freedom chosen to construct the
Randomdec signatures may significantly affect the ac-
curacy of modal parameters identified from the Ran-
domdec signatures. In addition to that, the ambient
vibrations are converted into free decay responses with
a relatively short duration, and the edge effect in the
wavelet transform can have considerable effects on ac-
curately determining the modal parameters.

This work develops a novel approach in the time–
frequency domain without the assistance of the random
decrement procedure. The proposed approach com-
bines the AR model and the stationary wavelet packet
transform. The measured ambient vibration responses
of a structure are expanded by the stationary wavelet
packets, and the correlation functions among the mea-
sured degrees of freedom are estimated in the needed
subspaces expanded by stationary wavelet packets. No-
tably, the correlation matrices in the stationary wavelet
packet space is formulated herein for the first time in lit-
erature. Then, the coefficient matrices in the AR model
are simply estimated using a traditional least-squares
scheme. Modal parameters of the structure are directly
determined from those coefficient matrices. The fine fil-
tering property in the stationary wavelet packet trans-
form enhances the ability of the proposed approach
to identify not only the modes with strong modal in-
terference, but also many modes from the responses
of very few measured degrees of freedom. Validity of
the proposed approach is verified by processing the nu-
merically simulated responses of a seven-degrees-of-
freedom system, which has closely spaced modes, with
considering the effects of noise and incomplete mea-
surements. Furthermore, the proposed approach is ap-
plied to process the velocity responses of an eight-storey
steel frame subjected to white noise input in the shak-
ing table tests and the ambient vibration responses of
a cable-stayed bridge with a main span of 330 m and a
side span of 180 m.

2 METHODOLOGY

2.1 AR model

As is well known, the ambient vibration responses of
a system can be described by the AR model with the
order I, denoted by AR(I), which is mathematically ex-
pressed as

y(t) =
I

∑

i=1

�i y(t − i) + a(t) (1)

where y(t − i) is the measured velocity response
vector at time t − i�t ; 1/�t is the sample rate of mea-
surement; �i is coefficient matrix; and a(t) belongs to
a vector white-noise process with the following proper-
ties

E [a(t)] = 0 and E [a(t − i) aT (t − j)] = δi j W

(2)

where E[] denotes the mean-value operation, δi j repre-
sents the Kronecker symbol, and W is the covariance
matrix of a(t).

Multiplying yT (t − k) by both sides of Equation (1),
taking the mean values and using the fact that
E[a(t)yT (t − k)] = 0 yield the following relationship

R (−k) =
I

∑

i=1

�i R (i − k) (3)

where R(k) = E[y(t)yT (t + k)]. Applying R(−k) =
RT (k) to Equation (3) yields

RT (k) =
I

∑

i=1

�i R
T (k − i) (4)

By using different k in Equation (4), the following
equation can be derived from Equation (4):

R̂ = R̃�̃ (5)

where

R̂ =
[

RT (ki + 1) RT (ki + 2) · · · RT (ki + m)
]T

(6a)

R̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R(ki ) R(ki − 1) · · · R(ki − I + 1)

R(ki + 1) R(ki ) · · · R(ki − I + 2)

...
...

. . .
...

R(ki +m−1) R(ki +m−2) · · · R(ki +m− I +2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6b)

�̃ =
[

�1 �2 · · · �I

]T
(6c)

Notably, ki ≈ I + (4 ∼ 14) was suggested by Huang
(2001) for a sample rate for measurement between 50
and 200 Hz. Such setting of ki makes R̃ exclude R(0),
which is heavily affected by noise. Equation (5) nor-
mally represents a set of overdeterminant algebraic lin-
ear equations. Consequently, the coefficient matrices in
the AR model are determined in a least-squares error
sense,

�̃ =
(

R̃T R̃
)−1

R̃T R̂ (7)
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Fig. 1. Decomposition of subspaces.

2.2 Estimation of correlation functions in wavelet
domain

The correlation functions are estimated from the mea-
sured responses by using the stationary wavelet packet
transform. Owing to that the wavelet transform pro-
vides information in the time and frequency domains
simultaneously, the correlation functions correspond-
ing to the frequency range of interest can be con-
structed by selecting appropriate wavelets. Notably, the
wavelet packet transform provides a richer decompo-
sition and allows for better time–frequency localiza-
tion of signals than the decomposition of signals by
the discrete wavelet transform. The stationary wavelet
packet transform is superior to the wavelet packet
method in that the former is a translation–invariance
transform, explaining its excellent computational ef-
ficiency for functions with time shift. Moreover, the
stationary wavelet packet transform is implemented
without down-sampling and maintains all of the ele-
ments in the coefficients across all of the decomposition
levels.

Let the discrete signal f(t) belong to the space U
(0)
0 ,

it is decomposed into as many subspaces as needed
and expressed as (Figure 1; Walden and Cristan, 1998;
Fan and Zuo, 2006; Zhong and Oyadiji, 2007; Jiang and
Adeli, 2004)

U
(0)
0 = U

(0)
1 ⊕ U

(1)
1

= U
(0)
2 ⊕ U

(1)
2 ⊕ U

(2)
2 ⊕ U

(3)
2

= · · ·
= U

(0)
k ⊕ U

(1)
k ⊕ U

(2)
k ⊕ · · · ⊕ U

(2k−2)
k ⊕ U

(2k−1)
k

(8)

where ⊕ denotes the direct sum of two subspaces;
subscript k denotes the level of decomposition; and

U
(2(k−1)−n)
k−1 is decomposed into U

(2k−2n+1)
k and U

(2k−2n)
k

with n ≤ k, and U
(i)
k ⊥U

( j)
k for i �= j . Let

U
(m)
k =closespan

{

µm,k,l (t)= 2−k/ 2µm

(

2−k (t − tl )
)

; l ∈ Z

}

(9)

where tl = l�t and {µm,k,l (t), l ∈ Z} is a set of orthonormal
basis functions for U

(m)
k . Because the measured signals

are discrete, functions are expressed in discrete form.
The basis functions satisfy

〈

µm,k,l , µm,k, j

〉

= �t
∑

n̄∈Z

µm,k,l (t)µm,k, j (t)

=

{

1 when l = j

0 when l �= j

(10a)

〈

µm,k,l (t), µn,i, j (t)
〉

= 0 when n �= m (10b)

Constructing the basis functions, begins with choos-
ing a mother wavelet function ψ(t) and the correspond-
ing scale function φ(t). Let µ0(tn̄) = φ(tn̄) and µ1 (tn̄) =
ψ (tn̄), then

µ2m,k+1,l (t) =
√

2
∑

n∈Z

hk [n] µm,k,l (2t − tn) (11a)

