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The world-wide Coronavirus Disease 2019 (COVID-19) pandemic was triggered by the

widespread of a new strain of coronavirus named as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). Multiple studies on the pathogenesis of SARS-CoV-2 have

been conducted immediately after the spread of the disease. However, the molecular

pathogenesis of the virus and related diseases has still not been fully revealed. In this

study, we attempted to identify new transcriptomic signatures as candidate diagnostic

models for clinical testing or as therapeutic targets for vaccine design. Using the recently

reported transcriptomics data of upper airway tissue with acute respiratory illnesses, we

integrated multiple machine learning methods to identify effective qualitative biomarkers

and quantitative rules for the distinction of SARS-CoV-2 infection from other infectious

diseases. The transcriptomics data was first analyzed by Boruta so that important

features were selected, which were further evaluated by the minimum redundancy

maximum relevance method. A feature list was produced. This list was fed into the

incremental feature selection, incorporating some classification algorithms, to extract

qualitative biomarker genes and construct quantitative rules. Also, an efficient classifier

was built to identify patients infected with SARS-COV-2. The findings reported in this

study may help in revealing the potential pathogenic mechanisms of COVID-19 and

finding new targets for vaccine design.

Keywords: transcriptomic, signature, classification rule, SARS-CoV-2, COVID-19

INTRODUCTION

In late 2019, the Coronavirus Disease 2019 (COVID-19) pandemic was triggered by the spread
of a new strain of coronavirus named as severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). With the first confirmed case reported, the pandemic has rapidly spread all over the world,
affecting 227 countries and territories. Based on the reported public health statistics from World
Health Organization and Johns Hopkins University (Dong et al., 2020a), more than 32 million
people were confirmed to be infected by the virus, and among them, nearly one million died.
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Although the outbreak of COVID-19 pandemic has been quickly
and effectively controlled in several areas, the worldwide spread
of COVID-19 has not been effectively controlled by all the
affected countries to date. According to the summarized public
health data of Sep 27, 2020, more than 9 million patients all over
the world are still active (Dong et al., 2020a,b), making COVID-
19 one of the most severe and long-lasting pandemics affecting
human beings in the 21st century.

Given that COVID-19 triggered by SARS-CoV-2 infection is
regarded as a worldwide pandemic disease, severely threatening
human health, multiple studies on the pathogenesis of SARS-
CoV-2 have been conducted immediately after the spread of
the disease (Lv et al., 2020). For infectious diseases, two kinds
of studies are conducted on different levels (Lv et al., 2020;
McAloon et al., 2020): one is at the public health level, which
includes the identification of pathogen, revealing the pathogen
infection and transmission, and development of vaccines; the
other is at the biological level, which includes revealing the
biological mechanisms of pathogen infection, demonstrating the
pathogenesis of infection-associated complications, and tracing
the origin of the pathogen, such as in virus evolutionary
studies. Although detailed biological mechanisms of SARS-
CoV-2 have not been fully demonstrated, several epidemic
characteristics of COVID-19 have been partially revealed, guiding
the epidemic prevention of the virus at the public health level
(Lv et al., 2020; Wu and McGoogan, 2020). SARS-CoV-2 spreads
through two major transmission methods: direct infection via
respiratory droplets and indirect contact via contaminated
surfaces, especially for raw processed foods. Therefore, lockdown
of epidemic areas (Inoue and Todo, 2020; Lian et al., 2020)
and wearing masks (Feng et al., 2020) are necessary for the
control of SARS-CoV-2 spread, which have been confirmed to be
effective in China.

To date, a month after the spread of COVID-19 pandemic,
the accurate detection methods of SARS-CoV-2 infection and
effective infectious disease control measures, such as city
lockdown and wearing masks, have slowed down the spread of
the disease in certain countries and territories (Lian et al., 2020).
However, the molecular pathogenies of the virus and related
diseases have not been fully revealed. Given that COVID-19 is a
respiratory disease, in May, a systematic transcriptomics analysis
(Mick et al., 2020) about the viral pathogenic effects on the upper
airway tissues attempted to reveal the biological foundations
for the extremely high transmission efficacy of SARS-CoV-2
and the variable severity of clinical syndromes among infected
populations. Based on such report, the suppression of innate
immune responses may be one of the unique pathogenic
characteristics of SARS-CoV-2 compared with other respiratory
infectious diseases. Based on transcriptomics data, the authors
also built effective predictive models to distinguish SARS-CoV-2
infection from other infections. Apart from this research, other
studies focused on the biological and pathological effects of
SARS-CoV-2, establishing an initial biological model for SARS-
CoV-2 infection. Further in May, researchers from the University
of Alabama at Birmingham built an interactome combining
human lung-epithelial cell host interactome and SARS-CoV-2
virus interactome (Kumar et al., 2020), revealing the possible

