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Tis umbrella review is motivated to understand the shift in research themes on brain-computer interfacing (BCI) and it
determined that a shift away from themes that focus on medical advancement and system development to applications that
included education, marketing, gaming, safety, and security has occurred.Te background of this review examined aspects of BCI
categorisation, neuroimaging methods, brain control signal classifcation, applications, and ethics. Te specifc area of BCI
software and hardware development was not examined. A search using One Search was undertaken and 92 BCI reviews were
selected for inclusion. Publication demographics indicate the average number of authors on review papers considered was
4.2± 1.8. Te results also indicate a rapid increase in the number of BCI reviews from 2003, with only three reviews before that
period, two in 1972, and one in 1996. While BCI authors were predominantly Euro-American in early reviews, this shifted to a
more global authorship, which China dominated by 2020–2022. Te review revealed six disciplines associated with BCI systems:
life sciences and biomedicine (n= 42), neurosciences and neurology (n= 35), and rehabilitation (n= 20); (2) the second domain
centred on the theme of functionality: computer science (n= 20), engineering (n= 28) and technology (n= 38). Tere was a
thematic shift from understanding brain function and modes of interfacing BCI systems to more applied research novel areas of
research-identifed surround artifcial intelligence, includingmachine learning, pre-processing, and deep learning. As BCI systems
become more invasive in the lives of “normal” individuals, it is expected that there will be a refocus and thematic shift towards
increased research into ethical issues and the need for legal oversight in BCI application.

1. Introduction

Advances in technology have given hope to many indi-
viduals who sufer from chronic brain-related medical
conditions [1]. Tose with afective brain disorders have
been given hope that a level of disability caused by their
conditions can be alleviated, and they can enjoy a more
“normal” life [2, 3]. While popular culture has created
images of the ultimate cyborg, this technology is far from
becoming a reality, and while there have been major ad-
vances, there is still a long road before human and machine
are fully integrated. However, the frst step on this path is
underway with advances in brain-computer Interfacing.

Brain-computer interface (BCI) is a complete system of
software and hardware that facilities the direct communi-
cation path between the brain and a device, which enables
that device to be controlled with the issuance of commands

or external interventions [4, 5]. Functionally, BCI involve
two components: the user and the computer that enter
reciprocal interactions [6]. Te key to the efective operation
of BCI systems is the robust fltering of signals to enable
efective and continuous feedback to the user [6]. As an
enhanced understanding of the brain is achieved, there will a
generation with further advances in BCI performance as
task-specifc activity patterns and their ability to become
accurately detected, their features comprehended, opti-
mized, and classifed [7–9]. Tis intrinsically ties to the
development of software systems linked to artifcial intel-
ligence (AI), including machine learning (ML), pre-pro-
cessing, and deep learning (DL) that will improve fexibility,
extendibility, usability, and performance at the individual
user level [10–18].

Te feld of BCI is rapidly developing; in 2006, people
with paralysis were moving computer mice, and by 2012, this
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has advanced to the control of robot arms [19, 20]. While the
development of BCI products has primarily been driven by
medical research felds, these developments have a potential
crossover potential into the education, gaming and enter-
tainment, marketing and advertising, military, and safety
and security sectors [5, 20, 21]. Tese developments have led
to improvements in the quality of life of individuals, par-
ticularly those living with chronic disability and those that
care for them [22]. Te development and advances in BCI
technology is being driven by new players with the in-
volvement of the nonmedical tech billionaires and their
ability to fund research at almost unlimited rates [23].

Tere has been a shift in the research paradigms in the
BCI feld and this review seeks to understand those shifts in
terms of thematic changes in the literature [24–29]. At
present, there is little understanding of how the themes in
the literature have changed through time. Due to the in-
creasing volume of literature surrounding BCI, the optimal
method to obtain an overview of the thematic changes
through time was via an umbrella review. Tis review frst
outlines the research objectives and questions that are the
focus of the work. A background review into aspects of BCI
categorization, neuroimaging methods, brain control signal
classifcation, applications, and ethics is present. Tis is
followed by the thematic review.

1.1. Objectives and ResearchQuestions. Tis umbrella review
aims to provide a brief overview of BCI systems, examining
aspects of categorization, neuroimaging methods, brain
control signal classifcation, its applications, and ethics all of
which are contained within the background of this paper and
used to inform on the thematic analysis which is undertaken
after the overview. Tis review does not explore BCI
hardware or software. Tis review also aims to examine the
demographics of the BCI reviews, and these publications
then explored to gain a comprehensive insight into the
current BCI research themes.

To satisfy these aims, this review asks three questions:

Question 1: How are BCI systems categorized and
applied (background)?
Question 2:What are the demographics metrics for BCI
review publications?
Question 3: What are the BCI research foci as refected
by the thematics of review publications through time?

2. Background

How BCI systems are developed and implemented is highly
dependent on the target user. Medical use of BCI systems has
two aspects, diagnostics and rehabilitation, and has been
shown to have benefcial in monitoring and improvement in
the quality of life for a variety of conditions [30]. Early work
in BCI systems was technologically limited to brain signals
using electroencephalography and limited applications
neuropsychology and neurophysiology and understanding
brain regionalization and functioning, and of the potential
for use in motor support and medical diagnostics [31].

However, the development electrocorticography has pro-
vided more accurate and long-term brain signal applications
not just in the medical feld. Furthermore, the use of met-
abolic signals with functional magnetic resonance imaging
and other systems provides more avenues to work with areas
of the brain that have been damaged and are unable to emit
lucid signals.