µ2m+1,k+1,l (t) =
√

2
∑

n∈Z

gk [n] µm,k,l (2t − tn) (11b)

where h0 [n] = 〈φ(t), φ(2t − tn)〉/
√

2 and g0 [n] =
〈ψ(t), ψ(2t − tn)〉/

√
2 are the low-pass filter and high-

pass filter, respectively. The stationary wavelet packet
transform is calculated in a similar manner as the
wavelet packet transform, except that no decimation is
performed after each filtering step (Fowler, 2005; Jose
et al., 2008). The low-pass filter and high-pass at level
k + 1 are defined recursively as

hk+1 [n] =

⎧

⎨

⎩

hk

[

n
/

2
]

n even

0 n odd
;

gk+1 [n] =

{

gk

[

n
/

2
]

n even

0 n odd

Decomposing f(t) for l ∈ Z into subspaces U
(m)
k with

m = 0, 1, 2, . . . , 2k − 1, yields

f (tn̄) =
2k−1
∑

m=0

∑

l=0

am,k,lµm,k,l (tn̄) (12)

where am,k,l refers to the stationary wavelet packet co-

efficients in subspace U
(m)
k and

am,k,l =
〈

f (t), µm,k,l(t)
〉

(13)
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If f
(m)
k (t) denotes the signals of f(t) decomposed into

subspace U
(m)
k , Equation (12) reveals that the frequency

range of f
(m)
k (t) depends only on the frequency range of

µm,k,l(t). Notably, the stationary wavelet packet satisfies
the translation–invariance property, leading to

f (t − tn) =
2k−1
∑

m=0

∑

l=0

ām,k,lµm,k,l (t)

and ām,k,l = am,k,l−n (14)

The correlation functions can be estimated by
(Bendat and Piersol, 1993)

R(k) =
1

L

∑

n̄∈Z

y(tn̄)yT (tn̄ + tk) (15)

where L = T̄ /�t denotes the record length of measure-
ment; y(t) = 0 when t < 0 and t > T̄ , which occurs in
the measured data. Using Equation (12),

y(t) =
2 j −1
∑

m=0

L
∑

l=0

{am, j,l}µm, j,l (t) (16)

Based on Equations (14) and (15), Equation (16) is
rewritten as

R(k) = 1
L

∑

n̄∈Z

[

2 j −1
∑

m=0

L−k
∑

l=0

{am, j,l}µm, j,l (tn̄)

×
2 j −1
∑

m=0

L−k
∑

l=0

{am, j,l+k}T µm, j,l (tn̄)

]

(17)

By using the orthogonal properties given in Equation
(10), Equation (17) is further simplified as

R(k) =
1

L�t

2 j −1
∑

m=0

L−k
∑

l=0

{am, j,l}{am, j,l+k}T

=
1

T̄
Rw(k) (18)

where Rw(k) =
∑2 j −1

m=0

∑L−k
l=0 {am, j,l}{am, j,l+k}T . To deter-

mine the coefficient matrices in the AR model from
Equation (7), R(k) is replaced by Rw(k).

The stationary wavelet packet transform has fine fil-
tering properties in frequency, which is highly effective
in identifying the modal parameters of a structure. Us-

ing the signals in a specific subspace, for example, U
(m̄)
j ,

to estimate Rw(k) yields

Rw(k) =
L−k
∑

l=0

{am̄, j,l}{am̄, j,l+k}T (19)

Fig. 2. Plots for Meyer mother wavelet ψ(t) and
corresponding scale function φ(t).

Fig. 3. Fourier spectra of Meyer wavelet and scale function.

If the Fourier transform of µm̄, j,l(t) has a compact

support with the frequency range [ fa, fb], subspace U
(m̄)
j

corresponds to the frequency range [ fa, fb]. Also, Rw(k)
in Equation (19) is applied to Equation (7) to deter-
mine the coefficient matrices in the AR model and iden-
tify the natural frequencies of a structure by following
the procedure given in Section 2.4. Doing so leads to
the identified modal frequencies lying in the frequency
range [ fa, fb].

2.3 Meyer stationary wavelet packets

The orthonormal basis functions in each subspace are
constructed using Meyer mother wavelet ψ(t) and
its corresponding scale function φ(t) (Mallat, 1999)
(Figure 2). Figure 3 shows the Fourier spectra of these
two functions, |ψ̂(ω)| and |φ̂(ω)|, indicating that ψ(t) is
a band-pass filter and φ(t) is a low-pass filter.
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Fig. 4. Plots for Meyer mother wavelet ψ(t) and corresponding scale function φ(t).

No overlapping frequency ranges among subspaces

U
(m)
k with different m allow for the convenient selection

of an appropriate subspace to estimate the correlation
function matrices through Equation (19) and identify
the modal parameters of a structure in the frequency
range of interest. In this work, the frequency ranges of
ψ(t) and φ(t) are defined by the frequency ranges corre-
sponding to 50

√
2% of |ψ̂(ω)| and |φ̂(ω)|, respectively,

that is, [0.5, 1] Hz and [0, 0.5] Hz (Figure 3). Conse-

quently, the frequency range of subspace U
(m)
k is deter-

mined by the following procedure:

1. Express m in a vector of binary, v = (c1, c2, ..., cn̄),
where ci is either 0 or 1.

2. Define a vector v̄ = c̄n̄ ⊗ c̄n̄−1 ⊗ · · · ⊗ c̄2 ⊗ c̄1,
where ⊗ is the Kronecker tensor product

operator, and c̄i are set to (1, 1) and (1, −1)
for ci = 0 and 1, respectively. The components of
v̄ are either −1 or 1.

3. Compute the number of zero crossing in the se-
quence of the components of v̄, and denote the
number by η.

4. The frequency range of U
(m)
k is

[η fs/.2
k+1, (η + 1) fs/.2

k+1], where fs is the
sampling frequency.

For example, to find the frequency range of U
(6)
3 , the

binary expression of 6 is 110, v = (1, 1, 0), v̄ = [1, 1] ⊗
[1, − 1] ⊗ [1, − 1] = [1, − 1, − 1, 1, 1, − 1, − 1, 1],

and η = 4. Thus, the frequency range of U
(6)
3 is

[4 fs/23, 5 fs/23]. Figure 4 shows the frequency ranges of
subspaces that may be used later.
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Fig. 5. Fourier spectra of simulated responses of first, third,
and seventh floors.

2.4 Determination of modal parameters

By adopting the concept behind the Ibrahim time do-
main system identification approach, Yang et al. (1994)
and Huang (1999) proved that the modal parameters of
a structure can be directly determined from the eigen-
values and eigenvectors of the following matrix,

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 I 0 0 · · · 0

0 0 I 0 · · · 0

...
...

