
Overview Article: Identifying transcriptional cis-regulatory 

modules in animal genomes

Kushal Suryamohan1,4 and Marc S. Halfon1,2,3,4,5,*

1Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 
14203, USA

2Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, 
NY 14203, USA

3Department of Biomedical Informatics, University at Buffalo-State University of New York, 
Buffalo, NY 14203, USA

4NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA

5Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park 
Cancer Institute, Buffalo, NY 14263, USA

Abstract

Gene expression is regulated through the activity of transcription factors and chromatin modifying 

proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include 

promoters, located at the transcription initiation sites of genes, and a variety of distal cis-

regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because 

regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, 

identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for 

understanding development. CRM discovery has historically been challenging, as CRMs can be 

located far from the genes they regulate, have few readily-identifiable sequence characteristics, 

and for many years were not amenable to high-throughput discovery methods. However, the 

recent availability of complete genome sequences and the development of next-generation 

sequencing methods has led to an explosion of both computational and empirical methods for 

CRM discovery in model and non-model organisms alike. Experimentally, CRMs can be 

identified through chromatin immunoprecipitation directed against transcription factors or histone 

post-translational modifications, identification of nucleosome-depleted “open” chromatin regions, 

or sequencing-based high-throughput functional screening. Computational methods include 

comparative genomics, clustering of known or predicted transcription factor binding sites, and 

supervised machine-learning approaches trained on known CRMs. All of these methods have 

proven effective for CRM discovery, but each has its own considerations and limitations, and each 

is subject to a greater or lesser number of false-positive identifications. Experimental confirmation 

of predictions is essential, although shortcomings in current methods suggest that additional means 

of validation need to be developed.
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INTRODUCTION

Transcriptional regulation is a fundamental feature of development. Genes need to be 

transcribed at the right time, in the right amount, and in the right cells in order for 

development to proceed correctly. Inappropriate regulation of even a single gene can have 

dramatic consequences (witness, for instance, the severe dysmorphologies resulting from 

regulatory mutations in Hox genes1). In animals, a significant portion of gene regulation 

results from the interaction of transcription factors (TFs) with specific cis-regulatory DNA 

sequences. For genes transcribed by RNA polymerase II (PolII), regulatory elements include 

both the promoter, which is situated at the transcription start site (TSS) and binds PolII and a 

set of core transcription factors, and more distal sequences, which can range from 

immediately upstream of the promoter to hundreds of kilobases away from the TSS. We 

discuss here only the distal regulatory elements, collectively referred to as cis-regulatory 

modules (CRMs). (For several excellent recent reviews of CRMs, see2–6). CRMs tend to be 

organized in a modular fashion, with each controlling a discrete subset of a gene’s overall 

expression pattern (Fig. 1A). They are typically a few hundred base pairs in length and can 

be located 5′, 3′, intronically, or even exonically relative to their target genes. CRMs as a 

class thus include transcriptional enhancers, and the two terms are often used 

interchangeably despite the fact that in the majority of cases, the regulatory sequences have 

not truly been shown to meet the formal requirement that an enhancer act without regard to 

orientation, distance, or placement (5′/3′) relative to its target gene.7 In keeping with this 

common usage, we will mainly use the term CRM here to mean enhancer-like positive 

regulatory sequences and will focus on discovery of these elements, except where otherwise 

stated. It is important to note, however, the existence of other types of cis-regulatory 

sequences, including negatively-acting silencers, locus control regions, insulator elements, 

and others.8

The broad outlines of CRM function are well established, although many details remain to 

be understood (Fig. 1B). In essence, CRMs serve as a scaffold for the assembly of specific 

combinations of TFs, which in turn recruit various co-activators and co-repressors (many of 

which are chromatin-modifying enzymes) and nucleosome-remodeling complexes.9 These 

enhancer complexes are brought into proximity of their target promoters via DNA looping 

(and/or additional mechanisms), where they serve to recruit or stabilize interactions with 

PolII and the general transcription factors.3, 4, 9 CRMs may also play an active role in the 

release of engaged but paused PolII from the promoter to allow productive transcription 

elongation.3, 4, 9

The rise of genomic profiling methods (i.e., methods that can interrogate gene expression, 

protein-DNA interactions, chemical modification of DNA, and so forth on a genome-wide 

scale in a single experiment) has revealed several distinct properties of CRMs. Nucleosomes 
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flanking CRM sequences are characterized by a number of histone modifications, most 

notably monomethylation of lysine 4 of histone H3 (H3K4me1) and acetylation of histone 

H3 lysine 27 (H3K27ac). Although these histone modifications mark CRM locations, their 

functional significance has yet to be determined.10 Also in need of mechanistic explanation 

is the finding that many active CRMs are themselves transcribed into RNA. Initially noted 

as a general enhancer feature in a broad survey of Drosophila CRMs,11 enhancer RNAs 

(“eRNAs”) appear to be widespread and have been implicated in a number of mechanisms 

including recruitment of cohesin (important for enhancer-promoter looping), mediating 

chromatin accessibility to allow TF binding, and interacting with the Mediator complex to 

stimulate transcription.12, 13 However, it remains unclear if there is a single or multiple types 

of eRNAs and what the various functions of these transcripts will ultimately be revealed to 

be.

Despite their crucial role in regulating gene expression, CRMs remain poorly annotated in 

sequenced genomes, and the vast majority of CRMs are yet to be characterized. The reasons 

for this are several and stem in part from the fact that the number of CRMs likely outweighs 

the number of genes by at least several fold (as many genes are known to have multiple 

CRMs). Whereas other functional elements such as genes and promoters have long been 

amenable to medium- and high-throughput assays, especially since the development of 

microarray and next-generation sequencing methods, genome-scale assays for CRM 

discovery have only recently become feasible. Until a few years ago, CRMs could be 

defined only through low-throughput functional assays—primarily, reporter gene assays 

(Figure 2)—that demonstrated the ability of a given sequence fragment to affect 

transcription. The problem of CRM discovery has been exacerbated by the fact that unlike 

protein-coding regions, which have recognizable sequence-level features such as open 

reading frames and codon-usage biases, no similar properties are known for CRMs. Unlike 

promoters, which by definition lie immediately 5′ to the gene and which are often 

characterized by a limited number of well-defined sequence motifs, CRMs are constrained 

neither in location nor by motif. Thus, while reasonably effective computational methods 

have been developed for gene-finding and promoter identification,14, 15 in silico approaches 

to CRM discovery have until recently enjoyed only limited success.

The development of genomic and epigenomic technologies, however, has dramatically 

changed the outlook for CRM discovery. Next-generation sequencing methods now enable 

high-throughput functional CRM discovery assays, and the vastly increasing amounts of 

available data, including large-scale libraries of transcription factor binding site (TFBS) 

motifs, collections of annotated, validated CRMs, and extensive epigenetic data of many 

kinds across many cell types, are making accurate computational CRM discovery an 

attainable goal. In this review, we provide a guide to this changing landscape of CRM 

discovery. We describe both experimental and computational methods for identifying CRMs 

and highlight some of the benefits and disadvantages of each approach. We stress the need 

for in vivo validation of CRM predictions, but note the limitations of current methods.
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IDENTIFYING TRANSCRIPTION FACTOR BINDING SITES

The basic units of function for CRMs are transcription factor binding sites (TFBSs), and 

many CRM discovery approaches, both empirical and computational, therefore begin with 

an attempt to characterize TFBS sequences. These regions are typically 6–20 base pairs 

long. Although TFs bind to DNA in a sequence-specific fashion, almost all TFs bind a 

degenerate recognition sequence; that is, they recognize a range of similar but not identical 

sequences (Fig. 3a). Collectively, this family of binding site sequences is referred to as a 

binding site “motif” and can be represented textually as a consensus sequence (Fig. 3b), 

graphically as a sequence logo (Fig. 3c) and mathematically as a position weight matrix or 

“PWM” (Fig. 3e; see also discussion in Box 1). A large number of both experimental16 and 

computational17, 18 approaches have been developed to determine motifs for specific 

transcription factors, or to identify putative regulatory motifs for unknown factors in long 

DNA sequences, including entire genomes.

