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ABSTRACT

This study investigates the assignment of pressure heights to satellite-derived atmospheric motion vectors

(AMVs), commonly known as cloud-drift and water vapor–motion winds. Large volumes of multispectral

AMV datasets are compared with collocated rawinsonde wind profiles collected by the U.S. Department of

Energy Atmospheric Radiation Measurement Program at three geographically disparate sites: the southern

Great Plains, the North Slope of Alaska, and the tropical western Pacific Ocean. From a careful analysis of

these comparisons, the authors estimate that meanAMVobservation errors are;5–5.5 m s21 and that vector

height assignment is the dominant factor in AMV uncertainty, contributing up to 70% of the error. These

comparisons also reveal that in most cases the RMS differences between matched AMVs and rawinsonde

wind values are minimized if the rawinsonde values are averaged over specified layers. In other words, on

average, the AMV values better correlate to a motion over a mean tropospheric layer rather than to a

traditionally assigned discrete level. The height assignment behavioral characteristics are specifically iden-

tified according to AMV height (high cloud vs low cloud), type (spectral bands; clear vs cloudy), geolocation,

height assignment method, and amount of environmental vertical wind shear present. The findings have

potentially important implications for data assimilation of AMVs, and these are discussed.

1. Introduction

It is well known that accurate numerical weather

prediction (NWP) requires upper-air observations for

representing the initial state of the atmosphere and for

updating the model analyses through data assimilation.

In particular, the proper specification of tropospheric

winds is an important prerequisite to accurate numeri-

cal model forecasts. Over oceanic regions, where sig-

nificant weather is common, conventional data sources

are especially scarce. Thus, atmospheric motions vec-

tors (AMVs) derived from satellites are useful for NWP

because they can provide wind information in these

important regions.

The retrieval of AMVs from satellites has been

evolving since the early 1970s (Schmetz et al. 1993;

LeMarshall et al. 1994; Menzel 2001). Most of the major

meteorological geostationary satellite data centers around

the globe are now producing cloud- and water vapor–

tracked winds with automated algorithms using imagery

from operational geostationary satellites. Contemporary

AMV processing methods are continuously being up-

dated and advanced through the exploitation of new

sensor technologies and innovative new approaches

(Velden et al. 2005). Advances in data assimilation and

NWP in recent years have placed an increasing demand

on observation quality. With remotely sensed observa-

tions dominating the initialization of NWP models over

regions of the globe that are traditionally data sparse,

the motivation is clear: the importance of providing

high-quality AMVs becomes crucial to their relevance

and contributions toward realizing superior model

predictability.

AMVs are derived by tracking either cloud or water

vapor (WV) features (sharp radiance gradients) in se-

quential images of multispectral satellite imagery. AMVs

derived from infrared (IR) window images typically

capture flow features in both the upper and lower tropo-

sphere, whereas AMVs derived from visible (VIS) images

generally track cumuloform cloud motions in the lower

troposphere. Mid- to upper-tropospheric WV features are

tracked in cloud-free scenes using imagery derived from

WV-sensitive spectral bands that arepresentonmostof the
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current operational environmental satellites (Holmlund

1993; Velden et al. 1997). The full complement of multi-

spectral AMVs produced routinely from satellites can

provide wind data coverage over most of the globe, most

of the time.

Many studies have shown the positive impact that

AMVs can have on NWP. For example, Geostationary

Operational Environmental Satellite (GOES) AMVs

were assimilated into the Geophysical Fluid Dynamics

Laboratory (GFDL) hurricane prediction system to de-

termine their impact on simulations of Atlantic Ocean

hurricanes (Soden et al. 2001). In over 100 cases, the

GOES AMVs dramatically reduced a persistent west-

ward track bias common in the GFDL model at the

time. Furthermore, the AMVs were able to depict more

accurately the vorticity gyres in the environmental flow,

which led to significant improvements in track predic-

tions at all forecast times. A study using the European

Centre for Medium-Range Weather Forecasts system

showed that AMVs are also beneficial to simulations

of systems other than hurricanes (Kelly 2004). In the

Australian region, LeMarshall et al. (1994) has dem-

onstrated a positive impact on local regional model

forecasts. In another study, the Navy Operational Global

Atmospheric Prediction System was used to investigate

the impact of targeted aircraft dropsondes and satellite-

derived winds on model analyses and forecasts of North

Pacific Ocean weather events (Langland et al. 1999). It

was found that the satellite data had a more positive

impact on the forecast errors than did the dropsonde

data. This was a result of the large area covered by the

satellite data and the high temporal resolution. The gen-

erally positive impact of AMVs has led to routine as-

similation, to varying degrees, in operational global

forecast models.

