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The idea of a hierarchical spatial organization of society lies at the core of seminal theories in

human geography that have strongly influenced our understanding of social organization. In the

same line, the recent availability of large-scale human mobility and communication data has offered

novel quantitative insights hinting at a strong geographical confinement of human interactions within

neighboring regions, extending to local levels within countries. However, models of human interaction

largely ignore this effect. Here, we analyze several country-wide networks of telephone calls and

uncover a systematic decrease of communication induced by borders which we identify as the missing

variable in state-of-the-art models. Using this empirical evidence, we propose an alternative model-

ing framework that naturally stylize the damping effect of borders. We show that this new notion

substantially improves the predictive power of widely used interaction models, thus increasing our

ability to predict social activities and to plan the development of infrastructures across multiple scales.

Globalization has led us to believe that our world is becoming borderless and deterritorialized. The rise of novel
information technologies has even prompted the forecast of the “death of distance”[5]. However, even a most basic
organization of society requires categories, compartments and borders to maintain order[6]. Confinement of human
interactions to limited spatial areas is the key message of the long-standing hypothesis of Central Place Theory
(CPT)[1, 2] which posits the existence of regular spatial patterns in regional human organization. In short, CPT
assumes the existence of a “hierarchy” of regions that aims to explain the number, size and locations of human
settlements with spatio-economic arguments. Despite its highly simplifying geometric assumptions (Supplementary
Information), empirical evidence for CPT’s main prerequisite of systematically limited human interactions has been
collected in a number of recent studies on massive interaction networks which have indeed observed a substantial
impact of political or socio-economic boundaries on human interactions[3, 4, 7–11]. Typically, if we construct regions
by clustering those locations that have strong interactions with each other, we divide countries into contiguous
geographical regions with separating boundaries often following surprisingly close existing administrative boundaries.
These findings point towards spatial regularities in human organization, prompting us to ask: is there an underlying,
rigorously quantifiable, principle behind these patterns? If so, can we exploit this principle to develop better models
of human interaction?

RESULTS

Quantifying the inhibitory effect of borders on human interaction

To quantify the hypothesized effect of hierarchical organization on human interactions, we first define consistent
nested regional partitions by recursively applying a community detection algorithm to country-wide phone call net-
works from the United Kingdom, Portugal, France, Ivory Coast and an anonymous country, Country X (Methods).
Partitions resulting from this algorithm reflect the communities defined by underlying social interactions, and, contrary
to official administrative boundaries, are independent of country-specific historical or political contexts[4] (Supplemen-
tary Information). The resulting partition consists of three levels, L1, L2, and L3, that have a natural interpretation:
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the whole country is divided into L1-level regions (regional scale), which are divided into L2-level regions (county
scale) which in turn split into L3-level regions (city scale) composed of several “elementary” locations (cell phone
tower or exchange area), Fig. 1. The number of levels is not imposed, but for all countries the process naturally
stops subdividing regions at the city scale. To our surprise, we find that, although no spatial constraints are applied,
communities consist of contiguous locations at all levels (an observation that had previously been reported just for
L1-level regions[3, 4]), and are strikingly similar to administrative regions as highlighted by comparison with random
partitions (Supplementary Table 1).

Several insights that we first derive from these hierarchical partitions of empirical networks are in line with CPT. The
L3 regions have typical spatial extension of a town with its neighborhood[12] (between 15 km to 23 km, depending on
the country); similarly, L2 and L1 conform to the scale of districts and regions (Fig. 2a). The distribution P (n) of the
number n of L3 communities inside a L2 community is strongly peaked (around 6) providing quantitative confirmation
to the main hypothesis of regular spatial organization of CPT (Supplementary Information). Figure 2f shows that
distribution, as well as the distribution of the number of L2 communities within an L1 community (#L2/#L1), for
the UK. We observe similar peaks in all other countries ( Figs. S1–S4). Following the idea that borders inhibit human
interaction, we introduce the notion of hierarchical distance to characterize their impact on communication flows
(Fig. 1). Two locations i and j are at a hierarchical distance hij = 1 if they are in the same L3 region, hij = 2 if
they are in different L3 regions, but in the same L2 region, hij = 3 if they are in different L2 regions, but in the same
L1 region and hij = 4 if they are in different L1 regions. In other words, the hierarchical distance corresponds to the
number of different types of borders separating two locations. This metric only contains limited information about
the spatial structure of the regions and is only partly correlated with geographic distance: two locations that are close
in terms of geographic distance can still be situated in two distinct L1 regions and hence far from each other in terms
of hierarchical distance. Thus, the hierarchical distance is not a mere discretization of geographical distance, but
encodes a qualitatively different, socio-economic notion of distance. To understand the impact of borders on human
interaction on each hierarchical level, we define and measure the following damping parameters

q
(h)
i =

T
(h+1)
i

W
(h+1)
i

W
(h)
i

T
(h)
i

, h = 1, 2, 3, (1)

where T
(h)
i =

∑

j:hij=h Tij is the total duration of calls from location i to all locations at hierarchical distance h.

Defining the weight of node i, wi =
∑

j Tij , as the total duration of calls originating from node i (including self-loops),

W
(h)
i =

∑

j:hij=h wj is the total duration of calls originating from locations at a hierarchical distance h from location

i. The ratio T
(h)
i /W

(h)
i measures the relative strength of communication between location i and the locations at

a hierarchical distance h from it. In particular, this ratio corresponds to the amount of communication sent to all

locations at hierarchical distance h per unit of communication produced there. The damping value q
(h)
i hence measures

the relative importance of locations at hierarchical distance h+1 compared to those at hierarchical distance h from i.

For example, q
(h)
i = 1 for all h means that communication from i is independent of the hierarchical distance, because

there is no damping in the amount of communication sent per unit of communication produced as the hierarchical
distance increases. Figure 2k shows the distributions of the damping values in the UK, all well peaked around a
strikingly similar mean value which does not substantially change with the hierarchy level (h = 1, 2, 3), Table I.
Similar observations are made for all studied countries (Figs. S1–S4). This finding - signing a structural discontinuity
of human interactions - and its consequences on modeling, see below, is our main discovery. It means that the damping

effect of a boundary is approximately the same irrespective of the level h and origin location i, i.e. q
(h)
i ≃ q. If the

probability for two people who live in the same L3 region to communicate is p0, it will be qp0 for people living in
different L3 regions but in the same L2 region, q2p0 if they live in the same L1 but different L2 region and q3p0 if
they live in different L1 regions, Fig. 3b.

Why and how standard models fail

Using a standard quality of fit statistic (Methods) and comparing distributions of high level per low level regions,
we tested to which extent the most widely used models, namely gravity[13] and radiation[14], commit a systematic
bias by failing to account for the observed boundary effects. To this end, we compute the communication networks
predicted by these models as well as the corresponding partitions resulting from the community detection algorithm
(Methods). As previously demonstrated elsewhere[14], the gravity model strongly underestimates and fails to predict
high-range flows, i.e. flows between locations where the number of calls is high (Fig. 4a andFigs. S5a to S8a). This
certainly explains why the gravity model generates less and larger L1 regions whose subdivisions do not follow the
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narrow distributions observed in the data (Fig. 2b and 2g). The damping value predicted by the gravity model is
otherwise well peaked, although its average values vary from one h level to another (Table I). In contrast, the radiation
model overestimates long-range flows (Fig. 4b), resulting in more and smaller L1 regions (Fig. 2c). Therefore, the
distribution of L3 within L2 regions is, although well-peaked, shifted to the left (Fig. 2h). The distribution of damping
values in the radiation model is moreover strongly spread out (Fig. 2m and Table I), and does not reproduce the
existence of a single typical damping parameter. Similar systematic biases of gravity and radiation models become
evident if we measure the probability Pdist(d) of a call between locations at distance d (Fig. S9).

Accounting for strong border effects with the Hierarchy model

The two most commonly used models thus fail to reproduce the boundary effect. By design, a model taking into
account the observed hierarchical structures by assuming a constant damping value q, would overcome this issue
(Fig. 3b). Consider the minimal model in the stylized form Tij ∝ Nijq

hij , where Nij represents the potential
pairs of contacts between two distinct locations i and j and qhij the probability for two people from these locations
to communicate. This model would implement highly discretized hierarchical distances instead of considering a
continuum of geographical distances. Similarly to the gravity model, Nij can be taken as proportional to the weight
wi and wj of both origin and destination locations. We therefore propose a simple hierarchy model that predicts an
interaction strength as

THier
ij = Ciwiwjq

hij , (2)

where 0 < q < 1 is a parameter to be determined and Ci are local normalization factors ensuring wHier
i = wi. This

normalization also ensures that the damping values are constants, qHier
i = q (Supplementary Information). The best-

fit values of q are very close to the observed values (Table I and Table S2) and robust to small variation (Fig. S10).
These values slightly depend on the country, varying between 0.10 and 0.25, reflecting differences in the structural
properties of the studied networks. The hierarchy model reproduces almost perfectly the nested structure of regions
(Figs. 2d and 2i). To our surprise, the hierarchy model also outperforms the state-of-the-art models in terms of
goodness of fit measures (Table II and Extended Table 3). In particular, it estimates high-range flows with a greater
accuracy than the radiation or gravity models, as can be seen on the top right corners of Fig. 4c and Figs. S5c to S8c,
where the markers are typically closer to the equality line than in state-of-the-art models.

