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Most small-molecule probes and drugs alter cell circuitry by interact-
ing with 1 or more proteins. A complete understanding of the
interacting proteins and their associated protein complexes, whether
the compounds are discovered by cell-based phenotypic or target-
based screens, is extremely rare. Such a capability is expected to be
highly illuminating—providing strong clues to the mechanisms used
by small-molecules to achieve their recognized actions and suggest-
ing potential unrecognized actions. We describe a powerful method
combining quantitative proteomics (SILAC) with affinity enrichment
to provide unbiased, robust and comprehensive identification of the
proteins that bind to small-molecule probes and drugs. The method
is scalable and general, requiring little optimization across different
compound classes, and has already had a transformative effect on our
studies of small-molecule probes. Here, we describe in full detail the
application of the method to identify targets of kinase inhibitors and
immunophilin binders.

SILAC � small molecules � target identification

Many small-molecule (SM) probe or drug discovery efforts
start by selecting a target that is expected to modulate a

pathway or disease of interest. Some drug-discovery efforts opti-
mize existing compounds so that they bind their intended targets
with higher specificity and affinity. By focusing on specific protein
classes (e.g., kinases), this paradigm of drug discovery routinely uses
in vitro assays with recombinant proteins in binding or biochemical
assays (refs. 1 and 2; also recently reviewed in ref. 3). Although such
large-scale screens can provide early leads that perform well against
a specific target, the absence of a biological context results in higher
attrition rates in later stages of drug development arising from
unanticipated or undetected off-target effects, or lack of relevance
of the target protein to the underlying disease process. Further-
more, screens using purified protein substrates do not accurately
represent biological levels of target proteins, potentially leading to
generation of incorrect hypotheses for on- or off-target drug effects.
From the standpoint of drug safety and efficacy, unbiased identi-
fication of proteins and associated molecular complexes that bind
to a drug allows direct evaluation of its polypharmacology (4) and
provides valuable insight into its mode of action and avenues for
compound optimization.

Cell-based phenotypic screens allow the discovery of compounds
that induce state transitions in cells or organisms without bias
regarding specific targets, pathways or even processes. This discov-
ery-based approach has been used with increasing frequency and
success in recent years (5, 6). The ability to define cell states globally
and molecularly in the context of high-throughput screens, for
example, using imaged cellular features (7) and mRNA expression
(8), suggests that its impact will continue to grow in the future.
However, as with SMs emerging from target-based screens, there
exists currently no reliable way to assess the complete set of proteins
that interact with SMs discovered in phenotype-based screens. Such
a capability is expected to be highly illuminating. It is especially
critical with SMs identified in phenotype-based screens because
even the target relevant to the induced phenotype is usually not

known (the ‘‘target I.D. problem’’). It could provide strong clues to
the mechanisms used by SMs to achieve their recognized actions
and it could suggest potential unrecognized actions.

Strategies for ‘‘target identification’’ have been developed that
rely on genetic (9), computational (10, 11) and biochemical (12)
principles. Although several key molecular targets have been iden-
tified through affinity chromatography (13–15), it has not been
widely applied as a general solution to target identification for a
number of reasons. It is often challenging to prepare SM affinity
reagents that retain the desired cellular activity. Experiments with
SM baits, even more so than antibody-based immunoaffinity re-
agents, require carefully chosen and effective controls as baits may
vary considerably in their chemical structures and binding proper-
ties. Moreover, high stringency washes are required to minimize
contamination associated with nonspecific, and bait-independent,
interactions of cellular proteins with the reagents. The latter
shortcoming is especially significant as it biases toward high-affinity
interactions, decreasing the likelihood of identifying more weakly
bound proteins or protein complexes that may play significant roles
in the polypharmacology of a SM.