AMVs are typically treated as single-level data, that

is, the AMV displacements (wind speed and direction)

are assigned by automated processing algorithms to a

determined/estimated pressure height, and these are

used by the NWP data assimilation systems. Although,

as noted above, AMVs have had positive impacts on

NWP, the representative vector heights have proven to

be a relatively large source of observation uncertainty

(Schmetz and Holmlund 1992; Nieman et al. 1993;

EUMETSAT 2006) because in most cases the satellite

imagers actually sense radiation emitted from a finite

layer of the troposphere rather than just one specific

level. Thus, problems in data assimilation can arise from

the difficulty in accurately placing the height of the

tracer and/or representing the measured motion of a

layer by a single-level value. This latter type of discrep-

ancy is especially prevalent in clear-air WV winds for

which the radiometric gradient signal (tracking feature)

may result from a deep layer of advecting moisture

(Velden et al. 1997; Soden et al. 2001; Rao et al. 2002).

The height-assignment issues discussed above, and

the potential impact on NWP when assimilating AMVs,

are the primary motivation for this research. Various

approaches to minimize the height-assignment prob-

lems in data assimilation have been investigated, such as

spreading the information over more than one level

(Rao et al. 2002). However, an optimal forward opera-

tor for AMVs has remained elusive because the height

assignment uncertainties and the vertical representa-

tiveness of the AMVs have not been examined thor-

oughly. To this end, we investigate a large and diverse

sample of AMVs by comparing them with collocated

rawinsondes in an attempt to begin identifying these

qualities. This information may then be exploited in

numerical model simulations to determine the potential

forecast impact.

The data and methods used in this study are described

in section 2. Section 3 presents results of the comparisons

with rawinsonde observations. Section 4 summarizes

the findings and offers potential application directions.

Although the findings presented here are directly ap-

plicable only to the current National Oceanic and At-

mospheric Administration/National Environmental Sat-

ellite, Data, and Information Service (NOAA/NESDIS)

processed AMV datasets, they are likely also relevant to

other AMV data processing centers as well, because the

derivation methods are similar.

2. Data and analysis method

a. Datasets

The AMV datasets analyzed in this study are derived

by the University of Wisconsin—Madison Cooperative

Institute for Meteorological Satellite Studies (CIMSS)

automated algorithm that is nearly identical to the code

used to produce operational AMVs at NOAA/NESDIS

(Daniels et al. 2002). All of the AMVs have passed the

routine quality-control and postprocessing steps and are

considered to be the vectors that would be made oper-

ationally available by NESDIS to its users. Therefore,

the results are robust in terms of their representative-

ness of NESDIS AMV datasets and are consistent with

regard to the regional comparisons discussed in the next

section. The AMV processing algorithm employs suc-

cessive image triplets using VIS, shortwave IR (SWIR),

WV, and IRwindow (IRW) spectral channels. The basic

algorithm method is described in Velden et al. (1998).

The AMV pressure-altitude assignments are derived

from first passing the targeted features through a series

of height-assignment routines based on the radiative
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properties of the cloud or WV features being tracked

(Nieman et al. 1993; Schmetz and Holmlund 1992) to

produce an initial set of estimated height values. Once

the vector displacements are calculated, the AMVs are

then passed through an automated quality-control pro-

cedure (Velden et al. 1998) that can adjust the initially

assigned heights based on a best fit of each vector to a

local three-dimensional analysis of all AMVs in the

immediate vicinity (and with some influence of a model-

based background analysis) and the minimization of a

prescribed penalty function. In the investigations re-

ported on in the next section, both the initial and ad-

justed heights are considered.

To investigate regional variations, we examine

AMVs produced from both geostationary and polar-

orbiting platforms (Velden et al. 2005; Key et al. 2003)

in diverse atmospheric conditions. The AMV datasets

are compared to rawinsonde wind observations col-

lected by the U.S. Department of Energy Atmospheric

Radiation Measurement (ARM) Program at three

supersites located in the southern Great Plains (SGP),

the North Slope of Alaska (NSA), and the tropical

western Pacific Ocean area (TWP). The advantage in

using ARM rawinsonde data is that wind observations

are collected at a very high vertical resolution, every 2

s during the balloon flight, allowing for extra precision

in the height assignment analyses described in the next

section. For informational purposes, the measurement

errors in these rawinsonde winds are estimated to be

;0.5 m s21 (Loran method at SGP) and 0.2 m s21

(GPS method at TWP and NSA). The primary ra-

winsonde launch locations associated with these ARM

sites are summarized in Table 1, in addition to the

satellite instrumentation used to acquire AMVs over

the three regions, the time period for the comparisons,

and the total number of available AMV–rawinsonde

matches. The NSA comparison period differs from

that of SGP and TWP because an insufficient number

of rawinsondes were launched before June of 2006

and therefore the period was extended until Novem-

ber of 2006.