molecular mechanisms and biomarkers for COVID-19. In July,
2020, researchers from Wuhan Institute of Virology confirmed
the specific role of angiotensin-converting enzyme 2 (ACE2)
for SARS-CoV-2 infection and built a humanized mouse model
for further studies on such virus (Jiang et al., 2020), laying a
significant foundation for related studies. Similarly, researchers
from Peking Union Medical College summarized the potential
immune responses associated with the infection of SARS-CoV-2
and related syndromes of COVID-19 (Lin et al., 2020). Multiple
studies have contributed to the revelation of the potential
pathogenesis of COVID-19 and identification of new biomarkers
for effective diagnosis and further vaccine development, assisting
in the presentation of the deterioration of COVID-19 pandemic.

In this study, we attempted to identify new qualitative
biomarkers and their quantitative rules as diagnostic models
for clinical testing or therapeutic targets for vaccines design.
Using the transcriptomics data of upper airway tissue from Eran’s
publication (Mick et al., 2020), we integrated multiple machine
learning methods to identify effective qualitative biomarkers for
the distinction of SARS-CoV-2 infection from other diseases
and establish quantitative rules for accurate prediction. First,
two feature selection methods (Boruta (Kursa and Rudnicki,
2010) and minimum redundancy maximum relevance (mRMR)
(Peng et al., 2005)) were applied on the data one by one
to exclude irrelevant features and rank remaining important
features in a feature list. Then, incremental feature selection
(IFS) (Liu and Setiono, 1998) was applied on such list to extract
biomarker genes and construct quantitative rules with the help
of different classification algorithms. These identified biomarkers
and rules may help in finding new targets for vaccine design
and contribute to the revelation of the potential pathogenic
mechanisms of COVID-19. Furthermore, an efficient classifier
based on random forest (RF) (Breiman, 2001) was built, which
produced the Matthew correlation coefficient (MCC) (Matthews,
1975; Gorodkin, 2004) of 0.832.

MATERIALS AND METHODS

Gene Expression Profiles of COVID-19
We downloaded the expression profiles of 15,979 genes in
234 patients with acute respiratory illnesses (ARIs) from Gene
Expression Omnibus database at1 (Mick et al., 2020). A total
of 93 patients were infected with SARS-COV-2, 100 patients
with other viruses, and 41 patients without viral infection.
We aimed to identify the unique expression signature of
SARS-COV-2 infection and reveal the potential pathogenic
mechanisms of COVID-19.

Boruta Feature Filtering
Boruta feature filtering (Kursa and Rudnicki, 2010; Pan et al.,
2020; Yuan et al., 2020) is usually used to rapidly select all
relevant features to the target labels on the basis of a random
forest (RF) classifier. In brief, the calculation of Boruta includes
the following steps: (1) shuffled data are created by shuffling the

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156063
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feature values of copies of original data; (2) RF can be trained on
the original and shuffled data to measure the feature importance,
and the Z score is calculated for each feature by standardizing its
importance score from the RF; (3) one original feature is tagged
as important when its Z score is greater than the maximum Z
score of shadow features; otherwise, it is tagged as unimportant;
(4) the above processes are repeated until all features are tagged
as important or not.

This study adopted the program of Boruta downloaded from
a public website2, which was implemented by python. Default
parameters were used for convenience.