Genomic-era technologies such as microfluidics, microarrays, and next-generation 

sequencing enable high-throughput determination of the binding motif for a given TF, and 

include methods such as MARE (Mechanically induced trapping of molecular interactions 

(MITOMI)19 for the analysis of regulatory elements),20, 21 SELEX-seq,2223 protein-binding 

microarrays (PBMs),24 and bacterial one-hybrid (B1H) assays.25 A significant feature 

shared by these methods is that they comprehensively sample the “sequence space”—all 

possible DNA sequences—and thus provide data on weak as well as strong binding sites. 

This is important as the strongest binding is not always the most functionally relevant 

binding, as demonstrated for instance by the critical role played by low-affinity binding sites 

in generating the appropriate readout of the Hedgehog morphogen gradient during 

Drosophila wing disc development26 (see Box 1).

A substantial advance in TFBS discovery has been the ability to interrogate what sequences 

are bound in vivo through chromatin immunoprecipitation (ChIP) coupled with genome-

tiling microarrays (ChIP-chip27) or more commonly now, next-generation sequencing 

(ChIP-seq)28, and conceptually similar approaches such as DamID (DNA adenine 

methyltransferase identification).29 This has been of major importance as it is clear that in 

vivo binding does not always correlate with in vitro binding capability, presumably due to 

any of a number of factors including incomplete motif definition, chromatin accessibility, 

and interactions with other TFs. In ChIP-seq, TFs are physically crosslinked to their binding 

sites in vivo using formaldehyde fixation. The TF-DNA complexes are isolated, sheared into 

small chromatin fragments, and co-precipitated using antibodies against the TF of interest. 

The DNA is then isolated by reversing the crosslinking and sequenced, thus identifying the 

regions that had been bound by the TF. Since the regions obtained from ChIP (up to a few 

hundred base pairs) are larger than the TFBSs themselves, additional computational analysis 

is then used to discover the individual TFBSs within these regions. The motif-finding issue 

can be overcome by using methods such as ChIP-exo30 or the more sensitive ChIP-nexus,31 

in which an exonuclease trims the DNA to give a higher resolution in TFBS mapping.

Extensive application of these methods has led to the generation of TFBS motifs for the bulk 

of the currently annotated TFs in the major model organisms including yeast, worms, flies, 
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mice, and humans. Several resources are available for accessing these data, including the 

curated motif databases JASPAR32 and TRANSFAC33, the UniPROBE34 database of 

protein-binding microarray results, and the Drosophila-specific FlyFactorSurvey.35 These 

resources can be used to assemble libraries of TFBS motifs for use as input into 

computational CRM discovery algorithms, as discussed below.

CRM DISCOVERY

Identifying CRMs presents a more challenging task than discovering TFBS motifs, 

individual motif instances in the genome, or even verified instances of in vivo TF binding. 

Not all predicted TFBSs are bound, and not all TF binding can be directly linked to 

regulating gene expression.36, 37 Thus, mere presence of a TFBS cannot be taken as 

evidence that a sequence is part of a CRM, and explicit CRM-discovery approaches must be 

used.

For roughly two decades following the initial description of transcriptional enhancers in 

1981,38 CRM discovery was confined primarily to the low-throughput approach of testing 

successive sequence fragments for regulatory activity using reporter gene assays (Fig. 2; 

Fig. 4a,d). However, with the advent of fully-sequenced genomes around the turn of the 21st 

century, methods for computational CRM prediction were developed that greatly accelerated 

the pace of discovery. These were followed a few years later by ChIP and other chromatin 

profiling approaches (e.g., DNase-seq, FAIRE; see below, “Chromatin Accessibility”) that 

could predict CRMs on a genomic scale with what generally has been believed (although in 

many cases not demonstrated) to be fairly high accuracy. All of these methods rely on one or 

more of a small set of strategies rooted in current understanding and assumptions about 

CRM biology: sequence conservation, the presence of a TF combinatorial “code” (Box 2), 

and chromatin modification or conformation. The last few years have seen the development 

of approaches for high-throughput relatively unbiased genome-scale functional screening as 

well as methods that attempt to directly capture CRM-gene interactions (reviewed by6, 39). 

The following sections review each of these families of approaches, focusing on a few 

representative methods for each class. We divide our discussion into empirical (Fig. 4) and 

computational (Fig. 5) approaches although in reality the two are often intertwined, as many 

experimental approaches require at least some computational analysis, and most 

computational methods rely to some extent on empirically-derived data to serve as input.

Empirical approaches to CRM Discovery

ChIP-based methods—The ability to obtain in vivo profiles of TF binding via ChIP 

allows for identification of CRMs based on appropriately clustered TF binding at a single 

locus. ChIP-based CRM discovery strategies directed against a defined combination of TFs, 

or even a single TF, have been effective in a number of studies, including, for example, 

identifying CRMs involved in Drosophila dorsal-ventral patterning,40 Drosophila 

mesoderm development,41 and human hematopoiesis.42 This approach is most appropriate 

when the “transcriptional code” (see Box 2) is known, as it is then apparent which 

combinations of bound TFs should be searched for. However, this information is currently 

available for only a minority of developmental systems.

Suryamohan and Halfon Page 5

Wiley Interdiscip Rev Dev Biol. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



An intriguing discovery has been the presence of “HOT” (highly-occupied target) regions, in 

which unexpectedly high numbers of different TFs are observed to bind, in a range of 

organisms from C. elegans to Drosophila to human.43–47 A detailed study in Drosophila 

demonstrated that 94% (102/108) of tested HOT regions functioned as CRMs,48 yet these 

regions are actually depleted for the binding site motifs of many of the bound factors, 

implying non-specific binding. Moreover, much of the TF binding has been suggested to be 

non-functional, as there is poor correlation between cells in which the CRMs are active and 

cells in which the bound TFs are expressed.48 Other studies also suggest widespread non-

functional binding of TFs throughout the genome,36, 49 although it has been proposed that at 

least some weak, widespread TF binding does have regulatory function.50 One possibility is 

that the HOT regions represent stretches of unusually accessible chromatin that are 

particularly amenable to non-specific TF binding. (A second possibility is that the HOT 

regions are merely artifacts of the ChIP procedure.51, 52) These findings underscore the 

somewhat counterintuitive idea that while TF binding or TFBS presence often factors 

importantly in CRM prediction, the identified TFs and TFBSs may not be the ones that are 

functional in the discovered regulatory modules.53

A related CRM discovery strategy is to use ChIP–seq to identify the in vivo binding sites of 

transcriptional coactivators which are present at large numbers of CRMs, such as the 

acetyltransferase p300/CBP.54 Although coactivators do not directly bind the DNA, they are 

retained in complex with sequence-specific TFs and DNA at active CRMs following 

formaldehyde cross-linking and are thus amenable to ChIP. This approach has the benefit 

that sets of relevant transcription factors do not need to be known a priori, with the 

disadvantage that focusing on a generic coactivator does not allow for preferential discovery 

of CRMs active in a specific tissue type. However, some extent of cell specificity can be 

achieved by performing the assays using a homogeneous cell line or isolated tissue. ChIP 

directed against p300 has been used in this fashion to identify mouse and human CRMs, the 

former in a tissue-specific fashion by performing the ChIP on dissected embryonic 

tissues.55–58 Transgenic reporter gene validation assays place the false-positive prediction 

rate (i.e., sequences selected as CRMs but failing to show activity in the reporter gene 

assays) in the range of 10%-40%, indicating that the method is not an infallible predictor of 

CRM function; nevertheless, these are considered strong success rates among methods for 

both empirical and computational CRM-discovery.