b. Comparison method

Each AMV data record contains the originally

assigned vector altitude and the postprocessed read-

justed height if an adjustment was performed. We

examine both of these values against collocated rawin-

sondes to assess the impact of the readjustments. The

values are matched against a collocated rawinsonde at

the respective AMV height assignment levels (to assess

absolute accuracy) and then also at the level of best

rawinsonde match, or ‘‘fit’’ (to interrogate the accuracy

possible if the height assignment error is minimized). A

final component to our analysis is to examine the AMVs

against layer-averaged rawinsonde values to assess the

vertical representativeness of the vectors at their

assigned heights and as a further potential indicator of

height uncertainty spread.

For this study, an AMV is considered for a compari-

son with a rawinsonde when it is matched within 50 km

and 1 h from the location and time of the rawinsonde

launch. For each match, the AMV speed and direction

are compared with the nearest (in pressure altitude)

rawinsonde value at 1) the originally assigned AMV

height, 2) the postprocessed adjusted height, and 3) the

level of best fit (minimum vector difference within6100

hPa of the assigned AMV height) and with 4) layer-

mean rawinsonde wind values derived for layers ranging

from 10 to 300 hPa in thickness, starting from the

assigned AMV heights. In method 4, rawinsonde winds

are accumulated within the layer of a specified thick-

ness, the u and y components are averaged, and then the

vector difference between the layer-mean rawinsonde

and AMV is computed. AMV–rawinsonde vector dif-

ferences are further separated into categories: spectral

(satellite imaging channel), height assignment level

(lower tropospheric vs upper), height assignment tech-

nique, geographic location (ARM site), local wind shear

TABLE 1. The primary rawinsonde launch locations associated with the indicated ARM sites, the satellite instrumentation used to

acquire AMVs over the three ARM site regions, the time period for the comparisons, and the total number of available AMV–

rawinsonde matches. GMS indicates Geostationary Meteorological Satellite, and MTSAT is Multifunctional Transport Satellite.

ARM site

Primary rawinsonde

launch location(s)

Satellite

instrument(s) used Study time period

No. of

AMV matches

SGP Lamont, OK (36.68N, 97.58W) GOES-12 January 2003–June 2006 6017

TWP Darwin, Australia (12.48S, 130.98E) GMS-5, GOES-9, MTSAT January 2003–June 2006 4018

Manus Island, Papua, New Guinea

(2.18S, 147.48E)

Nauru Island (0.58S, 166.98E)

NSA Barrow, AK (71.38N, 156.68W) Aqua and Terra MODIS February 2004, September 2004,

October 2004, July 2005,

August 2005, May–November 2006

2342
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magnitude, and clear-sky versus cloudy target type (for

WV AMVs). Vector root-mean-square (VRMS) differ-

ence statistics are computed for each of these cate-

gories.

The computations of the layer means for method

4 are done differently depending on the target type

from which the AMV was derived. For clear-sky WV

AMVs, the AMV height assignment represents the

center of the layer-mean computations, because the

signal detected by the WV channel originates from

a deep atmospheric layer (broad spectral response

function; Weldon and Holmes 1991; Velden et al.

1997). Thus, the layer means are computed for up to

6150 hPa from the assigned AMV heights. For vectors

derived by cloud tracking, the AMV height assignment

most closely represents the top of the cloud. Therefore,

this value is used for the upper limit of the layer-mean

computations, because it is assumed that a cloud target

is normally advected by flow at and below cloud top [an

exception to this rule is low-level tropical marine cu-

mulus clouds (e.g., at TWP), which are often best as-

signed to cloud base, if that can be accurately deter-

mined]. Therefore, the layer means are computed for

up to 300 hPa downward from the assigned AMV

heights. For lower-tropospheric cloud-drift AMVs

(i.e., below 700 hPa), the layer mean cannot include

winds over the full 300-hPa thickness range because of

the earth’s surface, and therefore the rawinsonde near-

surface wind represents the lower limit of the layer-

mean computations.

c. Comparison interpretations

The results presented in the next section are focused

on the VRMS differences between the collocated

AMV–rawindsonde matches. These differences should

not be strictly interpreted as AMV observational error.