...
... · · ·

...

�I �I−1 �I−2 �I−3 · · · �1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

N̄×N̄

(20)

where I is an l̄ × l̄ unit matrix; l̄ is the dimension of y(t),
and N̄ = I × l̄.

Let λk and ϕk denote the kth eigenvalue and eigen-
vector of G, respectively. The eigenvalue λk is normally
a complex number, and is set to ãk + ib̃k . The natural
frequency and modal damping ratio of a structure are
calculated by

β̃k =
√

α2
k + β2

k , ξk = −αk/β̃k (21)

where

βk =
1

�t
tan−1

(

b̃k

ãk

)

, αk =
1

2�t
ln (ã2

k + b̃2
k ) (22)

The eigenvector ϕk can be expressed as
(ϕT

k1ϕ
T
k2...ϕ

T
k I )T where ϕki has l̄ components and

satisfies ϕki = λkϕk(i−1), and ϕk1 corresponds to a
mode shape of the measured degrees of freedom of a
structure.

It is worthwhile to mention that spurious modes other
than real structural modes occur when N̄ > 2n where
n is the total number of degrees of freedom of the
structural system under consideration and is usually un-
known. The real structural modes should consistently
arise as I, that is, the order of the AR model, in-
creases. Hence, the modal parameters of a structure
can be determined based on the stabilization diagrams
(Kullaa, 2000), which display the variations of the iden-
tified modal parameters with I. Good engineering judg-
ment based on the knowledge of the structural system
can be very helpful in identifying the structural modes.

3 NUMERICAL VERIFICATION

3.1 Determination of modal parameters

Numerically simulated velocity responses of a seven-
storey shear building under base excitation of white
noise input were processed to demonstrate the accuracy
and effectiveness of the proposed approach in identify-
ing the modal parameters. The theoretical natural fre-
quencies of the shear building were 0.72, 2.21, 3.20, 4.11,
5.01, 5.26, and 8.01 Hz, and the corresponding modal
damping ratios were 0.4%, 1.4%, 2.0%, 2.6%, 3.1%,
3.3%, and 5.0%. The responses of the shear building
with a duration of 300 seconds were determined using
the Runge–Kutta method with �t = 0.005 seconds. No-
tably, the frequencies of the fifth and sixth modes are
too close to be distinguished from the Fourier spectra in
Figure 5.

The agreement between the identified and theoretical
mode shapes is indicated by the modal assurance crite-
rion (MAC) (Allemang and Brown, 1983),

MAC(ϕ̄i I , ϕ̄i A) =
∣

∣ϕ̄
T
i I ϕ̄i A

∣

∣

2

ϕ̄
T
i I ϕ̄i I ϕ̄

T
i Aϕ̄i A

(23)

where ϕ̄i I and ϕ̄i A are the identified and analytical ith
mode shapes, respectively. The value of MAC is be-
tween zero and unity, and the closer to one of MAC
indicates two mode shapes more similar.

For convenience, the identified results are consid-
ered as “accurate” when the identified frequencies and
modal damping ratios are within 2% and 20% of the
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Table 1
Identified modal parameters of a seven-floor shear building

Noise Subspace Orders Modal Damping

NSR (frequency range) of AR I frequencies fn (Hz) ratios ξ (%) MAC

0% U
(0)
2 (0 to 25 Hz) 2 0.72 (0%) 0.4 (0%) 1.00

2.21 (0%) 1.4 (0%) 1.00
3.20 (0%) 2.0 (0%) 1.00
4.11 (0%) 2.5 (−3.85%) 1.00
5.01 (0%) 3.2 (3.22%) 1.00
5.26 (0%) 3.2 (−3.03%) 1.00
8.00 (−0.12%) 5.0 (0%) 1.00

U
(0)
3 (0 to 12.5 Hz) 2 0.72 (0%) 0.4 (0%) 1.00

2.21 (0%) 1.4 (0%) 1.00
3.20 (0%) 2.0 (0%) 1.00
4.11 (0%) 2.5 (−3.85%) 1.00
5.01 (0%) 3.4 (9.68%) 1.00
5.25 (−0.19%) 3.3 (0%) 1.00
8.03 (0.25%) 5.0 (0%) 1.00

20% U
(0)
3 (0 to 12.5 Hz) 7 0.72 (0%) 0.4 (0%) 1.00

2.21 (0%) 1.4 (0%) 1.00
3.20 (0%) 2.0 (0%) 1.00
4.12 (0.24%) 2.5 (−3.85%) 1.00
5.01 (0%) 3.2 (3.23%) 1.00
5.26 (0%) 3.5 (6.06%) 1.00
7.99 (−0.25%) 4.8 (0%) 0.99

U
(0)
3 (0 to 12.5 Hz) 2 0.72 (0%) 0.4 (0%) 1.00

2.21 (0%) 1.4 (0%) 1.00
3.20 (0%) 2.0 (0%) 1.00
4.12 (0.24%) 2.5 (−3.84%) 1.00

U
(0)
3 (4.70 to 6.25 Hz) 2 5.01 (0%) 2.6 (−16.13%) 1.00

5.25 (−0.19%) 2.8 (−15.15%) 1.00

U
(0)
3 (0 to 12.5 Hz) 2 7.97 (−0.50%) 5.2 (4%) 0.98

theoretical ones, respectively, and the MAC values ex-
ceed 0.9 as well. The identified natural frequencies are
typically much more accurate than the identified modal
damping ratios. Therefore, smaller errors are required
for the identified natural frequencies than for identified
modal damping ratios when defining accurate results.

Table 1 lists the identified modal parameters obtained
using the responses of all floors. The relative differ-
ences between the identified results and true values are
given in parentheses. The responses are transformed
into different subspaces by the stationary wavelet pack-
ets. Highly accurate results are obtained using AR(2)

and the signals in U
(0)
2 and U

(0)
3 , whose frequency ranges

are [0, 25] Hz and [0, 12.5] Hz, respectively.

3.2 Effects of noise and incomplete measurements

In real applications, the measured data always contain
a certain level of corrupted noise. To simulate the noise

effect, 20% variance of the noise-to-signal ratio (NSR)
was randomly added to the computed responses. When

the signals of all floors in subspace U
(0)
3 are employed

to find the modal parameters, AR(I) models with I ≥ 7
are needed to have accurate results, and the results us-
ing AR(7) are given in Table 1. The difficulties in accu-
rately identifying modal parameters of the closed modes
(fifth and sixth modes) result in using such large order

of AR model. If the signals in subspace U
(2)
6 , whose fre-

quency range is [4.70, 6.25] Hz, are used for identifying
the modes whose frequencies are inside the frequency
range, Table 1 reveals that AR(2) yields accurate re-
sults, which are given in Table 1.