Minimum Redundancy Maximum
Relevance Feature Selection
Irrelevant features (genes) were excluded by Boruta method.
The remaining features were further analyzed by the mRMR
method (Peng et al., 2005; Wang et al., 2018; Li et al., 2019,
2020; Zhang et al., 2019; Zhang S. Q. et al., 2020; Chen et al.,
2020). This method tries to find out essential features with
maximum relevance to class labels and minimum redundancy
to other features. The measurements to evaluate relevance and
redundancy are all based on mutual information theory. The
mutual information of two variables x and y can be computed
by

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (1)

where p(x) is the marginal probabilistic density of x and p(x,y)
is the joint probabilistic density of x and y. Evidently, the higher
the mutual information is, the stronger associations of the two
variables are. The importance of a feature evaluated by mRMR
is reflected by its rank in a feature list. To construct such list,
mRMR method performs a loop procedure. Initially, an empty
list is constructed. Features are added to such list one by one in a
way that each loop determines an added feature. In each loop, for
each remaining feature, calculate its relevance to class labels and
mean redundancy to features already in the list. A feature with
the maximum difference of relevance and mean redundancy is
picked up and appended to the list. When all features are in the
list, the loop stops. The obtained feature list was called themRMR
feature list in this study.

This study adopted the mRMR program downloaded from
another public website3. Similar to the program of Boruta, default
parameters were used.

Incremental Feature Selection
By integrating a supervised classification algorithm, IFS can be
used to determine the optimal number of features used to build
a classifier with best performance (Liu and Setiono, 1998; Pan
et al., 2020; Zhang Y.-H. et al., 2020). Based on a feature list (e.g.,
mRMR feature list), a series of feature subsets is produced with
a step interval of one. The first feature subset consists of the top
one feature in the list, the second feature subset consists of the
top two features, and so on. Then, a classifier was trained on a

2https://github.com/scikit-learn-contrib/boruta_py
3http://penglab.janelia.org/proj/mRMR/

dataset, in which samples are represented by features in each of
above-constructed feature subsets. After that, the performance
of each classifier was evaluated under tenfold cross-validation
(Kohavi, 1995). The classifier with best performance, evaluated
by MCC (Matthews, 1975; Gorodkin, 2004) in this study, can be
discovered. Such classifier was called the optimum classifier. The
feature subset used to construct such classifier was determined as
an optimal feature subset.

Synthetic Minority Oversampling
Technique
As mentioned in Section 2.1, the used transcriptome dataset
had remarkably different numbers of samples with various class
labels. The largest category had 2.3 times samples as many as
those in the smallest category. A classifier directly constructed on
such dataset would be greatly influenced by the largest category.
In view of this, the synthetic minority oversampling technique
(SMOTE) approach (Chawla et al., 2002) was adopted to produce
additional samples for theminor category. This approach is a type
of oversampling method. For each minor category, it produces
some new samples so that the minor category finally has same
number of samples in the largest category. In detail, randomly
select a sample in a minor category, say x. Compute its distance
to other samples in the same category. Some samples with the
smallest distances are picked up. From these samples, randomly
select one sample, say y, and the linear combination of x and y
is deemed as the new sample. Such new sample is added to the
minor category. Above procedures execute several times until the
predefined number of new samples have been generated. For the
used dataset, each category contained 100 samples after SMOTE
was applied on it. This study used the tool “SMOTE” fromWeka
(Frank et al., 2004; Witten and Frank, 2005), which implements
the SMOTE approach.

In this study, the SMOTE approach was only used when
evaluating the performance of classifiers in the IFSmethod. It was
not used in the procedure for evaluating features.

Classifiers
As mentioned in Section 2.4, IFS method needs a classification
algorithm. This research tried four classification algorithms: (1)
RF (Breiman, 2001), (2) support vector machine (SVM) (Cortes
and Vapnik, 1995), (3) K-nearest neighbor (kNN) (Cover and
Hart, 1967), and (4) decision tree (DT) (Safavian and Landgrebe,
1991). Their brief descriptions are as below.