As mentioned previously, the rawinsonde instrument

measurement error is on the order of 0.2–0.5 m s21. In

addition, there are errors introduced through the match-

ing process. Although our match requirements are fairly

strict, any offsets in space and time can introduce an in-

crease in the comparison differences.

To estimate this effect in our study, two sets of

comparisons were performed using ARM SGP data-

sets to evaluate the natural spatial and temporal vari-

ability of the local wind field. The first comparison

involves the combined use of rawinsonde and 6-min-

resolution wind profiler data to examine spatial vari-

ability. The wind profiler collects observations from a

fixed location whereas the rawinsonde drifts away from

the nearby profiler during ascent. Because the wind

profiler actually observes motions within a layer of the

FIG. 1. An analysis of spatial wind variability from April 2005 to April 2006 over the ARM

SGP Central Facility in Lamont, OK, using fixed-location 404-MHz wind profiler and rawin-

sonde observations, which are collected as the rawinsonde drifts away from the profiler site

during ascent. The VRMS value at a 0–25-km match radius can be subtracted from the VRMS

at larger match distances to estimate spatial wind variability.
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atmosphere [320-m (900 m) depth for low (high)

mode], rawinsonde data are averaged over the layer

and vector differences between the layer-averaged

rawinsonde and wind profiler data are computed. Be-

cause the balloon ascends over time, incremental

profiler scans are used to remove most of the temporal

variability from the comparisons. A time match criteria

of 63 min is imposed for these comparisons. Vector

differences are grouped into 25-km bins based on the

distance between the drifting rawinsonde and the fixed

profiler locations. VRMS statistics are computed from

these vector differences for each of the profiler levels

at five distance ranges. Figure 1 presents the results of

this analysis for a 1-yr period, April 2005–06, for which

data from 1626 rawinsonde ascents are included. If

we assume that the 0–25-km bin is a ‘‘perfect’’ match,

the VRMS from this bin can be subtracted from the

VRMS at greater bin distances at a given height to esti-

mate the match error due to the natural spatial wind

variability. For example, the effects of spatial wind

FIG. 2. An analysis of temporal wind variability from April 2005 to April 2006 using se-

quences of fixed-location 404-MHz wind profiler observations at the SGP ARM site. The

VRMS value at a 6-min time interval can be subtracted from the VRMS at longer time sepa-

rations to estimate local temporal wind variability.

TABLE 2. Mean statistical comparisons between collocated AMVs and rawinsondes at SGP, TWP, and NSA.

AMV speed

(m s21)

Rawinsonde

speed (m s21)

AMV–rawinsonde

speed bias (m s21)

AMV–sonde

VRMS (m s21)

AMV

height (hPa)

Match

distance (km)

Time separation

(min)

SGP

Original AMV height 21.50 21.91 20.41 6.31 358 48.2 68.4

Adjusted AMV height 22.87 23.00 20.13 5.75 349 48.9 69.2

Rawinsonde LBF height 22.87 22.73 0.14 2.53 352 49.1 69.1

TWP

Original AMV height 10.21 10.68 20.47 5.62 271 35.1 52.2

Adjusted AMV height 10.27 10.91 20.64 5.27 265 35.2 53.2

Rawinsonde LBF height 10.27 10.09 0.18 1.96 280 35.0 51.7

NSA

Original AMV height 16.29 17.17 20.88 5.49 430 52.5 34.4

Adjusted AMV height 16.30 17.19 20.89 5.36 430 52.5 34.5

Rawinsonde LBF height 16.30 16.19 0.12 2.77 444 52.2 34.5
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variability are at a maximum in the range of 10–12 km in

altitude, where the highest tropospheric wind speeds are

usually found.

A second comparison utilizes time sequences of

fixed-location 6-min wind profiler observations to es-

timate the local temporal wind variability. For this

analysis, a given wind profile is compared with those

from 6 to 120 min into the future, over the same 1-yr

period that is described above. Because the profiler is

in a fixed location, the vector differences between

current and future wind observations are primarily

related to the local temporal wind variability. For the

dataset as a whole, vector differences for each suc-

cessive time interval are grouped together to compute

VRMS. Figure 2 shows an example of this analysis for

the profiler high mode. It is assumed that the VRMS

difference for the initial 6-min interval is primarily

caused by instrument effects and can be used as a

baseline to estimate temporal wind variability at lon-

ger time intervals. For example, Fig. 2 shows that the

average temporal variability between two wind ob-

servations spaced 60 min apart in time is ;1.6 m s21 at

a 10-km height (yellow curve). For a 120-min time in-

terval, temporal variability increases to 3.2 m s21 at

this same height.