2.1. BCI Categorization. Tese three aspects to the classif-
cation of BCIs revolve around aspects of dependability, in-
vasiveness, and synchronization [4]. Dependability is
determined by the level of motor control the individual needs
to interact with the BCI. Invasiveness refects how the BCI is
deployed to capture brain signals. Synchronization refects the
time periodicity that the individual interacts with the BCI
system. Subclassifcation of BCI systems can refect aspects of
targeted subjects, such as animals or humans, and how signals
are transmitted in the system, wireless or fxed line [30].

2.1.1. Dependability. Te level of dependability is deter-
mined by the level of motor control that is required by the
individual [4]. Dependant BCIs assist the individual to
undertake takes more easily, such as gaming or using mo-
bility devices. Independent BCIs do not require external
controls and rely completely on brain signal detection.

2.1.2. Invasiveness. Tere are three forms of BCI invasive-
ness based on the position of electrodes [32–34]: (1) invasive
BCIs that are embedded into the brain; (2) partial invasive
BCIs that have the device implanted inside the skull but
outside the brain; and (3) non-invasive BCI systems uses
neuron imaging outside the skull. Invasive BCIs involve the
implanting of microelectrodes that are implanted in the
brain [4, 35]. While invasive methods provide high-quality
signaling, this is temporary as the buildup of scar tissues
through time reduces the signal quality [5]. Once these
microelectrodes have been implanted, they are fxed and
cannot be used to monitor other parts of the brain [4]. Semi-
invasive BCI systems are located under the skull but are not
attached to the brain [5]. Like invasive BCI systems, semi-
invasive systems remain in place and can only monitor one
area of the brain. Noninvasive BCIs form the basis for most
applications and involve recoded signals on the scalp [4].
While the signal quality is not as high with more invasive
approaches, noninvasive methods do not require surgery [4].

2.1.3. Synchronization. Te level of synchronization is de-
termined by the periodicity that the individual interacts with
the BCI system [4]. Synchronous BCI systems only operate
during periods when the individual chooses to use them
[36]. Synchronous systems allow for the use of motor ac-
tions, such as blinks, when brain signals cannot be analyzed
[37]. In contrast, asynchronous, or self-paced, BCI systems
enable the individual to undertake tasks at any time and are
always functionally active [4]. Asynchronous systems do not
require external cue stimuli and have natural modes of
interaction making them more user-friendly [36, 37].
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Advances in asynchronous systems have seen increased
levels of autonomy and empowerment of BCI users with the
development of brain switches that enable the user to dis-
engage with the BCI system [38].

2.2. BCI Neuroimaging. Understanding areas of the brain
and their function enables targeted BCI to be developed that
aim to detect specifc signals these may be electric or
metabolic [4, 5, 27, 39–42]. Electric signals fall into the
bands: alpha (8–12Hz) which is associated with closing the
eyes and relaxed states, awareness without concentration,
good mood, calmness, learning new information, and self-
awareness; beta (12–30Hz) are emitted with energetic
thinking, attention and alertness, and anxiousness; gamma
(25–100Hz) which associates with writing and reading; delta
(1–4Hz) related to deep sleep and unconsciousness; mu
(7–13Hz) that deals with motor neurons in a rest state; and
theta (4–7Hz) that are associated with sleep [37, 40, 43, 44].
As the understanding of brain function has improved, it has
become evident that diferent areas of the brain have the
potential to afect movement, where an individual controls
motor monument involves a diferent region of the brain to
where the same imagined movement is occurring [45]. Te
technologies that assisted motor activities required invasive
systems, such as connection to the nervous system [46].

2.2.1. Electrocorticography (ECoG). ECoG is a portable
semi-invasive system where electrodes are placed between
the brain and the skull. Tere are two forms of ECoG,
monitoring under surgical conditions and long-term im-
plants. One of the major benefts of the ECoG is the recoding
of multiple sensorimotor rhythms that operate at diferent
frequencies at the same time [37, 43, 44]. ECoG is advan-
tageous due to higher levels of spatial (∼1mm) and temporal
resolution (∼0.003 s) [4, 37, 47]. Historically, ECoG systems
were used under surgical conditions that beneft short-term
monitoring [4]. Due the restricted time in surgery that data
are being collected is possible that periodic irregularity such
epilepsy, and due to this irregularity, these may not be picked
up during the procedure [4].

Apart from short-term monitoring, the use of implanted
semi-invasive systems has been the long-term use of ECoG.
Cortical electrical stimulation (CES) systems have been
investigated for a variety of motor functions such as hand
movement [35, 48] and for nonmotor applications to en-
hance auditory visual and language systems has been the
focus of research [49]. ECoGs provide long term constant
and stable signal acquisition systems and therefore have the
potential for addressing chronic conditions [48]. However,
there are signifcant risks with the use ECoGs due to their
invasive nature; these risks include epi- and subdural he-
matoma, cerebral infarcts, increase of intracranial pressure,
and brain edema [28, 47, 49, 50].

2.2.2. Electroencephalography (EEG). EEG is a portable
noninvasive monitor of the neuron electrical activity of
the brain with the use of electrodes that are attached to the

scalp [4, 5, 51]. Attached electrodes are used to detect and
capture signals that are emitted from the brain. Tere are
two forms of electrode: active electrodes, which contain an
amplifer; and passive electrodes, which do not contain an
amplifer [4, 5]. EEGs have signifcant benefts that pro-
vide most of the required information for the brain, the
system is inexpensive, it has no adverse side efects, and
there is no need for using external electrical signals or
voltage [4, 43]. However, EEG systems have the spatial
resolution (∼10–30mm), the lowest of all neuroimaging
techniques, while temporal resolution is quicker (∼0.05 s)
[37, 43, 50, 52]. Advances in emotion detection such as
levels of meditation, engagement, frustration, excitement,
and stress are examples of afective and cognitive feedback
and regulation using EEG [53]. EEG has two applications:
(1) in medicine with the provision of enhanced moni-
toring, assessment, and diagnosis of psychiatric and
neurological disorders such as autism, depression, and
schizophrenia [54] and (2) in entertainment, design of
trafc safety systems and gaming through understanding
emotional feedback assisting in product design and de-
velopment [54]. Research has focused on the level of
individual variability and reducing can lead to long te-
dious calibration times to ensure task determination ac-
curacy [55].