DISCUSSION

Focusing on flows between locations at specific hierarchical distance, the goodness of prediction of the different mod-
els is informative to understand why the hierarchy model outperforms the others. The radiation model overestimates
the flows at h = 1, 2, the corresponding markers being above the equality line in Fig. 4f and Figs. S5f to S8f resulting
in an overall overestimation quantified by values of Rh=1,2 (Methods) greater than 1 (Table III), and underestimates
those at h = 3, 4. On the contrary, the gravity model underestimates the flows at h = 1, 2 and overestimates those at
h = 3, 4 (Table III, Fig. 4e, Figs. S5e to S8e). The hierarchy model produces more balanced predictions (Rh closer to
1) and thus outperforms existing models.

The hierarchy model requires the knowledge of the communication flows in order to determine the three hierarchical
levels each location belongs to. However, it can also be applied in the absence of communication data, using the
administrative boundaries and a general damping value q = 0.2 which matches robustly all countries (Extended Data
Fig. 10). The resulting hierarchy-admin model based on this administrative partition, is parameter-free and yet it
provides similar or sometimes better estimates than the gravity model in terms of communication flow (Fig. 4k,
Figs. S5k to S8k: see in particular the case of high-range flow in Portugal and Ivory Coast) or benchmark measures
(Table II and Extended Data Table 3). We also tested different constraint conditions and deterrence functions f in

the hierarchy model THier
ij = Ciw

α
i w

β
j f(hij). We compared them to multiple variations of the gravity and radiation

models which are widely outperformed by hierarchy models (Supplementary Information).
In summary, we first defined communication flows-induced boundaries by applying standard community detection

methods on large-scale human interaction networks and found that these networks have a nested structure reflecting
historic, socio-political borders which can be related to the structure predicted by CPT. We introduced the notion
of damping parameter, representing the normalized ratio of interactions between locations at different hierarchical
distances, to quantify the inhibiting effect of boundaries. Surprisingly, the distributions of damping parameters are
well-peaked and largely independent of the hierarchical level, revealing a structural discontinuity effect in each studied
country. We further showed that current models of human interaction, based only on population and/or geographical
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distance, cannot correctly reproduce the characteristic hierarchical structure of interaction networks. We proposed
a simple model based on the discrete hierarchical distance that outperforms the state-of-the-art models of human
interaction in a number of different countries, demonstrating its general applicability and emphasizing the impact of
the borders on human interactions. The development of more sophisticated models combining both geographic and
socio-political information will further boost our ability to understand and reproduce the structure of social systems.

METHODS

Telephone call data

We consider several country-wide data sets of telephone calls, including the four European countries of the UK,
France, Portugal and an anonymized Country X, and Ivory Coast. All data sets comprise mobile phone data with
the exception of landline calls in the UK. Data was provided by single phone providers with possibly heterogeneous
coverage over the respective countries - we have no information on local market shares and on resulting possible
inhomogeneities in spatial coverage. Specific details of the different datasets are provided in Extended Data Table
1, all of them gathering millions of users making billions of calls during time frames ranging from 1 to 15 months.
We construct interaction networks between different locations of a country based on the aggregated duration of calls
having origin in the first and destination in the second location. This process generates weighted directed networks in
which loop edges from locations to themselves are also considered, and where the link weight Tij between a location
i and location j is defined as the total duration (or, in case of Country X, total number) of calls from location i
to location j. The nodes of the network are the locations, corresponding to exchange areas or cell towers areas as
reported in Extended Data Table 2. In all datasets, the users are attached to the actual locations where the calls
occur (i.e. not necessarily their residential locations).

Network partitioning

A recently developed algorithm for community detection, referred to as “Combo”[3, 4, 8] is applied to the extracted
communication networks to detect communities of highly connected locations. The method follows a standard modu-
larity optimization approach[15, 16], scoring the edges of the networks according to their relative strength compared
to a null-model based on the weight of the nodes they connect and aiming at maximizing the cumulative score inside
the communities. Given a partition of the nodes in a set of clusters ci, the modularity score Q is given by

Q =
1

W

∑

ij

[

Tij −
wiwj

W

]

δ(ci, cj), (3)

where Tij is the weight of the link between node i and node j, wi =
∑

j Tij is the weight of node i and W =
∑

i wi/2 is
the total weight of the network. While the outcome of partitioning networks is in general not qualitatively dependent on
the particular algorithm used, the Combo algorithm has the ability to consistently provide the best results in terms of
modularity score compared to other algorithms[17]. The modularity optimization approach yields communities whose
size and properties are only based on the informations of the links’ weights. See[18] for a more explicit interpretation
of the modularity, its properties and limits.

Applying the Combo algorithm yields a first partition of the network into communities, further referred to as
“level 1” or “L1” partition. To obtain the substructure of these communities, we iteratively apply the Combo
algorithm on each L1 community, thus creating a“level 2” or “L2” community partition, and and then again on
each L2 community, thus creating a “level 3” or “L3” community partition. We find that most of the L1 and L2

communities display a clear substructure with high values of internal modularity scores, typically around 0.4 and
0.7 (Supplementary Table I). The resulting communities consists in geographically cohesive regions, which can seem
surprising since the algorithm uses only the networks topology and no geographical information, such as the distance
between the nodes (Supplementary). This cohesiveness is also linked to the spatial scale of the studied network: we
would not expect any contiguous communities if that analysis was done at a city scale, where the movements and
communications of individuals are more evenly distributed in space.

Interactions models and goodness measures

The radiation model is a parameter-free model recently introduced in the context of migration patterns[14]. Given
the geographic distance dij between two locations i and j, the model predicts that the flow of individuals moves Tij
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between these two distinct locations will depend on the population at the origin, the population at the destination
and on the population sij within the circle of radius dij centered on the origin location i. Applied to our case (using
the total communication wi at location i as a proxy for its population), the radiation model is written as

TRadiation
ij = Ci

wiwj

(wi + sij)(wi + wj + sij)
, (4)

where sij =
∑

k, 0<dik<dij
wk is the total amount of communication originating from locations at a distance shorter

than dij from location i and Ci is a normalization factor ensuring that the predicted total activity of each node is the
same than the actual one, i.e.

∑

j 6=i T
Radiation
ij =

∑

j 6=i Tij . The model is otherwise parameter-free.
The gravity model is one of the oldest models describing human mobility and interaction, formulated in analogy

to Newton’s law of gravity. The classical form predicts that the interaction strength between two distinct locations
varies with the distance between them according to a power law:

TGravity
ij = Cwα

i w
β
j d

γ
ij , (5)

where C is a global normalization constant ensuring that
∑

i, j 6=i T
Gravity
ij =

∑

i, j 6=i Tij and α, β, and γ are parameters
to fit.

We also computed the generalized version of the radiation model proposed in[19], as well as different versions
of the gravity and hierarchy models, comparing the results obtained using a power law or exponential deterrence
function (Supplementary Information). All parameters in these models were estimated through a regression analysis
minimizing the deviance E [20], a measure based on the log-likelihood of model compared to a sturated model that
can be interpreted as a generalization of the residual sum of squares R2.

We also quantify the fits between communication networks and models through different benchmark measures,
namely the Dice distance D, the Sorensen distance S, and the cosine distance C defined by:

D(A,M) =

∑

ij (Mij −Aij)
2

∑

ij M
2
ij +

∑

ij A
2
ij

(6)

S(A,M) =

∑

ij |Mij −Aij |
∑

ij (Mij +Aij)
(7)

C(A,M) = 1−

∑

ij MijAij
√

∑

ij M
2
ij

√

∑

ij A
2
ij

. (8)

These three benchmark measures cover most families of distance measures[21], which allows us to ensure that our
findings are stable with respect to the distance measure used. They all vary between 0 and 1 and the lower they are,
the more similar the model is to the original data.

Finally, we also computed the correlation corr between each model and the data defined by

corr(A,M) =

∑

ij(Mij − 〈Mij〉)(Aij − 〈Aij〉)
√

∑

ij(Mij − 〈Mij〉)2
√

∑

ij(Aij − 〈Aij〉)2
(9)

which is a measure of similarity varying between -1 and 1 (the closer to 1, the higher the similarity).