Classically, identifying targets of SMs through biochemical pu-
rification relied on large amounts of starting protein, extensive
protein fractionation, stringent wash conditions, gel visualization
and excision of specific bands to yield only the most directly and
tightly bound proteins (13, 16, 17). With proteomic MS approaches
(18), even affinity pull-down experiments generate large protein
catalogs, inflating the list of candidate ‘‘hits’’ and requiring, some-
times arbitrary, prioritization of these proteins for validation.
Quantitative proteomics has proven to be a powerful tool for
discriminating specific protein–protein interactions from back-
ground interactions in affinity pull-downs (19, 20). Although this
was recently applied to profile kinases enriched in kinase inhibitor
pull-downs (21, 22), these experiments still assumed kinases as
targets a priori and did not use quantitative data to define SM
specific targets.

Here, we describe an analytical framework combining quantita-
tive mass spectrometry (MS)-based proteomics (23) with affinity
chromatography for unbiased, sensitive, specific and comprehen-
sive determination of SM-protein interactions within cellular pro-
teomes. We use SILAC to distinguish cell populations for our SM
affinity enrichments (23). Cells are cultured in growth medium
containing either ‘‘light,’’ natural isotope abundance forms, or the
‘‘heavy,’’ 13C, 15N-bearing versions of arginine and lysine. Growing
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and dividing cells incorporate these amino acids in their proteomes,
reaching full incorporation after 5 population doublings and pro-
ducing the characteristic mass shift, 6 Da with 13C6-Arg or 8 Da in
13C6

15N2-Lys containing peptides, observable by MS. Importantly,
SILAC peptide pairs have addressable locations in mass and
retention-time space. For instance, if we observe a light peptide
from a SILAC pair at a given mass and retention time, we should
detect its corresponding heavy partner as well, unless its absence is
a direct outcome of the experiment. Using SILAC labeled lysates
in pull-down experiments with SM-loaded affinity matrices to
compare relative enrichment of target proteins (Fig. 1), we use
relatively mild washing conditions to preserve the enrichment of
weakly bound proteins, increasing sensitivity and yet retaining
specificity in identifying bona fide targets. Our quantitative ap-
proach permits facile identification of direct interactors to SMs and
their associated binding partners; prioritizes target proteins by
SILAC ratios; and provides relative measures of binding strengths
among structural variants of SMs. We anticipate that our quanti-
tative approach will greatly improve interpretation of phenotypes in
SM probe or drug discovery and facilitate downstream optimiza-
tions and development.

Results
Recognizing that a general strategy to identify interacting proteins
should ideally detect protein targets across a wide range of binding
affinities and protein expression in cellular samples, we evaluated
our approach using 2 separate sets of well-characterized SM affinity
reagents (Fig. S1A)—kinase inhibitors and immunophilin binders
(the latter using a set of immunophilin ligands (IPL) with a range
of known binding affinities). We compared, and discuss in detail
below, the performance of 2 experimental designs in our quanti-
tative approach. We also tested a range of conditions likely to affect
efficiency and specificity of affinity enrichment such as the amount
of SMs on bead matrices, levels of detergent in wash buffers, and
amounts of soluble competitor in competition experiments and
examined their impact on identification of known targets. For each
SM and pull-down condition, we performed at least 2 process
replicates, for a total of 98 SILAC experiments. We demonstrate

the importance of appropriate controls along with highly accurate
quantitative measures and statistical methods that allow the dis-
crimination of real SM-protein interactions from nonspecific bind-
ers. We identified previously described targets, some in complexes
with known partners (Table 1). Additionally, we found several
protein-SM binders, and validated many with surface plasmon
resonance (SPR) and Western blot analysis experiments.

Comparing 2 Experimental Designs, Bead Control (BC) and Soluble
Competition (SC), for SILAC-Target I.D. We evaluated 2 experimental
designs, bead control (BC) and soluble competition (SC) (Fig. 2),
in our quantitative target identification approach. The BC exper-
iment compares the relative abundance of proteins from affinity
pull-downs with 2 different chemically modified bead matrices—for
instance, heavy proteins enriched with the SM affinity matrix versus
the population of light proteins captured by ethanol-loaded control
bead. In the SC experiment, SM loaded beads are used in both light
and heavy pull-downs but excess soluble SM is added to 1 set to
competitively bind target proteins. We identify and compare the
relative abundance of proteins bound to SM loaded beads by MS.
BC experiments identify protein targets through direct enrichment
on bead whereas SC infers targets through their depletion from the
affinity matrix by the soluble competitor. Both modalities robustly
identify known protein targets of SMs but differ significantly in their
performance across all experiments. To summarize, although the
BC experiment successfully identifies target proteins, it also yields
a lengthy list of moderate-to-highly abundant proteins that have
weak but real differential binding to the bait molecules or to the
chemically modified control bead (Fig. 2A and Fig. S2 A–C). The
SC experiment, in sharp contrast, shows much greater specificity,
identifying target proteins purely by differential SILAC ratios and
is largely independent of protein abundance (Fig. 2B). We use
several examples from our kinase inhibitor datasets to illustrate the
salient features of these 2 experiment designs.

