

Identifying the Sources of Unpredictability
in COTS-based Multicore Systems

Technical Report

CISTER-TR-130604

Version:

Date: 6/13/2013

Dakshina Dasari

Benny Åkesson

Vincent Nelis

Muhammad Ali Awan

Stefan M. Petters

Technical Report CISTER-TR-130604 Identifying the Sources of Unpredictability in COTS-based Multicore Systems

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Identifying the Sources of Unpredictability in COTS-based Multicore Systems
Dakshina Dasari, Benny Åkesson, Vincent Nelis, Muhammad Ali Awan, Stefan M. Petters

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: dandi@isep.ipp.pt, kbake@isep.ipp.pt, nelis@isep.ipp.pt, muaan@isep.ipp.pt, smp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
COTS-based multicores are now the preferredchoice for hosting embedded applications owing to their
immensecomputational capabilities, small form factor and low powerconsumption. Many of these embedded
applications have real-timerequirements and real-time system designers must be ableassess them for their
predictability and provide guarantees (atdesign time) that they deliver the correct functional behaviorwithin
predefined time bounds. However, the underlyingarchitecture of commercially available multicores is
extremelycomplex and non-amenable to straight-forward timing analysis.In this paper, we highlight the
architectural features leading totemporal unpredictability, which mainly involve shared hardwareresources, such
as buses, caches, and memories. We explore someof the existing work in timing analysis with respect to
thesefeatures, identify their limitations, and present some unaddressedissues that must be dealt with to ensure
safe deployment of real-timesystems.

Identifying the Sources of Unpredictability in
COTS-based Multicore Systems

Dakshina Dasari, Benny Akesson, Vincent Nélis, Muhammad Ali Awan, Stefan M. Petters
CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal

{dndi, kbake, nelis, maan, smp}@isep.ipp.pt

Abstract—COTS-based multicores are now the preferred
choice for hosting embedded applications owing to their immense
computational capabilities, small form factor and low power
consumption. Many of these embedded applications have real-
time requirements and real-time system designers must be able
assess them for their predictability and provide guarantees (at
design time) that they deliver the correct functional behav-
ior within predefined time bounds. However, the underlying
architecture of commercially available multicores is extremely
complex and non-amenable to straight-forward timing analysis.
In this paper, we highlight the architectural features leading to
temporal unpredictability, which mainly involve shared hardware
resources, such as buses, caches, and memories. We explore some
of the existing work in timing analysis with respect to these
features, identify their limitations, and present some unaddressed
issues that must be dealt with to ensure safe deployment of real-
time systems.

I. INTRODUCTION
Multicores developed using Commercially available Off-

The-Shelf (COTS) components have become the preferred
choice in the design of embedded systems. In-lieu of the
strict timing requirements of hard real-time systems, real-
time embedded systems were traditionally assembled from
scratch using custom-built hardware and software components,
specifically designed for them. The entire product development
cycle was long and expensive, especially when used in massive
and complex systems (e.g. aircrafts): Each of the individually
developed components had to be designed, developed and unit-
tested and then finally integrated with the rest of the system.
Over the years, products have become more complex and
there has been a strong push towards using COTS components
for their development. The key driving factors for this shift
are that readily available, cost-effective and pre-tested COTS
components that can be seamlessly integrated with each other,
result in shortening the end-to-end development time, giving
them an edge over in-house developed products [1].

The adoption of COTS-based multicores in particular was
also driven by the fact that functionality that was previously
distributed across multiple chips is now available in a single
chip [2], [3]. In earlier systems in which functionality was
deployed in different chips, inefficiencies of working with
multiple support environments and programming models led

This work was partially supported by National Funds through FCT and
ERDF (European Regional Development Fund) through COMPETE (Opera-
tional Programme ’Thematic Factors of Competitiveness’), within project Ref.
FCOMP-01-0124-FEDER-022701; by FCT and COMPETE (ERDF), within
REPOMUC project, ref. FCOMP-01-0124-FEDER-015050 and the REGAIN
project, ref. FCOMP-01-0124-FEDER-020447; by FCT and ESF (European
Social Fund) through POPH (Portuguese Human Potential Operational Pro-
gram), under PhD grant SFRH/BD/71169/2010.

to a longer time-to-market and increased long-term support
costs. Building and maintaining systems with multiple chips,
power supply units, memories and I/O interfaces to support
the different processors adversely impacted system component
and manufacturing costs.

The use of COTS-based systems in the military domain
is exemplified by the Arleigh Burke-class Aegis guided mis-
sile destroyers, such as the USS Stethem, which employ a
2.16 GHz Core2 Duo-based conduction-cooled CompactPCI
boards [4]. Other military real-time applications like surveil-
lance systems also benefit by the high computing power pro-
vided by multicore systems. In the medical health applications
domain, researchers in Philips Healthcare have used a regularly
available Intel Xeon E5345 processor to host X-Ray Imaging
applications [5]. Although COTS components provide great
opportunities for embedded system designers, they are not
without their own demerits.

COTS components are already used in real-time systems
with low criticality (also called soft real-time systems), but
they are not yet typically employed in their hard real-time
counterparts. The reason is that COTS components uphold
the design mantra “Make the average case faster”; i.e., these
systems are primarily designed towards increasing the average-
case performance, which has been achieved by increasing the
complexity in the design. In contrast, the key requirement for
most hard real-time systems are platforms that are predictable
and amenable to easier timing analysis. Real-time system
analysts prefer components that can collaborate together to
provide predictable and reliable behavior. Temporal and spatial
isolation of components should ideally be provided by the
hardware itself. Spatial partitioning ensures that an application
in one partition is unable to change private data of another.
Temporal partitioning, on the other hand, guarantees that the
timing characteristics of an application, such as the worst-case
execution time (WCET), are not affected by the execution of
an application in another partition. If present, these features
reduce the time, effort and cost involved in the analysis of these
systems, since the temporal properties of each component can
be validated independently. In the absence of these features,
the vendors must provide documentation and mechanisms to
be able analyze their timing parameters and derive safe upper
bounds on key parameters like execution time. Unfortunately,
the design of most of the current multicores contradicts these
requirements. The presence of shared hardware resources,
like the memory bus and the memory controller, governed by
performance-oriented arbiters and schedulers facilitate neither
composable analysis nor the computation of upper bounds on
the key timing parameters on these systems. In existing COTS-

978-1-4799-0658-1/13/$31.00 c� 2013 IEEE

based multicores, most often, only a brief description of its
functionality is provided. Also, these components do not carry
any guarantee of adequate testing for the intended hard real-
time system environment. For example, a processor manual
may report the average time to access main memory, but what
is required is the corresponding worst-case estimates. In most
cases, the designer does not have access to the source code of
the component and this inhibits straight-forward modifications
to the current design – Many COTS components are therefore
black boxes without their source code or other means of
introspection available.

The problem of timing analysis due to architectural com-
plexities has been prevalent since the time of uniprocessors,
which exploited instruction-level parallelism by employing
techniques like pipelining, speculative fetching, branch predic-
tion and out-of-order executions, and the research community
successfully tackled these issues over the decades [6]. With
multicores, the problems were exacerbated when the same
(dedicated) interconnection networks, caches and memory sys-
tems were shared by multiple cores.