Chromatin “signatures” as means to identify active CRMs—Another variant of 

ChIP-based methods is to target the various post-translational modifications (PTMs) seen on 

the tails of histones in the nucleosomes flanking CRMs, such as high levels of H3K4me1 

and H3K27ac (Fig. 4c, right-hand and center arrows).10, 59, 60 A growing number of studies 

have used this approach as a primary method for CRM discovery, including large-scale 

undertakings such as the ENCODE and modENCODE projects and the NIH Roadmap 

Epigenomics Mapping Consortium.61–64 Several studies have interpreted the combinations 

of histone PTMs further, breaking out CRM categories such as “active” versus “poised” 

enhancers based on the presence or absence of particular modifications.56, 59

Unfortunately, there has been only limited validation performed relative to the very large 

number of CRM predictions that have been made based on histone PTM profiles, leading to 
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a somewhat circular logic when new modifications are examined: CRMs are predicted based 

on a certain set of histone PTMs, but then that same, still unvalidated set is used to evaluate 

whether or not a new modification is enriched in regulatory sequences. Bonn et al.65 

performed a retrospective analysis of histone-PTM-based CRM discovery by comparing a 

tissue-specific ChIP data set to a large set of well-characterized CRMs known from reporter 

gene analysis in Drosophila. They found that although there are clear associations of 

modifications such as H3K4me1 and H3K27ac with active CRMs, these and other PTMs are 

not dispositive; substantial numbers of CRMs contained various numbers, or even none at 

all, of the six chromatin marks they profiled. Another study that profiled multiple histone 

modifications, this time in human T cells, similarly found that multiple different 

combinations of marks could be found at characterized enhancer regions.66 This suggests 

that significant caution should be taken before using histone PTMs as a sole method for 

CRM discovery.

Because functional genomic elements, including CRMs, are associated with multiple histone 

PTMs and other chromatin features, several machine learning approaches (e.g., hidden 

Markov models, dynamic Bayesian networks) have been developed to segment the 

chromosome into domains based on patterns of chromatin marks. Examples include 

ChromHMM67 and Segway.68 These algorithms combine multiple histone PTMs to divide a 

user-supplied genome into different “chromatin states” which are then assigned to classes 

based on correlation to known functions including “strong enhancers,” “weak enhancers,” 

“insulators,” “transcribed,” and others. Segmentation approaches are an intuitively appealing 

way of integrating the ever-growing amounts of genomic data to identify functional genomic 

regions, but recent validation experiments raise serious questions about their utility for 

accurate CRM discovery. A test of over 2000 sequences using a high-throughput functional 

reporter assay (CRE-seq; see below, “Function-based Methods”) showed that although there 

was a clear bias for regions defined by ChromHMM and Segway as “enhancers” or “weak 

enhancers” to activate gene expression, a full three-quarters of such sequences fail to show 

regulatory activity.69 While these validation experiments are subject to the same caveats as 

all reporter gene assays (see below, “Outstanding Issues”), the results suggest strongly that 

the “histone code” is not yet sufficiently understood to enable CRM discovery with 

accuracies approaching those obtained from more direct methods such as ChIP for p300 or 

specific TFs, or for effective computational CRM prediction algorithms such as those by 

Kantorovitz et al.70 and Narlikar et al.71 (see below, “Computational Approaches”).

Chromatin Accessibility—Chromatin accessibility72—the degree to which DNA is 

wrapped in nucleosomes—is an important aspect of gene regulation, likely due to the 

inability of many TFs to bind nucleosomal DNA.73 Active CRMs are therefore regions of 

nucleosome-depleted “open” chromatin74 and can be identified on a genome-wide scale 

through a variety of methods (Fig. 4b). DNase-seq,75 which is sensitive enough to resolve 

individual TFBSs,76 makes use of the enhanced susceptibility of open chromatin to 

enzymatic cleavage by DNase I in a genome-wide, next-generation sequencing-based 

extension of traditional DNase I footprinting and hypersensitivity assays. Alternatively, 

FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements) separates nucleosome-

containing from nucleosome-free DNA using formaldehyde crosslinking followed by phenol 
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extraction.77, 78 The histone-bound nucleosomal fraction stays in the organic phase while the 

nucleosome-free open chromatin partitions into the aqueous phase, from where it can be 

recovered and sequenced. Although simpler to preform than DNase-seq, FAIRE tends to 

have high signal-to-noise ratios, and it lacks the resolution to identify individual TFBSs. A 

powerful new approach, ATAC-seq,79 appears to combine the high-resolution of DNase-seq 

(it can resolve TFBSs) with the simplicity of FAIRE and can be performed on up to five 

orders of magnitude fewer cells. ATAC-seq takes advantage of the preference for a Tn5 

transposon derivative to insert at higher rates in accessible chromatin, using a modification 

of the “tagmentation” method already optimized for preparing genomic sequencing libraries 

for use on Illumina next-generation sequencing platforms.80 This elegant method thus 

generates tagged DNA fragments directly usable for amplification and next-generation 

sequencing in a single, simple step, with preference for open chromatin locations.

Function-based Methods—Next-generation sequencing-based technologies have also 

fostered the development of new high-throughput function-based methods for enhancer 

discovery (reviewed by39). Several of these, such as CRE-seq,81 work by adding DNA 

“barcodes” to reporter constructs (Fig. 4e).82–86 The reporter plasmids are then transfected 

into cells or injected in vivo in large batches (hundreds to thousands), and the barcode-

containing reporter transcripts are quantified using deep sequencing. The number of reads 

per barcode reflects the abundance of the respective reporter transcript and thus the activity 

of the corresponding candidate CRM. Other methods, such as SIF-seq (Site-specific 

Integration Fluorescence-activated cell sorting followed by sequencing)87 and FIREWAch 

(Functional Identification of Regulatory Elements Within Active Chromatin),88 avoid the 

need for barcodes—an often technically-challenging step—by testing large pools of 

potential regulatory sequences simultaneously in a fluorescent reporter-gene assay and using 

fluorescently activated cell sorting (FACS) to separate out the cells containing functional 

regulatory sequences (Fig. 4d). Next-generation sequencing then determines the identities of 

the sequences driving the reporter-gene expression in the sorted cells. Enhancer-FACS-seq 

was developed for identification of Drosophila CRMs and uses two-color FACS-based 

filtering to detect developmentally relevant, tissue-specific enhancers active in developing 

Drosophila embryos.89 One color is used to register reporter gene activity and the other to 

mark cell types of interest, allowing for selection and sequencing of only those cells which 

are both the desired cell-type and which have a functional regulatory sequence driving the 

reporter gene (Fig. 4d). The approach thus dispenses with the need for time-consuming and 

labor-intensive screening of individual enhancer constructs in transgenic animals and allows 

instead for simultaneous testing of multiple pooled putative regulatory sequences, although 

full characterization of identified CRMs still requires subsequent generation of a new 

transgenic line. STARR-seq90 requires neither barcodes nor fluorescent reporters and FACS, 

but rather works by inserting putative CRMs downstream of a minimal promoter such that 

each sequence serves double-duty as both CRM and reporter (Fig. 4f). Millions of these 

constructs can then be transfected into cells, and the strength of each regulatory sequence is 

determined by its abundance in subsequent RNA-seq analysis. A major advantage to all of 

these function-based screening methods is that they are largely unbiased: although the need 

to construct libraries of potential CRM sequences still prevents fully comprehensive 

coverage of the entire genome, choices of candidate CRMs do not need to be constrained by 
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preconceived ideas about TF binding, histone modification, evolutionary conservation, and 

the like. At the same time, however, these methods are still subject to some of the same 

limitations as traditional reporter gene assays, in that the putative CRM sequences are tested 

outside of their native genomic context (see below, “Outstanding Issues”).

Computational approaches to CRM Discovery

Computational methods comprise a vital component of the CRM-discovery arsenal.91–93 In 

the decade between the initial sequencing of the major model organism genomes and the 

widespread availability of next-generation sequencing, computational prediction was the 

only reasonable alternative to one-gene-at-a-time, reporter-gene-based analysis. Even with 

the development of the high-throughput empirical methods discussed above, however, 

computational CRM discovery remains an important complement to experimental 

approaches. Despite rapidly decreasing costs, high-throughput empirical methods remain 

expensive and technically challenging and to be comprehensive, must be performed at 

multiple developmental stages, in multiple cell types, and under various growth conditions. 