Over- and underestimation measure

In order to determine whether a given subset of links are over- or underestimated by the models, we define for any
given set E of links, the following ratio:

RE(A,M) =

∑

ij∈E Mij
∑

ij∈E Aij

. (10)

where we use the notation A for the data and M for the model. Values of RE larger (resp. smaller) than 1 hence
correspond to an overestimation (resp. underestimation) of the model. The measure RE provides an aggregated
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knowledge dominated by link weights.
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TABLE I. Values of the damping value q for the actual and modeled networks in the UK.

Data set / Network 〈q(1)〉 〈q(2)〉 〈q(3)〉
Data 0.180±0.002 0.143±0.002 0.144±0.002
Gravity 0.331±0.005 0.234±0.003 0.167±0.002
Radiation 8.180±6.039 6.156±3.922 3.753±1.687
Hierarchy 0.139±0.000 0.139±0.000 0.139±0.000
Hierarchy-Admin 0.2±0.0 0.2±0.0 0.2±0.0

TABLE II. Benchmark measures quantifying the goodness of fit in the UK. The Dice (D), Sorensen (S), Cosine
(C) and deviance (E) are four different measures of the distance between the actual and modeled networks. The correlation
corr measures a similarity between a model and the data. The parameters of the gravity and hierarchy models were chosen to
minimize the value of E.

Model E×10−12 D S C corr parameters
Gravity 0.494 0.456 0.448 0.456 0.543 α = 0.65, β = 0.65, γ = −1.46
Radiation 1.622 0.624 0.632 0.344 0.656
Hierarchy 0.464 0.233 0.437 0.231 0.768 q = 0.139
Hierarchy-Admin 0.679 0.503 0.527 0.458 0.540 q = 0.2 (imposed)

TABLE III. Over- / under-estimation measures of link at specific hierarchical distance in the UK.

Model Rh=1 Rh=2 Rh=3 Rh=4

Gravity 0.54 0.73 1.15 1.33
Radiation 2.39 1.47 0.67 0.16
Hierarchy 1.10 0.73 0.90 1.18
Hierarchy-Admin 0.25 0.73 1.43 1.30
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FIG. 1. Partitioning of a country based on telephone call networks. Hierarchical distances between two locations are
defined through three regional levels - either administrative ones or those found by applying iterative community detection on
human interaction networks. Two distinct locations are at a hierarchical distance h = 1 if they are in the same L3 region,
h = 2 if they are in different L3 regions but in the same L2 region, h = 3 if they are in different L2 regions but in the same L1

region and h = 4 if they are in different L1 regions. Note that a higher hierarchical distance does not necessarily correspond to
higher geographical distance.
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FIG. 2. Hierarchical properties of spatial organization from human interactions. a–e, Maps of L1 communities in
telephone call networks detected from data and from various interaction models. Black lines correspond to the administrative
partitioning of the 11 NUTS1 regions of UK, colored areas to regions detected by a community detection algorithm applied
to (a) the data, and to the (b) gravity, (c) radiation, (d) hierarchy, and (e) administrative models. All detected regions are
cohesive although some of the distinct colors used may appear similar. f–j, Probability distribution of number of subregions
by region found in (f) the actual network and (g–j) in each model. The gravity model (g) underestimates the number of L1

communities but overestimates the numbers of subregions within regions. The radiation model (h) strongly overestimates the
number of L1 communities. The hierarchy model (i) correctly determines the distributions of sub-communities per community.

k–o, Probability distributions of damping values q(h). The hierarchy model (n) assumes a constant damping value for all levels.
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Maarten Vanhoof,7 Zbigniew Smoreda,7 Albert-László Barabási,4, 8, 9 and Carlo Ratti1
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SUPPLEMENTARY TABLES

TABLE I. (Table S1) Properties of the data sets. Country-wide telephone data sets are provided by single telephone operators,

covering different time frames, with different numbers of phones, calls, total call durations and on various spatial resolutions. The

abbreviations bn. and m. stand for billion and million, respectively. Resolution numbers are given as approximate values. These locations

constitute the nodes of the corresponding telephone call networks, while the sum of durations of calls between locations span their weighted

links. The last columns report the percentage of non-zero links between pairs of nodes in the extracted network and whether to not that

network is directed. The durations of calls are unknown in the case of Country X. All datasets corresponds to mobile phone network

except for UK, where the dataset corresponds to a landline network.

Data set Calls Duration (s) Phones Time Spatial resolution ρlinks Directed
France 218 m. 47 bn. 17.6 m. 1 month 8,800 areas 11.6% yes
UK 7.6 bn. 452 bn. 47 m. 1 month 4,800 areas 37.6% no

Portugal 440 m. 56 bn. 1.6 m. 15 months 2,200 cell towers 83.1% yes
Country X 1.1 bn. - 6.9 m. 12 months 9,400 cell towers 28.0% yes
Ivory Coast 62 m. 7 bn. 5m. 6 months 1,250 cell towers 84.2% no
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TABLE II. (Table S2) Values of the damping parameter q for the actual and modeled networks in France, Portugal,
Country X and Ivory Coast.

Data set / Network 〈q(1)〉 〈q(2)〉 〈q(3)〉
UK / Data 0.180±0.002 0.143±0.002 0.144±0.002
UK / Gravity 0.331±0.005 0.234±0.003 0.167±0.002
UK / Radiation 8.180±6.039 6.156±3.922 3.753±1.687
UK / Hierarchy 0.139±0.000 0.139±0.000 0.139±0.000
UK / Hierarchy-Admin 0.2±0.0 0.2±0.0 0.2±0.0
Portugal / Data 0.324±0.032 0.331±0.006 0.286±0.005
Portugal / Radiation 4.639±1.881 6.759±2.254 198.3±186.4
Portugal / Gravity 0.487±0.004 0.527±0.005 0.377±0.003
Portugal / Hierarchy 0.258±0.000 0.258±0.000 0.258±0.000
Portugal / Hierarchy-Admin 0.200±0.000 0.200±0.000 0.200±0.000
France / Data 0.196±0.007 0.290±0.081 0.154±0.004
France / Radiation 13.60±5.42 656.8±507.2 25648±24798
France / Gravity 0.287±0.003 0.263±0.002 0.166±0.002
France / Hierarchy 0.158±0.000 0.158±0.000 0.158±0.000
France / Hierarchy-Admin 0.200±0.000 0.200±0.000 0.200±0.000
Country X / Data 0.237±0.002 0.168±0.002 0.056±0.001
Country X / Radiation 38.52±19.41 9439±6096 288.4±189.2
Country X / Gravity 0.329±0.005 0.286±0.009 0.135±0.001
Country X / Hierarchy 0.114±0.000 0.114±0.000 0.114± 0.000
Country X / Hierarchy-Admin 0.200±0.000 0.200±0.000 0.200±0.000
Ivory Coast / Data 0.324±0.005 0.251±0.005 0.262±0.005
Ivory Coast / Radiation 9.465±4.055 5.475±2.664 3.328±1.404
Ivory Coast / Gravity 0.619±0.006 0.577±0.005 0.489±0.004
Ivory Coast / Hierarchy 0.255±0.000 0.255±0.000 0.255±0.000
Ivory Coast / Hierarchy-Admin 0.200±0.000 0.200±0.000 0.200±0.000

TABLE III. (Table S3) Benchmark measures quantifying the goodness of fit in Portugal, France, Country X and
Ivory Coast. The Dice (D), Sorensen (S), Cosine (C) and deviance (E) are four different measures of the distance between
the actual and modeled networks. The correlation corr measures a similarity between a model and the data. The parameters
of the gravity and hierarchy models were chosen to minimize the value of E.

Country / Model E×10−9 D S C corr fitted parameters
Portugal / Radiation 314.1 0.781 0.739 0.476 0.525
Portugal / Gravity 79.80 0.865 0.419 0.844 0.145 α = 0.81, β = 0.79, γ = −0.71
Portugal / Hierarchy 66.66 0.346 0.404 0.308 0.683 q = 0.258
Portugal / Hierarchy-Admin 74.20 0.456 0.416 0.362 0.627 q = 0.278
France / Radiation 227.758 0.618 0.647 0.270 0.730
France / Gravity 90.905 0.267 0.524 0.185 0.815 α = 0.69, β = 0.69, γ = −1.44
France / Hierarchy 73.524 0.341 0.514 0.267 0.733 q = 0.158
France / Hierarchy-Admin 80.686 0.212 0.529 0.207 0.793 q = 0.192
Country X / Radiation 3.701 0.577 0.638 0.356 0.644
Country X / Gravity 1.483 0.472 0.467 0.470 0.529 α = 0.81, β = 0.78, γ = −1.06
Country X / Hierarchy 1.120 0.255 0.456 0.252 0.748 q = 0.114
Country X / Hierarchy-Admin 2.076 0.743 0.547 0.565 0.434 q = 0.158
Ivory Coast / Radiation 268.18 0.701 0.703 0.358 0.645
Ivory Coast / Gravity 68.17 0.577 0.413 0.460 0.519 α = 0.94, β = 0.94, γ = −0.51
Ivory Coast / Hierarchy 42.90 0.228 0.351 0.217 0.775 q = 0.255
Ivory Coast / Hierarchy-Admin 65.98 0.437 0.430 0.309 0.681 q = 0.394
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TABLE IV. (Table S4) Over- / under-estimation measures of link at specific hierarchical distance in France,
Portugal, Country X and Ivory Coast.