Contribution and importance of this work: This work
does not present any novelty in terms of algorithms nor
do we solve a particular problem. It has the sole objective
to identify and discuss the architectural features that cause
temporal variations in applications at run-time. The shared
resources mentioned above and other features that are often
overlooked (or barely mentioned) in timing analysis, such
as hardware-prefetching mechanisms, power-saving strategies,
system management interrupts, are discussed here. We believe
that this work is important because until the industry shifts its
current trend and starts building predictable systems, there is a
strong need to fully analyze the existing COTS-based systems
from the perspective of understanding the various factors that
lead to temporal unpredictability. Although multicore systems
have been around since 2004, there are no established ap-
proaches, as yet, to achieve certification for such platforms
as time predictability and segregation of functionality cannot
be guaranteed. Currently, even when multi-core systems are
used to implement ARINC 653 standards, all but one of the
cores in the multicore processors are typically disabled [7].
This work presents a compilation of the various causes of
unpredictability and provides an insight into the existing work
and their limitations.

II. RELATED STUDIES
The sources of unpredictability in uniprocessor platforms

have been researched earlier, with the primary focus being
on-chip features like speculative execution by branch pre-
diction, pipelining and caches. As a result of the extensive
research, tools adopted by the industry are already available
for uniprocessors. Examples are aiT [8], SWEET [9] and
RAPITime [10]. In [11], the impact of pipelines and caches
on temporal behavior have been explored in detail. This paper
also describes the architectural influence on static timing
analysis and gives recommendations as to profitable and un-
acceptable architectural features (for multicores). Methods to
analyze cache and pipeline behavior by abstract interpretation
and pipeline modeling have been proposed in [12]. Another
work [13] describes the threats to predictability considering
the target architecture and the different system layers of the
software. This paper focuses on the impact of shared hardware
resources in multicores and also presents the currently avail-

able solutions, the limitations and a short survey of the same.
Features like caches have been addressed for uniprocessors
([14], [15], [16], [17]), but in this work we present them from
a multicore perspective. This work also provides a detailed
discussion on memory controller scheduling policies, which is
not present in related prior works. The impact of Translation
Look-aside Buffer (TLB) misses, hardware prefetching and
the thermal and power management strategies have also been
incorporated here to re-iterate the importance of considering
all aspects of the architecture in the timing analysis to ensure
predictable behavior.

Outline of the document: Section III presents a COTS-
based system. Next, the sources of unpredictability in this
work have been broadly studied under two categories. (i) The
primary sources that originate from architectural features like
caches, the FSB, the memory and memory controller, which
have been the highlights of most of the research and presented
in Section IV (ii) The secondary sources that are generally
not addressed in the research works and yet are non-negligible
when safe estimates of timing parameters are desired. The
impact of such features like hardware-prefetching, power-
saving strategies, translation look-aside buffer (TLB) misses,
system management interrupts generally tend to be overlooked
in the timing analysis and are the focus of this category. This
is presented in Section V. The document concludes with a
summary of the work in Section VI.

III. OVERVIEW OF A COTS-BASED SYSTEM
The architecture of a general COTS-based multicore system

is illustrated in Figure 1. All the cores of the multicore chip
have an individual (private) Level-1 (L1) cache and share a
Level-2 (L2) cache (or more levels of caches). The multicore
chip is connected to the North-Bridge (NB) over an intercon-
nection network, usually called Front-Side Bus (FSB) or the
memory bus. The FSB is the electrical interface that connects
the processor to the main chipset. All interrupt messages,
memory and the cache coherency traffic flow between the cores
and the chipset through the FSB. Requests to the memory
subsystem are channeled from the cores via the FSB or from
I/O devices via the I/O buses, as described below.

The North-Bridge (NB) typically handles the communica-
tions between the cores, the system main memory (RAM),
the graphics controller and the South-Bridge (SB). The main
memory is thus shared between multiple entities over the NB,
including the cores residing on the chip, the graphics controller
and the SB. The communication between the main memory
and these entities is handled by a memory controller and a
memory arbiter, both directly incorporated into the North-

>>



>>



>>



^>



E

&^

^
/K,

D

E

^
D

'


D/

K/
W

D

<


/K




K
^


/
/K

D

Fig. 1. A typical COTS-based multicores architecture.

Bridge. Generally, a graphics controller is connected to the
NB (or is sometimes integrated into the NB as well depending
on the chipset design). The South-Bridge (SB), often referred
to as the I/O Controller Hub, handles communication with the
peripherals, such as the hard-disk, keyboard, and printer, over
a variety of buses (like PCI and PCI express). The peripherals
can be connected in various ways depending on the chipset
design. Typically, the SB is connected to the NB via a Direct
Media Interface (DMI) channel. All the Direct Memory Access
(DMA) traffic (arising from the peripherals) is also channeled
through the SB.

Although the design of the architecture depicted in Fig-
ure 1 is aligned to (and borrows its terminology from) the
Intel processor [18] and pertains to the PC architecture, the
discussion applies to embedded multicores in general and the
nomenclature may vary accordingly. Note that for the given
model, the cores and the caches are on-chip elements while
the rest (memory, peripherals and the controllers) are off-chip.

IV. PRIMARY SOURCES OF UNPREDICTABILITY
The main focus of this section is on shared caches, shared

interconnection networks and the shared main memory.

A. Shared Caches
In most of the existing multicores, the large gap between

the core speed and the memory is bridged by keeping the
most frequently accessed data closer to the cores. As seen in
Figure 1, the cache hierarchy typically consists of a private
L1 cache (closest) to the cores followed by a L2 cache of
higher capacity, which is shared among cores. Modern pro-
cessors feature large caches with high set-associativity (8-way
and 16-way associative caches are not uncommon) and non-
deterministic replacement algorithms, making cache analysis
extremely challenging. Apart from the associativity and the
write policies, the predictability of cache behavior is largely
influenced by the replacement policy, which is usually pseudo
least-recently used (PLRU) in many multicore platforms from
Intel and Infineon. The impact of these replacement policies
on predictability has been presented in [19].

In unicore systems, the problem of sharing the cache
amongst tasks that could pre-empt each other (pre-emptive
scheduling) on the same core is intricate [17] and the anal-
ysis to compute this extra cache-related pre-emption delay
is already non-trivial. The problem is further exacerbated in
multi-cores when co-executing tasks on other cores share
and contend for the same cache lines, thereby increasing
the possibility of cache-line evictions. Although the higher
capacity of the caches was provided to decrease the accesses
to main memory and thus reduce the stall time of executing
tasks, non-ownership of these shared cache lines by the cores
can lead to unregulated cache evictions and cache thrashing.
This defeats the very purpose of providing a larger cache as
it leads to increased memory requests. Additionally, bounding
the number of memory requests that a particular task may
generate in an interval is challenging at design time, since
memory requests from tasks do not arrive periodically and
the order in which tasks are executed is dependent on the
scheduling policy. In fact, the number of varying patterns
of task arrivals on other cores, replaceable cache lines and
memory request patterns result in a combinatorial explosion
of possibilities.

TABLE I. LATENCY IN CYCLES FOR L1, L2, AND L3 CACHES

Processor L1 L2 L3
AMD Phenom II X4 920 (2.80 GHz) 3 15 No info
Athlon X2 5400 (2.80 GHz) 3 20 NA
Intel Core 2 Quad QX9770 (3.2 GHz) 3 15 NA
Intel Core 2 Quad Q9400 (2.66 GHz) 3 15 NA
Intel Core i7-965 (3.2 GHz) 4 11 42

Cache latency timings: To compute the total time to
serve a cache-line request, it is necessary to determine the
cache latencies. Manuals may provide certain data regarding
the latency for cache accesses as provided in Table I, but these
numbers do not necessarily capture the worst-case behavior
and are best- or average-case latencies and hence cannot be
used to guarantee safe WCET estimates. Also, there are no
mechanisms provided directly by the underlying sub-systems
(like the memory controllers) to carry out a confident evalua-
tion of these timing parameters.