2.2.3. Functional Magnetic Resonance Imaging (fMRI).
fMRI is a nonportable noninvasive method that maps the
shifts in task-induced blood oxygen levels within the brain
that are associated with diferent neural activities [4, 5, 39].
Te benefts of fMRI are that it produces high spatial res-
olution (∼1mm), but this method has a slight time lag (∼1 s),
which means it is very sensitive to movements and it is also
noisy and has a high cost [4, 37, 43, 50]. fMRI can be used to
provide real-time whole brain analysis which allows indi-
viduals to self-regulate specifc brain regions to control
external devices [39, 43]. Te individual control is enhanced
through time with multivoxel pattern analysis, a system of
machine learning that improves individual control and
improves the fltering of interference through time [39].

2.2.4. Intracortical Implants. Intracortical implants are in-
vasive and attached directly to targeted areas of the brain.
Tey have high spatial resolution (0.05–0.5) and fast tem-
poral resolution [37]. Tese implants carry high risks of
infection and biological rejection and have long term signal
loss [49, 56]. Early systems to enhance vision used sixty-eight
electrodes implanted on the surface of the brain to enable
improved vision [46]. Te use of intracortical BCI systems
were a major area of research using animals in the early days
of BCI development, but these never fully reached their
potential in human trials, and this research was gradually
replaced with less invasive techniques [32, 57]. Te use of
invasive devices also has ethical problems with questions
such as reversibility, with the brain returning to its normal
state after the BCI is removed, practically if there has been a
buildup of scar tissues [22].
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2.2.5. Magnetoencephalography (MEG). MEG is a nonin-
vasive nonportable BCI that relies on the detection of
changes in the magnetic felds on the surface of the scalp
using superconducting quantum interference devices
(SQUIDs) [4, 5]. Tese changes in magnetic felds are a
consequence of neuron electrical activity. Te benefts of
MEG include moderate spatial (∼0.05mm) and temporal
resolution (∼0.05 s) [37]. Te magnetic felds utilized by
MEG are less infuenced by electric currents; however, the
equipment is very expensive and loses resolution at the
surface and deep in the brain [4, 43].

2.2.6. Near-Infrared Spectroscopy (fNIRS). fNIRS is portable
noninvasive and relies on projecting infrared light into the
brain to measure changes in wavelength caused by changes
in blood oxygenation [5].While fNIRS is limited in temporal
resolution (∼1 s) and provides medium spatial resolution
(∼5mm), it is able to provide real-time information on the
diferent brain activation patterns associated with tasks and
their difculty [4, 37, 43, 50, 58]. However, external device
speed is limited by the detection of delayed metabolic re-
sponse speeds to activity, with up to 16 s needed for a list
selection from a single channel [43]. Benefts include low
cost compared to other imaging systems and did not require
long-term training by the BCI user [43]. Optimal use of
fNRIS has been achieved with the primary moor cortex and
prefrontal cortex with applications for motor tasks, and
cognitive tasks such as arithmetic, music imagery, and
emotion induction [59].

2.2.7. Positron Emission Tomography (PET). PET is a
nonportable noninvasive approach that used a metabolic
process using gamma rays that are generated by the inter-
action of radionuclide-emitted positrons and elections [4].
PET is expensive and does not provide images or cross-
sections of the brain and therefore does not show the lo-
cation of physical abnormalities. Te PETmethod allows for
the detection of most brain activity.

2.2.8. Single Photon Emission Computed Tomography
(SPECT). SPECT nuclear tomographic imaging is based on
gamma rays that are emitted by radionucleotides that have
been injected into the blood stream [4]. Like PET, SPECT is
expensive, but with the use of brain tissue-specifc binding
chemicals, it provides 3D images of the monitored area of
the brain [4].

2.3. Brain Control Signal Classifcation. Tere are three
brain control signals that are utilized by BCI systems [4]:
(1) visual evoked signals are those generated uncon-
sciously by the individual in response to external stimuli;
(2) spontaneous signals are those generated by the indi-
vidual voluntarily without any external stimuli; and (3)
hybrid signals are a combination of signals that are used
for control.

2.3.1. Evoked Signals (VEP). Tere are two forms of VEP.
First, steady-state evoked potentials (SSEP) are triggered by
signal modulation in the visual cortex when the individual
receives periodic stimulus such as a moving image, mod-
ulated sound, or vibrations; the individual can elicit a re-
sponse that can be task specifc such as controlling a button
stick [4]. SSEP has an information transfer rate of
60–100 bits/min [37]. Second, P300 is an EEG signal that is
detected positive peaks when the individual is exposed to an
infrequent task, while this does not require training, the
triggering required needs respective stimuli that can be
tiring [4]. P300 has an information transfer rate of
20–25 bits/min [37].