Bead control experiments enrich known targets with large dif-
ferential SILAC ratios in all our pull-downs. We apply mixture
modeling with t-distributions to BC pull-down data, generating
modeled probability distributions that describe protein binding
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Fig. 1. Identifying specific SM-protein interactions
withquantitativeproteomics. (A)SILACidentifiesspecific
protein interactions with SM baits. Cell populations are
fully labeled with light (black) and heavy amino acids
(red) and lysates incubated either with SM-loaded beads
(SM-Beads) and soluble SM competitor or SM-Beads
alone. Proteins interacting directly with the SM or via
secondary and/or higher order interactions (marked ‘‘S’’
for specific) will be enriched in the heavy state over the
light and will be identified with differential ratios. Non-
specific (NS) interactions of proteins will be enriched equally in both states and have ratios close to 1. (B) Experimental mass spectra showing specific protein interactions
with the immunophilin ligand, AP1497. (Left) A peptide from FKBP4, a known binding partner to FK506, is observed with a highly differential ratio. (Right) In contrast,
a histone H1.3 peptide is identified with a ratio close to 1, indicating no specific binding to the soluble SM competitor.

Table 1. Identification of target proteins

Small Molecule Identified targets in SILAC experiments

Kinase inhibitors Ro-31-7549 ADK, CAMK2D, CAMK2G, CDK2, CRKRS, GSK3A, GSK3B, MYH9, PRKCA, PRKCD, RPS6KA3, SLK, NQO2
SB202190 MAPK14, MAPK9, GSK3B, CSNK1A1, CSNK1D, RIPK2, TGFBR1, FAM83G, GAK
K252a AAK1, AURKA, CAMK2B, CAMK2D, CAMK2G, CCNB1, CDC2, CDC42BPB, CDK2, CDK5, CHEK1, CSNK2A1, CSNK2A2,

DNAJC13/RME8, EIF2AK4, FER, GAK, GSK3A, GSK3B, IRAK4, MAPK1, MAPK8, MAPK9, MAPK10, MAP2K1,
MAP2K2, MAP2K6, MAP4K4, MARK2, MARK3, MINK1, NQO2, OSGEP, PDE1A, PDPK1, PHKA2, PHKB, PHKG2,
PKN1, PKN2, PRKAA1, PRKACA, PRKACB, PRKAG1, PRKAR1A, PRKAR2A, PRKCA, PRKCD, PRKD1, PRKD2, PRKD3,
RIPK2, RBM4, RP6–213H19.1, RPS6KA1, RPS6KA3, STK3, STK4, TBK1, TP53RK, TPRKB, ULK3

IPL affinity series AP1497 FKBP1A, FKBP2, FKBP4, FKBP5, FKBP9, FKBP10
Pro-AP1497 FKBP1A, FKBP2, FKBP4, FKBP5, FKBP9
AP1780 FKBP1A, FKBP2, FKBP4, FKBP9
Pro-AP1780 FKBP1A, FKBP2, FKBP9

Proteins in bold type are targets known from literature. Underlined proteins are known interactors to other identified targets within the same experiment.
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specificities as described above (Fig. 2A and Fig. S2D). Strikingly,
BC experiments are heavily influenced by different bead loading
levels (24) (6%, 12%, 25%), which we confirm with Western blot
analysis, gel visualization, and modeled distributions of SILAC
protein ratios (Figs. S2–S4). Although target proteins were gener-
ally found with the largest SILAC ratios in each BC experiment,
large numbers of proteins were also found with SILAC ratios
indicating specificity to either control EtOH-beads or SM-beads
(�100 proteins in Fig. 2A). This makes it difficult to apply mean-
ingful significance thresholds as even a conservative threshold (for
e.g., 1.5-fold, because differences of 20% are reliably quantified
(25)) produced long lists of specific interactors. We also tested
biologically inactive structural analogs of SMs as controls in BC
experiments. Although providing a more similar binding profile to
the SM than EtOH-beads, this approach is not generally applicable
because there is usually limited SAR around screening hits.