Existing solutions and their limitations: To a limited
extent, in the multicore area, the impact of shared caches on the
WCET has been addressed in ([20],[21],[22],[23]), amongst
others. Given the complexity of the problem, researchers
have made assumptions that limit the applicability of their
solution. For example, detailed research in multicores has been
limited to analysis considering: i) direct mapped caches or
caches with low set associativity, ii) assumptions that data
caches are perfect (the accessed data is always available) and
thereby analyzing instruction caches only, iii) assuming that the
underlying replacement policy is LRU, and iv) the complete
impact of write back and write through mechanisms has not
been considered. It is also important to note that no analysis
has been verified on actual hardware.

Alternatives to the shared cache problem: Alternative
ideas have also been proposed that circumvent the problem
of shared cache contention by spatial isolation. A method to
analyze shared instruction caches proposed in [24] is based
on the combined use of cache locking and partitioning. Cache
locking allows the user to load selected contents into the cache
and subsequently prevents these contents from being replaced
at run time. Cache partitioning assigns a portion of the cache
to each task and restricts cache replacement to each individual
partition. The objective of such a joint use of locking and
partitioning is to completely avoid intra-task and inter-task
conflicts and also provide spatial isolation.

Cache partitioning techniques have also been proposed by
Guan et al. [25]. Their method employs page-coloring [26]
combined with scheduling to isolate the cache lines of hard
real-time tasks running simultaneously, thereby avoiding the
interference between them. Page coloring is a software tech-
nique that controls the mapping of physical memory pages
to a processors’ cache blocks. Memory pages that map to
the same cache blocks are assigned the same color. Cache
bypass techniques for instruction caches, proposed by Hardy
et al. [27], are based on the fact that many blocks stored in
the cache after a miss may not be reused before their eviction.
Such blocks, named single-usage blocks, contribute to cache
pollution — a situation in which an executing program loads
data into cache unnecessarily and causes other necessary data
to be evicted from the cache into lower levels of the memory
hierarchy, potentially all the way down to main memory, thus
causing a performance hit. The paper proposes a method to
identify such single-usage blocks and that does not store them
in the shared cache(s), thereby tightening the WCET estimates.

A drawback of this method is that it requires special support
in hardware to identify certain instructions as non-cacheable.

Shared caches and hard real-time systems: As seen
above, given the complexity of the caches present in modern
day processors, it is extremely challenging to derive tight
estimates for shared caches. Hard real-time systems are more
likely to be developed on processors with private caches or
by either disabling or partitioning the shared cache, if present.
Our stand of promoting private caches is also guided by the
certification requirements imposed by the industry to ensure
that the safety standards of critical real-time systems are met.
Before a safety-critical system is deployed, a certification
authority ensures that certain norms are met. All the com-
ponents comprising that system (the software, hardware and
the interfaces) are scrutinized to ensure conformance to safety
standards. The certification process categorizes each task by
its level of criticality and assigns it a corresponding Safety
Integrity Level (SIL). When deployed on the same multicore
system, tasks of different SILs can co-exist and share the
same physical hardware resources. In order to limit the risk
of failure of tasks with high SILs, systems must be designed
to isolate the execution of the tasks, both in the spatial and
temporal domains. If total isolation cannot be achieved then
designers must be able to upper bound the impact that task
executions have on each other. To cater to these requirements,
international standards typically favor simple and safe designs,
such as partitioned scheduling, partitioned caches [28], [29],
time-triggered architectures and cyclic scheduling algorithms
(CSA) as recommended in [30] (Annex F, page 103). Given
these facts and norms, it is very unlikely that shared caches will
ever be deployed in hard real-time systems. System designers
hosting applications on multicores with shared caches will have
to either reserve a part of the L2 cache for each core and
think about cache arbitration, assign the L2 cache only to one
core or turn the L2 cache off for all cores. Cache contention
though widely studied, is just one of several factors that can
cause performance variations — other factors like prefetching
hardware contention, memory controller contention, and FSB
contention account for as much as 60%- 80% and sometimes
100% of the performance variation that tasks experience on
multicore processors [31] and hence a deeper insight into these
off-chip factors is warranted.

B. Shared Front-Side Bus
In typical implementation of simple COTS-based systems

(see Figure 1), multiple cores access the main memory via a
shared bus. This often leads to contention on this shared chan-
nel, which results in an increase of the response time of the
tasks. Analyzing this increased response time, considering the
contention on the shared bus, is challenging on COTS-based
systems mainly because: i) bus arbitration protocols are often
undocumented and the implementation of arbitration protocol
is hidden, ii) the exact instants at which the shared bus is
accessed by tasks are not explicitly controlled by the operating
system scheduler; they are instead a result of cache misses,
TLB misses, coherency traffic, etc., and iii) requests are not
tagged with any task priority information and thus, although
the cores may enforce this prioritization and give preferential
access to tasks with higher priorities, the bus may re-order the
memory requests based on its internal prioritization and request
scheduling mechanisms. As a consequence, requests issued
by higher-priority tasks may be served later than those from

lower-priority tasks. In principle, the extra overhead due to the
FSB is attributed to two main factors: i) the communication
delay on the bus, which depends on the speed and data width
of the bus, and ii) the time until a free slot is available on the
bus. If requests are served in-order, then the first overhead can
be upper bounded, since the required parameters are generally
documented. The second factor is largely dependent on the bus
arbitration mechanism. If the bus is TDMA driven, an idle slot
is guaranteed to each requester (e.g. a core) at fixed predictable
time instants. In contrast, with other arbitration mechanisms,
it is difficult to discern at design time the exact instants at
which the bus is available, since it is largely dependent on
the request patterns of the co-scheduled tasks. To complicate
matters, the FSB in modern processors may be an out-of-order
bus (e.g., the Intel Itanium Processor Family) and employ other
performance-enhancing mechanisms, including split transac-
tions and pipelining. If pipelined buses are employed, the time
for “k” bus transactions is not tightly bounded by simply
adding the execution times of the individual transactions, since
the phases within a transaction (typically arbitration, request,
error, snoop, response, optional data phase) may be overlapped.
For example, the Intel 4 Chipset Family boards [18] have a
12-deep in-order queue to support up to twelve outstanding
pipelined requests on the FSB.

The impact of these parameters must be accounted for,
in the timing analysis to obtain tighter and safe worst-case
estimates. Ideally, a point-to-point connection or switching
mechanism between (private) main memories and the cores
that provides a clean data-path separation would be highly
approved by researchers and certification experts, but the
physical realization of such a design may come at a cost
of increase in the form-factor of the chip, excessive wiring,
increased pin-count and power usage, which is not preferred
by embedded system designers. Given that the hard real-time
market does not drive the chip-design market, it is unlikely that
chip vendors will invest much effort or time in designs that are
real-time friendly. In lieu of these facts and the recognition of
the problem of performance degradation due to bus contention,
there have been notable inroads in the timing analysis area by
the research community.

TDMA related research: Most of the research has been
focused on the assumption that the underlying arbitration
mechanism is Time Division Multiple Access (TDMA). Some
noteworthy works in this direction amongst others are by
([32], [33], [34], [35]). Rosen et al. [36] describe a solution to
implement predictable real-time applications on multiproces-
sors. Based on the tasks running on the cores, they pre-compute
a bus schedule, such that all tasks meet their deadlines. This
bus schedule is stored in a memory connected to the arbiter.
However, this type of table-driven arbiter requires additional
hardware modifications that are not provided by existing COTS
buses.

