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Identifying transposable element expression
dynamics and heterogeneity during development at
the single-cell level with a processing pipeline scTE
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Gang Ma2, Qiang Zhuang2, Andrew P. Hutchins 2✉ & Jiekai Chen 1,3,4✉

Transposable elements (TEs) make up a majority of a typical eukaryote’s genome, and

contribute to cell heterogeneity in unclear ways. Single-cell sequencing technologies are

powerful tools to explore cells, however analysis is typically gene-centric and TE expression

has not been addressed. Here, we develop a single-cell TE processing pipeline, scTE, and

report the expression of TEs in single cells in a range of biological contexts. Specific TE types

are expressed in subpopulations of embryonic stem cells and are dynamically regulated

during pluripotency reprogramming, differentiation, and embryogenesis. Unexpectedly, TEs

are expressed in somatic cells, including human disease-specific TEs that are undetectable in

bulk analyses. Finally, we apply scTE to single-cell ATAC-seq data, and demonstrate that

scTE can discriminate cell type using chromatin accessibly of TEs alone. Overall, our results

classify the dynamic patterns of TEs in single cells and their contributions to cell

heterogeneity.
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T
ransposable elements (TEs) are a heterogeneous collection
of genomic elements that have at various stages invaded
and replicated extensively in eukaryotic genomes. The vast

majority of TEs are fossils, and can no longer duplicate them-
selves, but they remain inside the genome and in mammals
occupy nearly half the total DNA1. Intriguingly, it is becoming
clear that both the active and remnant TEs are participating in
evolutionary innovation and in biological processes2–6, such as
embryonic development7–10, and in human disease and
cancer11,12. Additionally, TEs carry cis-regulatory sequences and
their duplication and insertion can reshape gene regulatory net-
works by redistributing transcription factor (TF) binding sites
and evolving new enhancer activities13–15. TEs transcription also
has a key influence upon the transcriptional output of the
mammalian genome16. However, the role of TEs in cell type
heterogeneity and biological processes has only recently begun to
be explored in depth.

Single cell RNA-seq (scRNA-seq) has developed as a powerful
tool to observe cell activity17–19. Many new techniques have been
developed to recover or reconstruct missing observations, such as
spatial, temporal, and cell lineage information. However, an
important source of genomic information has so far been over-
looked in single cell studies: the effect of TEs. Despite their
importance, we lack quantitative understanding of how those
genomic elements are involved in cell fate regulation at the single
cell level. As TEs pose unique challenges in quantification, due to
their degeneracy and multiple genomic copies, a prerequisite to
understand TEs at the single cell level is a tool to quantify the
hundreds to millions of copies of repetitive elements within the
genome. To this end, we developed scTE, an algorithm that
quantifies TE expression in single-cell sequence data.

In this study, we first demonstrate scTE’s capabilities through
an analysis of mouse embryonic stem cells (mESCs), which is one
of the best characterized models for TE expression, as the
expression of the endogenous retrovirus (ERV) MERVL marks a
small population of cells in embryonic stem cell (ESC) cultures
that are totipotent20,21. scTE accurately recovers the expected
pattern of heterogeneous MERVL expression. Then, we apply our
approach to several biological systems, including human in vitro
cardiac differentiation, mouse gastrulation, adult mouse somatic
cells, the induced pluripotent reprogramming process and human
disease data. Overall, we gain insight into complex TE expression
patterns in mammalian development and human diseases.