With direct enrichment in BC experiments, SILAC ratios de-
scribe the proteins’ binding preference to either the EtOH-bead or
the SM-bead. The major contributors to the magnitude of a protein
ratio are its abundance in the lysate and its affinity to the bait. For
example, a highly abundant protein with weak affinity could have
the same ratio as a low abundance protein with a very high affinity
(low KD). We mapped proteins from BC experiments to those
identified and ranked by abundance in analyses of un-enriched
HeLa S3 lysates (Fig. S3B and SI Methods, Accompanying Text for
Fig. S3). Proteins with low to moderately differential ratios iden-
tified in BC experiments were among the most abundant proteins
identified from whole lysates. We similarly analyzed SC data and

found the same tendency for SM-beads to enrich abundant proteins
in SC experiments (Fig. S3C). As we show below, however, this does
not negatively impact our ability to discriminate target proteins.

Because SC experiments use the same SM affinity matrix in both
light and heavy states, effectively enriching the same proteins from
both cellular states, this approach is more elegant and easier to
implement. Competitive binding by excess soluble SM reduces the
amount of target proteins on the bead surface and generates a
differential SILAC ratio between the 2 states, confidently identi-
fying specific interactors to the soluble SM. Although abundant
proteins still bind to the SM-bead, these show no differential ratios
as they do not bind to soluble SM and hence have no impact on
discrimination of specific SM interactors. Distributions of SILAC
ratios are tightly centered about the lysate mixing ratio and show far
less dependence on bead loading levels and compound used (Fig.
2B). We model SC protein ratios using an empirical Bayes strategy
(SI Methods, manuscript submitted). In a typical SC dataset (Fig. 3),
nonspecific binders are tightly centered about the one-to-one
mixing ratio (log2 SILAC ratio of zero). SM-specific proteins are
outliers to the main distribution and are easily identified by their
SILAC ratios (Table 1). Abundance of a target protein neither
affects its ratio nor our ability to discriminate it from the nonspecific
binders and, as the color scale in Fig. 3 shows, the more abundant
proteins in the sample are mostly nonspecific interactions with the
SM-bead.

We compared BC and SC data for the broad spectrum kinase
inhibitor, K252a. From Fig. 4, it is striking that the total number of
kinases (colored red) identified from experiments is similar be-
tween all K252a experiment types, yet there is a dramatic difference
in the SILAC ratios, and consequently, the ability to discriminate
specific binders from nonselective interactions. Using annotated
human kinases (26) as the ‘‘true positive’’ set, both SC and BC
experiments identified approximately the same number of kinases.
In K252a precision vs. recall (PRC) plots, the precision (TP/
(TP�FP)) of the SC experiment was markedly better than the BC
experiment and has much better specificity for kinases (Fig. S5A).
For example, at a log2 median ratio significance threshold of 0.5, for
the SC experiment 37 of the 49 identified proteins are kinases
(precision 75.5%), whereas for the BC experiment only 40 of the
300 identified proteins are kinases (precision 13.3%).