These analyses show that the combined spatial and

temporal effects on collocation ‘‘matching’’ statistics

can be significant. These errors need to be taken into

account to estimate a true AMV observation error or in

the development of a forward operator for AMVs in

data assimilation. Pertinent to this study, the results

presented below will estimate these errors.

3. Results

a. Assigned AMV height level versus rawinsonde

level of best fit

Togauge theuncertainty inAMVheight assignments, it

is of interest to examine the characteristics of the assigned

single-level AMV heights against what we will refer to as

the collocated rawinsonde level of best fit (LBF). The

LBF is the level of minimum AMV–rawinsonde vector

difference, limited to 6100 hPa from the AMV height

assignment (constrained to limit spurious results from

rawinsonde winds far from the actual tracer height that

just happen to match up the best). If we assume that the

rawinsondeLBF is the best possible single-level wind that

the AMV represents, this method can be used to isolate

the part of AMV error that is associated with the uncer-

tainty in assigning vector heights. The residual error can

then be attributed to the aforementioned instrument and

matching noise and to target tracking errors.

FIG. 3. The distribution of assignedAMVheight deviations from

the corresponding rawinsonde LBF for the three regions: (top)

SGP, (middle) TWP, and (bottom) NSA. Negative height differ-

ences correspond to vectors being assigned higher than the LBF.
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Table 2 shows the mean statistics for the collocated

matches at the three ARM sites. As discussed earlier,

optimal numerical data assimilation requires a good es-

timate of observation error. Although the VRMS statis-

tics shown in Table 2 are not a true representation of

AMV observation error, we can use this information and

that gleaned in section 2c to make a concerted estimate

of this quantity, at least in terms of a mean value, as

follows [after Kitchen (1989) and Schmetz et al. (1993)]:

observation error (VRMS; m s�1)

5 [(adjusted-height VRMS)2 � (s2
T 1s

2
S 1s

2
R)]

1/2,

where sT is temporal wind variability (VRMS), sS is

spatial wind variability (VRMS), and sR is rawinsonde

error (VRMS).

Thus, for example, at SGP themeanVRMS is 5.7m s21

for the adjusted AMV height assignments and the mean

vector height is;350 hPa (;8300m) fromTable 2. From

Fig. 2 we get 1.3 m s21 for the average comparison time

offset, and from Fig. 1 we get 0.3 m s21 for the average

spatial offset and 0.5 m s21 for rawinsonde instrument

error at the SGP site. Applying the equation above yields

an observation error (VRMS) of 5.57 m s21. The analysis

in section 2c was based on data only from SGP, but we

can use it to estimate the mean AMV observational er-

rors at the other two sites as well. The results are

VRMSSGP 5 5.57 m s21, VRMSTWP 5 5.12 m s21, and

VRMSNSA 5 5.32 m s21. These values are corrected

for matching errors, and, although the adjustments are

relatively small in comparison with the values listed in

Table 2, they better represent the true bulk AMV ob-

servation errors for the three data samples.

It is interesting to compare the estimated AMV

observation errors for the three sites. It is certain that

the geographic location will have some influence on

the statistical performance because of the local char-

acteristics of the atmospheric conditions and trackable

cloud/moisture features. However, we must also re-

member that in this study the AMVs derived over the

SGP and TWP sites were derived from geostationary

satellite imagery, whereas at NSA they were derived

from polar-orbiter imagery. Although the processing

algorithm employed was identical in all cases, there

do exist some differences in the tracking metrics. For

example, geostationary satellite imagery is available

at 15–30-min intervals, whereas the polar-orbiting Mod-

erate Resolution Imaging Spectroradiometer (MODIS)

imagery is available at ;100-min intervals. The geosta-

tionary spatial resolution is 4–5 km, whereas the MODIS

is 1–2 km. So it is not surprising that there are subtle

differences in the observed errors between the compar-

ison sites.

Of course, in practical applications of the AMV ob-

servation error such as data assimilation, the regional

mean values would not be sufficient. A proper forward

operator should take into account the observational error

as a function of parameters such as vector altitude, type,

location, target cloud properties, height assignment meth-

od, etc. This study is intended only as a starting point in

that regard, and future work should address the AMV

observational error characteristics in further detail.