Non-TDMA based research: Amongst the non-TDMA
schemes, Schliecker et al. [37] have proposed a method to
address the issue of bounding the shared resource load for
multiprocessor systems using a general event-based model.
They consider a system with a global shared resource in which
the maximum and minimum numbers of accesses in particular
time windows are assumed to be given. By assuming fixed-
priority scheduling on the shared resource with statically as-
signed priorities to tasks, the worst-case interference is derived
based on the access patterns of higher-priority tasks. In [38],

the authors compute an upper bound on the contention delay
incurred by a task for time-triggered (periodic) tasks, using a
restrictive pre-emption model. Tasks are split into superblocks
in which each superblock can include branches and loops,
but superblocks must be executed in sequence. Multiple tasks
executed on the same core are scheduled according to fixed
time slots, with a given set of superblocks assigned to each slot.
Peripherals are represented as buffered flows and an arrival
curve is computed for each peripheral. The delay of the task
under analysis is computed based on the delays caused by
traffic streams from all other cores. Analysis for arbitration-
agnostic work-conserving buses (implying that the bus cannot
be idle if a request is pending) have been done in [39], [40].
These approaches assume the maximum interference that co-
scheduled tasks can pose to the analyzed task to derive the
response time when in contention. Given that no specific
arbitration mechanism is considered, the approaches can yield
pessimistic results. Approaches based on timed automata (TA)
have been proposed by Mingsong et al. [41] and [42], but TA-
based methods inherently suffer from the drawback of state-
space explosion for complex architectures.

Researchers have recently proposed a software-based mem-
ory throttling mechanism to explicitly control the memory
interference [43]. The basic idea of memory throttling is to
periodically limit the number of memory accesses (last-level
cache misses). In order to do so, the OS scheduler additionally,
monitors the cache-misses of each core and dequeues/enqueues
tasks based on the specified cache-miss budget and the period.

Summary: The TDMA bus arbitration is predictable
and composable, allowing tasks to be analyzed in isola-
tion, making it a real-time friendly protocol. It is non-work-
conserving and hence the bus is idle when the core own-
ing a time slot does not have any requests to be served.
Unfortunately, although favored by the research community,
existing COTS-based systems (which are designed for high
performance) do not employ it. Therefore, the related research,
can in essence be applied to a custom-built bus that employs
TDMA, but cannot be applied to existing processors with
other arbitration protocols. Thus software-based techniques
that emulate a TDMA-like behavior by giving phased accesses
to the bus to a single task at a time are warranted. The
mechanisms proposed in [34], which divides the task-phases in
exclusive data fetch and execution, should be extended to non-
TDMA buses. Tighter bounds must be calculated by taking
into account the pipelining and split-transaction mechanisms
in current buses. In summary, the lack of predictability in
the FSB will have to be compensated with a combination
of simple table-based cyclic scheduling at the core level,
application-level budgeting of the bus slots, use of private
caches, application request restructuring to have predictable
memory request patterns to facilitate a tighter analysis of the
increased WCET due to bus contention.

C. Other Interconnection Networks
With the increasing number of cores and the obvious

scalability issues posed by a single FSB, more recent multicore
designers have moved to the Non-Uniform Memory Access
Architecture (NUMA) model. Examples are the QuickPath
Interconnect from Intel and HyperTransport architecture from
AMD. The basic design paradigm has shifted from a shared
bus to a point-to-point connection in these cases. In the
NUMA model, every core has a local memory and hence the

row buffer
activate
(open)

precharge
(close)

row address

column address I/O

data

ba
nk

s

writeread

Fig. 2. Illustration of a DRAM chip.

contention on the FSB is relatively reduced. The time to access
memory is variable depending on whether the requested data
is available in local memory or remote memory (local memory
of another core which may be off-chip). Though the average
performance is improved by reducing contention, the problem
of unpredictability due to remote memory access still persists
in these architectures. If complex task models are assumed in
real-time applications in which tasks can migrate, the analysis
can become more complex, as the task has to migrate its entire
working set in local memory from the source core to the target
core and the migration time must be also be upper bounded to
reduce the number of remote memory transactions and hence
the unpredictability remains.

After an insight into the interconnection network, the
document next proceeds to study the contention at the next
level: the memory sub-system.

D. The Memory Device
As described earlier, requests from the CPU and the

peripherals (including DMA requests) are eventually directed
to the memory via the memory controller (which is studied in
the next section). The unpredictability in DRAMs stem from
their internal architecture, which is designed to deliver high
volume storage at low cost per bit. To reduce area and power,
it additionally tries to minimize the number of off-chip pins by
using a bi-directional data path. A contemporary COTS-system
typically contains many DDR3 DRAM chips [44] connected in
parallel on a dual in-line memory module (DIMM) to form a
64-bit data path to the memory. The chips may be organized in
one or more ranks that share the same interface to increase its
utilization without increasing the number of pins. As illustrated
in Figure 2, each DRAM chip comprises several banks that
can be accessed in parallel. Each bank contains a matrix-
like memory array of rows (also called pages) and columns.
In addition, each bank has a row buffer that can store the
contents of one row. On a DRAM access, the target row must
first be activated (opened) by copying its contents from the
memory array to the row buffer before read or write operations
can be issued to the word-sized column elements. Once there
are no more read or write operations, the row is precharged
(closed) and the contents of the row buffer are copied back to
its original place in the memory array [45].

The DRAM architecture makes the response time of mem-
ory requests and the provided bandwidth highly variable for
three reasons: i) a request targeting an open row can be served
immediately, while it otherwise needs the current row to be
closed and the required row to be opened, ii) the bi-directional
data path requires several cycles to switch from read to write
and vice versa, and iii) to prevent data loss, the memory must

occasionally be refreshed before executing the next request and
the added refresh time may be longer than the time to serve
the request itself. The impact of these three factors may cause
the execution time of e.g. a 64 B memory request to vary by
an order of magnitude from a few clock cycles to a few tens
of cycles. DRAM memories can hence be considered highly
unpredictable resources by nature and are challenging to work
with in the context of real-time systems.

E. Memory Controller
The memory controller connects the system to the off-chip

DRAM and is responsible for scheduling memory accesses
according to the system requirements. In a COTS system, the
memory controller achieves this by maximizing the average
bandwidth and minimizing the average latency, while limiting
power consumption. This typically implies maximizing the uti-
lization of the data path, possibly subject to different priorities
of memory streams, when there are pending requests and make
efficient use of power-down modes in the memory device when
there is idle time. Overall, there are three factors that affect the
response time of memory requests in the memory controller:
i) the page policy, ii) the scheduling algorithm, and iii) the
power-management policy. We proceed by discussing each of
these in turn.