Kinase Inhibitors. We included 3 kinase inhibitors in our studies, 2
selective kinase inhibitors, Ro-31-7549 and SB202190 and a broad-

Fig. 2. Classifying SM-protein interactions with quantitative ratios. Using
Ro-31-7549 BC (A) and SC (B) datasets as examples, shown are modeled ratio data
distributionswithmixturemodeling(Upper)andplotsof log2 SILACratiosagainst
proteins sortedbytheir ratios indescendingorder (Lower). (Upper)Histogramsof
log2 SILAC ratios for the BC and SC experiments, using mixtures of t-distributions
(each modeled component is drawn in dotted lines) to highlight differences
between the 2 experimental designs. Although the distribution of log2 ratios for
SC experiments is tightly centered around zero, log2 ratio distributions for BC
experiments vary considerably and are affected by compound loading levels and
wash stringency (Figs. S2). (Lower) Targets of bisindolylmaleimide-type PKC in-
hibitors identified in other proteomic datasets are highlighted in red (17) and
blue (27), and those common to both datasets are in purple. (A) BC experiments
compare proteins enriched between SM matrices (heavy) and ethanol loaded
beads (light). Ratios help classify proteins into categories of ‘‘SM binders,’’ ‘‘con-
trol bead binders,’’ or ‘‘undetermined/nonspecific.’’ (B) SC experiments use SM
matrices in pull-downs with both light and heavy lysates. Differential ratios arise
through reduction of bead-bound protein in one state by competition with the
soluble compound.

Fig. 3. Identifying significant targets of K252a in soluble competition data.
Scatter plot of 2 replicate experiments of K252a 100� SC. Each data point is a
single protein with kinases represented as triangles and circles denoting nonki-
nases.Thecolor scale indicates thenumberof identifiedpeptidesperprotein.The
contour line demarcates a local FDR of 0.01 and all data points to the top right
corner of the plot are inferred targets. Identified targets span a wide range of
abundance. (Inset) Expanded view of the null distribution centered about log2

SILAC ratio of 0.
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specificity kinase inhibitor, K252a. Although other proteomics
approaches have been applied to study the targets of the bisindolyl-
maleimide-based family of protein kinase C (PKC) inhibitors (17,
27), the overlap between the 2 studies is relatively small (14% of
total targets). Whereas we found that 9 of these 10 common targets
are specific binders in our SC experiments with Ro-31-7549 (a
structural variant of Bis-III), the remaining protein, HSP90, and
most of the other putative binders from these papers were found to
be nonspecific in our datasets (blue and red circles in Fig. 2 Lower).
The discrepancy in the large number of putative targets in BC and
SC experiments underscores the need for a suitable affinity matrix
as a control. Many examples from the literature do not use control
pull-downs, probably because the cross-section of identified pro-
teins varies dramatically depending on the SM loaded, making
direct comparison difficult and consequently diminishing their
usefulness. Although we have striven to generate useful control
matrices by matching load levels of SM and EtOH on Affigel beads,
protein binding profiles in our BC experiments were so different
that interpretation of binding specificity using SILAC ratios was
hampered (Fig. 2 and Figs. S2–S4). Nevertheless, it is important to
note that we were still able to exclude several candidate targets of
Ro-31-7549 based on our SILAC BC data.

The BC experiments with the MAPK14 (p38 MAPK) kinase
inhibitor, SB202190, generated a very distinct binding profile
compared with other SMs we tested. Very little protein bound to
the SB202190 bead compared with EtOH-bead with the majority of
identified proteins having negative log2 SILAC ratios. Nevertheless,
known target proteins still had high positive SILAC ratios indicating
specificity to SB202190-loaded bead, a testament to the robustness

of our quantitative approach. Ratio distributions with SB202190 SC
experiments were similar to other SC experiments, and although
the amounts of protein captured by the kinase inhibitor reagent
were low to begin with, we found no difficulty in identifying target
proteins by their SILAC ratios.

In BC experiments with the staurosporine analog, K252a using
2 human cell lines (HeLa S3 and H1299) and rat PC-12 cells
expressing ErbB4, we find that the cell type used has a dramatic
effect on the kinases identified (Fig. S5B). For example, we
identified brain-specific isoforms, alpha and beta, of calcium/cal-
modulin-dependent protein kinase type from neuroblastoma PC-12
cells but not in non-CNS derived H1299 and HeLa lines. The
kinases found in K252a pull-downs were predominantly Ser/Thr-
kinases, and even the 3 tyrosine kinases (FER, IRAK4, RIPK2) in
the list had kinase domains more closely related to dual specificity
kinases.