Results
Quantification of TE expression in single cells with scTE.
Analysis of TEs pose special challenges as they are present in
many hundreds to millions of copies within the genome. A
common strategy in regular analyses is to discard multiple
mapped reads, however, this leads to loss of information from
TEs22. Assigning these reads to the best alignment location is the
simplest way to resolve TE-derived reads, but it is not always
correct for individual copies22,23. To solve this problem, we
designed an algorithm in which TE reads are allocated to TE
metagenes based on the TE type-specific sequence. Reads map-
ping to any TE copy in the genome are collapsed to a single TE
subtype that represents that class of TE. The advantage is that
errors in multimapping read allocation are minimized, the dis-
advantage is that TE genome location is lost. We built a frame-
work named scTE with this strategy, scTE maps reads to genes/
TEs, performs barcode demultiplexing, quality filtering, and
generates a matrix of read counts for each cell and gene/TE
(Fig. 1a and Supplementary Fig. 1a). scTE is easy to use, and its
output is designed to be easily integrated into downstream ana-
lysis pipelines including, but not limited to, Seurat and

SCANPY24,25. The algorithm can in principle be applied to infer
TE activities from any type of single-cell sequencing-based data,
like single-cell ATAC-seq data, DNA methylation, and other
single-cell epigenetic data.

To evaluate the accuracy of scTE for non-TE gene expression,
we compared gene expression from the standard Cell Ranger26

pipeline, and the STARsolo27 pipeline. scTE resulted in only
minor changes in gene expression counts and high correlation
(Pearson > 0.95) that is similar to the magnitude to the differences
between STARsolo and Cell Ranger (Supplementary Fig. 1b). We
then tested scTE’s ability by in silico mixing two cells lines, MEFs
(mouse embryonic fibroblasts) and ESCs in different ratios28.
Comparison with the gene-based Cell Ranger pipeline26, scTE
shows nearly identical topology in a UMAP (Uniform Manifold
Approximation and Projection) plot, and in marker genes
expression (Fig. 1b and Supplementary Fig. 1c). Even when one
cell type constitutes only a 1% minority in the mixture, scTE
identified it correctly (Fig. 1b), indicating that scTE did not
influence the global analysis of gene expression. These results
demonstrate the sensitivity of scTE.

Next, we sought to explore TE expression, around 12–14% of
the reads were derived from TEs (Fig. 1c). Requiring at least 2-
fold change and FDR < 0.05, scTE detected 108 significantly
differentially expressed TEs between ESCs and MEFs (Supple-
mentary Fig. 1d), including ERVB7_1-LTR_MM, which is highly
expressed in ESCs, and RMER10B in MEFs (Fig. 1d and
Supplementary Fig. 1e). Furthermore, UMAP based on single
cell TE expression alone could distinguish the cell types with the
expected ratio (Fig. 1e), demonstrating TE expression discerns
cell identity.

Deciphering TE heterogeneity in mouse ESCs and during
human cardiac differentiation. It is known that a small subset of
ESCs acquire a totipotent state named 2C-like cells and express a
MERVL TE which also marks the embryonic 2-cell stage20,29,30.
scTE could correctly identify this rare 2C-like subpopulation in
UMAP plots, based on the specific marker genes Zscan4c and
Tcstv3, and the expression of MERVL and MT2_Mm TEs
(Fig. 2a, b and Supplementary Fig. 2a, b)20,31. If we discarded
multiple mapped reads and only considered unique reads, the
level of MERVLs was reduced, but it was still specifically
expressed in the 2C-like cells (Supplementary Fig. 2c). Using TEs
alone (no genes) the UMAP could correctly separate the rare 2C-
like cells based on MERVL expression (Supplementary Fig. 2d).
This confirms that scTE can correctly identify known TE
patterns.