2.3.2. Spontaneous Signals. Tere are three spontaneous
signals that are used in BCI systems. First, motor and
sensorimotor rhythms that are associated withmotor actions
such as the movement of limbs and are derived from the
motor cortex. Individuals through operant conditioning can
be trained to voluntarily change the amplitude of their
sensorimotor rhythms to signal processes [4]. Alternatively,
motor intention can be detected via EEG which can then
control devices such as a computer mouse or play a com-
puter game [4]. Second, slow cortical potentials (SCP) detect
nonmotor signals from the frontal parts of the brain, and
after training, an individual can learn to control the gen-
eration of signals that can be translated into motor tasks,
with benefts for those with motor cortex damage [4]. Tird,
the use of nonmotor cognitive task signals can be used to
perform music imagination, visual counting, mental rota-
tion, and mathematical computation [4].

2.3.3. Hybrid Systems (hBCI). Tere has been an increasing
rate of research into the use of integrated systems that in-
volve more than one BCI system; these are known collec-
tively as hybrid systems [44]. hBCI systems utilize a
combination of at least one brain-generated signal with
another neurological, physiological, or external signal to
increase reliability and individual control [4, 60, 61]. Tere
are six types of hBCI that are in use [62, 63]; Liu et al.: (1) two
diferent EEG BCIs; (2) EEG and a non-EEG BCI; (3) EEG
BCI and another biosignal; (4) EEG BCI and EEG-based
monitoring; (5) EEG BCI and other signals; and (6) EEG
BCI, EEG monitoring, and other biosignals. Tere are three
classifcations of hybrid BCI systems [60]: (1) the source of
brain signals, (2) the form of brain signals, and (3) the
operation of the system. Tere are many real-world appli-
cations for hBCI systems such as detecting awareness,
gaming, mouse control, navigation, neuroprosthetics, and
wheelchair operationmost of which rely of visual modalities,
while others require some degree of physical movement
[60, 61]. hBCI has a higher classifcation accuracy and in-
formation transference, with lower false positives and ar-
tifact detection, leading to an increased response and
improved rehabilitation outcomes [62, 64]. Furthermore,
hybrid systems have the potential to enable individuals to
perform diferent tasks at the same time, but this may lead to
dual-task interference [62, 65]. Hybrid systems are more
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difcult to operate due to the complexity of users and
performance can decline for some who shift from a single
BCI system [65].

2.4. BCI Applications. Historically, the focus of early BCI
systems was to provide alternative output pathways for
severely disabled individuals that would enable them to
control external systems [33, 45]. However, one of the main
challenges for researchers in BCI system application is the
training of individuals to use control mechanisms, and there
are related to habituation and response rates, the actual time
taken to train the user and fatigue, the need tomodulate each
device to the needs of the individual, lack of predictive
indicators of performance due to individual circumstances,
limited applicability, the ability to control the desired task
with diferences in system activity, and the self-pace re-
quirements of the individual [66–68]. While BCI systems
ofer hope to many, there is a demographic who are BCI
illiterate, with illiteracy rated ranging from 48.7–61.6%, and
for these individuals, the promises made by researchers can
lead to frustration and disillusionment [66, 69, 70]. Not-
withstanding, BCI integration with such devices has oc-
curred with a wide range of applications such as prosthetics
and exoskeletons, robots, spelling and communication
systems, cursors, joysticks, and wheelchairs [71, 72].

2.4.1. Education. BCI systems have been developed to assist
in the understanding of student performance, particularly
those with neurodevelopmental disorders [21, 73, 74]. Te
use of EEGs in educational setting allows teachers to gauge
the level of engagement of the learner, enabling an efective
design of educational tools maximizing focused learning
[54, 73]. Similarly, self-regulation and skill learning using
through monitoring brain signals using fMRI enable the
individual to determine the level brain regional focus [5].

2.4.2. Gaming and Entertainment. Gaming has become an
avenue for BCI research and applications [25, 73]. While
simplifed games have been developed to assist in training,
the commercial gaming using BCI systems is primarily for
“healthy” individuals [25].Te use of BCI for gaming has led
to the development of software enabling individuals to fy
virtual aircraft or playmultiplayer online games, where hBCI
systems have been used to create driving simulators and
fight control systems [60]. Brain Arena is a football game
where collaborative gaming between players using indi-
vidual BCIs control the ball by imaging left or righthand
movements [5]. More recently, classic games have been
converted for BCI systems “Bacteria Hunt,” “Mind Balance,”
“Pacman,” “Pinball,” “Tetris,” and “World of Warcraft” [75].
Furthermore, EEG data can be also used to observe rela-
tionships between multimedia experiences and the human
emotions. Designers use the information obtained in rela-
tion to the afect stated of the user to enhance the experience
through the moderation of difculty, punishment, and re-
ward systems [54].

2.4.3. Marketing and Advertising. Marketers have utilized
BCI to monitor individual repones to advertise commercial
products and political campaigns. In particular, an assess-
ment is made of individual attention generation that is
associated with watching activity [5]. Te use of EEG to
match neurophysiological parameters with potential cus-
tomer responses to stimuli enables the efective design of
campaigns [54].

2.4.4. Medical. Medical interventions have remained the
main research focus that has driven much of the develop-
ment of BCI innovations [73]. Tese applications have
delivered real-world benefts for diagnostics and for reha-
bilitation for those with cognitive impairment of movement
and function control [59, 76, 77]. Medical applications rely
on adaptive neural plasticity where damaged areas of the
brain are bypassed [78, 79]. While some BCI systems
training is for prolonged use, training in the short-term
helps navigate brain blockages and enhances motor function
and assists in brain recovery [80, 81].