Experimental methods furthermore depend on the availability of reagents and technologies

—e.g. antibodies, cell lines, or methods for efficient transgenesis—that may not exist for 

non-model or emerging-model organisms. Computational CRM prediction can provide a 

rapid and low-cost screening step for identifying an enriched set of candidate CRMs to be 

followed up with in vivo validation assays, and can also help to refine results from 

chromatin profiling and other experimental approaches.

Computational methods for CRM discovery fall broadly into three classes, depending on the 

types of data they require (Fig. 5). Comparative genomics (Fig. 5a) relies on identifying 

regions of conserved non-coding DNA sequences across related species. Motif-based 

methods (Fig. 5b) search for short (e.g. 500bp) genomic regions containing clusters of 

TFBSs. “Motif-blind” approaches (Fig. 5c) require no a priori knowledge of TFs or TFBSs 

and are based instead on statistical properties of the sequence itself. These categories are not 

mutually exclusive, and methods combining multiple approaches often perform strongly.

Comparative genomics approaches—Functionally important genomic sequences are 

under more evolutionary constraint than sequences with less-vital functions. This fact has 

frequently been exploited for CRM discovery, with varying levels of success. Among 

factors that need to be considered are the evolutionary distances between species being 

compared and what tools are being used to assess conservation.94 As more and more species 

become sequenced, it has become apparent that the answer to the former question varies 

greatly, not only depending on the species under study but even for individual CRMs within 

a species: some CRMs are highly conserved throughout genera, families, or beyond, 

whereas others may show conservation only when compared to close sister species, if at 

all.11, 94, 95

Several studies have tested the ability to discriminate CRMs from non-CRMs based on 

sequence conservation, with mixed results. Li et al.11 showed that while Drosophila CRMs 

are more highly conserved than randomly selected non-coding sequences when compared 

over eight sequenced Drosophilids, the distributions are highly overlapping and unlikely to 
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lead to accurate prediction if merely assessing overall percentage of conserved bases. 

Similar results were obtained in a recent study of orthologous sequences from five fly 

species assayed functionally by STARR-seq.96 In contrast, a windowed version of the 

PhastCons conservation score was able to achieve reasonable prediction of CRMs using a 

set of sequences similar to that analyzed by Li et al.,11 although performance was less 

encouraging on other data sets.97

Broadly speaking, predictions based on analysis of genomic regions surrounding 

developmentally important regulators and/or based on extreme conservation (for example, 

conserved from humans to fish98–103) have been reasonably effective, with validation rates 

averaging somewhat over 50%, whereas more unbiased studies of less-deeply conserved 

sequences have led to low rates of validation (e.g. < 20%).104 As extreme conservation of 

CRMs appears to be the exception—only ~5% of mammalian CRMs, for instance, fall into 

this category105—comparative genomics as a sole criterion for CRM discovery is not 

recommended. An additional limitation is that sequence conservation obviously is poorly 

suited for discovering newly-evolved regulatory modules, or those that may have been 

gained or lost in a lineage-specific fashion.106 This may be a not-uncommon phenomenon. 

Although purifying selection causes CRMs to evolve at a relatively slower pace compared to 

DNA without important function, CRMs can appear de novo when random mutations create 

clusters of TFBS or when deletion brings formerly separated TFBSs into proximity, and can 

be lost through the same processes by disruption of key TFBSs or TFBS pairings.107

Conservation of CRM content—the individual TFBSs which constitute a CRM—may be 

more important than conservation of the overall CRM sequence. Sequence conservation has 

been most effective when mixed with TFBS identification, for instance by using only TFBSs 

that are conserved in additional species as input to a motif-based CRM discovery algorithm 

(see below, “Motif-based approaches”). One difficulty in assessing CRM conservation on 

the TFBS level is that while individual TFBSs may be conserved, their sequence degeneracy 

can make the conservation difficult to detect through standard nucleotide-level alignment. 

Further complicating the issue is that the order and arrangement of TFBSs can change 

substantially even over fairly short evolutionary timescales (e.g.108, 109) (Fig. 5a). A seminal 

study by Ludwig et al.110 clearly demonstrated the phenomenon of TFBS turnover—TFBS 

loss in one location with compensatory TFBS gain in another—via fusion of the 5′ half of 

the eve_stripe2 CRM from D. melanogaster with the 3′ half of the orthologous CRM from 

D. pseudoobscura. Despite the fact that the two native sequences are easily alignable and 

function identically in transgenic D. melanogaster, most of the known TFBSs within them 

are incompletely conserved, and the spacing between them is varied. The result is that the 

chimeric CRM is completely non-functional. Recent large-scale functional analyses suggest 

that this is a common CRM feature.96 For this reason, comparative genomics for CRM 

discovery has proven particularly useful when used in the context of alignment-free 

sequence comparison frameworks,111 with or without concomitant TFBS identification, 

rather than in more standard alignment-based sequence conservation approaches (Figure 6).

Motif-based approaches—Just as ChIP-seq can be used to localize sequences which 

bind the TFs comprising a particular transcriptional code empirically and thus predict that 

they function as CRMs, computational identification of the TFBSs corresponding to a 
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transcriptional code can be used for motif-based computational CRM prediction (“find the 

binding sites, find the enhancer”)(Fig. 5b). Motif-based CRM prediction was pioneered by 

Wasserman and Fickett,112 who trained a logistic regression classifier on a set of human 

muscle gene upstream sequences for which they had first determined a set of five co-

occurring TFBSs. Although its discovery impact was limited by the fact that at the time 

there was no fully-sequenced genome on which to apply the model, this important study 

demonstrated the effectiveness of the transcriptional code approach to CRM discovery, the 

utility of using training sets of co-expressed genes to determine the transcriptional code in a 

statistically-sound, unbiased way, and the value of combining conserved-sequence data with 

motif-based predictions.

Genome-scale CRM predictions by several groups rapidly followed publication of the 

Drosophila genome in early 2000.113–117 The earliest implementations avoided the 

supervised, statistical approach of Wasserman and Fickett112 and used the extensive 

available knowledge of the CRMs (and their constituent TFBSs) involved in early fly pattern 

formation to simply search for clusters of TFBSs using PWM-based motif representations in 

sliding windows of a fixed size (e.g. 500 bp). Windows with matches to the motifs making 

up the presumed transcriptional code were considered predicted CRMs. The number of 

matches to each individual TFBS and whether or not a window needed to contain a match to 

each TFBS was based on the nature of the transcriptional code model and on assumptions 

about homotypic versus heterotypic TFBS clustering (see Box 3). Regardless of whether 

they were based on transcriptional code models derived from many known CRMs and 

stipulating dense TFBS clustering,113 or on a single CRM example with limited TFBS 

clustering,114 all of these analyses successfully discovered novel Drosophila CRMs. 

However, false-positive prediction rates—prediction of CRMs that subsequently failed to 

regulate reporter gene expression in in vivo validation assays—were high. As additional 

genomes were sequenced, it became possible to incorporate measures of sequence 

conservation into the searches, either over the entire length of the predicted CRM or just for 

the identified TFBSs. Both Berman et al.118 and Halfon et al.53 used comparisons to D. 

pseudoobscura sequence to filter the results of earlier, D. melanogaster-only CRM 

predictions, but although success rates improved, the gains were not dramatic.

Subsequent and more sophisticated implementations of the motif clustering approach 

returned to statistical classification and machine learning methods and in particular to 

probabilistic models such as Hidden Markov Models (HMMs)119; examples include 

Ahab,117 Cluster-Buster,120 PFR-searcher,121 and Stubb.122 HMMs, first implemented for 

CRM discovery by Crowley et al.,123 use a number of parameters such as TFBSs, clustering 

requirements, TF organization, etc. as “hidden states” to predict the sequence that is most 

likely to be a putative CRM as compared to a background sequence of non-CRM DNA. 