Page policy: The page policy determines when
precharge commands should be issued by the memory con-
troller [46]. Currently, there are two prevalent page policies:
open page and close page. The open-page policy tries to
improve the average performance of the memory controller by
exploiting locality among memory requests. This is achieved
by speculatively keeping activated rows open after memory
accesses, hoping that the following requests to the banks target
the same rows, thereby eliminating the latency and power
overhead of activating and precharging the banks [45]. The
drawback of this approach is a latency penalty in case the
following request requires different rows in the banks, as
this results in precharging and activation while the request
is stalling. The open-page policy works well in case there is
sufficient locality in the memory stream to generate enough
row hits to make a net gain in average performance despite
this penalty. In contrast to the open-page policy, the close-
page policy always closes the active rows immediately after
each memory access to minimize the overhead of opening
another row in the same bank. This policy is beneficial when
there is not sufficient locality within the memory stream of
an application, or when locality is destroyed when memory
streams from different applications are multiplexed in the
memory controller to access the single off-chip memory. This
policy is typically favored by memory controllers for hard
real-time systems [47], [48], [49], since they are unable to
guarantee any locality in the worst case due to fine-grained
sharing of the memory, and hence prefer to reduce the miss
penalty.

Hybrid policies that combine properties of open- and
close-page policies have also been proposed. To improve
performance of their systems, Intel proposed an adaptive
page policy [50] that dynamically switches between open-
and close-page policies based on the locality in the memory
streams. In the context of real-time systems, a conservative
open-page policy [51] has been proposed. The key idea is to
partially exploit locality by keeping active rows open as long as
possible without negatively impacting the worst-case response

time of memory requests. This approach works well if there
is locality in the memory traffic and if requests arrive close
enough together to enable row hits to be detected early.

Scheduling algorithm: The memory scheduler is re-
sponsible for ordering incoming memory requests and gen-
erating SDRAM commands that are scheduled according to
the timing constraints of the memory. This may involve a
two-level scheduler, one level for memory requests and a
second one for SDRAM commands, although it is possible
to integrate the two. The memory scheduler is often very
dynamic and uses information about the memory state when
scheduling to improve average bandwidth or reduce average
latency. Optimizing bandwidth may involve preferring requests
that target an open row in a bank [52], [46], [53], requests
that fit with the current direction of the data path [54], [55],
[56], or a combination of the two [57], [58], [59]. Example
mechanisms that reduce average latencies is to prefer reads
over writes [53], which is beneficial if reads are blocking while
writes are posted, or let high-priority memory clients preempt
lower priority clients [59]. Another technique to reduce latency
is presented in [52] that schedules memory bursts belonging
to the same requests simultaneously thereby unblocking the
stalling processor earlier. It is also proposed in [60] to try to
schedule refresh operations during idle cycle cycles when there
are no requests pending or even executing multiple refresh
operations in sequence when idle to amortize overhead [61].
The problem with these dynamic memory schedulers is that
the interactions between the request and command schedulers
are complex, especially in the presence of the aforementioned
mechanisms. Thus, neither of the above memory controllers
provide bounds on bandwidth or latency, making them difficult
to use in the real-time context.

Power policies: DRAM memories have several power-
down modes [44], e.g. power-down with fast exit, power-down
with slow exit, and self-refresh. These modes have increasingly
large transition times in and out of the low-power state, while
the current through the memory is decreasing, thus offering
different trade-offs depending on the length of the idle periods
and the maximum tolerable wake-up penalty. This trade-off
is done by the power-management policy in the memory con-
troller, often implemented by transitioning to a low-power state
after an idle interval that may be either constant [62], [63] or
adaptive [63]. While the wake-up penalty is only a few cycles
for fast-exit and slow-exit power down, it is hundreds of cycles
for the self-refresh state in DDR3 memories. For this reason,
methods are proposed to predict the length of idle periods
to ensure that the memory is powered up before the arrival
of the next request [64], [63], reducing the wake-up penalty.
However, although these methods may reduce the average
performance penalty of using power-down policies, they are
not guaranteed to be helpful to reduce the worst-case penalty.
A consequence of the sometimes substantial wake-up penalties
is that the worst-case memory latency does not happen when
the memory controller is maximally loaded, but when there
are sudden bursts of memory requests while the memory
is in self-refresh. Determining the critical instance for the
memory controller may hence be difficult without information
about the power-management policy, further complicating the
process of estimating memory latencies with both analytical
and measurement-based techniques.

Summary: The time to serve a memory request is
highly variable and strongly depends on the architecture of the

memory itself, as well and the scheduling algorithm and page-
and power policies used in the memory controller. All this
information is generally not divulged for COTS systems, hence
it is difficult to obtain an accurate estimate of the memory la-
tency. The memory controller may offer configuration options
to disable dynamic features, such as reordering mechanisms,
which makes the scheduler easier to analyze. However, these
options are not exposed to developers through the middleware
(BIOS) in COTS systems. Instead, the only visible options
are to reduce timing constraints of the memory to reduce
latencies at the expense of reliability. These problems lead us
to conclude that to improve the suitability of COTS systems
in the context of real-time systems, more information is
required about the scheduling algorithm and page- and power
policies. The possibility to disable dynamic features of the
controller must furthermore be exposed to developers through
the middleware. This will enable researchers to accurately
determine memory latencies using analytic or measurement-
based approaches.

V. SECONDARY SOURCES OF UNPREDICTABILITY
In this section, we will in brief cover the secondary

sources like the effects of hardware prefetching, power-saving
strategies and TLB misses.

A. Power-saving Strategies and Thermal Effects
In many multicore systems, an Advanced Configuration

and Power Interface (ACPI) specification [65] is commonly
employed. This standard brings the power management un-
der the control of the OS (OSPM) and encourages soft-
ware/hardware vendors to develop ACPI-compliant implemen-
tations to: i) enhance the power-management functionality,
ii) increase the robustness, iii) enable implementation of a
variety of power-management solutions, varying from simple
to aggressive approaches, allowing an appropriate cost/function
trade-off, and iv) facilitate the industry-wide implementation
of power management. These features are hard to implement in
the traditional BIOS-central system that relies on the platform-
specific firmware. Power-saving strategies and thermal man-
agement techniques in COTS-based systems can be categorized
into two main groups based on whether they are completely
or partially under the control of the OS.

Strategies under Total OS Control: Generally, processor
power states in COTS-based multicores are compliant with
ACPI. For example, processor power states (C-states) in the
Intel’s 3rd Generation Processor family of multicores built
with 22-nanometer process technology (i3, i5, i7) [66] can
be controlled through the OS. However, real-time system
designers must consider the effects of these power-saving
features. While clock gating can be considered instantaneous,
the transition into and out of deeper sleep states requires time,
which must be factored in the timing analysis. Similarly, in
Dynamic Voltage and frequency Scaling (DVFS), the transition
overheads of the processor speed-switch should be budgeted.

Temperature is another factor that may affect the temporal
behavior of the real-time system and the long-term reliabil-
ity of the chip. A processor typically has a safe operating
temperature zone and if the processor is kept active for a
prolonged duration of time, its temperature may exceed this
safe threshold. Normally, some cooling systems are employed
to tackle such situations – nevertheless, it may be necessary
for some systems to suspend their execution (or even turn-off
the processor) to protect the chip and to decrease the system’s

temperature. Such effects must be considered based on the
processor’s specifications. One common misconception is that
these power-saving features can be disabled and the side-
effects can be ignored safely. However, disabling the power-
saving features (sleep states) and enabling the processor in an
active state throughout the execution time can have an adverse
effect on the reliability of the chip. Therefore, these effects
should be accounted for in the thermal design to limit the
peak temperature of the system. If these power or thermal
management activities occur during the execution of safety-
critical tasks and the related delays due to suspensions are
not considered in the timing analysis, then the behavior of the
tasks will be unpredictable.