In addition to identifying kinases that bind K252a, we also found
several well-known interaction partners to primary targets with
significant SILAC ratios in our SC experiments. Kinases (26) made
up 37 of the 48 significant hits in our K252a 100� SC experiment
(local FDR �0.01, log2 SILAC ratio of 0.71, and identified by more
than 2 peptides across 2 replicates), and we also identified 6
additional proteins that were either functionally coupled to kinases
or well-known partners like cyclin B1 (Table 1). Of the 5 remaining
candidate targets, 2 were already described as nonkinase targets:
the calcium/calmodulin-dependent 3�,5�-cyclic nucleotide phospho-
diesterase, PDE1A (28) and NAD(P)H:quinone oxidoreductase,
NQO2 (17, 21). We also find an E3 ubiquitin ligase among the
significant hits, and although we detect both AP2B1 and AP2A1
just beyond our significance threshold (local FDR 0.064 and 0.049,
respectively) we believe this set of proteins involved in clathrin-
mediated recycling to be likely hits as well. Therefore, our SILAC
SC K252a experiments demonstrate exquisite sensitivity and spec-
ificity, with 46 of 48 significant hits directly linked to kinase biology
from a background of 510 nonspecific binders.

Immunophilin Ligand Series. We previously identified the high affinity
target of the widely prescribed immunosuppressant and natural
product FK506 (tacrolimus) with a classical biochemical purifica-
tion approach (13). To test our ability to identify weakly bound
target proteins, we generated 4 structural variants in this IPL series
(from ref. 29, and SI Methods) and determined their binding
affinities (KD: 25.7 nM to 43.8 �M) to FKBP1A-GST (Fig. 5A and
Table S1). Affinity reagents generated with these 4 compounds
were used in affinity pull-down experiments using both BC and SC
formats. We successfully identified FKBP1A with SILAC ratios
indicating specific interaction to the IPLs, effectively validating the
SPR data and importantly, demonstrating our ability to identify a
weakly bound target protein (KD of Pro-AP1780 is 43.8 �M). We
also identified other FKBP family members (FKBP2, FKBP4,
FKBP5, FKBP9, FKBP10) in different pull-downs with IPLs,
indicating that each IPL showed distinct specificities for members
of the immunophilin family (Fig. 5B). We validated these with

Fig. 4. Comparing K252a SC and BC experiments. Box plot of log2 SILAC ratios
for K252a SC (0.025�, 0.25�, 2.5�, 5�, 10�, 50�, and 100�) and BC experiments
(two replicates per condition). Protein kinases (26) identified in each experiment
are plotted in red, and the total number of kinases are provided in the Table 2.

Table 2. Total number of kinases from experiments shown in Fig. 4

Soluble competitor* Bead control†

0.025� 0.25� 2.5� 5� 10� 50� 100� BC1 BC2

Kinase ID 50 54 47 48 42 28 42 40 26
Significant kinases 0 12 30 41 38 26 37 40 23
Significant nonkinases 4 5 4 7 9 6 11 232 116
Significant proteins 4 17 34 48 47 32 48 272 139
Total proteins identified‡ 702 727 625 686 597 479 621 515 364
Significance threshold 1.3 1.17 1.08 0.66 0.73 0.78 0.71 0.58 0.58

*Log2 SILAC ratio significance threshold (FDR � 0.01) for soluble competitor experiments.
†Log2 SILAC ratio cut-offs for bead control experiments (�1.5-fold change).
‡Proteins identified by at least three peptides across two replicate experiments.

4620 � www.pnas.org�cgi�doi�10.1073�pnas.0900191106 Ong et al.

http://www.pnas.org/cgi/data/0900191106/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0900191106/DCSupplemental/Supplemental_PDF#nameddest=SF5
http://www.pnas.org/cgi/data/0900191106/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0900191106/DCSupplemental/Supplemental_PDF#nameddest=ST1


Western blot analysis (Fig. 5C), and compared the latter to protein
sequence coverage obtained from our MS analyses as an approx-
imation of relative abundance across these samples. Both MS-based
abundance estimates and Western blot analysis data show excellent
agreement. Furthermore, our identification of the FKBPs with
these IPLs is completely consistent with known biology for this
protein family, and to our knowledge, is the first report of an
unbiased proteomic survey to assess their binding specificities.
FKBP8 was identified in our pull-down experiments but, consistent
with structure information (30), its SILAC ratio classified it as a
nonbinder to the IPLs.