Many of these approaches again incorporate sequence conservation (e.g.101, 118, 121, 124, 125), 

either by limiting searching to conserved regions or through including sequence 

conservation as a state in the HMM. In a comparison of CRM discovery methods performed 

by Su et al.,97 Cluster-Buster120 was a top performer when only a single genome was 

considered, while MorphMS126 was superior when considering sequence conservation. The 

limitations of assessing conservation via whole-genome alignment is highlighted by the fact 
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that MorphMS consistently outscored the similar StubbMS124; the primary difference 

between the two algorithms is that StubbMS relies on column-based sequence alignment 

followed by TFBS identification, whereas MorphMS uses a unified probabilistic approach 

that considers the evolution of TFBS sequences and finds motifs and alignments 

simultaneously. The PhylCRM algorithm127 similarly models binding site evolution over a 

set of aligned genomes prior to performing motif clustering, but has not been compared 

directly to related methods.

Despite the development of these elegant CRM discovery algorithms, motif-based searches 

still tend to suffer from a lack of specificity and give a large number of false positives, and 

methods relying primarily on motif clustering are consistently outperformed when compared 

directly with motif-agnostic methods.70, 97, 128 This somewhat disappointing performance of 

motif-based algorithms is likely due to several factors. There are few CRMs for which the 

entire set of bound TFs or relevant TFBSs is known, meaning that choices of which TFs to 

consider may often omit relevant factors. Conversely, not all motifs found within CRMs are 

functionally important, including those that may have been used as input for successful 

motif-based CRM discovery.53 TFBS motifs themselves are degenerate, and the motifs for 

many TFs are incompletely characterized, especially as pertaining to altered binding due to 

interactions with other TFs or local DNA conformations.129, 130 Overall, TFBS prediction is 

notoriously error-prone,37 with significant issues in terms of selecting an appropriate 

balance between sensitivity and specificity of results (see Box 1), and it is likely that this 

error rate propagates directly into motif-based CRM prediction efforts. Nevertheless, in 

those cases where the constituent TFBSs are well-defined and well-modeled, motif-based 

CRM discovery can be an effective approach.

Motif-blind approaches—Most often, a detailed transcriptional code is not known and 

TFBS data are incomplete. This, combined with the generally limited performance of motif-

clustering methods, suggests a need for CRM discovery methods that do not rely on prior 

knowledge of TFBS motifs. CisModule131 (and the related MultiModule132) address this 

issue by attempting to learn both motifs and CRMs simultaneously from the input 

sequences. CisModule has shown strong performance in some settings, particularly for its 

motif finding phase.131, 133 However, in several comparisons it has been outperformed by 

other methods, both by those which rely on known motifs97 and by methods that do not rely 

on first predicting TFBSs.128 A more recent algorithm, Imogene, similarly learns motifs first 

and then uses these to search for CRMs.134 Imogene uses a training set of known CRMs, 

complemented with orthologous regions from related species (as in135) for the motif-

learning phase, and in cross-validation tests has shown strong predictive performance.

Some of the most effective CRM discovery approaches in current use completely bypass 

TFBS identification, with its various attendant shortcomings, and predict CRMs based solely 

on DNA sequence (Fig. 5c). These “motif blind”70 methods rely on alignment-free sequence 

comparison measures and have been applied in both unsupervised and supervised 

settings.70, 128, 135–137 Although the former do not require any a priori knowledge of CRM 

sequences, the latter, which require a training set of known CRMs, have proven the most 

successful. The supervised motif-blind methods determine statistical features of the CRM 

sequences in the training set as compared to those of a background set of non-CRM 
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sequences, and then search the genome for sequence windows with similar attributes (Fig. 

7). This paradigm has been explored in depth by the Sinha and Halfon groups, who have 

developed “SCRMshaw,” a set of methods that use various machine learning algorithms to 

identify sequence “words” or “k-mers” (i.e., short DNA subsequences) over-represented in a 

training set of known CRMs that regulate gene expression in a related pattern.70, 135 Note 

that like motif-based methods, this approach still relies on the idea of a common 

transcriptional code through which similarly-expressed genes are regulated by CRMs that 

bind a similar complement of TFs. However, here the k-mers stand as proxies for the 

TFBSs, which are not explicitly considered by the algorithm and do not need to be known or 

modeled. Sequence conservation is taken into account by adding sequences orthologous to 

the training CRMs drawn from aligned related genomes, allowing conserved k-mers to 

acquire higher weights without requiring a specific model of TFBS evolution and without 

unduly penalizing CRMs that are not highly conserved (as conservation is not required for 

consideration of a sequence or subsequence). The SCRMshaw supervised motif-blind 

method has been applied to both Drosophila and mouse with in vivo validation revealing 

successful CRM discovery rates averaging about 80% (100% for some training sets), and 

SCRMshaw has consistently scored as well or better than motif-based methods applied in 

similar settings.70 Outperformance of motif-based approaches likely stems from the fact that 

all subsequences are considered, so unknown/unidentified motifs are not ignored, and from 

the reduction in error achieved by not relying on often inaccurate motif prediction steps.

A variety of other supervised CRM discovery methods have been developed over the years, 

in particular classification-based methods employing Support Vector Machines (SVMs; e.g. 

kmerSVM,138, 139 KIRMES140). In general, these methods perform well when the training 

sets are comprehensive, with a definite trend toward motif-blind approaches trumping motif-

aware approaches, although for many methods evaluation has been based on limited in-silico 

cross-validation and not on direct in vivo testing of predicted CRM sequences. So far, the 

strongest reported success rates for validated discovery of novel CRMs are those obtained 

from the SCRMshaw motif-blind pipeline (although only very limited mammalian CRM 

discovery has been attempted with this method70). However, direct comparisons between 

methods is difficult other than in cases where the same training data and assessment criteria 

are used, and further evaluation along the lines of that performed by Su et al.97 will be 

necessary to determine the most effective strategies.

Integrated approaches—As greater numbers of CRMs are discovered, the opportunities 

for supervised learning approaches improve. An effective method developed by Narlikar et 

al.71 and subsequently dubbed “CLARE” (Cracking the Language of Regulatory 

Elements)141 returns to the linear regression approach first put forward by Wasserman and 

Fickett112 by taking advantage of the vastly increased CRM and TFBS data that have 

become available in the intervening years. Like other supervised methods, CLARE takes as 

input a training set of CRMs with common activity and a set of non-CRM control 

sequences. The sequences are then searched for (1) the presence of TFBSs, using available 

motif libraries for all known (vertebrate) TFs; (2) novel overrepresented motifs, using a 

Gibbs-sampling de novo motif discovery approach; and (3) overrepresented k-mers, using 

Markov chain discrimination. These results are then passed to the LASSO linear regression 
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algorithm to develop a classifier to predict CRMs from genomic sequence (Fig. 8). In cross-

validation tests this method outperformed strictly motif-based methods such as Cluster-

Buster,120 Stubb,122 and CisModule,131 and achieved a success rate of 62% in in vivo 

validations in transgenic zebrafish, putting it on par with ChIP-based empirical CRM 

discovery methods.

EnhancerFinder142 is another example of a supervised CRM prediction pipeline that 

assesses various genomic features of a CRM training set including sequence conservation, k-

mer counts, and p300 binding and histone modifications from ChIP-seq data. These data are 

integrated using a machine-learning method known as multiple kernel learning and used to 

predict CRMs genome-wide. A second phase of the algorithm builds classifiers to attempt to 

determine the tissues in which the CRMs are active. The latter aspect is noteworthy, as CRM 

discovery in general has proven a much easier prospect than accurate prediction of CRM 

tissue specificity.70, 135 In cross-validation testing EnhancerFinder outperformed CLARE 

when tested on the same training data.

i-CisTarget,143 on the other hand, is a promising integrative unsupervised approach, i.e., one 

that does not require a training set of known CRMs. Similar to previous unsupervised 

methods,121, 128 the input is a set of co-expressed genes or, more uniquely, a set of genomic 

regions drawn, for example, from a set of ChIP-seq peaks. i-CisTarget then calculates, for a 

predefined set of sequences around these loci (akin to what Ivan et al.128 refer to as the 

“control region” for each gene), enrichment scores for motifs from a TFBS motif library as 

well as for a variety of features based on ChIP and other genomic data. Output consists of a 

list of enriched features and predicted CRMs. The related cisTargetX,144 which uses motif 

data only, has been effective in discovering previously unknown CRMs (subsequently 

confirmed in vivo) as has the conceptually similar PhylCRM/Lever method.127 To what 

extent integrating genomic features in addition to TFBS motifs will improve CRM discovery 

for these approaches is not yet certain. A significant drawback to unsupervised approaches 

like i-CisTarget is their restriction to a “control region” in proximity to the genes of interest, 

which precludes their ever being able to identify CRMs that lie outside the analyzed 

sequences. On the other hand, they do not require training sets of known CRMs, which are 

not available for all regulatory networks and cannot be compiled for organisms in which few 

CRMs have yet been identified.