Of particular interest to our study is the uncertainty

in the AMV height assignment. This can be estimated

by examining the differences in VRMS between the

FIG. 4. (left) The improvement in AMV–rawinsonde vector difference yielded by theoretically reassigning the original and adjusted

AMV heights to the rawinsonde LBFs. (right) As in left panel but for adjusted AMV heights only and broken up into the three dataset

regions. In general, ;50% of AMV–rawinsonde vector differences would improve by at least 2.5 m s21 and ;20% would improve by

more than 5 m s21.
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assigned AMV heights and the associated LBF in Table

2. In each of the three disparate regions, there is a sig-

nificant reduction in the VRMS when the LBF altitude

is considered as the AMV height assignment. To esti-

mate the height attribution uncertainty, we use the

following formula:

Fraction of error from height assignment5 1

�

[(LBF VRMS)2 � (s2
T 1 s

2
S 1 s

2
R)]

1/2

[(Adjusted-height VRMS)2 � (s2
T
1 s

2
S
1 s

2
R
)]1/2

:

Thus, after adjusting for the matching errors noted above,

the height assignment uncertainty accounts for a re-

markable 70% of the VRMS differences at TWP, 58%

at SGP, and 49% at NSA. The reverse correlation with

latitude is not surprising given the increase in tropopause

height and the greater occurrence of semitransparent

cirrus as AMV tracers in the tropics (TWP). The latter

issue has been a long-identified AMV height-assignment

problem area (Schmetz and Holmlund 1992; Menzel

2001; Nieman et al. 1993).

It is notable that the adjusted AMV heights (by the

CIMSS/NESDIS postprocessing method) are generally

an improvement (lower VRMS) over the original height

assignments. This is particularly true in the SGP and

TWP comparisons, with the largest impacts at the SGP

site. The height reassignments result in improved VRMS

FIG. 5. VRMS differences between GOESAMVs and layer-averaged SGP rawinsonde data for varying layer thickness (10–300 hPa, in

10-hPa increments) are represented by the colored curves [with the corresponding single-level-based VRMS values (adjusted heights)

plotted on the y axis] for various height assignment methods: IRW is the IR window method, H2O is the water vapor intercept method,

CO2 is the CO2-slicing method, and HIST is the IR histogram method. (top) Low-level (600–1000 hPa) AMVs from three different

spectral channels: VIS, SWIR, and IRW (longwave). (bottom) Upper-level AMVs (100–600 hPa) from two different spectral channels:

IRW and 6.7-mm WV, with the WV AMVs separated by cloud vs clear-sky targets.
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values in about 60% of the cases. Although the reas-

signments are constrained by the postprocessing algo-

rithm and are typically not huge (as also supported by a

comparison of the mean AMV height values in Table 2),

they appear to be in the right direction in most cases.

Figure 3 shows the distribution of assigned (in this

case, the adjusted heights) AMV height deviations from

the corresponding LBFs. Negative height differences

correspond to vectors being assigned to higher than the

level of best fit. The results show a ‘‘normal’’ distribu-

tion over the SGP site but a tendency for the TWP

AMVs to be assigned higher heights relative to the best-

fit level. NSA results show a relatively even distribution,

with a slight tendency toward high assignment. Fur-

thermore, 47% of the AMVs at SGP assigned . 90 hPa

from their LBF were assigned to heights above 300 hPa,

which coincides with the mean vertical location of the

jet stream over the central United States. This under-

scores the challenge in accurate tracer height assign-

ment in high-vertical-shear regions near and within

upper-tropospheric jets. This will be further emphasized

in section 3c.

Another way to view the significance of height as-

signment on the AMV observation error is evident from

Fig. 4. The improvement in AMV–rawinsonde vector

difference yielded by theoretically reassigning the AMV

heights to the LBFs is that ;50% of AMV–rawinsonde

vector differences at SGP and TWP would improve by

at least 2.5 m s21 and ;20% would improve by at least

5 m s21. Improvements yielded by an LBF assignment

at NSA are slightly less than those from SGP and TWP.

Having considered the height assignment uncertainty,

and taken out the estimated matching error, the residual

values are an indication of the error involved in the

FIG. 6. As in Fig. 5, but for AMVs derived from GMS/GOES-9/MTSAT over the TWP ARM site. BASE is the cloud-base method.
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AMV targeting/tracking process. In our analysis above,

these residual errors are 30%, 42%, and 51% of the

total observation error for the AMVs analyzed at TWP,

SGP, and NSA, respectively. The larger fraction at NSA

makes sense, because the MODIS AMVs at NSA em-

ploy successive images at much greater time intervals.

At SGP and TWP, the target tracking is superior be-

cause of the higher frequency of available images

(Velden et al. 2005), as noted earlier.