Te use of noninvasive BCI is well-established in
medical diagnostics. Te medial use of EEG to detect brain
diseases, epilepsy, disorders, coma, encephalopathies, and
brain death but does not provide information on the
location of injuries or physical abnormalities like tumors,
as well as ofer monitoring of specifc behaviors [4, 54, 82].
EEG has also been used to detect mental commands for
the operation of wheelchairs after spinal cord injury or
neuromuscular disease and has extensively been used in
stroke rehabilitation and external device control [35, 43].
EEG systems in stroke victims have been efective in
returning upper body control after rehabilitation
[76, 83–86].

Other than EEG, noninvasive BCI systems do not receive
as much attention in the literature. MEG provides a tem-
poral and spatial resolution of the brain, enabling the de-
tection of regions causing epilepsy or tumor or other mass
lesions [4]. PET imaging while not providing the location of
the injury is able to efectively detect abnormities making it
useful for discerning the presence of absence of brain dis-
eases, disorders, coma, encephalopathies, and brain death
[4]. Te use of infrared thermography to detect changes in
uses deep breathing, blinking, or opening of the mouth as
device commands has been developed that allows for the
movement of wheelchairs [43].

hBCI systems are becoming more frequent in medical
interventions [61]. Honda’s brain-machine interface uses a
hBCImodel headset containing EEG andNIRS sensors set to
control a robot where the individual uses thoughts which
then are translated into motor actions [5]. Other hBCI
systems bring added mobility with wheelchair operation,
neuroprosthetics, and mouse control [61].

Communication and BCI systems have become a major
area of research [77, 87]. Tere are signifcant benefts to
spelling and writing systems, and with commercialization,
such as “Flash Type” and “Bremen Speller”; they are user
friendly with mostly not requiring specifc training [87–89].
However, small levels of interference disrupt the system and
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cause errors, particularly if the system has been compro-
mised, making security arouse BCI systems imperative [90].

Semi-invasive closed-loop ECoG implants are well-
knownmedical interventions. Cochlear implants are a major
commercial use of BCI to restore hearing to the deaf, en-
abling hearing and subsequent speech and language skill
development [5, 43]. While bionic eyes are rapidly being
developed in the form of a small digital camera, external
processor and an implant with a microchip and stimulating
electrodes surgically placed in the back of the eye [5, 43].
Similarly, ECoG technology where evoked somatosensory
perception is being developed for motor neuroprosthetics
aims to bring mobility and functional ability to those in-
dividuals with paralysis [5, 49].

2.4.5. Security and Safety. BCI systems are currently under
development to assist road user safety, as well as security and
military applications [5, 21, 22]. Te detection of driver
fatigue and alertness has a major implication for road safety
and is a cutting-edge area of research in the application of
BCI [5, 73]. Te technology utilizes the recognition of cyclic
sleep patterns and eye movement to detect changes in driver
eye behavior. hBCI systems use visual cues and physical
movements to detect awareness in drivers [60]. Te use of
BCI enhancement systems and its applications of en-
hancement and transhumanism is a research area that the
military has increased interest in [22]. fMRI application can
be used to operate robots through a visual perspective [43].
Additionally, the use of BCI systems to enable the control of
building systems in smart cities has been studied [91, 92].
Te military can use the BCI system to monitor troops
during operations using cost-efective portable sensors; these
could alert to changes in the mental capacity of the troops
under observation [21].

2.5. BCI Ethics. Te literature on BCI is dominated with
the application and processes surrounding BCI systems;
little has been done to review the ethical implications, and
this raised more questions than answers [22, 93]. His-
torically, ethics were not a focus in reviews, although the
procedures are more invasive than modern to BCI systems
[32, 46]. Te most discussed ethical issues that surround
BCI are user safety and risk benefts associated with their
use, particularly those surrounding the use of invasive and
semi-invasive technologies [22, 73, 94]. However, there
are three areas in need of ethical consideration when
dealing with BCI applications and their users: (1) Te
ability of an individual that utilizes a BCI system to
provide informed consent and their loss of personhood.
(2) Te use of machine learning and the self-empower-
ment of BCI systems and the abrogating responsibility by
the user of these systems. (3) Issues that deal with re-
searcher responsibility. Each of these areas presents
ethical dilemmas in terms of agency, self-image, identity,
and responsibility for any BCI system applications [20].
Although more recently data management and its privacy
has become an increasing concern [73].

2.5.1. Humanity, Personhood, and Consent. Informed con-
sent is a major concern ethically in BCI research. Tere is a
nuanced diference between the individual giving assent to
perform experimentation or implantation of a system, and
the individual has the ability to give consent [22]. Informed
consent has three components that need to be satisfed [22]:
(1) the individual can understand all the disclosure infor-
mation; (2) the individual has the capacity to make a rational
and reasonable decision based on that information; and (3)
that the decision is to totally voluntary and made without
coercion or infuence. Te ability to provide informed
consent is a major concern when the patients are in locked-
in or noncommunicative states, particularly if these indi-
viduals do not want to participate in BCI programs [22].
Tere is often a pressure to conform to what is medically
considered the “normal” body or form of life and whether is
it socially acceptable to live with a perceived defcit [22]. For
instance, with the use of cochlear implants, some individuals
do not see themselves in terms of having a defcit, thus
implants may not be seen as treatments but rather en-
hancements [22]. Such examples highlight the diferences
between individuals in perception; this is ethically critical to
understand how personhood and humanity are negotiated
and consent is negotiated and obtained.