Random Forest

Random forest is widely adopted in the investigation of biological
and biomedical data (Pan et al., 2010; Zhao et al., 2018; Chen
et al., 2019; Jia et al., 2020; Liang et al., 2020), and it has
shown satisfactory performance in numerous studies. As a meta
classifier, RF consists of multiple DTs, where each DT is learned
from a bootstrap sample set with a randomly selected feature
subset. For a given sample, each DT provides its prediction. RF
integrates all these predictions with majority voting. In this study,
we used the RF implemented in the Scikit-learn package.
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Support Vector Machine

Support vector machine is another classic classification
algorithm and also has wide applications in bioinformatics
and computational biology (Chen et al., 2017; Liu et al., 2020;
Zhou et al., 2020a,b). Such algorithm can deal with both
linear and non-linear data. In particular, an SVM can map
the nonlinear data in an original low-dimensional space to a
linear data in a new high-dimensional space by a certain kernel
trick. Then, the SVM attempts to detect support vectors on the
margin between two classes, which consists of a hyperplane,
to classify new samples. In present study, we adopted the tool
“SMO” in Weka (Frank et al., 2004; Witten and Frank, 2005),
which implements one type of SVM. The sequential minimal
optimization algorithm (Platt, 1998) is applied to optimize the
training procedures.

K-Nearest Neighbor

K-nearest neighbor (Cover and Hart, 1967) is a simple
classification algorithm. However, in some cases, it always
provides good performance. Given a test sample s, determination
of its class consists of the following steps: (1) calculate the
distances (e.g., Euclidean distance) between s and all samples
in the training dataset; (2) find out k training samples with the
smallest distances; (3) determine the class of s according to the
distribution of classes of these k training samples, i.e., the class
with the most frequency is assigned to s. In this study, the kNN
implemented in the Scikit-learn package was adopted.

Decision Tree

Decision tree (Safavian and Landgrebe, 1991) attempts to supply
interpretative rules in a white-box model to construct the human
understanding classification or regression models. Based on a
decision tree, several IF–THEN format rules can be extracted.
The Scikit-learn package was applied to construct the DT
classifier, depending on the CART algorithm with Gini index.

Performance Evaluation
The MCC (Matthews, 1975; Gorodkin, 2004) was adopted to
evaluate the classification performance of different classifiers. The
original version was designed for binary classification problems
(Matthews, 1975). As three categories were involved in this study,
the multi-class version was adopted (Gorodkin, 2004), which can
be calculated using the following formula:

MCC =
cov(X,Y)

√
cov(X,X)cov(Y,Y)

, (2)

where matrix X has binary values indicating the predicted sample
class, matrix Y also has binary values representing the true classes
of all samples, and cov(·, ·) is the covariance of two matrices.
MCC has a value ranging between−1 and+1.When the classifier
achieves the best performance, MCC equals +1.

Besides, the accuracy on each category and overall accuracy
(ACC) were also computed, which can give full evaluation on the
performance of different classifiers.

RESULTS

Regarding the recently reported transcriptomic data on 234
ARI patients, which included 93 patients infected with SARS-
COV-2, 100 patients with other viruses, and 41 patients with
no viral infection, we employed several advanced machine
learning algorithms on such data. The aim was to extract
essential biomarker genes and rules of SARS-COV-2. The whole
procedures are illustrated in Figure 1. This section gave the
detailed results.

Results of Boruta and mRMR Methods
15,979 gene features were observed and collected in the
transcriptomic data. Evidently, not all of them are related
to ARI patients with SARS-COV-2 or other viruses. The
Boruta approach was first applied on the transcriptomic
data. 179 features were selected, which are provided in
Supplementary Table 1.

179 features selected by Boruta were further analyzed by the
RMR method. An mRMR feature list was obtained, which is also
available in Supplementary Table 1.

Results of IFS Method
Based on the mRMR feature list, IFS was carried out with the
interval set to 1. 179 feature subsets were constructed. Given
a feature subset and a classification algorithm, a classifier was
built on samples represented by features in the subset. tenfold
cross-validation was employed to evaluate the performance of
each classifier. When evaluating the performance of different
classifiers, SMOTE was applied to produce balance data to
improve the efficiency of each classifier. The performance of
different classifiers is provided in Supplementary Table 2. For
an easy observation, an IFS curve was plotted with MCC
as Y-axis and number of used features as X-axis, as shown
in Figure 2. For RF, the highest MCC was 0.832 when top
80 features were used. Accordingly, an optimum RF classifier
was built with these features. The ACC of such classifier was
0.893 (Table 1). The accuracies on three categories are shown
in Figure 3, which were all close to 0.900. For other three
classification algorithms, the highest MCC were 0.823 (SVM),
0.757 (kNN), and 0.696 (DT), respectively. These MCCs were
obtained using top 162 (RF), 39 (kNN), and 67 (DT) features,
respectively. Thus, we can build three optimum classifiers based
on different classification algorithms with above-mentioned top
features. The ACCs and accuracies on three categories of these
classifiers are listed in Table 1 and Figure 3, respectively. Clearly,
the optimum RF classifier was the best. Thus, the 80 features
(genes) used to construct the optimum RF classifier were termed
as optimum genes.