In practice, a highly dense sensor network is sel-
dom used for measurement even with the increasingly
cheap price of a monitoring system. Correspondingly,
Table 2 summarizes the results obtained using the noisy
responses of the first floor. The relative differences be-
tween the identified results and true values are given in
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Fig. 6. Stabilization diagrams of identified frequencies for a

seven-floor shear building: (a) using signals in U
(0)
3 only,

(b) using signals in different subspaces for different modes.

parentheses. When the signals in subspace U
(0)
3 are used,

even the AR(50) model does not yield accurate results
for all of the modes. The stabilization diagram on fre-
quencies given in Figure 6a shows that the frequencies
of the first, third, fifth, and sixth modes are not identified
when the order of AR model is less than 50 and demon-
strates the difficulties of identifying accurate results of
all modes from the signals in the subspace that covers
the frequency range of all modes.

To resolve the above difficulties, different modes
are identified using the signals in different subspaces.
Table 2 demonstrates the feasibility of obtaining the ac-
curate results of the first and second modes by using
the AR(10) model in cooperation with the signals in

U
(0)
5 that has a frequency range of [0, 3.1] Hz. Mean-

while, the AR(10) model along with the signals in U
(3)
6

with a frequency range of [3.1, 4.7] Hz yields accurate

results of the third and fourth modes. Accurate results
for the fifth and sixth modes can be obtained using the

AR(12) model along with the signals in U
(2)
6 with a fre-

quency range of [4.7, 6.25] Hz. Additionally, the AR(5)

model along with the signals in U
(3)
5 with a frequency

range of [6.25, 9.4] Hz yields accurate results for the
seventh mode. According to the stabilization diagram
in Figure 6, the real modes occur stably when increas-
ing the orders of AR model, and no spurious modes are
found in the frequency ranges of interest.

To compare the present approach with an existing ap-
proach, Table 2 also shows the results obtained using
the approach of Huang and Su (2007), which combines
the ARX model with the continuous wavelet trans-
form, to process the Randomdec signatures extracted
from the noisy responses using the random decrement
technique. In processing the Randomdec signatures,
which are equivalent to free decayed responses, the
AR model, instead of the ARX model, should be used.
Meyer wavelets were used in the wavelet transform, and
a simple method proposed by Solı́s et al. (2013) was em-
ployed to avoid wavelet transform edge effects. When
several values of scale parameter (a) in the continuous
wavelet transform are applied to identify the modal pa-
rameters of all modes, similar to the present approach,
the AR(50) model does not yield accurate results for all
of the modes. When different values of a are used for
identifying modal parameters of different modes, the
AR(100) model does not give accurate result for the
close modes (the fifth and sixth modes).

4 APPLICATIONS

Following its verification based on numerical simula-
tion, the proposed approach is used to process the mea-
sured responses of an eight-storey, symmetrical steel
frame under shaking table tests and ambient vibration
responses of a cable-stayed bridge. In practical appli-
cations, the true modal parameters are unknown and
the criteria given in the previous section for judging
accurately identified results are inapplicable. However,
real mechanical modes occur stably when increasing the
order of AR model, whereas the spurious modes do
not. The stabilization diagrams contribute to the eval-
uation of stable results. Modes identified at the current
AR(I) are compared with the results obtained from the
next six consecutive orders of AR (i.e., AR(I + k) and
k = 1, 2, . . . ,6). Importantly, the results are consid-
ered stable if (a) the maximum relative differences in
frequency and damping ratio for each mode are less
than 2% and 20%, respectively, and (b) the values of
MAC are higher than 95%. Engineering judgment is
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Fig. 7. A photo for an eight-storey steel frame under shaking
table tests.

also highly effective in distinguishing real mechanical
modes from spurious modes.

4.1 Eight-storey frame under shaking table tests

The eight-storey steel frame analyzed in this test was
1.5 m in length, 1.1 m in width, and 9.44 m in height
(Figure 7). Lead plates of 250 kg were piled on each
floor, such that the total mass of each floor was ap-
proximately 325 kg. The columns had H-shaped sections
(H100×100×7.5×7.5). The frame was subjected to base
excitation of white noise in long-span direction. A ve-
locity sensor was placed at the center of each floor. The
responses were recorded for 250 seconds with a sam-
pling rate of 200 Hz.

Figure 8 displays the Fourier spectra of the responses
at the first, third, and eighth floors, in which the peaks
of the first seven modes under 40 Hz are clearly shown.
Frequency of the eighth mode looks like that between
40 and 45 Hz (see the Fourier spectrum for the third
floor). Table 3 lists the identified results obtained by

using the signals of all floors in U
(0)
1 , whose frequency

range is [0, 50] Hz. The identified modal parameters ap-
pear stably when AR(I) with I ≥ 5 are used. The paren-
thesized results in Table 3 are the natural frequencies

Fig. 8. Fourier spectra of the responses of an eight-storey
steel frame at first, third, and eighth floors.

obtained from the commercial finite element package,
ETABS (2013), via the designed data. Following a typi-
cal way of applying ETABS to construct a finite element
model for a real building, a 3D beam element was uti-
lized to model a column in each storey, and rigid floor
assumption was made. Apparently, the identified natu-
ral frequencies and those from ETABS significantly dif-
fer from each other, especially for the higher modes.
Notably, the identified natural frequencies correspond
very well with those associated with the peaks of the
Fourier spectra in Figure 8. The values of MAC indicate
the excellent correlation between the identified mode
shapes and those of ETABS.