Cross-species CRM prediction

Supervised CRM discovery for regulatory networks currently lacking any known CRMs 

poses a difficult challenge in terms of acquiring the requisite training data, but supervised 

CRM discovery for organisms with few characterized CRMs has recently been shown to be 

an obtainable goal as long as there are sufficient CRM data available for a related species. 

Kazemian et al.145 used training sets composed of Drosophila CRMs to successfully 

undertake CRM discovery in other insects, including the Hymenopteran species Apis 

mellifera (honeybee) and Nasonia vitripennis (jewel wasp), which diverged from flies 

roughly 350 million years ago.146 At this evolutionary distance, which in terms of molecular 

divergence likely exceeds that between humans and pufferfish,147 noncoding regions are 

essentially unalignable, preventing the application of any alignment-based CRM discovery 
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approaches. However, the SCRMshaw motif-blind pipeline showed strong CRM prediction 

performance based on Drosophila training data, with in vivo validation providing an 

approximately 75% prediction success rate as inferred from reporter gene assays in 

transgenic flies. Thus the underlying transcriptional codes involved in many developmental 

processes appear to be conserved enough to be identified through alignment-free 

comparison, despite the unalignable nature of the orthologous regulatory sequences.

ASSIGNING CRMS TO GENES

As CRM discovery moves from targeted analyses of individual loci to large-scale prediction 

by either empirical or computational means, a significant problem becomes identifying the 

target gene (or genes) which a CRM is regulating. Many studies, for the sake of simplicity, 

use “the closest active gene” criterion to assign CRMs to target genes. However, there are 

abundant examples in which such assignments do not hold true, and a recent large-scale 

study by Kvon et al.148 that analyzed over 7000 Drosophila transgenic reporter constructs 

suggests that 30% or more of CRMs target a gene other than one of their two immediate 

neighbors. Therefore, assigning CRM target genes based on proximity is a risky assumption 

in the absence of in vivo spatio-temporal expression data for both gene and CRM activity. 

CRM-gene contacts can be identified using the chromosome conformation capture (3C) 

assay and its many higher-throughput variants (4C, 5C, Hi-C, ChIA-PET).149 However, 

these assays have limited resolution, particularly in identifying short-range contacts, and 

interpretation of results is not always straightforward. For instance, known CRMs are 

frequently observed making multiple contacts,150, 151 but whether this means that they are 

regulating more than a single target gene is not known. CRMs also contact other CRMs,150 

raising the possibility that at least some of the observed interactions may reflect proximity 

induced by localization of multiple distinct active CRM-promoter pairs to the same nuclear 

region (e.g., the same transcription factory152), rather than co-regulation by a single CRM. 

Accurate CRM-gene assignment therefore remains an important area in need of further 

development, as the number of “orphan” CRMs continues to increase rapidly.

RESOURCES FOR TRAINING DATA

The most effective computational methods we have discussed here rely on the availability of 

collections of known CRMs and/or on libraries of TFBS motifs. Indeed, the increased 

efficacy of CRM discovery in recent years is due at least in part to the much greater amounts 

of input data that are currently available. There are several resources for motif data, as 

discussed previously. Options for CRM training data are more limited. For vertebrates, the 

main available resource is the VISTA Enhancer Browser.153 This exceptional resource 

contains in vivo validated CRM data—sequences and images—for over 2100 sequence 

fragments assayed in transgenic mouse embryos, over half of which show regulatory 

activity. Most of the data are for CRMs predicted from ChIP-seq analysis of p300-bound 

regions from mouse embryonic day 11.5 limb, forebrain, and midbrain tissues, although it 

also includes regions obtained from comparative genomic analysis across multiple 

vertebrate species. The main drawback to the Enhancer Browser is that all analysis is 

performed at a single embryonic stage, so that any activity of the tested sequences at other 

timepoints is unknown. Also, the reporter gene activity is described in very broad 
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anatomical terms, limiting the specificity of tissue-specific training sets that can be compiled 

from the data. Nevertheless, this ongoing project provides a powerful source of training data 

to facilitate vertebrate CRM discovery.

The other major source of CRM training data is REDfly, the Regulatory Element Database 

for Drosophila.154 REDfly takes a biocuration approach, seeking to annotate all of the 

verified Drosophila CRMs that have been reported in the literature. This makes REDfly, 

with more than 5500 CRMs based on analysis of over 11,600 reporter constructs, the 

broadest and most unbiased available collection of CRMs for any metazoan. REDfly also 

curates known TFBSs, which are cross-referenced with the CRMs for easy identification of 

TFBSs that lie within a CRM. One strength of REDfly as a resource for CRM discovery is 

its extensive array of search functions. Regulatory activity is described using the Drosophila 

anatomy ontology,155 which allows for tissue-specific CRM datasets of different granularity 

to be assembled. CRMs can be filtered by size, genomic location, and position relative to 

target genes (e.g., upstream, downstream, intronic). Overlapping regions between multiple 

CRMs are automatically calculated to suggest minimal CRM sequences and the regulatory 

activity of these inferred CRMs. The core REDfly CRM annotations are provided to 

FlyBase,156 making Drosophila the only model organism whose genome annotation 

provides comprehensive coverage of validated CRMs and providing direct integration with 

other Drosophila genomic and genetic data.

OUTSTANDING ISSUES IN REGULATORY ELEMENT DISCOVERY

We have focused our discussion of CRM discovery here on enhancers and similar positive-

acting regulatory sequences. Effective methods for large-scale discovery of other types of 

cis-regulatory sequences are still in need of development. Although ChIP-based 

experimental or motif-based computational methods can (and have) been applied to 

discovery of silencers and insulators, a lack of good functional validation assays leaves 

prediction of these elements open to question, and high-quality, verified collections such as 

the CRM collections contained in REDfly and the VISTA Enhancer Browser are not 

available.

Even for enhancers, there are considerable gaps. Empirical assays require purified tissue or 

defined cell types, and complete coverage in even a single organism is still a long way off. 

Although computational methods can address this in part, and even help discover CRMs in 

organisms for which there is little or no experimental data,145 requirements for training data 

or motif libraries remain a significant limitation. While motif data are becoming more 

comprehensive, motif-based methods tend to suffer from lower accuracy than motif-blind 

approaches and are most effective for motif-dense, heavily homotypically-clustered CRMs, 

which comprise only a subset of regulatory regions. For both empirical and computational 

approaches, most of the current methods assume that CRMs are relatively compact, binding-

site rich DNA segments such as CRMs A and B in Box 3. However, as we and others have 

argued previously, other CRM architectures may exist in which TFBSs are spread over long 

regions of the DNA or in which multiple separated regions act as a composite CRM to 

regulate gene expression.157, 158
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It is important to stress that the majority of methods discussed in this review—both 

computational and experimental—are merely predictive, and biological validation is 

essential before assigning a definitive regulatory function to a genomic region. Although 

reporter gene assays remain the gold standard for CRM validation due to their overall 

efficacy and relative ease of use, they possess a number of shortcomings that are worth 

bearing in mind. In particular, the potential for false-negative results—true CRMs which fail 

to activate reporter gene expression—is high and can stem from a number of factors. One, a 

sequence could have regulatory activity at a time or in a cell type not assayed. This is 

especially true for assays performed in cell culture, where only a single cell type is tested, 

but holds as well for in vivo assays, where it is unusual for all life-cycle stages to be 

assessed. Two, it is well known that certain CRMs will only work properly when paired with 

the correct promoter.159 Thus, an incompatible CRM-promoter pairing will cause a true 

CRM to fail to activate gene expression. Three, reporter gene assays cannot detect negative 

regulatory elements (e.g., transcriptional silencers), meaning that only positive-acting 

enhancer-like CRMs will be detected. Four, typical reporter gene assays place the CRMs in 

close proximity to the promoter, which is in contrast to the native genomic positioning of 

most regulatory sequences. Although the classical definition of an “enhancer” stipulates 

distance independence, there are clear examples in which CRM-promoter distance has 

important effects.160, 161 Finally, most reporter gene assays take place in an artificial, non-

native genomic context where they might be influenced by other nearby CRMs, promoters, 

or chromatin configurations.162

Alternatives to the standard reporter gene assay include direct deletion or mutation of a 

putative CRM by manipulating large, native-like regions using bacterial artificial 

chromosomes (BACs) or using genome engineering methods to alter the endogenous locus 

in cultured cells or in vivo. Although the latter has long been prohibitively expensive, time-

consuming, and/or challenging in most model organisms, recent successes with CRISPR/

Cas9 genome engineering in multiple systems163 raise the possibility that direct tests of 

putative CRMs in a completely native chromosomal context may soon become routine. 