Classification Rules
The optimum DT classifier used the top 67 features and yielded
the MCC of 0.696. Although its performance is much lower
than other three optimum classifiers, especially the optimum
RF classifier, such classifier can induce several IF-THEH format
rules, which can provide much biological insights to uncover
the SARS-CoV-2 infection and its difference from other viral
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FIGURE 1 | Whole procedures to analyze the gene expression profiles on ARI patients. The analyzed profiles are retrieved from Gene Expression Omnibus database.

Two feature selection methods: Boruta feature filtering and Minimum redundancy maximum relevance, are applied on the profiles one by one, resulting in some

important features and a feature list. The incremental feature selection method is applied on this list, which incorporates four classification algorithms, Synthetic

Minority Oversampling Technique, tenfold cross-validation. An efficient classifier is constructed, essential biomarker genes and quantitative rules are extracted.

FIGURE 2 | IFS curves with different classification algorithms. The random forest yields the highest MCC of 0.832 when top 80 features are used.
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TABLE 1 | Performance of the optimum classifiers with different

classification algorithms.

Classification algorithm Number of features ACC MCC

Random forest 80 0.893 0.832

Support vector machine 162 0.885 0.823

K-nearest neighbor 39 0.838 0.757

Decision tree 67 0.808 0.696

infection. Thus, we constructed a DT on all samples represented
by top 67 features. Then, 24 rules were obtained, which
are provided in Supplementary Table 3. Among these rules,
seven rules were for the identification of ARI patients with
other viral infection, eight rules were for the determination
of ARI patients without viral infection and the rest nine
rules were for the prediction of ARI patients with SARS-
CoV-2 infection. In Section 4.2, one rule for each category
would be discussed.

DISCUSSION

As described and summarized above, using the transcriptomics
data from the upper respiratory tissues, we identified a
group of potential biomarkers that can reveal the differences
between SARS-CoV-2 infection and other diseases caused
by viral infections, confirming the potentials of such
biomarkers to contribute to the clinical diagnosis of
COVID-19 and the development of new drugs/vaccines
against such virus. Although current studies on COVID-19
are still limited, and many potential pathogeneses of such
infectious diseases have not been revealed, all the identified
biomarkers, together with related quantitative rules, are
related to COVID-19-associated pathogenesis, according to
recent publications.

Qualitative Biomarkers for Distinguishing
COVID-19-Infected Patients and Patients
With Other Diseases
Based on our newly presented computational methods, we
identified a group of significant genes that contribute to
the discrimination of different infection statuses (infected by
SARS-CoV-2, infected by other viruses, and disease controls).
According to recent publications, some top genes participate in
the discriminative biological processes of upper respiratory tissue
cells under either physical or pathological conditions. Here, we
analyzed the top five genes, which are listed in Table 2.

The first identified biomarker was PSMB8
(ENSG00000204264). PSPM8 participates in the regulation
of influenza virus replication in infection-associated cells such
as respiratory epithelial cells (More et al., 2019); thus, this gene
can distinguish cells from disease controls and from those with
virus infections. Further, a research in 2020 confirmed that this
gene contributes to the pharmacological regulatory effects of
antimalarials against SARS-CoV-2, implying that such gene
participates in the pathogenesis and related therapeutic effects
of COVID-19 (Cai and Hurtado, 2020). Therefore, PSPM8 can
be regarded as a potential biomarker for distinguishing disease
controls, SARS-CoV-2 infection, and other infections.

The next identified biomarker gene is COLCA2
(ENSG00000214290), which participates in the tumorigenesis
of colorectal cancer (Loo et al., 2017; Guo et al., 2018). As for
the relationship between the expression of such gene and viral
infection in the respiratory system, COLCA2 has been correlated
with the dysfunction of lung tissues under chronic diseases,
including chronic obstructive pulmonary diseases (Verma,
2016) and chronic viral infection (Shi et al., 2019). Although
many studies focused on its effective role during malignant
transformation of lung cells (Peltekova et al., 2014; Noci et al.,
2016; Loo et al., 2017), given the acute pathogenesis of COVID-
19 (Rath et al., 2020; Rothan and Byrareddy, 2020), in upper

FIGURE 3 | Accuracies on three categories yielded by four optimum classifiers with different classification algorithms.
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TABLE 2 | Top five genes identified by the Boruta and mRMR method.