Isoforms of heat shock protein 90, HSP90AA1 and HSP90AB1,
were found only in AP1497 pull-downs. Because FKBP4 is known
to interact with HSP90 (31), and FKBP4 was found primarily in the
AP1497 pull-down, we hypothesized that HSP90 was identified in
our experiments through its interaction with FKBP4. We per-
formed co-immunoprecipitation-Western blot analysis experiments
with anti-FKBP4 and anti-FKBP5 antibodies and validated FKBP4-
HSP90 binding in HeLa cell lysates (Fig. 5D).

We identified an interactor, methylthioadenosine phosphorylase
(MTAP), to all members of our IPL series in both BC and SC
affinity pull-downs (Fig. S6 and SI Methods, Accompanying Text for
Fig. S6). MTAP was found to be most highly enriched by Pro-
AP1780 and we validated this with Western blot analysis and SPR
experiments (KD equil: 18 nM; KD kinetic: 12 nM) (Fig. 6A, Fig. S7
and Table S2 ). Furthermore, we demonstrate dose-dependent
inhibition of MTAP by Pro-AP1780 in a biochemical assay with
endogenous MTAP from HeLa cell lysates (Fig. 6B).

Discussion
Our combination of SILAC with SM affinity enrichment greatly
improves sensitivity and specificity of unbiased affinity purification-
based target identification methods. We routinely quantify �600
proteins from single affinity pull-down experiments and still iden-
tify weakly bound targets with KD values in the range of 40 �M
(Pro-AP1780 in the IPL series) without compromising specificity.
We identified targets of the IPLs, including MTAP, which we
further validated in biochemical assays. Our kinase inhibitor ex-
periments yielded known protein targets, associated protein com-
plexes and proteins with related biology described in literature. SC
experiments with the broad-spectrum kinase inhibitor K252a show
that it has exquisite selectivity for kinases particularly at high
concentrations of soluble competitor.

The SC experiment is clearly the experiment of choice in SILAC
target identification. It rapidly yields specific interactors to SM
baits; it is largely unaffected by highly abundant, but weakly bound
proteins; and because it uses the same SM affinity matrix in both
experiment and control samples, issues relating to compound

loading or bead matrices are circumvented. We observe generally,
and find unambiguous evidence with K252a and MTAP, that SC
experiments should always be performed at the highest possible
concentration of soluble competitor to yield the best results.
Although this dependency on the level of SC may seem a limitation
of the SC experiment, in our experience, SC experiments show
higher specificity in identifying protein targets when compared with
BC experiments. If compound solubility becomes an issue and
precipitation occurs upon addition to cell lysates, the BC experi-
ment with SILAC is then still an attractive option.

We show that compound-loading levels play a dramatic role in
the binding specificities of affinity supports, SMs or controls alike.
The amount of compound loaded on the bead affects the biophys-
ical properties of the beads and is the probable cause for the change
in binding characteristics observed across different bead loadings in
our BC experiments (24). This effect is also highly dependent on the
chemical properties of the SM loaded. We analyzed BC experi-
ments across different bead loading levels using k-means clustering
to track abundant, weakly interacting proteins (Fig. S3) and found
this useful in segregating weak binders from true targets. However,
performing multiple BC experiments for each molecule is time

Fig. 5. Immunophilin ligand series. (A) Structures of
immunophilin ligands and measured KD values for
FKBP1A. (B) Specificity of FKBP proteins for IPL ligands
determined by their SILAC ratios. (C) Sequence cover-
age for FKBP proteins and validation by Western blot
analysis. (D) Validation of HSP90-FKBP4 interaction by
coimmunoprecipitation and Western blot analysis.
Two FKBP5 antibodies failed to coprecipitate any sig-
nificant amounts of HSP90.