Deleting or mutating sequences in their native locus would provide a vital complement to 

reporter gene assays and greatly facilitate the identification and study of silencers, 

insulators, and other regulatory features.

CONCLUDING REMARKS

One of the vital but daunting challenges confronting us today is to annotate the regulatory 

genomes of the rapidly-growing number of sequenced organisms. Despite the Herculean 

nature of this task, dramatic strides forward are continuing to be made. Genome-scale 

approaches fueled by advances in next-generation sequencing have already led to the 

prediction and in many cases validation of thousands of new CRMs in all of the major 

model organisms, including humans. Decreasing costs coupled with the ability to apply 

genomic assays to increasingly small numbers of cells—in some cases even single cells—

will allow for detection of cell-type-specific CRMs and TF binding events and help to 

remove the potentially confounding effect of having experimental results reflect an average 

of genetic and epigenetic events within multiple different cell types. Genome engineering 

methods such as the CRISPR/Cas9 system will open up heretofore non-model organisms to 
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experimental analysis and will enable new assays to better detect additional types of 

regulatory elements beyond just enhancers. Computational methods, which have matured 

greatly over the last dozen years, can now predict with growing accuracy CRMs in both 

model and non-model organisms with comparable success rates, an ability that will continue 

to grow as the corpus of regulatory genomic data for key model organisms increases. In this 

era of rapid genome sequencing, it is important to recognize that in order to take advantage 

of the availability of genomics to improve our understanding of development, evolution, and 

disease, characterization of regulatory sequences is arguably as necessary as identification of 

the genes themselves. Fortunately, the methods and studies reviewed in this article suggest 

that the outlook for regulatory element discovery has never been brighter.
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Box 1

Strong and Weak Motifs

Determining if a genomic sequence is a TFBS is a non-trivial task, regardless of whether 

one is searching empirically or computationally. In the former case, a decision must be 

made whether or not a binding event is sufficiently strong to qualify as specific binding 

rather than experimental noise; in the latter, it must be determined whether the sequence 

is a close enough match to a known TFBS motif. Motifs are often considered either 

“good” or “bad” depending on their information content, i.e., the extent to which they 

show sequence degeneracy, especially in the central or “core” region of the motif. For 

most search algorithms, motifs with less degeneracy will match genomic sites with 

higher scores. However, equating higher-scoring matches with more meaningful 

biological results is a risky proposition. The importance of low-affinity DNA binding by 

TFs has been demonstrated in many circumstances,26, 108, 164–166 quite aside from the 

fact that binding affinities in vivo can be modulated by cooperative interactions with 

other proteins and by alterations in local DNA conformation. A recent study 

demonstrated that “good” PWMs performed worse than “bad” ones in being able to 

predict accurately the full range of sequences bound in protein-binding microarray 

experiments, using algorithms specifically designed for that task. The authors conclude, 

counter to the conventional wisdom, that “information content has little to do with the 

accuracy and utility of a motif.”167 This presents a clear conundrum for researchers in 

determining a satisfactory balance between sensitivity and specificity in TFBS 

identification using common motif scanning algorithms, with important implications for 

choosing methods for CRM discovery (see text).
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Box 2

Transcriptional Codes

The notion that CRMs regulate gene expression through interpretation of a combinatorial 

code in the form of a defined set of TFs, whose activities are integrated by the CRM 

when they are bound together on the DNA, has been instrumental in facilitating both 

empirical and computational CRM discovery. In the context of developmental gene 

regulatory networks,168, 169 these transcriptional codes often take the form of a mix of 

signal-induced TFs, composed of the nuclear effectors of a surprisingly small coterie of 

signaling pathways,170 and tissue-specific TFs already active in the cells as a result of 

their developmental history (see Figure). This is likely to be a major mechanism by 

which cell-type specificity is conferred on what would otherwise be fairly generic 

inductive signals.171, 172

An important corollary to the transcriptional code concept is the idea of the “gene 

battery.” Britten and Davidson adapted this term of Morgan’s over four decades ago to 

refer to a group of genes that are coordinately expressed as a result of their regulatory 

regions responding to the same transcription factor inputs.173 In molecular terms, a gene 

battery is a group of genes that are co-expressed by virtue of having CRMs composed of 

a similar cohort of TF binding sites. The CRMs associated with genes in a battery are 

usually not identical in terms of either number or arrangement of TFBSs, and a given 

CRM will not necessarily contain binding sites for all of the TFs. Nevertheless, the 

relatedness of CRMs regulating co-expressed genes in terms of TF binding underlies 

many current approaches to CRM discovery.

An important unresolved question about transcriptional codes is to what extent the order 

and spacing of individual TFs—what is sometimes referred to as CRM “grammar”—

plays a role in determining CRM function. Unfortunately, this likely depends on the 

particular CRM in question. CRMs that form a tight “enhanseosome” structure, 

epitomized by the mammalian IFNβ enhancer,174 appear to require a highly constrained 

arrangement of TFBSs, whereas at the other extreme “billboard”-type CRMs175 can 

tolerate extensive reshuffling of binding sites. Many CRMs—quite probably most—

appear able to support rearrangement of some, but not all, TFBSs.108, 176 Until this issue 

is more fully understood, knowledge of transcriptional codes can aid in CRM discovery, 

but cannot ensure accurate prediction of CRMs and their regulatory functions.
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Figure. Transcriptional codes for developmental CRMs
TFs downstream of intercellular signaling pathways (A, B, C) mix with tissue-specific 

TFs (D, E) to form a “transcriptional code” to activate gene transcription. CRMs for two 

genes are pictured. Both respond to the same transcriptional code, but the arrangement of 

the TFBSs is different between the two, and the Gene Y CRM (right) has gained 

additional binding sites for TF “E”.
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Box 3

TFBS clustering

CRMs are composed of multiple TFBSs. A cluster of binding sites for different TFs is 

referred to as a “heterotypic” cluster, whereas a series of sites for the same TF is called a 

“homotypic” cluster.177 Many CRMs are a mix of homotypic and heterotypic sites; that 

is, they contain multiple instances of multiple TFBSs (see Figure). Heterotypic clustering 

is an expected CRM attribute in keeping with the view that CRMs integrate a 

combinatorial transcriptional code. Many of the first and most well-characterized CRMs 

were those that regulate gene expression in the early, blastoderm-stage Drosophila 

embryo, which have a high degree of homotypic clustering. This helped to establish an 

oft-asserted view that homotypic clustering is a general feature of all CRMs,178 which 

seemed to be borne out as additional CRMs were identified through early computational 

discovery methods. However, this was at least partly due to ascertainment bias: since the 

methods functioned by looking for homotypic motif clusters,113, 115 that is what they 

found. Less-effective performance of these methods in mammalian systems subsequently 

led to the suggestion that mammalian CRMs were fundamentally different from insect 

CRMs in that they lacked significant homotypic clustering.179 However, neither of these 

views has stood up well to analysis of larger, unbiased collections of CRMs. Li et al.11 

demonstrated that the Drosophila blastoderm CRMs have an atypically high degree of 

homotypic clustering that differentiates them from the majority of fly CRMs. Conversely, 