Strategies Partially under OS Control: Apart from the
aforementioned unpredictability sources, there are also some
features of COTS-based multiprocessors that are partially
controlled by the operating system in which the OS has the
capability of initializing the feature, but not managing it post-
initialization. One such feature is the Adaptive Thermal Moni-
tor [67] in Intel’s 3rd Generation Processor Family of multicore
processors. Its purpose is to reduce the power consumption and
temperature of the processor core by adjusting the operating
frequency and the input voltages. This mechanism is activated
when the temperature of the processor exceeds some threshold.
It reduces the frequency and voltage adaptively, and modulates
the internal processor core clocks. The threshold temperature is
factory calibrated and is not user configurable. In Intel’s chips,
adaptive thermal monitor protection is always enabled. This
mechanism should not be confused with the thermal design
process, in which the system designer needs to maintain the
temperature within a safe zone.

Similarly, the Freescale i.MX31 features a CPU Load
Monitor Module, responsible for tracking the actual workload.
This is paired with a DVFS controller implemented in hard-
ware, which then executes the voltage and frequency switch
sequence. A similar approach is adopted by Intel with its
Enhanced SpeedStep Technology or by AMD with its TPM-
based Opteron 6200. While the initial setup of these features
is subject to user control, it can be an issue if the employed
OS or board support package has configured the use of these
features as a default setting, requiring active coding to switch
these off.

Existing work: The majority of the works in the field of
power management [68], [69], [70], [71], [72], [73], [74], [75]
and thermal-aware design [76], [77], [78], [79] for multicores
in the real-time scenario use simplistic assumptions, such as no
communication overhead, independent tasks, frame-based task
model and simple power/thermal models, due to the complex
nature of the problem. The research in COTS-based multicores
assuming different hardware performance features is in its
niche stages and needs further exploration to facilitate reliable
deployment of industrial real-time applications.

B. System Management Interrupts (SMI)
In this section, we shall, for completeness mention briefly

the effects of system management interrupts [80] , which is
widely known to affect real-time performance in processors,
but is generally overlooked while computing the WCET. Mod-
ern processors (Intel, ARM) have a special operating mode
called System Management Mode (SMM), which is used by
the firmware to manage system-wide management functions.
SMM has been used to detect chipset errors, handle system

failures, such as CPU overheating, and perform fan control.
The firmware runs in a separate and isolated environment
and is not under the control of the OS. To enter the SMM,
an SMI has to be invoked. SMIs are the highest priority
interrupts in the system, non-maskable interrupts included.
SMI handlers take a non-negligible time to complete (hundreds
of microseconds) and hence can pose an issue for real-time
applications with strict timing constraints. The SMI steals
CPU cycles and modifies the CPU state. The delay incurred,
additionally involves the time to save this state in the System
Management RAM, later restore it, and also the time to flush
the write-back caches before entering the SMM. These features
impact the execution of the scheduled real-time tasks by
introducing hidden latencies. If these delays are not accounted
for, the estimated timing properties can be unsafe.

C. Translation Look-aside Buffer Misses
This source of unpredictability is specifically for those

embedded systems that employ virtual memory, managed by
a memory management unit (MMU) to protect the memory
spaces of different tasks. Every virtually addressed memory
access from the task is intercepted by the MMU which then
translates it into the corresponding physical address. This
translation adds some overhead to the access time and to
reduce this delay, the MMU employs a cache, called the TLB,
where recent translations are stored. In case of a TLB miss, the
translation is carried out by the interrupt handler that looks-up
the address mapping in the page-table which resides in main
memory; this extra look-up and page-walk time to retrieve
the mapping must be factored in the timing analysis as it can
be non-negligible if there are many TLB misses when a task
executes [81]. The challenge is the same as with processor
caches – the difficulty to predict in advance: i) the number
of misses, and ii) the exact instant at which TLB misses
may occur. Also, in many architectures, the TLB updates are
completely done in hardware and thus are transparent to the
programmer. Researchers have suggested mechanisms of pre-
populating the TLB with all the translations required by a task,
as a part of the context-switch routine, but doing so increases
the context-switch overhead and requires knowledge of all the
pages that will be accessed by the task. These overheads can
add up to significant delays in the presence of a large number
of context switches. Also, the upper bound on the translation
time must be computed to integrate these misses in the timing
analysis. Another suggested method is to let the programmer
handle the TLB misses explicitly and write specific interrupt
handlers to update the TLB cache, which requires additional
features to be supplied by the instruction set. We do not enlist
all the research work here, but wish to highlight that this source
of unpredictability must be considered in the overall timing
analysis. The MMU when investigated in detail, may have
other sources of unpredictability and many embedded systems
that do not need strict protection across applications therefore
prefer to employ a flat memory addressing.

D. Hardware Prefetching
Modern processors also provide hardware pre-fetching as

a memory-latency hiding mechanism. They predict the next
memory addresses to be accessed and pro-actively fetch this
data from the main memory to the last-level caches based on
observing memory access patterns. Processors based on the
Intel NetBurst micro-architecture provide two prefetch mech-
anisms through the BIOS: Automatic hardware prefetch and

Adjacent Cache Line Prefetch [82]. The hardware prefetcher
prefetches streams of data and instructions from memory
into the unified L2 cache on detecting successive L2 cache
misses and a stride in the access pattern, as in accessing
successive elements in an array. The Adjacent Cache-Line
Prefetch mechanism, when enabled through the BIOS, always
fetches two 64-byte cache lines, irrespective of whether the
additional cache line has been requested or not. However, there
are two main problems when real-time tasks are concerned.
Firstly, the prefetch requests consume bus bandwidth and may
delay important demand requests issued by real-time tasks.
Secondly they can lead to cache pollution by prefetching
lines that are not required by the tasks and evicting re-
usable cache lines belonging to real-time tasks. When enabled,
this OS-transparent prefetching can run in the background
at arbitrary times, resulting in variations experienced by the
currently executing tasks. Many processors, e.g. from Intel,
allow programmers to disable this feature (see [82]) and it
is important to do so to minimize the variations in temporal
behavior.

VI. DISCUSSION AND CONCLUSIONS
Although the computing capabilities of multicores are

indisputable, they must be assessed for predictability before
they can be reliably trusted to host and deploy hard real-time
systems. On one hand, the presence of multiple cores provides
a natural temporal isolation and fault-containment mechanism
provided by the hardware, while on the other, the presence
of shared hardware resources with complex features that are
not predictable, pose serious hurdles in timing analysis. In this
paper, we highlighted these sources of unpredictability, which
included the caches, memory subsystem and the front-side
bus. We also explored secondary sources that often tend to be
overlooked, such as system-initiated power-saving strategies,
hardware prefetching mechanisms, TLBs and system manage-
ment interrupts. These sources can cumulatively lead to non-
negligible temporal variations unless considered. This paper
also highlighted some major research in timing analysis and
some open issues that must be addressed to compute tighter
bounds on the timing parameters. In addition to the software
(the OS and the target application), all these architectural
features must be taken into account to ensure a robust and
reliable deployment of hard real-time applications.

REFERENCES
[1] V. Tran, D.-B. Liu, and B. Hummel, “Component-based systems devel-

opment: challenges and lessons learned,” in Software Technology and
Engineering Practice, 1997. Proceedings., Eighth IEEE International
Workshop on [incorporating Computer Aided Software Engineering], jul
1997, pp. 452 –462.

[2] C. Watkins and R. Walter, “Transitioning from federated avionics ar-
chitectures to integrated modular avionics,” in 26th IEEE/AIAA Digital
Avionics Systems Conference (DASC), October 2007, pp. 2.A.1–1–2.A.1–
10.