Table 3 also summarizes the identified results using
the responses of the first floor only, whereas Figure 9
depicts the stabilization diagrams on frequencies ob-
tained from signals in different subspaces. When the

signals in U
(0)
1 are used, Figure 9a reveals that AR(I)

with I ≥ 32 are needed to obtain stable results for all
of the eight modes. Some spurious modes occur in the
frequency range of interest, causing difficulty in de-
termining the modal parameters precisely. The iden-
tified natural frequencies and modal damping ratios
closely correspond to those obtained from complete
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Table 3
Identified modal parameters of an eight-storey steel frame under shaking table tests

Subspace

Responses (frequency range) fn (Hz) ξ (%) MAC

All floors U
(0)
1 (0 to 50 Hz) 2.11 (2.01) 1.4 0.99

7.00 (6.49) 0.9 0.99
12.86 (12.38) 0.7 0.99
19.15 (19.80) 0.4 0.99
25.89 (26.46) 0.9 0.97
33.42 (34.36) 1.0 0.97
39.36 (44.84) 1.3 0.96
41.63 (56.80) 2.1 0.96

First floor only U
(0)
1 (0 to 50 Hz) 2.09 4.0 /

6.97 0.8 /
12.85 0.7 /
19.15 0.4 /
25.89 0.9 /
33.42 1.0 /
39.32 1.0 /
42.34 2.5 /

U
(0)
3 (0 to 12.5 Hz) 2.06 1.3 /

6.98 0.9 /

U
(1)
3 (12.5 to 25.5 Hz) 12.85 0.7 /

19.15 0.4 /

U
(3)
3 (25.5 to 37.5 Hz) 25.89 0.9 /

33.42 0.9 /

U
(2)
3 (37.5 to 50 Hz) 39.35 0.9 /

41.60 2.1 /

Note: “/” denotes data not available.

measurements, except for the damping ratios of the first
mode.

When the modal parameters of different modes
are identified using the signals in different subspaces,

Figure 9b reveals that a markedly smaller order of

AR model than that for using the signals in U
(0)
1

(see Figure 9a) is needed to achieve stable results;
no spurious modes occur in the frequency ranges of

Fig. 9. Stabilization diagrams of identified frequencies for an eight-storey steel frame using the responses of the first floor only:

(a) using signals in U
(0)
1 only, (b) using signals in different subspaces for different modes.
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Fig. 10. (a) A photo of the cable-stayed bridge (provided by Taiwan Area National Expressway Engineering Bureau), (b) sensor
layout for ambient vibration measurement.

Fig. 11. Fourier spectra of vertical responses at x = 25, 260, and 420 m.

Fig. 12. Fourier spectra of transverse responses at x = 25, 260, and 420 m.

interest. The identified modal parameters are consis-
tent with those obtained from complete measurements
(Table 3).

4.2 Ambient vibration of a cable-stayed bridge

In a second example, the proposed approach was used
to process the ambient vibrations of a highway cable-
stayed bridge, which is the largest spanned bridge in
Taiwan (Figure 10). The bridge has a deck of 34.5 m
in width, a main span of 330 m with a steel box girder
type of deck, a side span of 180 m with a prestressed

concrete box girder type of deck, and an inverted
Y-shaped reinforced concrete pylon of 183.5 m in
height. Each side of the pylon has 14 pairs of cables.
The back stays consist of four cables, and the other
stays have two cables. Thirty-three measuring stations
were arranged along the centerline of the bridge deck
to measure the ambient vibrations. Most of the stations
were located near the connections of cables to the deck.
Owing to the limited number of sensitive servo-velocity
sensors, the tested bridge was divided into three seg-
ments (Figure 10). Two overlapping stations for any
two adjacent segments were utilized to correlate the
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Table 4
Identified modal parameters of a cable-stayed bridge from ambient vibration responses

Present Chen & Ou (2011)

Direction Subspace (frequency range) fn (Hz) ξ (%) MAC fn (Hz) ξ (%) MAC

Vertical U
(0)
3 (0 to 6.25 Hz) 0.27 (0.29) 2.6 1 0.28 2.9 1

0.59 (0.56) 2.5 1 0.57 3.7 0.98
0.90 (0.93) 2.6 1 0.92 4.4 0.97
1.58 (1.52) 2.7 1 1.54 3.9 0.97
1.86 (1.79) 2.6 0.97 1.81 3 0.97
2.36 (2.52) 2.5 1 / / /
3.11 (3.27) 2.9 0.99 / / /
3.93 (4.02) 2.7 0.98 / / /

Transverse U
(0)
3 (0 to 6.25 Hz) 0.65 (0.65) 2.6 1 0.64 3.3 0.99

1.64 (1.68) 2.7 1 1.64 2.9 0.99
2.19 (2.15) 2.4 1 2.17 3.2 0.99
2.57 (2.49) 2.9 1 2.51 2.5 0.99
3.17 (3.15) 2.6 0.99 3.13 3.9 0.99
3.89 (3.95) 2.8 1 / / /

Note: “/” denotes data not available.

mode shapes identified for each segment. Responses in
the vertical and transverse directions were measured
separately. The ambient vibration responses of the
bridge were recorded for 10 minutes with a sampling
rate of 100 Hz.

Figures 11 and 12 display the Fourier spectra of the
measured ambient vibrations at some stations in vertical
and transverse directions, respectively. Because most
of the peaks in the Fourier spectra occur in frequen-
cies smaller than 5 Hz, the modes with frequencies un-
der 4 Hz were identified using the proposed approach.
Because the different segments were not measured si-
multaneously, the measured responses in different seg-
ments were processed separately.

Table 4 lists the average values of natural frequencies
and modal damping ratios obtained from measured re-
sponses in three segments. The modal parameters were

identified using the signals in subspace U
(0)
3 with a fre-

quency range of [0, 6.25] Hz. Figures 13 and 14 show the
identified mode shapes in vertical and transverse direc-
tions, respectively. Cumulatively, eight modes in verti-
cal direction and six modes in transverse direction were
identified. The stable results were determined by using
AR(14). The parenthesized results in Table 4 are the
natural frequencies obtained from the commercial fi-
nite element package, SAP2000 (2013), via the designed
data with some modifications in supports and connec-
tions suggested by Chen and Ou (2011). The finite ele-
ment model consisted of 33 and 38 beam elements for
the deck and the pylon, respectively, and 28 cable el-
ements for the stay cables. The MAC values refer to

the correlation between the identified mode shapes and
those from the finite element analysis. Figures 13 and
14 also show the vertical and transverse mode shapes
obtained from the finite element method, respectively.
The identified natural frequencies correlate well with
the finite element results, whereas the identified mode
shapes closely correspond to those from the finite ele-
ment analysis with MAC values larger than 0.97.

For comparison, Table 4 also lists the identified re-
sults of Chen and Ou (2011), who applied the approach
of Huang and Su (2007) to process the Randomdec sig-
natures extracted from the ambient vibration responses.
They identified five modes in both of the vertical and
transverse directions. The mode shapes are also given
in Figures 13 and 14. The MAC values refer to the
correlation between the mode shapes identified by the
present approach and those of Chen and Ou (2011).
The natural frequencies and mode shapes of Chen and
Ou (2011) show excellent agreement with those ob-
tained from the present approach, whereas reasonable
agreement is found for most of the modal damping
ratios.