In summary, the major point to be made is that the

AMV targeting, tracking, and quality-control algorithms

have been refined and improved to a much greater de-

gree than the height-assignment algorithms have (which

have proven to be a more difficult task). For these rea-

sons, the above results make intuitive sense, and height-

assignment uncertainty contributes in an important way

to the AMV observation error.

b. Assigned AMV height level versus rawinsonde

layer of best fit

Having established the importance of proper height

attribution to AMVs, we now turn our attention to mit-

igation strategies. It is obvious that improving the pro-

cessing methods for accurately determining the cloud/

water vapor target heights is a continuing research path.

However, we can also challenge the long-standing con-

straint that AMVs need to be associated/assigned to a

discrete tropospheric level. In fact, it is intuitive that they

do not represent a single level; rather, they best represent

a finite tropospheric layer of motion. Combine with this

the large uncertainty noted above in assigning AMVs to

discrete level heights. Therefore, we next examine the

tropospheric layer motion that best correlates with the

AMVs.

FIG. 7. As in Fig. 5, but for AMVs derived from MODIS over the NSA ARM site. Only IR and WV AMVs were available for

comparisons.
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AMV–rawinsonde comparisons are plotted as VRMS

differences for rawinsonde winds averaged over varying

layer thickness categories (10–300 hPa, in 10-hPa in-

crements, as described in section 2b), and are repre-

sented by the curves in Figs. 5–7 . These analyses use

AMVs from the adjusted height, with the corresponding

single-level-based VRMS values plotted on the y axis.

In general, the results using originally assigned AMV

heights (before postprocessing adjustments) are similar

(not shown), except for the fact the y intercept starting

points are higher VRMS values. The major findings are

summarized as follows:

d The results presented in Figs. 5–7 consistently indicate

that better AMV–rawinsonde agreement exists when

a layer-averaged rawinsonde wind is considered ver-

sus just the single-level value at the assigned AMV

height. The VRMS curve minima (best agreements)

are on the order of 0.5–1 m s21 lower than the cor-

responding single-level values. These results indicate

that AMVs (at least the current NOAA/NESDIS

product) are better correlated with tropospheric

layer-average winds, and the optimal layer depths can

be specifically identified in terms of selected AMV

qualities (Figs. 5–7). As mentioned previously, this

result is likely a combination of AMV representa-

tiveness and height-assignment uncertainty.
d Upper-level (100–600 hPa) cloud-tracked AMVs gen-

erally correlate with a shallower layer (;30–60 hPa)

than that from low-level tracers. Most of the upper-level

FIG. 8. VRMS differences between GOES cloudy upper-level (top) IR and (bottom) WVAMVs and layer-averaged SGP rawinsonde

data for varying layer thickness (10–300 hPa, in 10-hPa increments) are represented by the colored curves [with the corresponding single-

level-based VRMS values (adjusted heights) plotted on the y axis]. The analyses are with respect to varying vertical wind shear regimes

(curve colors). The term ‘‘vertical wind shear’’ here refers to the vector difference between the rawinsonde value at the AMV height

assignment level and two other selected rawinsonde levels [at either (left) 50 or (right) 100 hPa from the AMV height assignment level].
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tracers are cirrus clouds, which are often thin/shal-

low ‘‘sheets’’ advected by higher-wind environments.

Thus, these AMVs correlate best with a shallower

layer flow. TWP AMVs agree with a slightly deeper

layer than those over SGP, which is likely related

to differing shear characteristics, coupled with the

tracking of thicker cirrus plumes associated with

higherWV amounts over the tropics. The depth of the

best-fit layer appears to be independent of the tracer

height-assignment technique employed. The excep-

tion to the above generalizations is apparent in the

NSA domain, where again the results are less clear.

The characteristics of Arctic clouds, together with the

extreme variability in flow regimes at higher latitudes,

may be washing out definitive signals in this region.
d Lower-level (600–1000 hPa) AMVs over land (SGP)

best correlate to a layer depth of ;70–100 hPa. Over

marine regions (TWP), these vectors better corre-

spond to a depth of;150–200 hPa, although the curve

minima are less defined. This general finding relates

well with previous studies that showed that the wind

at or near marine cumulus cloud base (rather than the

cloud tops usually assumed as the AMV heights) best

corresponds to the overall cloud motion (Hasler et al.