[3] M. Di Natale and A. Sangiovanni-Vincentelli, “Moving from federated
to integrated architectures in automotive: The role of standards, methods
and tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603–620, April
2010.

[4] J. Child, Multicore Processing Becomes the New Mainstream. [Online].
Available: http://www.cotsjournalonline.com/articles/view/101319

[5] A. H. R. Albers, E. A. L. Suijs, and P. H. N. De, “Memory-
communication model for low-latency x-ray video processing on multi-
ple cores.”

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström, “The worst-case

execution time problem - overview of methods and survey of tools,” ACM
Transactions on Embedded Computing Systems, vol. 7, no. 3, 2008.

[7] S. Mohan, M. Caccamo, L. Sha, R. Pellizzoni, G. Arundale, R. Kegley,
and D. de Niz, “Using multicore architectures in cyber-physical systems,”
Workshop on Developing Dependable and Secure Automotive Cyber-
Physical Systems from Components., 2011.

[8] C. Ferdinand, R. Heckmann, and B. Franzen, “Static memory and timing
analysis of embedded systems code,” in Proceedings of VVSS2007 - 3rd
European Symposium on Verification and Validation of Software Systems,
23rd of March 2007, Eindhoven, P. Groot, Ed., 2007. [Online]. Available:
http://www-fp.cs.st-andrews.ac.uk/embounded/pubs/papers/VVSS07.pdf

[9] A. Ermedahl, A Modular Tool Architecture for Worst-Case Execution-
Time Analysis. VDM Verlag, 2008.

[10] Rapita Systems Ltd., “Rapitime explained,” Rapita Systems Ltd.,
http://www.rapitasystems.com/downloads/rapitime explained white paper”.

[11] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28, pp.
966–978, July 2009.

[12] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The
influence of processor architecture on the design and the results of wcet
tools,” Proceedings of the IEEE, vol. 91, no. 7, pp. 1038 – 1054, july
2003.

[13] L. Thiele and R. Wilhelm, “Design for time-predictability,” in Design of
Systems with Predictable Behaviour, 2004.

[14] S. Basumallick and K. Nilsen, “Cache issues in real-time systems,” 1994.
[15] D. Grund, “Static cache analysis for real-time systems

– LRU, FIFO, PLRU,” Ph.D. dissertation, 2012. [Online].
Available: https://www.epubli.de/shop/buch/Static-Cache-Analysis-for-
Real-Time-Systems-Daniel-Grund-9783844216998/13092

[16] H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible
preemptions,” ACM Trans. Embed. Comput. Syst., vol. 10, no. 2, pp.
27:1–27:34, Jan. 2011.

[17] C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems,” Real-Time Systems, vol. 17, pp. 131–
181, 1999.

[18] Intel 4 Series Chipset Family Datasheet, For the Intel 82Q45, 82Q43,
82B43, 82G45, 82G43, 82G41 Graphics and Memory Controller Hub
(GMCH) and the Intel R�82P45, 82P43 Memory Controller Hub (MCH),
Intel Corporation, 2010.

[19] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability
of cache replacement policies,” Real-Time Systems, vol. 37, no. 2, pp.
99–122, Nov. 2007.

[20] J. Yan and W. Zhang, “WCET analysis for multi-core processors with
shared L2 instruction caches,” in RTAS ’08: Proceedings of the 2008
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, 2008, pp. 80–89.

[21] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, “Timing
analysis of concurrent programs running on shared cache multi-cores,”
in Proc. of IEEE Real-Time Systems Symposium, 2009.

[22] J. M. Calandrino and J. H. Anderson, “Cache-aware real-time scheduling
on multicore platforms: Heuristics and a case study,” in ECRTS, 2008,
pp. 299–308.

[23] S. Cho, L. Jin, and K. Lee, “Achieving predictable performance with
on-chip shared l2 caches for manycore-based real-time systems,” in
Proceedings of the 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, 2007, pp. 3–11.

[24] V. Suhendra and T. Mitra, “Exploring locking & partitioning for pre-
dictable shared caches on multi-cores,” in DAC ’08: Proceedings of the
45th annual Design Automation Conference. ACM, 2008, pp. 300–303.

[25] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and
analysis for multicores,” in EMSOFT ’09: Proceedings of the seventh
ACM international conference on Embedded software, 2009, pp. 245–
254.

[26] G. Taylor, P. Davies, and M. Farmwald, “The tlb slice—a low-cost high-
speed address translation mechanism,” in ISCA ’90: Proceedings of the
17th annual international symposium on Computer Architecture. ACM,
1990, pp. 355–363.

[27] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten WCET
estimates for multi-core processors with shared instruction caches,”
in RTSS ’09: Proceedings of the 2009 30th IEEE Real-Time Systems
Symposium, 2009, pp. 68–77.

[28] ISO26262-4, Road vehicles – Functional safety – Part 4: Product
development at the system level, 1st ed., 2011.

[29] ISO26262-1, Road vehicles – Functional safety – Part 1: Vocabulary,
1st ed., 2011.

[30] IEC 61508, Functional safety of electrical/electronic/programmable
electronic safety-related systems, 2010.

[31] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” SIGPLAN
Not., vol. 45, no. 3, pp. 129–142, 2010.

[32] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling shared
cache and bus in multicores for timing analysis,” in Proceedings of
the 13th International Workshop on Software Compilers for Embedded
Systems, 2010, pp. 6:1–6:10.

[33] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for TDMA
arbitration in resource sharing systems,” in Proceedings of the 16th IEEE
Real-Time and Embedded Technology and Applications Symposium,
2010, pp. 215–224.

[34] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo,
“Timing analysis for resource access interference on adaptive resource
arbiters,” in Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2011, pp. 213–222.

[35] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury,
“Bus-Aware Multicore WCET Analysis through TDMA Offset Bounds,”
in Proceedings of the 2011 Euromicro Conference on Real-Time Systems,
2011, pp. 3 –12.

[36] J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip,” in RTSS ’07: Proceedings of the 28th IEEE Interna-
tional Real-Time Systems Symposium, 2007, pp. 49–60.

[37] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared resource
load for the performance analysis of multiprocessor systems,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe,
2010, pp. 759–764.

[38] R. Pellizzoni, A. Schranzhofer, J. J. Chen, M. Caccamo, and L. Thiele,
“Worst case delay analysis for memory interference in multicore sys-
tems,” in Proceedings of Design, Automation, and Test in Europe, 2010,
pp. 741–746.

[39] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and
J. Lee, “Response time analysis of COTS-based multicores considering
the contention on the shared memory bus,” in IEEE 10th International
Conference on Trust, Security and Privacy in Computing and Commu-
nications, nov. 2011, pp. 1068–1075.

[40] D. Dasari and V. Nelis, “An analysis of the impact of bus contention
on the wcet in multicores,” in IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS), june 2012, pp. 1450
–1457.

[41] W. Yi, “Multicore Embedded Systems: The Timing Problem and Possible
Solutions,” in ICFEM, 2010, pp. 22–23.

[42] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson, “Towards
WCET analysis of multicore architectures using UPPAAL,” in WCET,
2010, pp. 101–112.

[43] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access
control in multiprocessor for real-time systems with mixed criticality,”
in Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on,
july 2012, pp. 299 –308.

[44] DDR3 SDRAM Specification, JESD79-3E ed., JEDEC Solid State Tech-
nology Association, Jul. 2010.