2.5.2. Loss of or Inappropriate Control. Ethics surrounding
the use of BCI systems is often overlooked, particularly as
these systems are growing in their autonomous capabilities,
particularly as machine learning empowers individuals with
major motor disorders; there are three major areas of ethical
consideration that need to be addressed in terms of indi-
vidual use of a BCI system [22]: (1) If systems become self-
empowering with machine learning, at what point to the
systems inhibit the individuals ability to act on their own
desires, and thus, those individuals lose control of their
thoughts and behaviors depriving them of agency? (2) As
BCI systems become more sophisticated and semiautono-
mous, who is responsible if the system enables the user to
perform an action that is morally or legally inappropriate,
and does the use of that system impede the ascription of
responsibility? (3) How are BCI system applications in terms
of enhancement of neural pathways regulated in terms of
military or religious applications?

2.5.3. Researcher Responsibility. Researcher responsibility is
less prominent in ethical considerations. Te discovery of
novel incidental fndings that was not within a project’s
ethical scope can have implications for an individual’s
personal information and privacy [22, 66]. Consent obtained
by the researcher for one project may have implications for
other areas of research and the individual, therefore, may be
“unaware of the extent of information that is being obtained
from his or her brain” [22]. In interdisciplinary teams, how
and what information is relevant to a researcher given their
disciplinary area and should all information be shared
within the team is a major ethical dilemma of integrative
research [22]. When researchers report fndings, how much
consideration should be given to consulting the individuals
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that were the subject of that research, and how are issues
where the individuals do not want those fndings reported
dealt with [22, 66]. Researchers also must also not overplay
the expectations of application for individuals and their
caregivers, overstating the benefts can often lead to dis-
appointment and frustration [66]. Failure to address these
issues leads to the dehumanizing of the research subjects and
therefore is a serious moral concern, and there is an in-
creasing call for the development of a code of ethical conduct
for BCI systems [66].

2.6. Summary. Areas of applied BCI research can be divided
into three areas: dependability, invasiveness, and synchro-
nization, and advances in each of these areas have driven
advances in all aspects of BCI systems. Neuroimaging has
seen a shift from invasive methods toward semi and non-
invasive technologies. Current technological advancement is
seeing a gradual shift away from the dependency on elec-
trical signals systems to those using metabolic signals to
provide detailed information on brain function, and how
best to provide medical care or assisted augmentation. As
systems and technologies have improved in the detection
and understanding of brain functioning, the use of single
evoked spontaneous signals to greater use of integrated
hybrid signal BCI systems. Te growth in technological
capability and diversity of BCI systems has led to increased
real-world applications that have enhances a broad spectrum
of human activity. While historically the focus on BCI ap-
plications has been dominated by the medical sector, more
recently education, gaming, marketing and safety and se-
curity have all benefted from BCI system development.
Ethically, there are many questions surrounding the use of
BCI systems, and these refect more than the safety and
consent considerations but also deal with aspects of hu-
manity and responsibility.

3. Methods

3.1. Search Strategy. Tis review uses One Search, a data
mining tool that accesses 252 databases including BioOne,
Google Scholar, JSTOR, ProQuest, and PubMed. Te search
criteria for this study included the keywords: “computer,”
“brain,” “interface,” and “review,” all of which needed to be
in the domains of title, abstract, or keywords. All forms of
the review were included to maximize the discovery of
themes, their primary word associations, and disciplinary
determination.

3.2. Inclusion and ExclusionCriteria. Only reviews that were
peer-reviewed were included for consideration (n� 124). No
date ranges were applied to the search to enable the study of
thematic shifts in research through time. Tose papers that
were not institutionally available at the time of the search
were excluded (n� 2). Correction papers were omitted
(n� 6), as were short research notes (pages<2; n� 2) and
article reviews (n� 1). Repeats were removed (n� 13) along
with articles that were not review articles (n� 4). Four ar-
ticles were found to lack relevance: a glossary of terms

(n� 1); law-related paper (n� 1); and interviews (n� 2).
After initial exclusion, a total of 92 papers were retained and
critically appraised [95]. Many early works (e.g. [46]) did not
meet the modern review standard, missing methodology or
clear statements of review questions; however, these were
retained as they enable a more thorough understanding of
the early literature and foci of the research at the time they
were written. All modern papers pass the appraisal, a re-
fection in the shift in editorial standards and improved
methodical requirements for publishing a literature review
(Figure 1).

3.3. Publication Demographics. A bar chart of publications
used in this review by year was produced to indicate any
trend in the rates of publication. Te number of authors per
paper/year was noted and the overall mean was calculated
(±SD). Author afliations were mapped using world-
chart.net to indicate shifts in researcher geographical do-
mains. When authors have more than one country
institution afliation, it was counted for each country. Same
country afliation was only counted once for that country.
Furthermore, publications returned using the unfltered
peer-reviewed One Search of “Brain-Computer Interface”

Identifcation

Screening

Eligibility

Included

Domain: Unrestricted Search
Approach: Tematic

“Brain” “Computer” “Interface” “Review”
(n = 3758)

Domain: Title/Abstract/Keywords
Approach: Tematic

“Brain” “Computer” “Interface” “Review”
(n = 219)

Domain: Review Process
Approach: Peer Reviewed

(n = 124)

Domain: Article Title
Approach: Not - Article Review, Correction

(n = 117)

Domain: Availability
Approach: Freely Available

(n = 115)

Domain: Article Title
Approach: Not - Duplication

(n = 102)

Domain: Abstract
Approach: Review

(n = 98)

Domain: Main Text
Approach: Not - Short Notes, No Relevance

(n = 92)

(n = 92)

Excluded
(n = 6)

Excluded
(n = 4)

Excluded
(n = 13)

Excluded
(n = 2)

Excluded
(n = 7)

Excluded
(n = 95)

Excluded
(n = 3539)

Figure 1: Flowchart of the BCI review article selection process.
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(n= 8184) were charted to show changes in the number of
publications per year through time.Te One Search - Subject
Filter results were also used to determine key disciplines that
relate to the review papers, reviews may be interdisciplinary
and thus counted more than once. Nondisciplinary object
words such as “Brain” and “EEG” were omitted, and where
duplications in disciplines occurred the largest value was
used, such as the use of“neurosciences and neurology”
resultand the omission of “neurosciences.”