Country / Model Rh=1 Rh=2 Rh=3 Rh=4

UK / Gravity 0.54 0.73 1.15 1.33
UK / Radiation 2.39 1.47 0.67 0.16
UK / Hierarchy 1.10 0.73 0.90 1.18
UK / Hierarchy-Admin 0.25 0.73 1.43 1.30
Portugal / Radiation 3.95 1.02 0.33 0.08
Portugal / Gravity 0.54 0.75 1.09 1.27
Portugal / Hierarchy 1.10 0.95 0.85 1.10
Portugal / Hierarchy-Admin 0.70 1.14 1.17 0.93
France / Radiation 2.56 1.12 0.42 0.10
France / Gravity 0.60 0.91 1.31 1.16
France / Hierarchy 0.91 0.75 0.88 1.34
France / Hierarchy-Admin 0.42 0.98 0.84 1.58
Country X / Radiation 2.53 0.76 0.28 0.11
Country X / Gravity 0.81 0.94 1.03 0.52
Country X / Hierarchy 1.25 0.59 0.58 2.09
Country X / Radiation 3.95 1.02 0.33 0.08
Country X/ Hierarchy-Admin 0.12 0.43 1.59 2.60
Ivory Coast / Radiation 4.51 1.79 0.63 0.12
Ivory Coast / Gravity 0.29 0.47 1.02 1.33
Ivory Coast / Hierarchy 1.18 0.86 0.94 1.03
Ivory Coast / Hierarchy-Admin 0.74 1.03 1.13 0.99
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FIG. 1. (Figure S1) Hierarchical properties of spatial organization from human interactions in Portugal. a–e,
Maps of L1 communities in telephone call networks detected from data and from various interaction models. Black lines corre-
spond to the administrative partitioning of the 5 NUTS1 regions of Portugal, colored areas to regions detected by a community
detection algorithm applied to (a) the data, and to the (b) gravity, (c) radiation, (d) hierarchy, and (e) administrative models.
All detected regions are cohesive although some of the distinct colors used may appear similar. f–j, Probability distribution
of number of subregions by region found in (f) the actual network and (g–j) in each model. The gravity model (g) under-
estimates the number of L1 communities but overestimates the numbers of subregions within regions. The radiation model
(h) strongly overestimates the number of L1 communities. The hierarchy model (i) correctly determines the distributions of

sub-communities per community. k–o, Probability distributions of damping values q(h). The hierarchy model (n) assumes a
constant damping value for all levels.
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FIG. 2. (Figure S2) Hierarchical properties of spatial organization from human interactions in France. a–e, Maps
of L1 communities in telephone call networks detected from data and from various interaction models. Black lines correspond to
the administrative partitioning of the 22 NUTS1 regions of France, colored areas to regions detected by a community detection
algorithm applied to (a) the data, and to the (b) gravity, (c) radiation, (d) hierarchy, and (e) administrative models. All
detected regions are cohesive although some of the distinct colors used may appear similar. f–j, Probability distribution of
number of subregions by region found in (f) the actual network and (g–j) in each model. The gravity model (g) underestimates
the number of L1 communities but overestimates the numbers of subregions within regions. The radiation model (h) strongly
overestimates the number of L1 communities. The hierarchy model (i) correctly determines the distributions of sub-communities

per community. k–o, Probability distributions of damping values q(h). The hierarchy model (n) assumes a constant damping
value for all levels.
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FIG. 3. (Figure S3) Hierarchical properties of spatial organization from human interactions in Ivory Coast.
a–e, Maps of L1 communities in telephone call networks detected from data and from various interaction models. Black lines
correspond to the administrative partitioning of the 19 administrative regions of Ivory Coast, colored areas to regions detected
by a community detection algorithm applied to (a) the data, and to the (b) gravity, (c) radiation, (d) hierarchy, and (e)
administrative models. All detected regions are cohesive although some of the distinct colors used may appear similar. f–j,
Probability distribution of number of subregions by region found in (f) the actual network and (g–j) in each model. The gravity
model (g) underestimates the number of L1 communities but overestimates the numbers of subregions within regions. The
radiation model (h) strongly overestimates the number of L1 communities. The hierarchy model (i) correctly determines the

distributions of sub-communities per community. k–o, Probability distributions of damping values q(h). The hierarchy model
(n) assumes a constant damping value for all levels.
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FIG. 4. (Figure S4) Hierarchical properties of spatial organization from human interactions in Country X. a–e,
Probability distribution of number of subregions by region of Country X found in (a) the actual network and (b–e) in each
model. The gravity model (b) underestimates the number of L1 communities but overestimates the numbers of subregions
within regions. The radiation model (c) strongly overestimates the number of L1 communities. The hierarchy model (d)
correctly determines the distributions of sub-communities per community. f–i, Probability distributions of damping values
q(h). The hierarchy model (h) assumes a constant damping value for all levels. Maps of of L1 communities are not shown as
in other countries due to our non-disclosure agreement with the data providers from Country X.
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FIG. 5. (Figure S5) Comparison of model predictions in Portugal. a–d, Comparison of the actual total communication
to the predicted communication for each pair of distinct locations, for the (a) gravity, (b) radiation, (c) hierarchy, and (d)
administrative models. Gray markers are scatter plots for each pair of locations. A box is colored green if the equality line
y = x lies between the 9th and 91th percentiles in that bin and is red otherwise. Red boxes hence emphasize significant biases
of the models. Black circles correspond to the average total communication of the pairs of locations in that bin. e–h, Goodness
of prediction with respect to the hierarchical distance h, for the (e) gravity, (f) radiation, (g) hierarchy, and (h) administrative
models. Gray markers are scatter plots for each pair of locations. Error bars show the corresponding 9th and 91th percentiles of
total communication values. i–l, For each L3 community, comparison of the fractions of activity of model versus data between
that L3 community and L3 communities at different hierarchical distances, for the (i) gravity, (j) radiation, (k) hierarchy and
(l) administrative models.
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FIG. 6. (Figure S6) Comparison of model predictions in France. a–d, Comparison of the actual total communication
to the predicted communication for each pair of distinct locations, for the (a) gravity, (b) radiation, (c) hierarchy, and (d)
administrative models. Gray markers are scatter plots for each pair of locations. A box is colored green if the equality line
y = x lies between the 9th and 91th percentiles in that bin and is red otherwise. Red boxes hence emphasize significant biases
of the models. Black circles correspond to the average total communication of the pairs of locations in that bin. e–h, Goodness
of prediction with respect to the hierarchical distance h, for the (e) gravity, (f) radiation, (g) hierarchy, and (h) administrative
models. Gray markers are scatter plots for each pair of locations. Error bars show the corresponding 9th and 91th percentiles of
total communication values. i–l, For each L3 community, comparison of the fractions of activity of model versus data between
that L3 community and L3 communities at different hierarchical distances, for the (i) gravity, (j) radiation, (k) hierarchy and
(l) administrative models.
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FIG. 7. (Figure S7) Comparison of model predictions in Ivory Coast. a–d, Comparison of the actual total communi-
cation to the predicted communication for each pair of distinct locations, for the (a) gravity, (b) radiation, (c) hierarchy, and
(d) administrative models. Gray markers are scatter plots for each pair of locations. A box is colored green if the equality line
y = x lies between the 9th and 91th percentiles in that bin and is red otherwise. Red boxes hence emphasize significant biases
of the models. Black circles correspond to the average total communication of the pairs of locations in that bin. e–h, Goodness
of prediction with respect to the hierarchical distance h, for the (e) gravity, (f) radiation, (g) hierarchy, and (h) administrative
models. Gray markers are scatter plots for each pair of locations. Error bars show the corresponding 9th and 91th percentiles of
total communication values. i–l, For each L3 community, comparison of the fractions of activity of model versus data between
that L3 community and L3 communities at different hierarchical distances, for the (i) gravity, (j) radiation, (k) hierarchy and
(l) administrative models.
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FIG. 8. (Figure S8) Comparison of model predictions in Country X. a–d, Comparison of the actual total communi-
cation to the predicted communication for each pair of distinct locations, for the (a) gravity, (b) radiation, (c) hierarchy, and
(d) administrative models. Gray markers are scatter plots for each pair of locations. A box is colored green if the equality line
y = x lies between the 9th and 91th percentiles in that bin and is red otherwise. Red boxes hence emphasize significant biases
of the models. Black circles correspond to the average total communication of the pairs of locations in that bin. e–h, Goodness
of prediction with respect to the hierarchical distance h, for the (e) gravity, (f) radiation, (g) hierarchy, and (h) administrative
models. Gray markers are scatter plots for each pair of locations. Error bars show the corresponding 9th and 91th percentiles of
total communication values. i–l, For each L3 community, comparison of the fractions of activity of model versus data between
that L3 community and L3 communities at different hierarchical distances, for the (i) gravity, (j) radiation, (k) hierarchy and
(l) administrative models.
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FIG. 9. (Figure S9) Comparing the model predictions. The proportion Pdist(r) of communication occurring between
two locations at a distance r (in km) from each other, is measured in the data and in the models. The radiation model is
characterized by a lower than actual proportion of communication between distant (more than 100km) locations up to two
orders of magnitude. It also presents a higher than actual proportion of communication between close (less than 10km with
a peak between 0.5 and 5 km depending on the country) locations up to one order of magnitude. The gravity model presents
in all countries a higher than actual proportion of communication between very close locations (100m-1km). In general, it
also overestimates the low-range fluxes by 2 to 3 orders of magnitude and slightly underestimates the top-range fluxes. The
hierarchy model fits almost perfectly at low distances (less than 10km). Depending on the country, it only deviates slightly
from the data at top-range fluxes or estimates them properly. The fit of the hierarchy-admin model depends strongly on the
country, but qualitatively comparable to the gravity and hierarchy models.
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FIG. 10. (Figure S10) Stability analysis: benchmark measures of the Hierarchy and Hierarchy-Admin models
with varying parameter q. The dashed lines and circle markers show the ‘optimal’ values of q (reported in Supplementary
Table 2) minimizing the deviance E. In all countries, either for the hierarchy or hierarchy-admin model, these optimal values of
q are also close to those minimizing the Dice (D), Sorensen (S) and Cosine (C) distances and maximizing the correlation (corr)
between the data and the models. These optimal values are also stable, in the sense that close values of q (roughly between 0.1
and 0.3) still provide benchmark measures close to their optimum. The dotted lines in the case of the Hierarchy-Admin model
indicate the damping value q = 0.2 matching robustly all countries.