[45] B. Jacob, N. G. Spencer, and D. Wang, Memory Systems Cache, DRAM,
Disk. Morgan Kaufmann, 2007, pp. 497–520.

[46] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in ISCA ’00: Proceedings of the 27th
annual international symposium on Computer architecture, 2000, pp.
128–138.

[47] B. Akesson and K. Goossens, “Architectures and modeling of predictable
memory controllers for improved system integration,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2011, 2011, pp.
1–6.

[48] M. Paolieri, E. Quinones, F. Cazorla, and M. Valero, “An Analyzable
Memory Controller for Hard Real-Time CMPs,” Embedded Systems
Letters, IEEE, vol. 1, no. 4, pp. 86 –90, 2009.

[49] J. Reineke, I. Liu, H. Patel, S. Kim, and E. A. Lee, “PRET DRAM
Controller: Bank Privatization for Predictability and Temporal Isolation,”
in CODES+ISSS ’11: Proceedings of the IEEE/ACM international
conference on Hardware/software codesign and system synthesis, Oct.
2011, pp. 99–108.

[50] J. Dodd, “Adaptive page management,” Jul. 2006, uS Patent 7,076,617.
[51] S. Goossens, B. Akesson, and K. Goossens, “Conservative Open-page

Policy for Mixed Time-Criticality Memory Controllers,” in Proc. Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2013,
pp. 525–530.

[52] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enabling High-Performance and Fair Shared Memory Controllers,” IEEE
Micro, vol. 29, no. 1, pp. 22–32, 2009.

[53] J. Shao and B. Davis, “A burst scheduling access reordering mecha-
nism,” in Proceedings of the 13th International Symposium on High-
Performance Computer Architecture, 2007, pp. 285–294.

[54] S. Heithecker and R. Ernst, “Traffic shaping for an FPGA based SDRAM
controller with complex QoS requirements,” 2005, pp. 575–578.

[55] S. Whitty and R. Ernst, “A bandwidth optimized SDRAM controller
for the MORPHEUS reconfigurable architecture,” in Proceedings of the
Parallel and Distributed Processing Symposium (IPDPS), 2008.

[56] A. Burchard, E. Hekstra-Nowacka, and A. Chauhan, “A real-time stream-
ing memory controller,” in Proc. of Design, Automation and Test in
Europe Conference, 2005, pp. 20–25.

[57] C. Macian, S. Dharmapurikar, and J. Lockwood, “Beyond performance:
Secure and fair memory management for multiple systems on a chip,”
in IEEE International Conference on Field-Programmable Technology
(FPT), 2003, pp. 348–351.

[58] W.-D. Weber, Efficient Shared DRAM Subsystems for SOCs, Sonics, Inc,
2001, white paper.

[59] K. Lee, T. Lin, and C. Jen, “An efficient quality-aware memory controller
for multimedia platform SoC,” vol. 15, no. 5, pp. 620–633, 2005.

[60] S. Novak, J. Peck Jr, and S. Waldron, “Method and apparatus for
optimizing memory performance with opportunistic refreshing,” Nov.
2000, uS Patent 6,147,921.

[61] S. Biswas, “Refresh-ahead and burst refresh preemption technique for
managing dram in computer system,” May 1999, uS Patent 5,907,857.

[62] E. Gerchman, M. Gildea, W. Hovis, R. Jensen, W. Maule, T. Osten, and
A. Wottreng, “System and method for memory self-timed refresh for
reduced power consumption,” Dec. 2001, uS Patent 6,334,167.

[63] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. Irwin, “Hardware and software techniques for controlling dram power
modes,” Computers, IEEE Transactions on, vol. 50, no. 11, pp. 1154–
1173, 2001.

[64] G. Thomas, K. Chandrasekar, B. Akesson, B. Juurlink, and K. Goossens,
“A predictor-based power-saving policy for dram memories,” in Proceed-
ings of 15th Euromicro Conference on Digital System Design (DSD),
2012.

[65] http://www.acpi.info/, Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba.

[66] Desktop 3rd Generation IntelCore Processor Family Datasheet Volume
1 of 2, Intel Corp.

[67] Thermal Mechanical Specifications and Design Guidelines (TMSDG),
Intel Corp.

[68] F. Gruian, “System-level design methods for low-energy architectures
containing variable voltage processors,” in Proceedings of the 1st Inter-
national Workshop on Power-Aware Computer Systems-Revised Papers.
Springer-Verlag, 2001, pp. 1–12.

[69] Y. Zhang, X. S. Hu, and D. Z. Chen, “Task scheduling and voltage
selection for energy minimization,” in Proceedings of the 39th annual
Design Automation Conference, ser. DAC ’02. ACM, 2002, pp. 183–
188.

[70] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy aware
scheduling for distributed real-time systems,” in Proceedings of the 17th
International Symposium on Parallel and Distributed Processing, ser.
IPDPS ’03. IEEE Computer Society, 2003, pp. 21.2–.

[71] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and T.-
W. Kuo, “Multiprocessor energy-efficient scheduling with task migration
considerations,” in Proceedings of the 16th Euromicro Conference on
Real-Time Systems, ser. ECRTS ’04. IEEE Computer Society, 2004,
pp. 101–108.

[72] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo, “Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems,” in Proceedings
of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, ser. RTAS ’06. IEEE Computer Society, 2006, pp. 408–417.

[73] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (dvs) platforms,” in Proceedings
of the 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, ser. RTCSA ’07. IEEE Computer
Society, 2007, pp. 28–38.

[74] V. Nélis, J. Goossens, R. Devillers, D. Milojevic, and N. Navet, “Power-
aware real-time scheduling upon identical multiprocessor platforms,” in

SUTC ’08: Proceedings of the 2008 IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing, 2008, pp.
209–216.

[75] V. Nelis and J. Goossens, “Mora: An energy-aware slack reclamation
scheme for scheduling sporadic real-time tasks upon multiprocessor plat-
forms,” in Proceedings of the 2009 15th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, ser.
RTCSA ’09, 2009, pp. 210–215.

[76] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs,” in Proceed-
ings of the conference on Design, automation and test in Europe, ser.
DATE ’08. ACM, 2008, pp. 288–293.

[77] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-aware global
real-time scheduling on multicore systems,” in Proceedings of the 2009
15th IEEE Symposium on Real-Time and Embedded Technology and
Applications, ser. RTAS ’09. IEEE Computer Society, 2009, pp. 131–
140.

[78] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“Thermal-aware task allocation and scheduling for embedded systems,”
in Proceedings of the conference on Design, Automation and Test in
Europe - Volume 2, ser. DATE ’05. IEEE Computer Society, 2005, pp.
898–899.

[79] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and
G. De Micheli, “Temperature-aware processor frequency assignment for
mpsocs using convex optimization,” in Proceedings of the 5th IEEE/ACM
international conference on Hardware/software codesign and system
synthesis, 2007, pp. 111–116.

[80] B. B. Brandenburg, H. Leontyev, and J. H. Anderson, “Accounting for
interrupts in multiprocessor real-time systems,” 2009.

[81] M. Bennett and N. Audsley, “Predictable and efficient virtual address-
ing for safety-critical real-time systems,” in Real-Time Systems, 13th
Euromicro Conference on, 2001, pp. 183 –190.

[82] Optimizing Application Performance on Intel Core
Microarchitecture Using Hardware-Implemented Prefetchers.
[Online]. Available: http://software.intel.com/en-us/articles/optimizing-
application-performance-on-intel-coret-microarchitecture-using-
hardware-implemented-prefetchers