Rank Ensembl ID Gene symbol Description

1 ENSG00000204264 PSMB8 Proteasome 20S subunit beta 8

2 ENSG00000214290 COLCA2 Colorectal cancer associated 2

3 ENSG00000147689 FAM83A Family with sequence similarity

83 member A

4 ENSG00000108679 LGALS3BP Galectin 3 binding protein

5 ENSG00000213928 IRF9 Interferon regulatory factor 9

TABLE 3 | Representative rules generated by DT.

Rules Parameters Predicted class

Rule 0 ENSG00000126709 (IFI6) ≤ 42.8197

ENSG00000100784

(RPS6KA5) > 21.5517

ENSG00000132002

(DNAJB1) ≤ 270.3345

ENSG00000111801

(BTN3A3) ≤ 36.4745

ENSG00000132600

(PRMT7) ≤ 72.2993

ENSG00000214290

(COLCA2) ≤ 57.3127

ENSG00000138755

(CXCL9) ≤ 58.9770

ENSG00000153563 (CD8A) ≤ 33.5824

ARI patients with

other viral infection

Rule 1 ENSG00000126709 (IFI6) > 42.8197

ENSG00000102265

(TIMP1) ≤ 38.1346

ENSG00000133067 (LGR6) > 7.2938

ENSG00000100292

(HMOX1) ≤ 69.6592

ARI patients with

SARS-CoV-2

infection

Rule 2 ENSG00000126709 (IFI6) > 42.8197

ENSG00000102265

(TIMP1) > 38.1346

ENSG00000196141

(SPATS2L) ≤ 272.6383

ENSG00000138755

(CXCL9) > 18.1848

ARI patients

without viral

infection

airway tissue with chronic viral infection, and not SARS-CoV-2
infection, such gene will exhibit a unique expression level.

The next identified gene is FAM83A (ENSG00000147689).
According to the data source (Eran’s publication) (Mick
et al., 2020), this gene is a potential biomarker for identifying
the affected upper airway tissues of COVID-19 patients,
corresponding with our newly presented computational
methods. In addition, at the biological function level, in June
2020, researchers from Turkey identified a unique expression
profile of FAM83A in their established metabolic and protein–
protein interaction networks of SARS-CoV-2-infected epithelial
cells (Karakurt and Pınar, 2020), implying the specific role
of FAM83A in distinguishing upper airway samples with
SARS-CoV-2 infection from those of disease controls or with
other infections.

The next genes are LGALS3BP (ENSG00000108679) and
IRF9 (ENSG00000213928). Both have been confirmed to be
expressed in upper airway tissues (Fink et al., 2013; Clifford
et al., 2016). As for their respective capacities for distinguishing

upper airway samples from different subjects under various
pathological conditions, LAGLS3BP has a specific expression
level following the activation of neutrophil-mediated immune
responses, which is generally observed during viral infections
(Andres-Terre et al., 2015; Xu et al., 2019) including but not
restricted to SARS-CoV-2 infection (Didangelos, 2020; Park et al.,
2020). Therefore, LAGLS3BP may also help in distinguishing
samples from disease controls and those from patients with
viral infection but not the detailed subgrouping of infections.
As for IRF9, according to COVID-19-related studies, similar
with LGALS3BP, this gene is typically expressed in multiple
respiratory infection diseases (Cheon et al., 2013; Wang et al.,
2019). The deficiency in IRF9 is associated with impaired
control of multiple viruses (García-Morato et al., 2019), including
SARS-CoV-2, building the functional relationship between IRF9
and respiratory viral infection. Therefore, IRF9 is a biomarker
for distinguishing disease control and other virus-infected and
SARS-CoV-2-infected samples.