14

SUPPLEMENTARY TEXT

Data partition versus administrative regions

Partition overlap measures
We use three classical measures of clustering similarity to quantify partition overlaps, i.e. of how well two different

partitions of the same set of locations match: Rand’s criterion R [? ], Jaccard index J [? ] and the Fowlkes and
Mallows index F [? ]. Consider two partitions C and C′ of a set of n nodes and note

• n11 the number of pairs of nodes in the same community both in C and C′;

• n01 the number of pairs of nodes not in the same community in C but in the same community in C′;

• n10 the number of pairs of nodes in the same community in C but not in the same community in C′;

• n00 the number of pairs of nodes in different communities both in C and C′.

All types of pairs being taken into account, we have n11 +n01 +n10 +n00 = n(n− 1)/2. The R, J and F indices are
then defined by:

R =
2(n11 + n00)

n(n− 1)
, J =

n11

n11 + n10 + n01
, F =

n11
√

(n11 + n10)(n11 + n01)
(1)

which are different ways of quantifying how well the partitions match pairs of nodes. The values of R,J ,F lie between
0 and 1, and values close to 1 indicate a perfect match between the two compared partitions. However, even for the
case of two completely unrelated clusterings, all indices are in general strictly larger than zero, more so for R [? ].
Therefore, to have a baseline, we calculated the average indices over 10000 random shufflings of the nodes’s clusters,
denoted by R̄r, J̄r and F̄r (see Table V).

Results
The partitions obtain for levels L1, L2 and L3 correspond in general to geographically cohesive regions, and are

rather similar to administrative regions in number and size. As previously noted in [? ? ? ] (from which the
partitions resulting from the Combo algorithm for UK and Portugal are reproduced), these results may come as a
surprise regarding that the modularity approach of the Combo algorithm has no spatial constraint nor does it impose
any restriction on the number of communities.

The partition overlap measures given in Table V, together with p-values assessing the statistical significance of the
partition with respect to a null model in which communities of cell towers were randomly reshuffled, quantitatively
confirm the similarity between the administrative partitions (we choose to refer to the european Nomenclature of
Territorial Units for Statistics - or NUTS - standard for the european countries) and the Combo partition. For
example, the L1 UK partitioning shows values of R = 0.954 with a baseline R̄r = 0.825, J = 0.618 with a baseline
J̄r = 0.049, and F = 0.769 with a baseline F̄r = 0.096 - with all significance measures (p < 10−4) indicating a good
match between the administrative and the Combo partitions. Going a step further and comparing the L2 and L3

communities with NUTS regions of corresponding levels, the match between the Combo and administrative partitions
is still good, as indicated by significantly higher than average overlap measures. The L2 UK partitioning hence shows
values of R = 0.972 with a baseline R̄r = 0.957, J = 0.222 with a baseline J̄r = 0.007, and F = 0.439 with a baseline
F̄r = 0.018 and the L3 UK partitioning shows values of R = 0.988 with a baseline R̄r = 0.986, J = 0.099 with a
baseline J̄r = 0.001, and F = 0.292 with a baseline F̄r = 0.004. Note that while all these values stay significant,
the differences between the Combo / administrative overlap values and the random / administrative overlap values
decrease when we look at more fine-grained partitions. This has to be expected since the deviations between the
Combo and administrative partition can only increase with the level of partition as the deviations at a given level
automatically impact the successive levels. Similar results can be drawn from the other countries, see Table V.
Table V also display the modularity scores Q∗

Combo and Q∗
off of the Combo and administrative partitions at

the different levels. To be consistent with the procedure of the Combo algorithm, which builds the level n + 1
subpartition by decomposing each community of the level n partition, these modularity scores indicate in case of L2

(resp. L3) partitions the average modularity score of each subpartition defined with respect to a subnetwork inside
each corresponding L1 (resp. L2) community. Our measures show that the Combo partition always has a better
modularity score than the administrative partition. The modularity scores also decrease when we look at higher level
partitions, indicating that the L1 communities are the most relevant.
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Interpretation
The similarity between the regions emerging from the communication network through the Combo procedure and

the administrative boundaries can be interpreted as a natural evidence towards the latter’s validity [? ? ]. In view of
the deviation between the two partitions, Combo partitioning appears to be more aligned with human interactions,
as measured by the modularity score, suggesting that the border of administrative regions sometimes deviates from
the underlying reality of interactions. Most interestingly, the partitioning created by our approach provides a unified
hierarchical framework to compare the geographical structure of human interactions in different countries, which
present an important alternative to the administrative boundaries whose shape and number depend substantially on
the historical and political context of each country as well as particular local regional delineation policy.

TABLE V. Overlap between the administrative regions and the community found by the Combo algorithm.

Country Network Noff Ncombo Q∗

off Q∗

Combo R(R̄r) J (J̄r) F(F̄r)
UK NUTS1/L1 11 16 0.642 0.657 0.954(0.825) 0.618(0.049) 0.769(0.096)
UK NUTS2/L2 36 150 0.490 0.631 0.972(0.957) 0.222(0.007) 0.439(0.018)
UK NUTS3/L3 133 917 0.415 0.472 0.988(0.986) 0.099(0.001) 0.292(0.004)

Portugal NUTS2/L1 5 7 0.445 0.491 0.859(0.669) 0.496(0.113) 0.671(0.206)
Portugal NUTS3/L2 28 44 0.358 0.478 0.935(0.881) 0.314(0.027) 0.523(0.057)
Portugal NUTS4/L3 275 226 0.359 0.361 0.984(0.975) 0.230(0.005) 0.411(0.011)
France NUTS1/L1 22 14 0.638 0.645 0.964(0.874) 0.579(0.033) 0.748(0.066)
France NUTS2/L2 96 108 0.486 0.592 0.994(0.978) 0.609(0.006) 0.758(0.011)
France NUTS3/L3 335 609 0.347 0.405 0.997(0.994) 0.336(0.001) 0.522(0.003)

Country X NUTS1/L1 - 11 0.420 0.453 0.862(0.756) 0.342(0.073) 0.518(0.139)
Country X NUTS2/L2 - 81 0.312 0.480 0.874(0.843) 0.127(0.018) 0.338(0.054)
Country X NUTS3/L3 - 388 0.315 0.341 0.907(0.901) 0.031(0.003) 0.160(0.018)
Ivory Coast regions/L1 19 19 0.666 0.807 0.845(0.761) 0.264(0.055) 0.474(0.118)
Ivory Coast departments/L2 50 209 0.306 0.589 0.900(0.881) 0.097(0.010) 0.308(0.035)
Ivory Coast prefectures/L3 255 1401 0.277 0.452 0.966(0.962) 0.057(0.002) 0.236(0.009)

The “Network” column indicates the levels of the administrative partition and of the community partition that are compared [? ].