3.4. Tematic Analysis. Articles were loaded into NVivo 12
Plus to identify work frequencies and shifts in word cor-
relations.Te 100 most frequently used terms were shown in
the generated word cloud where articles were grouped into
two cohorts that were designed to show shifts in word
frequency and form a historical (pre-2018) period to more
modern approaches (2018 onwards). Te relative size to
other words, words with higher usage are larger than those
whose use is infrequent. As well as the NVivo default word
omission, articles, pronouns, prepositions, and irregular
verbs were removed; this study also removed non-
informative terms such as “DOI,” numbers, and dates. A
word-association frequency diagram constructed using the
Pearson correlation coefcients was produced that showed
relative word use and their spatial positioning between the
two time periods using the 50 most frequent words for each
time. Keywords were tallied and discussed in relation to the
NVivo results.

4. Results and Discussion

4.1. Publication Demographics. Te number of publications
in the feld of BCI has increased through time, commencing
with two in 1972, one in 1988, and a constant gradual in-
crease from 1996 (Figure 2). Similarly, there was an increase
in the annual rate of review publications between 2003 and
2022 (Figure 2). Te average number of authors in a review
was 4.2± 1.8, the largest number of authors on any one
review being twelve, with only three reviews having one
author (Figure 2).

Tere has been a shift from a Euro-American dominance
in author-afliated institutions of BCI review writers to a
more global domain, and currently, China dominates the
author afliation list (Figure 3). Before 2010, four countries
contributed reviews, and these were written by authors with
afliations in Europe and the United States where authors
were the most prolifc publishers (n� 8; Figure 3). During
the period 2010–2014, a total of 11 countries had authors
afliated with their institutions; these were dominated by the
Europeans and the United States which had the highest
number of author afliations (n� 19). Tis period also saw
one South African-afliated author, seven from Taiwan, and
fve from South Korea showing sift from the western
dominance in reviews. Further expansion of country author
institutional afliation occurred between 2015 and 2019,
with 14 countries represented in the review literature. Te
United States (n� 28) and Germany (22) had the highest
number of afliated authors, with China (n� 9), India
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Figure 2: Te number of BCI-reviewed publications after 1996 by year, and the number of review publications selected for this study
showing an increasing trend to publish reviews and the distribution of the number of authors on those selected reviews.

8 Computational Intelligence and Neuroscience



(n� 9), and South Korea (n� 6) forming the second tier of
countries outside Europe and the United States. By
2020–2022 a total of 28 countries had authors with insti-
tutional afliations. Tis period saw China rise to the top of
the author afliation list (n� 64), well ahead of the United
States (n� 24), the United Kingdom (n� 23), and Italy
(n� 15). Again, India (n� 10) and South Korea (n� 15) were
prominent in author afliations.

Te One Search-Subject Filter indicated that there were
six disciplines related to the review search (Figure 4). Tere
were two overarching domains: (1) the frst domain related

to the theme of medicine: life sciences and biomedicine
(n� 42), neurosciences and neurology (n� 35), and reha-
bilitation (n� 20) and (2) the second domain centered on the
theme of functionality: computer science (n� 20), engi-
neering (n� 28) and technology (n� 38).

4.2. Tematic Analysis. Te word clouds reveal that the
keywords “BCI,” “brain,” and “computer” dominate. Te
terms “EEG” became in more frequent use in the reviewed
literature from 2018, and “control,” “interface,” and

Number of Author
Afliations

> 30

25-29

20-24

15-19

10-14

5-9

<5

Pre 2010

2010-2014

2015-2019

2020-2022

Figure 3: A map of review author afliations showing changes in quinquennial blocks demonstrating a geographical shift from Euro-
American dominated research to being more globally inclusive.
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“system” formed the main keyword for both periods (Fig-
ure 5). Te change in research focus was also evidenced
through the shift in language use, with terms such as
“speller” appearing in reviews after 2018 [87–89]. Other
words that had a greater frequency of use in the later cloud
were “classifcation,” “data,” “design,” “information,” and
“learning” which are closely associated with refning BIC
systems, and the associated growth with BCI, AI and DL
[10–12, 14–18], all of which appear in reviews post 2018.

Te term “hybrid” was a word that became less fre-
quently used in 2018. A title search of “hybrid” indicates
that the topic was mostly reviewed between 2016 and 2017,
with three review papers examined containing “hybrid” in
their titles from 2018 onwards [14, 44, 60–63, 65]
(Figure 5).

Te word cloud and word cluster analysis are infor-
mative for what they do not exhibit. Tere is a lack of ethics
and risk-beneft-associated terms. Consent, identity, hu-
manity, liability, personal, responsibility, and stigma are
absent, although these are major ethical themes concerning
the use of BCI systems [22]. Similarly, words associated with
the level of control an individual has in relation to the
synchronous systems were not themes identifed in the word
frequency analysis. Much of the ethical debate on BCI re-
search revolves around informed consent, privacy, risk, and
security of the individual; again, these were lacking in any
form in both the word cloud and its associated word cluster
analysis [73, 90, 94]. It can be argued that ethical issues are
not seen as structurally important, rather based on the lack
of thematic detection, may be said to only extend to the
adherence to the conditions surrounding institutional ap-
provals that pertain to specifc projects. Other than where
the individual has the capability to provide levels of in-
formed consent, there is a distinct gap in the review liter-
ature on the ethical issues that surround BCI system
applications, and up until 2017, only 42 research publica-
tions contained a meaningful discussion on BCI ethical
issues [22]. Te lack of ethical terms in the word cloud and
its associated world cluster analysis, particularly with the
growing use of human applications that this analysis

revealed, shows there is a need for ethics to be given greater
consideration.