For a situation in which only the responses of a sta-
tion were processed, Table 5 lists the identified mode
parameters using the responses at x = 260 m in the
second segment. Again, the results were obtained us-
ing the signals in different subspaces in wavelet domain
cooperating with AR modes having different orders.
Figures 15 and 16 show the stabilization diagrams of
identified frequencies in vertical and transverse direc-
tions, respectively. The excellent agreement between
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Fig. 13. Mode shapes in vertical direction.

the modal parameters in Tables 4 and 5 again indi-
cates the ability of the proposed approach to accurately
find the natural frequencies and damping ratios of many
modes from responses of very few degrees of freedom.
Figures 15a and 16a reveal some spurious modes whose
frequencies are near the natural frequencies. Addition-

ally, when the signals in subspace U
(0)
3 are used to deter-

mine the modal parameters listed in Table 5, the AR(I)
model with I ≥ 31 is required to obtain stable results.
Again, using signals in different subspaces to identify
different modes eliminates the spurious modes and sub-
stantially reduces the needed orders of AR model to ob-
tain stable results (Figures 15b and 16b).

5 CONCLUDING REMARKS

This work has developed a wavelet-based approach for
identifying the modal parameters of a structure from
its ambient vibration responses. The stationary wavelet
packet transform is applied to the ambient vibra-
tion responses, and the correlation functions between
measured degrees of freedom can be estimated us-
ing the signals in the subspaces in the wavelet do-
main. Modal parameters of the structure are then deter-
mined from the coefficient matrices of the AR model,
which are established using those correlation func-
tions. Compared to the discrete wavelet transform and
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Fig. 14. Mode shapes in transverse direction.

Table 5
Identified modal parameters of a cable-stayed bridge using

ambient vibration responses of a station only

Direction Subspace (frequency range) fn (Hz) ξ (%)

Vertical U
(0)
5 (0 to 1.55 Hz) 0.27 2.5

0.58 2.7

0.89 2.4

U
(1)
5 (1.55 to 3.13 Hz) 1.56 2.9

1.86 2.8

2.35 2.7

3.10 2.9

U
(3)
5 (3.13 to 4.7 Hz) 3.90 2.9

Transverse U
(0)
4 (0 to 3.13 Hz) 0.66 2.5

1.61 2.6

2.18 2.7

2.58 2.8

U
(1)
4 (3.13 to 6.25 Hz) 3.17 2.8

3.89 2.6

wavelet packet transform, the stationary wavelet packet
transform satisfies the translation invariance property
and saves the computational time in constructing the

correlation functions. The Meyer wavelets were used in
the proposed approach because Meyer mother wavelet
is a band-pass filter, and the corresponding scale func-
tion is a low-pass filter. The fine filtering properties in
the stationary wavelet packet transform enhance the
ability of proposed approach to identify both the closely
spaced modes and many modes from the responses of
very few measured degrees of freedom.

The present approach was validated first by suc-
cessfully processing the numerically simulated veloc-
ity responses of a seven-storey shear building with
closely spaced modes of the fifth and sixth modes under
base excitation of white noise. Natural frequencies and
modal damping ratios of the seven modes were identi-
fied easily and accurately even when the responses of
only one degree of freedom with 20% noise were used.

To demonstrate the applicability of the proposed ap-
proach to process the real measured data, this work also
analyzed the velocity responses of an eight-storey steel
frame under shaking table tests and the ambient vibra-
tion responses of a highway cable-stayed bridge sub-
jected to traffic flow. Eight modes of the steel frame and
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Fig. 15. Stabilization diagrams of identified frequencies for a cable-stayed bridge using the vertical responses at x = 260 m:

(a) using signals in U
(0)
3 only, (b) using signals in different subspaces for different modes.

Fig. 16. Stabilization diagrams of identified frequencies for a cable-stayed bridge using the transverse responses at x = 260 m:

(a) using signals in U
(0)
3 only, (b) using signals in different subspaces for different modes.

eight modes in vertical direction and six modes in trans-
verse direction of the bridge were identified even when
the measured responses of only one degree of freedom
were used.

During the processing of the numerically simulated
responses and measured responses, our results indi-
cate two main advantages of using signals in differ-
ent subspaces in wavelet domain to identify different
modes over using signals in a subspace to identify all
of the modes. Those advantages are that the AR mode
with markedly lower order is needed and that spuri-
ous modes occur to a lesser extent. Importantly, the
proposed approach can identify the natural frequen-
cies and modal damping ratios of many modes from the

responses of only one degree of freedom. The capacity
is highly useful for long-term structural health monitor-
ing using vibration-based approaches in a cost-effective
manner.

ACKNOWLEDGMENTS

The authors would like to thank the National Science
Council of the Republic of China, Taiwan, for finan-
cially supporting this research under Contract No. NSC
101–2625-M-009–007. The appreciation is also extended
to the National Center for Research on Earthquake En-
gineering for providing shaking table test data.



Identifying structural modal parameters via the stationary wavelet packet 755

REFERENCES

Adeli, H. & Jiang, X. (2006), Dynamic fuzzy wavelet neural
network model for structural system identification, Journal
of Structural Engineering, 132(1), 102–11.

Adeli, H. & Jiang, X. (2009), Intelligent Infrastructure— Neu-
ral Networks, Wavelets, and Chaos Theory for Intelligent
Transportation Systems and Smart Structures, CRC Press,
Taylor & Francis, Boca Raton, FL.

Adeli, H. & Saleh, A. (1997), Optimal control of adap-
tive/smart bridge structures, Journal of Structural Engineer-
ing, 123(2), 218–26.

Ali, M. R. & Okabayashi, T. (2011), System identification
of highway bridges from ambient vibration using subspace
stochastic realization theories, Earthquake and Structures,
2(2), 189–206.

Allemang, R. L. & Brown, D. L. (1983), A correlation coef-
ficient for modal vector analysis, in Proceedings of the 1st
International Modal Analysis Conference, Bethel, CT, 110–
16.

Bendat, J. S. & Piersol, A. G. (1993), Engineering Applications
of Correlation and Spectral Analysis, 2nd edn. John Wiley &
Sons, New York.

Brown, D., Allemang, R., Zimmerman, R. & Mergay, M.
(1976), Parameter estimation techniques for modal analy-
sis, SAE Transactions, 88(1), 828–46.

Caicedo, J. M. (2011), Practical guidelines for the natural ex-
citation technique (NExT) and the eigensystem realization
algorithm (ERA) for modal identification using ambient vi-
bration, Experimental Techniques, 35(4), 52–58.

Chen, C. H. & Ou, C. I. (2011), Experimental model test and
time-domain aerodynamic analysis of a cable-stayed bridge,
International Journal of Structural Stability and Dynamics,
11(1), 101–25.