Columns Noff and Ncombo respectively refer to the number of NUTS regions and the number of communities found by the community

detection algorithm at the considered level. Columns Q∗

off and Q∗

Combo indicate the average modularity score of all the administrative

or Combo sub-partitions at the considered level. R̄r, J̄r and F̄r give the baselines for Rands criterion R, the Jaccard index J and the

Fowlkes-Mallows index F . The closer R, J or F to 1, the better the overlap of the detected communities with the administrative

regions. The baseline values of the similarity indices are computed on 10000 random shuffling of the nodes’s clusters. For the 3 used

measures, none of these random shufflings is more similar to the administrative partition than the partition found by the community

detection algorithm: the statistical significances of all the similarities have a p-value < 10−4.

Central Place Theory

Classical theories of urban planning have traditionally suggested economical and geographic laws to systematically
determine the arrangement of towns and cities. In particular, the central place theory (CPT) developed by Christaller
[? ? ] seeks to explain the number, size and location of human settlements in an urban system. The basic assumption
of the theory is that settlements function as ‘central places’ providing services to surrounding areas. The hierarchy of
the cities is based on the range of goods and services they provide. Low order goods and services (groceries, bakeries,
post offices) are present in all places, including small and large centers. Higher order goods and services (jewellery,
large malls, universities) are only present in large centers, which are less numerous. These centers are supported by
a large population, including its own and those of the surrounding smaller centers. The lowest settlements should
form an hexagonal lattice, this being the most efficient regular pattern to serve areas without any overlap (in terms of
radial distance and perimeter for a fixed area). Settlements of higher order (villages, cities) should then be regularly
spaced on an hexagonal pattern of higher radius, with their centers placed on centers of hexagons of the lowest order.

Christaller defined K-hexagonal landscapes as arrangements where each higher order settlement is supported by
K − 1 lower order settlements and itself. Christaller and later Lösch [? ] both developed arguments over which value
of K is adapted to describe different situations. For example, K = 3 is suited for sharing local goods (marketing
principle), K = 4 is suited for reducing cost of transport (traffic principle) while K = 7 - a case where each satellite
depends only on one center - is suited for political stability (administrative principle). Christaller conceived these
models as hierarchical, with all higher order places in the hexagon surrounded by lower order places to explain not
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only local but regional economics and spatialization of urban centers, the value of K possibly changing from level to
level.

Filling the gap between CPT and reality, several distortions to the original model have been introduced over time
to account for inhomogeneous population densities, resource locations, or specialization of cities. However, nowadays
CPT is not a part of modern regional science and it has been criticized for being a static theory, not explaining
how central places emerge and develop [? ]. It has also been shown that while CPT is ideally suited to describe
agricultural areas, it is less relevant to describe industrial areas which are highly diversified in nature. But despite
its imperfections, CPT still remains one of the strongest economic theories for understanding the spatial organization
of the society as the hierarchy of urban centers. It has been applied in regional and urban economies, describing the
location of trade and service activity, and for describing consumer market-oriented manufacturing.

Models’ variations

In parallel with the models presented in the main text, we also tested different variations of the gravity, radiation
and hierarchy models to predict human interactivity. In the following section, we present the definition of these
variations and standard benchmark measures quantifying how well these models fit the data. As for the models
presented in the main text, we always use the total amount of communication wi originating from a location i as a
proxy for its population.

Definitions

Radiation model versions The radiation model is a parameter-free model recently introduced in the context of
migration patterns [? ]. Given the distance dij between two locations i and j, the model predicts that the flux of
individual moves Tij between those two locations will depend on the population at the origin, the population at the
destination and on the population sij within the circle of radius dij centered on the origin location i. Applied to our
case, the radiation model is written as

TRad
ij = Ci

wiwj

(wi + sij)(wi + wj + sij)
= Ciwi

(

1

wi + sij
−

1

wi + wj + sij

)

, (2)

where sij =
∑

k, 0<dik<dij
wk is the total amount of communication originating from locations at a distance shorter

than dij from location i and Ci is a normalization factor ensuring that the predicted total activity of each node is the
same as the actual one, i.e.

∑

j 6=i T
Rad
ij =

∑

j 6=i Tij . The model is otherwise parameter-free.

We also applied the generalized version of the radiation model proposed in [? ], introducing a parameter λ which
can be interpreted in our case as a fraction of individuals people will not consider as potential contacts because of
lack of information about them of other reasons. This version of the radiation model can be written as

TGenRad
ij = Ci wi

1

1− λ

(

1− λwi+sij

wi + sij
−

1− λwi+wj+sij

wi + wj + sij

)

. (3)

where Ci is again a normalization factor ensuring that
∑

j 6=i T
GenRad
ij =

∑

j 6=i Tij . Notice that the case λ = 0
corresponds to the original radiation model.

Gravity models The gravity model is one of the oldest models describing human mobility and interaction, formu-
lated in analogy to Newton’s law of gravity. Here interaction strength or mobility fluxes between a source i and a
destination j are originally proposed to be related to a function of the distance dij between the two locations and the

product of the (powers of) population at the source an at the destination, TGrav
ij ∼ wα

i w
β
j f(dij). We tested the two

classical forms of the gravity model using a power or an exponential law as deterrence function:

TGravPL
ij = Cwα

i w
β
j d

γ
ij , (4)

TGravEXP
ij = Cwα

i w
β
j exp(−dij/d0) (5)

where in both cases C is a global normalization constant ensuring that
∑

i, j 6=i T
Grav
ij =

∑

i, j 6=i Tij and α, β, γ,

d0 are parameters to fit. For example, taking the logarithm on both sides of Eq. (4), we obtain log TGravPL
ij =



17

logC +α logwi + β logwj + γ log dij . We then use, as is customary, log TGravPL
ij to estimate the different parameters

through a regression analysis [? ]. We selected the set of parameters that minimized the deviance E (see definition in
main text, Methods section). We also computed versions of these models where the population exponents are fixed,
i.e. α = β = 1.

At this point, we observe an often overseen difference between the gravity model relying on a single global nor-
malization factor C and the radiation model relying on local normalization factors {Ci} - one for each location. One
could argue that this difference gives an advantage to the radiation model. For the sake of comparison, we then also
tested locally constrained gravity models that can be written as:

TGravPL loc
ij = Ciwiwjd

γ
ij (6)

TGravEXP loc
ij = Ciwiwj exp(−dij/d0) (7)

where in each case Ci is a normalization factor ensuring that the predicted total activity of each node is the same as
the actual one. This type of constrained model was already presented in [? ] and more recently in [? ].

Hierarchical models The general idea behind the hierarchical model is to simply replace the actual distance used
in the gravity models by a hierarchical distance. In its most generic definition, the hierarchical model predicts an

interaction strength between location i and j to be written as THier
ij = Ciw

α
i w

β
j f(hij), where hij is the hierarchical

distance between these two locations based on the Combo partition or any other partition and f is a deterrence
function. As it is done for the gravity model, one could a priori choose any deterrence function. We tested different
simple forms of hierarchy models, using the hierarchical distances {hij} provided either by the Combo partition or
the administrative partition. Hierarchy models using a global normalization framework - as the usual gravity models
do - read:

THierEXP
ij = Cwα

i w
β
j q

hij (8)

THierPL
ij = Cwα

i w
β
j h

γ
ij , (9)

where C is a global normalization constant, and α, β, γ and q are parameters which we fit by minimizing the deviance
E, see below. We also computed versions of these models where the population exponents are fixed, i.e. α = β = 1.

The locally constrained versions of models given in Eqs. (8) and (9) with fixed population exponent read:

THierEXP loc
ij = Ciwiwjq

hij (10)

THierPL loc
ij = Ciwiwjh

γ
ij , (11)

It turns out that the model given by Eq (10) is naturally related to the notion of damping parameter. Indeed,

assuming β = 1 in the generic functional form THier
ij = Ciw

α
i w

β
j f(hij) and taking into account that the normalization

factor Ci ensures w
Hier
i =

∑

j T
Hier(h)
ij = wi implies

T
Hier(h)
i =

∑

j, hij=h

THier
ij

= Ciw
α
i f(h)

∑

j, hij=h

wj

= Ciw
α
i f(h)

∑

j, hij=h

w
Hier(h)
j

= Ciw
α
i f(h)W

Hier(h)
i

and thus

q
Hier(h)
i =

T
Hier(h+1)
i

T
Hier(h)
i

W
Hier(h)
i

W
Hier(h+1)
i

=
f(h+ 1)

f(h)
, (12)

an equation which immediately implies that choosing an exponential deterrence function f(h) = qh will ensure a

constant damping parameter with respect to the locations and hierarchy levels q
Hier(h)
i = q for all i, h.
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Hierarchical-Admin models The hierarchical models rely on the notion of hierarchical distances between locations,
which depend on a given partition. For cases when the communication network or it’s partitioning are not known, we
can as well defined a model based on Administrative partitions of the countries. In the following, we refer to hierarchy
models based on Administrative partition as ‘hierarchy-admin’ models.