Te center of the word-association frequency diagram
illustrated the away from “BCI” and its composite words to
“control,” “performance” and “state,” highlighting the shift
in the review literature focus away from how BCI system
operates and themove to the practical real-world application
[4, 26, 27, 29, 35, 37, 90] (Figure 6). Tere is a district
clustering in the 2018 onward diagram that is indicative of
the focus center of research and is centered on “human,”
“user,” and terms such as “cognitive” “process,” “technol-
ogy,” and “response,” terms associated with the application
of BCI [29, 40, 44, 97] (Figure 6).

Neurosciences & Neurology

Engineering

Computer Science

Rehabilitation

Life Sciences and Biomedicine

Technology

Figure 4: Te disciplines identifed in the One Search subject
flter from the BCI review search show the relative importance of
each discipline in proportion to each other based on the search
metrics.

2018-2022

2009-2017

Figure 5:Te word cloud generated to show word frequency use in
BCI reviews for the period before 2018 and is contrasted with 2018
onwards.

10 Computational Intelligence and Neuroscience



Early reviews focused on the methods and achieved
greater performance with words such as “access pathways”
[66], “alternative communication” [67], “biocompatibility”
[43], “classifcation” [57], “cognitive tasks” [31], “control”
[33], “motor imagery” [7, 36, 70, 79], “neuroengineering”
[19, 43] “neuroimaging” [37], and “sensory-motor regions”
[79], all of which show a focus on improving the under-
standing of brain function and how BCI systems are able to
exploit this knowledge.

Tis shift from understanding the brain function and
how BCI systems could be used to a more nuanced and
applied approach is refected in the shift in keywords authors
used. Some keywords remained in constant use highlighting
that there are key themes of research across time periods.
Tese terms include “signal possessing” or “signal analysis”

[6, 7, 19, 52]. Medical-associated words such as “stroke” and
“rehabilitation” were seen to remain in use
[64, 71, 76, 78, 85]; this is refected in the shift of focus from
understanding how the brain functions after a stroke to
more practical applications identifying functional brain
pathways using“motor imagery” [7, 36, 70, 79, 89] and its
practical application with “upper limb” [84, 85], or “upper
extremity” [86] and “lower limb” [84].

Interestingly, 2017 saw a blush of terms associated with
software and hardware with keyword terms such as “afective
computing” [54], “BCI hardware” [4, 5], “BCI software”
[4, 5], “classifcation accuracy” [61], “covariance matrix” [6],
and “Riemannian geometry” [6]. In contrast, the 2018 on-
ward period saw a shift toward technological development to
exploit the early research with terms such as “learning”
[55, 97], “robotics” [83], and “speller” [87].

5. Conclusion

Tis review highlights the shift through time in research
themes from understanding brain faction and how BCI
systems could use varying signal pathways to achieve ef-
fective BCI control of systems to more applied BCI research.
Similarly, while there remains a focus on medical applica-
tions of BCI systems, there is an increasing interest in the
commercialization of BCI systems for education, entrain-
ment, gaming, marketing, and security proposes and this is
refected in the review topics.

Medial applications still dominate BCI research themes.
Early research focused on the development applications,
signal questions, system optimization, and particularly for
theses surrounding control of an area of diagnostics and for
rehabilitation. Achieving this has meant continued seeking
of an understanding of how damaged areas of the brain are
bypassed. Later medical research sought to build on the
increased understanding of brain function and BCI systems
with the development of practical applications for those with
cognitive impairment of movement and function control.

Other themes in the research indicate a shift away from
pure medical applications. Tis has occurred as BCI systems
becomemore accurate, portable, less invasive, andmore user
friendly. Te review literature points to BCI system appli-
cations that enhance the human experience in terms of
augmenting the gaming and entertainment systems. Simi-
larly, marketers and advertisers are using emotional de-
tection BCI systems to improve advertising and marketing
material to maximize a desired emotional response. Safety
and security system development is focused on road safety
applications and how BCI systems can be used in smart cities
to control buildings and other infrastructure systems. Te
military is studying BCI systems to provide real-time in-
formation on the state of soldiers that are deployed [98].

5.1. Future Research. As further research advances in BCI
systems are commercialized, the thematic trend is a refo-
cusing away from medical application to a more “normal-
ized” application in the lives of everyday individuals. Tis
shift raises ethical questions of control, systemic societal

2009-2017

2018-2022

Figure 6: A word-association frequency diagram constructed from
the BCI review publications using the Pearson correlation coef-
cients showing the contrasts in word association between pre-2018
and 2018 onward.
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behavior monitoring, and what level of oversight is in place
not only for those that operate BCI systems but also those
who gather the information that is collected using them.
Ethics remain one of the major areas where there is a sig-
nifcant need for greater and more transparent oversight,
and therefore, more research into ethics is a major priority
for future research. It is expected that future themes will
refect the shift toward BCI systems becoming invasive into
the lives of “normal” people, and it is expected that this
thematic shift will also come with an increased call for re-
search into ethical issues and the need for legal oversight.
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Te data supporting this study’s fndings are available from
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