1979; Spinoso 1997). In high latitudes (NSA), the re-

sults are less conclusive but suggest a slight tendency

toward a layer thickness similar to TWP. The results

for lower-level AMVs are not as robust when com-

pared with upper-level vector results, partially due to

the effects of near-surface flow being included in the

layer-mean calculations. Such flow can be vastly dif-

ferent than the flow just above the planetary boundary

layer.
d Upper-level clear-sky WV AMVs over all three do-

mains agree closest with a thicker layer (;150–250

hPa) than their cloud tracer counterparts. This is not

FIG. 9. As in Fig. 8, but for AMVs derived from GMS/GOES-9/MTSAT over the TWP ARM site.
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unexpected, because the signal from advecting WV

features in cloud-free regions results from emittance

over a thicker layer, and tracers represent a broader

layer-mean flow. As Rao et al. (2002) show, the pre-

cise depth of this layer is likely modulated by upper-

tropospheric moisture content. It also is evident that

the profiles are relatively flat near the level of mini-

mum VRMS. In other words, the increase of error

both above and below the minimum value is gradual

rather than abrupt. This result confirms that the winds

represent a broad layer rather than just a single level

of the troposphere.

c. Effects of vertical wind shear

The uncertainty in AMV single-level height assign-

ments is magnified in high-vertical-shear environments,

because even small errors can result in large misrepre-

sentations. The term ‘‘wind shear’’ here refers to the

vector difference between two selected rawinsonde

levels, for which we vary the depth between them. The

most substantial impact will occur when there exists a

high vertical shear over a relatively shallow depth (i.e.,

50 hPa), usually found in upper-tropospheric levels.

Analyses of AMV–rawinsonde differences with re-

spect to varying shear regimes are shown in Figs. 8–10 .

At SGP, for 15–20 m s21 of shear over 50 hPa in both IR

and WV, assignment to a shallow layer of ;30 hPa in

depth can improve the AMV–rawinsonde agreement by

up to 2.5 m s21 over single-level height assignment. At

TWP, for a high shear within a low-depth situation,

layer-mean assignment improves agreement by up to

2–4 m s21. For the NSA region, layer-assigned AMVs

also show significant improvement in high-shear situa-

tions for cloudy IR AMVs. In higher-shear situations,

the rate of VRMS increases dramatically, confirming

the importance of an accurate AMV height assignment

in high-shear situations. These regimes appear to be the

leading candidate for mitigating AMV height assign-

ment uncertainties through layer approximations.

4. Discussion

The results found in this study strongly suggest that

the uncertainty associated with height attribution is a

very important contributor to AMV observation er-

rors. Evaluation of level-based AMV height assign-

ments indicates that significant improvements in

AMV–rawinsonde vector agreements are achieved by

reassignment to a collocated rawinsonde level of ‘‘best

fit.’’ Because this is impractical in terms of operational

applications, it is also shown that some of this height-

assignment uncertainty can be overcome by treating the

AMVs as representing finite tropospheric layers rather

than single discrete levels as is currently done. Attribu-

tion of AMV information to a specified layer improves

upon AMV–rawinsonde agreement by ;0.5–1 m s21

over traditional level-based assignment, with significantly

greater improvement (;2–4 m s21) in strong-wind-shear

regimes. The uncertainty is likely due to a combination of

vector representativeness as a finite tropospheric layer

rather than discrete level and current height-assignment-

method inadequacies. The results of this study only di-

rectly apply to NESDIS operational AMVs, but they are

likely applicable to other global data processing centers

as well because of the similarities in AMV processing

methods and quality statistics.

In terms of practical applications, the AMVs have

traditionally not been optimally represented in numerical

model analyses via single-level data assimilation. Data

assimilation procedures create analyses of atmospheric

FIG. 10. As in Fig. 8, but for AMVs derived from MODIS over the NSA ARM site and only for IR.
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fields by blending information from the model back-

ground with observations. An observation’s influence on

the analysis is determined largely by the ratio of the as-

sumed error of that observationwith the assumed error of

the model background at the observation location. Ob-

servations that are believed to be more accurate (e.g.,

smaller observation error) receive more weight than do

less accurate observations. In most contemporary data

assimilation systems, precise knowledge of the trueAMV

observation errors and their representativeness is un-

known, resulting in a large fraction of AMV observations

being used in a suboptimal manner. In addition, while the

currentmore-sophisticated objective analysis systems (i.e.,

variational approaches) include vertical spread functions

of various data inputs, forAMVs these are not well known

or understood. Therefore, AMV data are typically con-

strained in the vertical direction and have less chance of

making an impact on the initial analysis.

So how can these results be applied in numerical

weather prediction? Data assimilation of AMV obser-

vations could benefit by utilizing height uncertainty in-

formation and ancillary information such as the optimal

representative layer thickness relative to the original

AMV assigned height. Future data assimilation studies

should test a new AMV forward operator based on the

results presented here. It is likely that the most signifi-

cant impact potential will be realized from regions with

high shear, which would be fortuitous, because these

regimes are often associated with meteorological con-

ditions that lead to rapid model forecast error growth.
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