Analysis

Benchmark measures (as defined in main text) of the different models along with their fitted parameters are reported
in Tables VI and VII. We make a number of remarkable observations:

• In every country and according to all benchmark measures, the generalized radiation model is significantly more
appropriate than the original one to describe our communication networks (e.g. in UK, the cosine distance to
the data goes from 0.344 in the original radiation model to 0.195 in the generalized radiation model, similarly
the correlation to the data goes from 0.656 to 0.805).

• Locally constrained models always perform better compared to their ‘global normalization’ counterpart.

• When using an exponential deterrence function, the hierarchy models based on our Combo partition are always
significantly better than the corresponding gravity models, with respect to the deviance or any other benchmark
measure. E.g. in UK, the cosine distance goes from 0.595 in the ‘gravity EXP’ model to 0.278 in the ‘Hierarchy
EXP’ model, similarly the correlation to the data goes from 0.402 to 0.72. The Hierarchy models using the
administrative partition are also slightly better than the corresponding gravity models, except in Country X
where we already observed some bias due to the administrative borders (see section II-D above).

• When using a power law deterrence function, the best model can vary with respect to the benchmark measure
and the studied country. The ‘Gravity PL loc’ model is in general the best one.

• As one could expect, the models where the population exponent α and β are not constrained always have a
lower deviance E than the corresponding models with α = β = 1 (but be aware that a correct comparison of
the performance of the models based on the deviance should also take the number of parameter into account).
According to the other benchmark measures (not used for the fitting), the unconstrained models are also most
often better fit than the constrained ones (e.g. their correlation to data is higher 12 times out of 18) and when
it’s not the case the difference between the fit measures is small.

• In general, the gravity PL model is better than the gravity EXP model. It is the best one regarding all benchmark
measures in UK and Country X, and two out of five measures in Portugal.

• The hierarchy EXP models always fit better than the hierarchy PL models, all measures and countries considered.

The 20 tested models can be ranked according to the average of the benchmark measures taken over all countries,
see Table VIII. While on average the best model is always the constrained ‘Gravity PL loc’ model, the ‘hierarchy
EXP loc’ model presented in the main text is a close second (and first in some countries). 7 of the top 10 models are
versions of the hierarchy model. In particular, the ‘hierarchy-admin EXP loc’ (presented in main text), the ‘hierarchy
PL loc’ and ‘hierarchy PL’ based on a power law deterrence function also outperform the state-of-the-art radiation
and gravity PL models.
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TABLE VI. Benchmark goodness fit measures The Dice (D), Sorensen (S), Cosine (C) and deviance (E) are four different
fit values measuring a distance between the actual and modeled networks. The correlation corr measures a similarity between
the model and the data. The different parameters of the gravity and hierarchy models were chosen to minimize the value of
E. Stars (*) denote models where we imposed the population exponents α and β to be equal to 1. The rows corresponding to
models presented in the main text are highlighted.

Country / Model E∗10−9 D S C corr params

UK / radiation 1622.9 0.624 0.632 0.344 0.656
UK / gen. radiation 818.3 0.236 0.444 0.195 0.805 1− λ = 8.65× 10−10

UK / gravity EXP 941.1 0.777 0.579 0.595 0.402 α = 0.78, β = 0.78, d0 = 63.8km
UK / hierarchy EXP 547.7 0.278 0.447 0.278 0.720 α = 0.90, β = 0.90, q = 0.138
UK / hierarchy-admin EXP 741.2 0.580 0.536 0.512 0.485 α = 0.90, β = 0.90, q = 0.374
UK / gravity EXP* 969.4 0.749 0.583 0.612 0.384 d0 = 67.3km
UK / hierarchy EXP* 553.8 0.291 0.448 0.288 0.711 q = 0.139
UK / hierarchy-admin EXP* 747.7 0.566 0.534 0.520 0.477 q = 0.235
UK / gravity EXP loc 839.6 0.726 0.555 0.547 0.450 d0 = 56.1km
UK / hierarchy EXP loc 464.9 0.233 0.437 0.231 0.768 q = 0.139
UK / hierarchy-admin EXP loc 662.5 0.558 0.527 0.470 0.239 q = 0.239
UK / gravity PL 494.7 0.456 0.448 0.456 0.543 α = 0.65, β = 0.65, γ = −1.46
UK / hierarchy PL 649.9 0.334 0.486 0.326 0.673 α = 0.91, β = 0.91, γ = −4.23
UK / hierarchy-admin PL 768.7 0.571 0.542 0.519 0.478 α = 0.90, β = 0.90, γ = −3.10
UK / gravity PL* 562.8 0.433 0.467 0.431 0.567 γ = −1.36
UK / hierarchy PL* 655.2 0.354 0.488 0.334 0.665 γ = −4.21
UK / hierarchy-admin PL* 774.8 0.560 0.541 0.527 0.471 γ = −3.09
UK / gravity PL loc 351.5 0.218 0.375 0.216 0.783 γ = −1.57
UK / hierarchy PL loc 555.6 0.290 0.481 0.288 0.711 γ = −4.22
UK / hierarchy-admin PL loc 679.9 0.540 0.533 0.468 0.529 γ = −3.08

Portugal / radiation 314.1 0.781 0.739 0.476 0.525
Portugal / gen. radiation 78.4 0.472 0.420 0.423 0.563 1− λ = 4.22× 10−10

Portugal / gravity EXP 96.20 0.718 0.461 0.577 0.400 α = 0.87, β = 0.86, d0 = 92.9km
Portugal / hierarchy EXP 71.86 0.465 0.420 0.422 0.564 α = 0.91, β = 0.89, q = 0.244
Portugal / hierarchy-admin EXP 83.98 0.605 0.441 0.501 0.480 α = 0.83, β = 0.82, q = 0.343
Portugal / gravity EXP* 97.15 0.700 0.460 0.577 0.399 d0 = 95.6km
Portugal / hierarchy EXP* 72.45 0.455 0.419 0.426 0.561 q = 0.281
Portugal / hierarchy-admin EXP* 85.65 0.580 0.441 0.500 0.482 q = 0.352
Portugal / gravity EXP loc 92.08 0.684 0.455 0.546 0.433 d0 = 82.0km
Portugal / hierarchy EXP loc 66.66 0.346 0.404 0.308 0.683 q = 0.258
Portugal / hierarchy-admin EXP loc 74.20 0.456 0.416 0.362 0.627 q = 0.278
Portugal / gravity PL 79.80 0.865 0.419 0.844 0.145 α = 0.81, β = 0.79, γ = −0.71
Portugal / hierarchy PL 77.79 0.473 0.443 0.450 0.536 α = 0.91, β = 0.90, γ = −2.76
Portugal / hierarchy-admin PL 86.87 0.593 0.452 0.511 0.470 α = 0.85, β = 0.83, γ = −2.28
Portugal / gravity PL* 81.88 0.793 0.420 0.781 0.205 γ = −0.69
Portugal / hierarchy PL* 78.32 0.468 0.441 0.454 0.532 γ = −2.73
Portugal / hierarchy-admin PL* 88.23 0.572 0.450 0.509 0.473 γ = −2.24
Portugal / gravity PL loc 66.37 0.403 0.386 0.386 0.602 γ = −0.92
Portugal / hierarchy PL loc 73.29 0.373 0.433 0.352 0.637 γ = −2.89
Portugal / hierarchy-admin PL loc 77.05 0.429 0.431 0.363 0.625 γ = −2.72

France / radiation 227.758 0.618 0.647 0.270 0.730
France / gen. radiation 109.123 0.426 0.494 0.244 0.756 1− λ = 4.40× 10−9