Quantitative Rules for Distinguishing
COVID-19 Infected Patients and Patients
With Other Diseases
As discussed above, we identified a group of effective biomarkers
that can help in qualitatively distinguishing samples from
three groups of patients. Based on recent publications, all
the top features were validated to have the capacity for or
participate in sample grouping at the transcriptomics level.
For accurate identification of COVID-19-infected samples, we
further established quantitative rules based on our newly
presented computational methods, and we selected several
representative rules, listed in Table 3, for each group for
detailed discussion.

The first rule (Rule 0) involved in eight parameters,
contributing to the identification of patients with virus infection
but not with the SARS-CoV-2 infection. The first parameter IFI6
(ENSG00000126709) are shown to be down-regulated in this
rule, contributing to the prediction of patients with other virus
infection. According to recent publications, in 2009, researchers
from Duke University confirmed that IFI6 was shown to be
down-regulated during the pathogenesis of influenza and other
symptomatic respiratory viral infections (Zaas et al., 2009).
However, no further reports present relationships between
such gene and SARS-CoV-2. RPS6KA5 (ENSG00000100784),
as the second parameter gene, has been shown to be down
regulated during SARS-CoV-2 pathogenesis comparing to
other virus infection. In 2017, researchers from Brazil reported
that patients with Zika virus infection has specific expression
level on such gene (Garcez et al., 2017), partially validating
this parameter. Although no further reports confirmed the
correlations between such gene and virus infection, it is still
reasonable for us to regard such gene as a potential parameter
for screening patients with potential viral infection. Some of
other parameter genes in this quantitative rule like DNAJB1
(ENSG00000132002), CXCL9 (ENSG00000138755), and
CD8A (ENSG00000153563) are well-known immune response
associated proteins. As reported, DNAJB1 has been shown to

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 January 2021 | Volume 8 | Article 627302

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Zhang et al. Identifying Transcriptomic Signatures and Rules

be down-regulated during the infection of influenza A virus
(Batra et al., 2016), but not SARS-CoV-2. Specifically, CXCL9, as
a core regulator for immune responses against viral infection,
has been reported to be significantly up-regulated during
SARS-CoV-2 infection (Lieberman et al., 2020). Therefore, a
lower expression level, which is indicated by this rule, may help
us distinguish other infections from SARS-CoV-2 infection.
As for CD8A, similar with CXCL9, a reversed expression level
of such gene (comparing with Rule 0) during SARS-CoV-2
infection was reported (Nasab et al., 2020), helping us to build up
discriminative rules for classification. Other genes like BTN3A3
(ENSG00000111801), PRMT7 (ENSG00000132600) and
COLCA2 (ENSG00000214290) are all proliferation associated
genes, which may participate in the repair procedures after lung
tissue damage caused by viral infection. The low expression level
of such three genes have been reported to be associated with
infection of different virus subtypes involving different tissues
but not SARS-CoV-2 (Ampuero et al., 2015; Sud et al., 2018;
Zhu et al., 2020), helping us to distinguish patients with/without
viral infection.

As for the second rule (Rule 1) involving four parameters,
such rule helps us to identify patients with SARS-CoV-2
infection. Although up to now, there are still few publications
presenting the host-virus relationships specifically for SARS-
CoV-2 infection, we still found strong supports for this rule. The
first parameter is IFI6 (ENSG0000 709). As we have discussed
above, no direct reports confirmed that such gene has specific
expression level during SARS-CoV-2 infection. However, with
reverse direction of expression level, this parameter can help us
to exclude patients with other common infections. As for the
second and third parameter, TIMP1 (ENSG00000102265) and
LGR6 (ENSG00000133067) has been reported to be associated
with various kind of virus, including SARS-CoV-2 (Salahudeen
et al., 2020; Stancioiu et al., 2020). Therefore, although they
cannot help distinguishing patients with SARS-CoV-2 infection
and other common virus infection, such genes can still help us to
distinguish patients with SARS-CoV-2 from normal controls. For
gene HMOX1 (ENSG00000100292), researchers from University
of Queensland have confirmed that the low expression level of
such gene are associated with SARS-CoV-2 infection (Kumar,
2020), corresponding with this rule (Rule 1).