Chen, J., Zuo, M. J., Zi, Y., He, Z., Yuan, J. & Chen, X.
(2013), Customized lifting multiwavelet packet information
entropy for equipment condition identification, Smart Ma-
terials and Structures, 22(9), 095022.

Cole, H. A., Jr. (1971), Methods and apparatus for measur-
ing the damping characteristics of a structure, United States
Patent No. 3620069.

Dionysius, M. & Yozo, F. (2007), System identification of sus-
pension bridge from ambient vibration response, Engineer-
ing Structures, 30(2), 462–77.

EATABS (2013), Integrated Analysis, Design and Drafting of
Building Systems, Computers & Structures, Inc., Berkeley,
CA.

Fan, X. & Zuo, M. J. (2006), Gearbox fault detection using
Hilbert and wavelet packet transform, Mechanical Systems
and Signal Processing, 20(4), 966–82.

Fowler, J. (2005), The redundant discrete wavelet transform
and additive noise, Signal Processing Letters, IEEE, 12(9),
629–32.

Garcı́a-Palencia, A. J. & Santini-Bell, E. (2013), A two-step
model updating algorithm for parameter identification of
linear elastic damped structures, Computer-Aided Civil and
Infrastructure Engineering, 28(7), 509–21.

Gouttebroze, S. & Lardies, J. (2001), On using the wavelet
transform in modal analysis, Mechanics Research Commu-
nications, 28(5), 561–69.

Hazra, B. & Narasimhan, S. (2010), Wavelet-based blind
identification of the UCLA Factor building using ambient
and earthquake responses, Smart Materials and Structures,
19(4), 1–10.

Hazra, B., Sadhu, A., Roffel, A. J. & Narasimhan, S. (2012),
Hybrid time-frequency blind source separation towards
ambient system identification, Computer-Aided Civil and
Infrastructure Engineering, 27(5), 314–32.

He, X., Moaveni, B., Conte, J. P. & Elgamal, A. (2008),
Modal identification study of Vincent Thomas bridge using
simulated wind-induced ambient vibration data, Computer-
Aided Civil and Infrastructure Engineering, 23(5), 373–88.

Hsu, W.Y. (2013), Single-trial motor imagery classification us-
ing asymmetry ratio, phase relation and wavelet-based frac-
tal features, and their selected combination, International
Journal of Neural Systems, 23(2), 1350007.

Hu, X.Y., Wang, B. & Ji, H. (2013), A wireless sensor
network-based structural health monitoring system for
highway bridges, Computer-Aided Civil and Infrastructure
Engineering, 28(3), 193–209.

Huang, C. S. (1999), A study on techniques for analyzing
ambient vibration measurement (II)—time series methods.
Report No. NCREE-99–018, National Center for Research
on Earthquake Engineering, Taipei, Taiwan (in Chinese).

Huang, C. S. (2001), Structural identification from ambient
vibration measurement using the multivariate AR model,
Journal of Sound and Vibration, 241(3), 337–59.

Huang, C. S., Hung, S. L., Lin, C. I. & Su, W. C. (2005),
A wavelet-based approach to identifying structural modal
parameters from seismic response and free vibration
data, Computer-Aided Civil and Infrastructure Engineering,
20(6), 408–23.

Huang, C. S. & Lin, H. L. (2001), Modal identification of struc-
tures from ambient vibration, free vibration, and seismic re-
sponse data via a subspace approach, Earthquake Engineer-
ing and Structural Dynamics, 30(12), 1857–78.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H.,
Zheng, Q., Yen, N. C., Tung, C. C. & Liu, H. H. (1998),
The empirical mode decomposition and Hilbert spectrum
for nonlinear and nonstationary time series analysis, Pro-
ceedings of the Royal Society A-Mathematical Physical and
Engineering Sciences, 454(1971), 903–95.

Huang, C. S. & Su, W. C. (2007), Identification of modal
parameters of a time invariant linear system by continu-
ous wavelet transformation, Mechanical Systems and Signal
Processing, 21(4), 1642–64.

Huang, C. S. & Yeh, C. H. (1999), Some properties of Ran-
domdec signatures, Mechanical Systems and Signal Process-
ing, 13(3), 491–506.

Hung, S. L., Huang, C. S., Wen, C. M. & Hsu, Y. C.
(2003), Nonparametric identification of a building struc-
ture from experimental data using wavelet neural net-
work, Computer-Aided Civil and Infrastructure Engineer-
ing, 18(5), 358–70.

Ibrahim, S. R. & Mikulcik, E. C. (1973), A time domain
modal vibration test technique, Shock and Vibration Bul-
letin, 43(4), 21–37.

Ibrahim, S. R. & Pappa, R. S. (1982), Large modal survey test-
ing using the Ibrahim time domain identify technique, The
AIAA Journal of Spacecraft and Rockets, 19(5), 459–65.

Jiang, X. & Adeli, H. (2004), Wavelet packet-autocorrelation
function method for traffic flow pattern analysis, Computer-
Aided Civil and Infrastructure Engineering, 19(5), 324–37.

Jiang, X. & Adeli, H. (2005), Dynamic wavelet neural network
for nonlinear identification of highrise buildings, Computer-
Aided Civil and Infrastructure Engineering, 20(5), 316–
30.

Jiang, X. & Adeli, H. (2007), Pseudospectra, MUSIC, and
dynamic wavelet neural network for damage detection



756 Su et al.

of highrise building, International Journal for Numerical
Methods in Engineering, 71(5), 606–29.

Jiang, X. & Adeli, H. (2008), Dynamic fuzzy wavelet neu-
roemulator for nonlinear control of irregular highrise build-
ing structures, International Journal for Numerical Methods
in Engineering, 74(7), 1045–66.

Jiang, X., Mahadevan, S. & Adeli, H. (2007), Bayesian wavelet
packet denoising for structural system identification, Struc-
tural Control and Health Monitoring, 14(2), 333–56.

Jose Perez-Solano, J., Felici-Castell, S. & Rodriguez-
Hernandez, M. A. (2008), Narrowband interference sup-
pression in frequency-hopping spread spectrum using un-
decimated wavelet packet transform, IEEE Transactions
on Vehicular Technology, 57(3), 1620–29.

Kang, N., Kim, H., Choi, S., Jo, S., Hwang, J. S. & Yu, E.
(2012), Performance evaluation of TMD under typhoon
using system identification and inverse wind load estima-
tion, Computer-Aided Civil and Infrastructure Engineering,
27(6), 455–73.

Kodogiannis, V. S., Amina, M. & Petrounias, I. (2013), A
clustering-based fuzzy-wavelet neural network model for
short-term load forecasting, International Journal of Neural
Systems, 23(5), 1350024.