France / gravity EXP 139.132 0.453 0.639 0.367 0.632 α = 0.87, β = 0.86, d0 = 92.0km
France / hierarchy EXP 92.284 0.443 0.518 0.330 0.670 α = 0.89, β = 0.89, q = 0.142
France / hierarchy-admin EXP 101.248 0.270 0.544 0.266 0.734 α = 0.90, β = 0.90, q = 0.179
France / gravity EXP* 142.829 0.370 0.637 0.370 0.630 d0 = 98.4km
France / hierarchy EXP* 94.876 0.616 0.519 0.368 0.632 q = 0.146
France / hierarchy-admin EXP* 103.187 0.328 0.539 0.263 0.737 q = 0.183
France / gravity EXP loc 116.792 0.378 0.611 0.276 0.724 d0 = 96.7km
France / hierarchy EXP loc 73.524 0.341 0.514 0.267 0.733 q = 0.158
France / hierarchy-admin EXP loc 80.686 0.212 0.529 0.207 0.793 q = 0.192
France / gravity PL 90.905 0.267 0.524 0.185 0.815 α = 0.69, β = 0.69, γ = −1.44
France / hierarchy PL 103.181 0.572 0.560 0.427 0.573 α = 0.91, β = 0.91, γ = −4.13
France / hierarchy-admin PL 110.282 0.329 0.575 0.323 0.677 α = 0.91, β = 0.91, γ = −3.63
France / gravity PL* 111.425 0.663 0.590 0.313 0.687 γ = −1.16
France / hierarchy PL* 105.061 0.702 0.558 0.462 0.538 γ = −4.08
France / hierarchy-admin PL* 111.902 0.377 0.569 0.321 0.679 γ = −3.59
France / gravity PL loc 71.101 0.237 0.495 0.123 0.877 γ = −1.36
France / hierarchy PL loc 81.804 0.485 0.559 0.378 0.622 γ = −3.94
France / hierarchy-admin PL loc 87.132 0.248 0.559 0.246 0.679 γ = −3.52
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TABLE VII. Benchmark goodness fit measures The Dice (D), Sorensen (S), Cosine (C) and deviance (E) are four
different fit values measuring a distance between the actual and modeled networks. The correlation corr measures a similarity
between the model and the data. The different parameters of the gravity and hierarchy models were chosen to minimize the
value of E. Stars (*) denote models where we imposed the population exponents α and β to be equal to 1.

Country / Model E∗10−9 D S C corr params

Country X / radiation 3.701 0.577 0.638 0.356 0.644
Country X / gen. radiation 1.396 0.244 0.415 0.241 0.759 1− λ = 4.49× 10−7

Country X / gravity EXP 2.167 0.760 0.531 0.558 0.444 α = 0.83, β = 0.80, d0 = 53.2km
Country X / hierarchy EXP 1.508 0.361 0.483 0.348 0.651 α = 0.90, β = 0.87, q = 0.117
Country X / hierarchy-admin EXP 2.439 0.817 0.585 0.645 0.354 α = 0.82, β = 0.79, q = 0.156
Country X / gravity EXP* 2.333 0.698 0.533 0.555 0.442 d0 = 54.3km
Country X / hierarchy EXP* 1.534 0.340 0.483 0.340 0.660 q = 0.118
Country X / hierarchy-admin EXP* 2.512 0.765 0.587 0.642 0.356 q = 0.159
Country X / gravity EXP loc 1.915 0.665 0.488 0.478 0.522 d0 = 50.2km
Country X / hierarchy EXP loc 1.120 0.255 0.456 0.252 0.748 q = 0.114
Country X / hierarchy-admin EXP loc 2.076 0.743 0.547 0.565 0.434 q = 0.158
Country X / gravity PL 1.483 0.472 0.467 0.470 0.529 α = 0.81, β = 0.78, γ = −1.06
Country X / hierarchy PL 2.021 0.389 0.565 0.384 0.615 α = 0.91, β = 0.88, γ = −4.43
Country X / hierarchy-admin PL 2.257 0.794 0.567 0.638 0.361 α = 0.83, β = 0.80, γ = −3.71
Country X / gravity PL* 1.573 0.409 0.469 0.405 0.595 γ = −1.07
Country X / hierarchy PL* 2.042 0.378 0.566 0.378 0.622 γ = −4.41
Country X / hierarchy-admin PL* 2.322 0.742 0.567 0.636 0.363 γ = −3.67
Country X / gravity PL loc 0.940 0.202 0.382 0.201 0.798 γ = −1.22
Country X / hierarchy PL loc 1.589 0.310 0.556 0.308 0.692 γ = −4.43
Country X / hierarchy-admin PL loc 1.882 0.707 0.523 0.545 0.454 γ = −3.77

Ivory Coast / radiation 268.18 0.701 0.703 0.358 0.645
Ivory Coast / gen. radiation 72.08 0.373 0.442 0.349 0.638 1− λ = 4.20× 10−10

Ivory Coast / gravity EXP 74.02 0.680 0.430 0.539 0.434 α = 0.96, β = 0.96, d0 = 149.6km
Ivory Coast / hierarchy EXP 45.85 0.297 0.366 0.374 0.716 α = 0.93, β = 0.93, q = 0.271
Ivory Coast / hierarchy-admin EXP 78.71 0.685 0.448 0.553 0.418 α = 0.96, β = 0.96, q = 0.567
Ivory Coast / gravity EXP* 74.08 0.673 0.429 0.537 0.436 d0 = 149.7km
Ivory Coast / hierarchy EXP* 46.15 0.285 0.364 0.270 0.720 q = 0.273
Ivory Coast / hierarchy-admin EXP* 78.78 0.678 0.447 0.550 0.421 q = 0.568
Ivory Coast / gravity EXP loc 65.51 0.567 0.414 0.423 0.561 d0 = 112.9km
Ivory Coast / hierarchy EXP loc 42.90 0.228 0.351 0.217 0.775 q = 0.255
Ivory Coast / hierarchy-admin EXP loc 65.98 0.437 0.430 0.309 0.681 q = 0.394
Ivory Coast / gravity PL 68.17 0.577 0.413 0.460 0.519 α = 0.94, β = 0.94, γ = −0.51
Ivory Coast / hierarchy PL 50.89 0.321 0.378 0.317 0.672 α = 0.93, β = 0.93, γ = −2.89
Ivory Coast / hierarchy-admin PL 80.72 0.692 0.450 0.558 0.412 α = 0.96, β = 0.96, γ = −1.19
Ivory Coast / gravity PL* 68.37 0.561 0.411 0.453 0.527 γ = −0.51
Ivory Coast / hierarchy PL* 51.18 0.315 0.376 0.313 0.676 γ = −2.88
Ivory Coast / hierarchy-admin PL* 80.80 0.684 0.449 0.555 0.415 γ = −1.19
Ivory Coast / gravity PL loc 54.03 0.267 0.374 0.240 0.752 γ = −0.76
Ivory Coast / hierarchy PL loc 48.69 0.276 0.371 0.275 0.716 γ = −2.99
Ivory Coast / hierarchy-admin PL loc 68.53 0.445 0.438 0.317 0.674 γ = −1.99
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TABLE VIII. Models ranked according to their average performance across all studied countries, for each benchmark measure
(the deviance E being normalized by its value for the Hierarchy EXP loc model Eref ). Models are sorted according to
〈rankE/Eref

〉 (note: this ranking does not take into account the number of parameters involved in the different models). The
rows corresponding to models presented in the main text are highlighted.

Model 〈rankE/Eref
〉 〈rankD〉 〈rankS〉 〈rankC〉 〈rankcorr〉 〈rank〉

hierarchy EXP loc 1.80 3.00 2.20 3.20 3.80 2.80
gravity PL loc 2.20 1.80 2.00 2.20 3.00 2.24
hierarchy EXP 4.20 7.00 4.40 8.00 7.40 6.20
hierarchy EXP* 5.20 7.40 4.40 7.40 7.80 6.44
hierarchy PL loc 5.40 5.80 8.20 6.60 7.00 6.60
gravity PL 6.80 11.40 5.60 11.00 12.00 9.36
hierarchy-admin EXP loc 8.20 8.80 8.60 7.80 10.00 8.68
hierarchy PL 8.40 9.60 9.80 10.00 10.60 9.68
hierarchy-admin PL loc 8.80 8.40 9.80 8.00 10.00 9.00
hierarchy PL* 9.60 9.80 9.40 10.20 10.60 9.92
gravity PL* 10.40 13.40 7.80 12.00 12.80 11.28
gen. radiation 11.00 6.80 5.00 4.40 5.60 6.56
gravity EXP loc 11.60 13.60 12.20 13.20 13.60 12.84
hierarchy-admin EXP 13.60 14.60 12.40 14.00 14.40 13.80
hierarchy-admin EXP* 14.80 13.00 12.00 13.60 14.00 13.48
hierarchy-admin PL 15.20 14.60 14.60 15.80 16.20 15.28
hierarchy-admin PL* 16.40 13.20 13.80 15.40 15.80 14.92
gravity EXP 16.20 16.80 14.00 16.00 16.20 15.84
gravity EXP* 17.60 14.20 13.80 16.20 16.80 15.72
radiation 19.80 16.80 18.00 8.80 9.40 14.56