For the third rule (Rule 2), which help us identify patients
without virus infection, four parameters were involved. The
first parameter is also gene IFI6 (ENSG00000126709). We
have discussed above that it is down-regulated during other
virus infection but not SARS-CoV-2 infection, which is
correspondence with the expression tendency in this rule. The
next gene is TIMP1 (ENSG00000102265) which has been shown
to be related to SARS-CoV-2 infection with lower expression
level during pathogenesis (Salahudeen et al., 2020). In this rule
for identifying patients without virus infection, such gene has
been shown to be up-regulated, correspondence with previous
publications. For gene SPATS2L (ENSG00000196141), it has been
reported that such gene are up-regulated during the proliferation
of B cells (Strauß et al., 2017), which is generally related to
B-cell mediated humoral immunity responses. Therefore, a lower
expression level of such gene as shown in this rule, may indicate

no virus infection triggered abnormal inflammation. The fourth
parameter gene is CXCL9 (ENSG00000138755), which is tightly
correlated with SARS-CoV-2 infection as we discussed above.
The direction of such parameter is the same as its regulatory
directions during SARS-CoV-2, while the absolute value of its
expression level is significant lower in normal controls comparing
to SARS-CoV-2 patients.

All in all, as we have discussed above, the top quantitative
rules have been supported by recent publications, validating the
reliability of the obtained rules.

Comparison With the Previous Study
The COVID-19 pandemic now has turned into a world-wide
pandemic. Large number of researchers from all over the world
have been working on the biological and epidemic characteristic
of such virus. In May, 2020, researchers from University of
California, San Francisco has identified some altered gene
expression patterns in the upper airway during the pathogenesis
of SARS-CoV-2 (Mick et al., 2020), which can further be regarded
as biomarkers for COPD at transcriptomic level. In this study,
multiple biomarkers (features) were selected based on different
classifier models (26 gene model, 10 gene model, and 3 gene
model) using lasso method. Comparing the selected features
(genes) with the optimal genes found in our study, seven genes
as TRO (ENSG00000067445), TIMP1 (ENSG00000102265),
IFI6 (ENSG00000126709), LGR6 (ENSG00000133067), WDR74
(ENSG00000133316), IFI44L (ENSG00000137959), and FAM83A
(ENSG00000147689) were reported by both of two studies.
As we have discussed above, genes FAM83A, IFI6, TIMP1,
and LGR6 have already been discussed above, confirming
their significant roles for distinguishing SARS-CoV-2 and
other diseases. As for WDR74 (ENSG00000133316), IFI44L
(ENSG00000137959), and TRO (ENSG00000067445), recent
publications have also confirmed their correlations with SARS-
CoV-2. Recently, a single-cell sequencing based analyses on the
peripheral mononuclear cells identified IFI44L as one of the
potential biomarkers to monitoring immune responses of SARS-
CoV-2. As for WDR74 and TRO, although no direct evidence
confirmed their correlations with SARS-CoV-2, both of them
have already been shown to be correlated with coronavirus
infection (Mick et al., 2020; O’Brien et al., 2020), implying their
potential roles during SARS-CoV-2 infection. Therefore, similar
results have been identified by the previous and our studies. The
shared reported genes have all been confirmed to contribute to
the pathogenesis of SARS-CoV-2 and the distinction between
SARS-CoV-2 infection and other virus infection involving the
lung, validating the reliability of our findings.

Furthermore, this study also reported some exclusive
biomarker genes compared with the previous study, such as
PSMB8, COLCA2, LGALS3BP and IRF9 as discussed in Section
4.1. Besides biomarker genes, our study extracted several rules,
listed in Supplementary Table 3, to uncover the different
expression patterns between SARS -CoV-2 infection and other
viral infection or no viral infection. These rules always contain
several gene parameters, which are quite complicated and can
represent the patterns that the single gene cannot reflect. With
different computational methods, different information about
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SARS-CoV-2 infection can be mined, which can all be essential
parts to uncover its pathological mechanism.

CONCLUSION

As discussed above, all the identified top-ranked qualitative
biomarkers and quantitative rules are correlated with the
identified COVID-19-associated pathogenesis and contribute to
distinguishing COVID-19-infected cases from other respiratory
patients with or without virus infection, validating the efficacy
and accuracy of our prediction. Therefore, the application
of machine learning model may efficiently assist in the
identification of potential diagnostic biomarkers and candidate
drug targets and help establish a standard workflow for related
analyses in such field.
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