Gotea et al.180 studied a large collection of mammalian CRMs and were able to 

distinguish homotypic clustering in a substantial fraction. It thus appears that homotypic 

TFBS clustering is a common but not predominant feature of both fly and mammalian 

CRMs. Whether or not it has functional relevance or is simply an evolutionary artifact of 

binding site evolution and turnover has been widely debated.11, 181–185
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Figure. Degrees of homotypic TFBS clustering
The three pictured CRMs each have a different level of homotypic TFBS clustering 

ranging from high (CRM A) to low (CRM B) to none (CRM C). All three CRMs have an 

identical degree of heterotypic site clustering. TFBS are represented by colored polygons.
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Figure 1. cis-Regulatory Modules
(a) Modular nature of CRMs. The region downstream of the Drosophila even skipped (eve) 

gene has numerous CRMs (pink boxes), each of which controls a different portion of the 

gene’s expression pattern. Reporter gene expression directed by individual CRMs (black) is 

shown superimposed on Eve protein expression (brown). During the early blastoderm 

stages, individual stripes are regulated by separate CRMs (S1, S4–6, S5), as is later 

embryonic expression in the somatic musculature (M). Expression from other CRMs 

including those in the 5′ flanking region are not pictured. Photos courtesy of James Jaynes 

and Miki Fujioka. (b) Generalized mechanisms of CRM function. Active CRMs (orange), 

bound by multiple transcription factors (TF), contact their associated promoter by DNA 

looping. Either through direct contact or via bridging interactions from coactivators, the 

CRMs help to recruit and/or stabilize RNApolII and the general transcription factors 

(GTFs). TSS, transcription start site.

Suryamohan and Halfon Page 34

Wiley Interdiscip Rev Dev Biol. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Reporter Genes
The “gold-standard” test for CRM function is the reporter gene assay, in which a putative 

CRM sequence is cloned upstream of a minimal promoter-reporter cassette sequence that on 

its own has little or no transcription. The reporter gene can be any gene whose expression is 

easily assayed. Current common reporters include luciferase, ß-galactosidase (the E. coli 

lacZ gene), and fluorescent proteins such as the A. victoria green fluorescent protein (GFP) 

and its derivatives. lacZ and the fluorescent protein genes are particularly suitable for use as 

in vivo reporters as they are readily assayed in whole animals or histological sections, 

whereas luciferase provides high sensitivity in cell culture assays. The recent availability of 

affordable next-generation sequencing has enabled the development of methods using DNA 

barcodes or even the CRM sequence itself as a reporter (see main text). While high-

throughput, these approaches however lose the valuable ability possessed by visible reporter 

genes to spatially localize domains of CRM activity. Mouse embryo photo courtesy of 

VISTA Enhancer Browser,153 cell culture photo courtesy of Satrijat Sinha.
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Figure 3. Transcription factor binding site motifs
A TFBS motif describes the sequences to which a TF can bind, and can be represented in 

various ways, each with its own advantages and disadvantages. (a) A subset of sequences to 

which the Drosophila TF Paired binds in a bacterial one-hybrid assay, drawn from 

FlyFactorSurvey.35 The simplest representation is as a single text string consensus sequence 

(b). In the consensus sequence, a single base is shown when it occurs in more than half of 

the binding site sequences and at least twice as much as the next most frequently occurring 

base at that position; otherwise, degenerate symbols are used.186 The example in (b) has H = 

{A, C, T} in the first column and Y = {C,T} in the final position. Consensus sequences have 

the advantage of being simple to portray and easy to search for, but convey limited 
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information about the range of individual sequences comprising the motif. (c) A better sense 

of nucleotide variability at each position is seen with a motif logo.187 Logos can be derived 

from a position frequency matrix (d), which totals the presence of each base at each position 

and which can also be used to develop position weight matrices (PWMs) such as the 

logodds-adjusted matrix in (e).188 PWMs reflect the probability distributions of the four 

possible nucleotides at each location and relate closely to the binding energy of TFs to the 

DNA motifs.189 PWMs lend themselves well to sophisticated sequence-search algorithms 

and are the basis for most bioinformatics approaches to TFBS detection.18, 190–192
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Figure 4. Experimental methods for CRM discovery
(a) Genomic DNA to be tested for CRM function can be isolated in an unbiased way 

through shearing or digestion (small arrows), or in a more directed way by PCR 

amplification. The fragments are then tested for regulatory activity through one of several 

assays (d-f). (b) CRMs can also be predicted through assays for accessible chromatin, in 

which “open” chromatin regions (small arrows) can be distinguished from regions of less 

accessible chromatin. (c) An additional method used for CRM discovery is ChIP-seq 

directed against histone modifications (pink) or one or more TFs (blue). For both chromatin 
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accessibility and ChIP-seq assays, predicted CRM regions identified by next-generation 

sequencing (boxed orange peak in b, c) can be cloned and validated by the assays in panels 

d-f. (d) Cloned sequences can be tested individually by traditional reporter gene assays in 

transgenic animals or cells (middle), or in a higher-throughput fashion following FACS 

sorting and next-generation sequencing. (e) Alternatively, reporter constructs can be built to 

contain unique sequence “barcodes” which can then be matched to the associated CRMs 

subsequent to RNA-seq analysis. (f) In STARR-seq, the CRM serves as its own reporter, 

allowing for direct identification following RNA-seq analysis.
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Figure 5. Computational approaches to CRM discovery
Computational methods for CRM discovery fall into three basic classes. (a) Comparative 

genomics methods find regions of conservation between two or more species, either by 

sequence alignment (“aligned sequence”, shown here as a PhastCons score193 over multiple 

species) or by alignment of TFBS motifs (“aligned motifs”). A horizontal bar indicates 

predicted CRMs. Note that a method based on alignment of motifs may miss important 

unaligned compensatory sites (arrows). (b) Motif-based methods identify clusters of TFBS 

motifs, usually with some foreknowledge of which TFBSs are expected for the CRMs being 
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sought (the “transcriptional code”). Here, a tight cluster of multiple red octagonal, blue 

square, and green triangle motifs predicts the CRM (horizontal bar). (c) Motif-blind methods 

rely on statistical models of the DNA sequence rather than identification of motifs. Regions 

of the genome that receive high scores based on a particular model are predicted as CRMs 

(green box).
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Figure 6. TFBS conservation in aligned vs. alignment-free settings
Each colored polygon represents a binding site. (a) When considering conservation based on 

sequence alignment only a fraction of the binding sites are seen to be conserved (4/8 for 

CRM A, 4/7 for CRM B), and several different alignments can be proposed. Arrows 

represent aligned sites, with gray arrows indicating alternative alignments. Note that 

choosing the proper alignment is significant, as the identities of the conserved sites are 

sensitive to the chosen alignment; in this example, presence of the sites represented by the 

purple oval and the red octagon depends on alignment choice. (b) In an alignment-free 

setting, TFBSs are identified and considered conserved if they appear in both sequences, 

regardless of how they are ordered. Using this approach, 7/8 sites from CRM A and all 

seven sites from CRM B are conserved. Moreover, the full complement of different sites is 

conserved, with merely a small reduction in the number of sites represented by the red 

octagon. The same principle applies to nucleotide-based (rather than motif-based) 

alignments, where subsequence (k-mer) composition can be substituted for motifs (see text).
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Figure 7. Supervised motif-blind CRM discovery
(a) A set of CRMs with related activity (e.g., midbrain, heart, wing, muscle) is selected as a 

training set, and a set of similarly-sized non-CRMs as a background (BKG) set. The training 

set can also include orthologous sequences from related species. (b) The k-mer profile of the 

sequence sets is obtained and used to train one of several statistical models. (c) The score for 

a given sequence S is the log-likelihood ratio of the models for the positive (“training”) and 

negative (“background”) sets on S. (d) Overlapping sequence windows are scored 

throughout the genome. High-scoring windows (stars) are predicted CRMs.
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Figure 8. CLARE: Cracking the Language of Regulatory Elements
Flowchart of the CLARE method. Figure from Taher et al. (2012),141 © Oxford University 

Press, used with permission.
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