Kougioumtzoglou, I. A. & Spanos, P. D. (2013), An identifi-
cation approach for linear and nonlinear time-variant struc-
tural systems via harmonic wavelets, Mechanical Systems
and Signal Processing, 37(1–2), 338–52.

Kullaa, J. (2000), System identification of Heritage Court
Tower using stochastic subspace method, in Proceedings of
the 18th International Modal Analysis Conference, San An-
tonio, TX, 1088–94.

Lardies, J. (2010), Modal parameter identification based on
ARMAV and state-space approaches, Archive of Applied
Mechanics, 80(4), 335–52.

Lardies, J. & Gouttebroze, S. (2002), Identification of modal
parameters using the wavelet transform, International Jour-
nal of Mechanical Sciences, 44(11), 2263–83.

Lardies, J. & Ta, M. N. (2011), Modal parameter identification
of stay cables from output-only measurements, Mechanical
System and Signal Processing, 25(1), 133–150.

Lin, C. M., Ting, A. B., Hsu, C. F. & Chung, C. M. (2012),
Adaptive control for MIMO uncertain nonlinear systems
using recurrent wavelet neural network, International Jour-
nal of Neural Systems, 22(1), 37–50.

Liu, T. Y., Chiang, W. L., Chen, C. W., Hsu, W. K., Lu, L. C.
& Chu, T. J. (2011), Identification and monitoring of bridge
health from ambient vibration data, Journal of Vibration
and Control, 17(4), 589–603.

Ljung, L. (1999), System Identification: Theory for the User,
2nd edn, Prentice Hall, Upper Saddle River, NJ.

Loh, C. H. & Wu, T. S. (1996), Identification of Fei-Tsui arch
dam from both ambient and seismic response data, Soil Dy-
namics and Earthquake Engineering, 15(7), 465–83.

Lozano-Galant, J. A., Nogal, M., Castillo, E. & Turmo,
J. (2013), Application of observability techniques to
structural-system identification, Computer-Aided Civil and
Infrastructure Engineering, 28(6), 343–450.

Mallat, S. (1999), A Wavelet Tour of Signal Processing, 2nd
edn, Academic, San Diego, CA.

Mcneill, S. I. (2011), An analytic formulation for blind modal
identification, Journal of Vibration and Control, 18(4),
2111–21.

Osornio-Rios, R. A., Amezquita-Sanchez, J. P., Romero-
Troncoso, R. J. & Garcia-Perez, A. (2012), MUSIC-neural

network analysis for locating structural damage in truss
type structures by means of vibrations, Computer-
Aided Civil and Infrastructure Engineering, 27(9), 687–
98.

Robertson, A. N., Park, K. C. & Alvin, K. F. (1998), Extrac-
tion of impulse response data via wavelet transform for
structural system identification, Journal of Vibration and
Acoustics, 120(1), 252–60.

Ruzzene, M., Fasana, A., Garibalidi, L. & Piombo, B.
(1997), Natural frequencies and dampings identification us-
ing wavelet transform: application to real data, Mechanical
Systems and Signal Processing, 11(3), 207–18.

SAP2000 (2013), Integrated Software for Structural Analysis &
Design, Computers & Structures, Inc., Berkeley, CA.

Schoenwald, D. A. (1993), System identification using a
wavelet-based approach, in Proceedings of the 32nd IEEE
Conference on Decision and Control, San Antionio, TX,
3064–65.

Schoukens, J. & Pintelon, R. (1991), Identification of Linear
Systems: A Practical Guide to Accurate Modeling, Perga-
mon Press, Oxford.

Sirca, G. F., Jr. & Adeli, H. (2012), System identification
in structural engineering, Scientia Iranica –Transaction A:
Civil Engineering, 19(6), 1355–64.

Solı́s, M., Algeba, M. & Galvı́n, P. (2013), Continuous wavelet
analysis of mode shapes differences for damage detec-
tion, Mechanical Systems and Signal Processing, 40(2), 645–
66.

Soyoz, S. & Feng, M. Q. (2009), Long-term monitoring and
identification of bridge structural parameters, Computer-
Aided Civil and Infrastructure Engineering, 24(2), 82–
92.

Vandiver, J. K., Dunwoody, A. B., Campbell, R. B. & Cook,
M. F. (1982), A mathematical basis for the random decre-
ment vibration signature analysis technique, Journal of Me-
chanical Design, 104(2), 307–13.

Vold, H. & Russell, R. (1983), Advanced analysis methods im-
prove modal test results, Sound and Vibration, 17(3), 36–
40.

Walden, A. T. & Cristan, A. C. (1998), The phase-corrected
undecimated discrete wavelet packet transform and its ap-
plication to interpreting the timing of events, Proceed-
ings of the Royal Society of London, A-Mathematical
Physical and Engineering Sciences, 454(1976), 2243–
66.

Wang, Z. N. & Fang, T. (1986), A time domain method for
identifying modal parameters, Journal of Applied Mechan-
ics, 53(1), 28–32.

Yan, B. & Miyamoto, A. (2006), A comparative study
of modal parameter identification based on wavelet and
Hilbert-Huang transforms, Computer-Aided Civil and In-
frastructure Engineering, 21(1), 9–23.

Yan, W. J. & Ren, W. X. (2012), Operational modal param-
eter identification from power spectrum density transmis-
sibility, Computer-Aided Civil and Infrastructure Engineer-
ing, 27(3), 202–17.

Yang, J. N., Lei, Y. & Huang, N. (2004), Identification of nat-
ural frequencies and damping of in situ tall buildings using
ambient wind vibration data, Journal of Engineering Me-
chanics, 130(5), 570–77.

Yang, Q. J., Zhang, P. Q., Liand, C. Q. & Wu, X. P. (1994), A
system theory approach to multi-input multi-output modal
parameters identification method, Mechanical Systems and
Signal Processing, 8(2), 159–74.



Identifying structural modal parameters via the stationary wavelet packet 757

Yuen, K.V. & Katafygiotis, L.S. (2006), Substructure identifi-
cation and health monitoring using response measurement
only, Computer-Aided Civil and Infrastructure Engineering,
21(4), 280–91.

Zhong, S. & Oyadiji, S. O. (2007), Crack detection in simply-
supported beams without baseline modal parameters by

stationary wavelet transform, Mechanical Systems and Sig-
nal Processing, 21(4), 1853–84.

Zhou, W. & Chelidze, D. (2007), Blind source sep-
aration based vibration mode identification, Me-
chanical System and Signal Processing, 21(8), 3072–
87.