Fig. 6. MTAP is a protein target for the IPL ligand Pro-AP1780. (A) Validation with
Western blot analysis of MTAP in IPL pull-downs and cell lysate. (B) In vitro MTAP
activityassaywith3doselevelsofeachIPLligand.All IPLligandsshowslightinhibition
of MTAP at the highest levels of compound dose (850 �M). Pro-AP1780 shows the
largest inhibitory effect on MTAP in comparison with DMSO treated controls.
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consuming and unnecessary, particularly because using the SC
experiment obviates this issue altogether.

In addition to rapid identification and prioritization of targets for
further validation, using SILAC with BC or SC experiments allows
unbiased evaluation of the experimental data through modeled
distributions of protein ratios. SILAC ratios describe binding spec-
ificities for each protein, and because quantitative values are
derived from individual peptides, it is possible to distinguish dif-
ferential binding even among protein isoforms. Because identifi-
cation of SM-specific binders does not depend on gel visualization,
less input protein is required while permitting the use of mild buffer
conditions that are generally applicable across a variety of mole-
cules. Optimizing wash conditions to visualize differential binders
is unnecessary and the sensitivity of our approach is significantly
better, allowing identification of even weakly interacting protein
targets. Furthermore, quantitative ratios classifying target specific-
ity are independent of protein abundance in SC experiments,
avoiding the bias of abundant proteins that would otherwise be a
significant confounder in classical approaches.

We use the GeLCMS approach for MS sample processing that
provides certain advantages but limits throughput and would not
detect protein targets covalently coupled to SMs. Developing a
gel-free sample processing workflow with on-bead enzymatic di-
gestion of proteins would make identification of suicide inhibitor
targets tractable (32, 33) and would be more amenable to automa-
tion. Although analytical throughput was not the primary focus of
our studies, our current implementation of SILAC-Target I.D.
already allows �15 target identification projects per MS instrument
year. In our experience, this is significantly faster than the pace of
classical affinity-based target identification. This improved
throughput is afforded by the high specificity of our quantitative
approach, allowing direct assessment of the quality of the data,
greatly reducing the scale and number of subsequent validation
experiments. Our current process has high potential for automa-
tion, and further improvements in capacity and throughput can
already be achieved through implementation of liquid handling
robots and an automated data analysis pipeline.

Affinity-based target identification is not routine in the pharma-
ceutical industry not only because of low throughput but primarily
because drugs undergo several rounds of optimization and thus may
lack functional handles allowing generation of affinity reagents.

Diversity-oriented synthesis (DOS) can generate SM screening
collections with stereochemical and skeletal diversity approaching
that of natural products, yet allow facile optimization of structural
variants and eventual large-scale synthesis of the optimized com-
pound (34). We apply DOS to enrich screening decks with SMs
poised for systematic conversion to affinity reagents (35). Although
our method is applicable to all SM affinity reagents, we are now
integrating SILAC-Target I.D. to characterize binders of bioactive
molecules arising from our DOS compound-cell based screening
pipeline.

SILAC-Target I.D. combines quantitative proteomics and bio-
chemical enrichment using affinity matrices to provide unbiased,
highly specific and robust identification of protein-SM targets. Our
method circumvents many of the usual problems with classical
affinity purification, and promises to be a general solution appli-
cable to many affinity-based target identification projects. We
expect that our target identification approach, particularly if im-
plemented at early stages of the probe- or drug-discovery process,
will transform the search for new probes or drugs because it
provides a direct and unbiased interrogation of the cellular context
in which a SM acts, essential in evaluating, for example, drug safety
and efficacy.

Materials and Methods
SILAC labeled cell lysates were applied in affinity enrichment experiments using
affinity matrices loaded with immunophilin ligands or kinase inhibitors. Two
experimental designs, BC and SC, were compared. Proteins bound to solid phase
were separated by SDS/PAGE and identified and quantified by high performance
MS. SILAC ratios from relative abundances of proteins enriched in case vs. control
pull-down experiments were modeled using Empirical Bayes-based statistical
framework to identify specific protein targets interacting with SMs. Detailed
methods for all experiments are provided in SI Methods. For analyses identifying
SM protein targets, see SI Methods, Table S3, and Dataset S1.
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