In humans, HERV-H LTRs are expressed in early embryos and
human pluripotent stem cells (hPSCs), and contribute to
pluripotency maintenance and somatic reprogramming7,32–34,
but little is known about TE expression dynamics during
differentiation to somatic cells. Applying scTE to an scRNA-seq
time series of hPSCs differentiating to cardiomyocytes35, we
observed the expected downregulation of HERV-H LTRs
including LTR7 and HERVH-int during differentiation4, con-
comitant with reduction in the expression of the pluripotency
factor POU5F1 (Fig. 2c, d and Supplementary Fig. 2e). During
in vitro cardiac differentiation of hPSCs there is a bifurcation
towards definitive cardiomyocytes (dCM) and non-contractile
cells (Fig. 2c). Between these two branches, marked by NKX2-5
and SPARC, respectively, we found differential expression of TEs
such as LTR32, MER57A-int and MER45A in the dCM cells,
whilst, MLT1H1, HERVIP10B-int and LTR5A were specifically
expressed in the non-contractile cells (Fig. 2e, f and Supplemen-
tary Fig. 2f). Independent bulk RNA-seq data36 demonstrated
that these TEs were expressed in late cardiac differentiation
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(Supplementary Fig. 2g), however, as the bulk is a mixture of
dCM and non-contractile cells, the restriction of these TEs to
divergent fates can only be observed in the scRNA-seq data. This
highlights the importance of analyzing TE expression in sc-RNA-
seq data, as MLT1H1 is very high in the bulk RNA-seq, but this
hides the reality that it is restricted to the non-contractile cells
and plays no role in dCMs (Fig. 2e, f and Supplementary Fig. 2g).
To explore if the reads are derived from relatively intact ERV
elements or truncated fragments, we compared the expression
correlation between LTR and their internal ERV sequence.
LTR7 and HERVH-int were strongly correlated (Pearson ~0.8;
Supplementary Fig. 2h and Fig. 2d), and LTR5A and LTR6A were
also positively correlated to their internal ERVs (Supplementary
Fig. 2h,i), indicating their expression may be from relatively intact
elements. We also noticed that some LTR expression did not
correlate with their ERV, such as LTR32, which is specifically
expressed in the dCMs, while its internal HERVL32-int is not
expressed in any cell types (Supplementary Fig. 2h,i), this suggests
a disconnect between the expression of the LTR and ERV, and
hints at separate regulation or truncation of the LTR/ERV pair.

Analysis of TEs in mouse gastrulation and early organogenesis
identifies the widespread cell fate-specific expression of TEs.
The previous analysis showed TE expression dynamics during
in vitro cardiac differentiation, next we explored complex in vivo
developmental processes. TE expression is dynamic during pre-
implantation development7, however, the expression of TEs in
gastrulation has not been described. We took advantage of the

single-cell time course of mouse gastrulation17. Analysis with
scTE did not introduce any unexpected sample-bias, and a side-
by-side comparison could retrieve similar patterns of marker gene
expression in the expected lineages (Fig. 3a and Supplementary
Fig. 3a–f). We found every lineage expressed a series of lineage-
specific TEs (Fig. 3a, b, and Supplementary Fig. 4a–c). In the
extraembryonic ectoderm cells, IAP and RLTR45-family TEs
were activated (Fig. 3b, c), and in Apoa2+ extraembryonic
endoderm cells, MER46C, RLTR20B3, and LTRIS2 were upre-
gulated (Fig. 3b, d). The expression of these TEs was validated
using bulk RNA-seq from in vitro37–39 mimics of these
embryonic stages, including ESCs, epiblast stem cells (EpiSCs),
extraembryonic endoderm cells (XENs) and trophoblast stem
cells (TSCs) (Fig. 3e). Other embryonic lineages, particularly the
Gypa+ erythroid and the Tnnt2+ cardiomyocyte lineages
expressed specific TEs such as L1_Mur and L1ME3D, respectively
(Fig. 3b, f).

As this dataset provides dynamic trajectories for each lineage,
we wondered if TEs were transiently activated during cell fate
transitions. To this end, we noticed ETnERV3-int, whose
expression coincides with the early development of the cardiac
fate from the mesoderm, and is reduced in Tnnt2+ cells, while
L1ME3D was expressed in the Tnnt2+ cells (Fig. 3g). Consis-
tently, ETnERV3-int was specifically expressed in in vitro derived
cardiomyocytes, which more closely resemble a fetal state, whilst
L1ME3D was expressed only in the mature heart (Fig. 3h)40,41.
However, the bulk samples could not capture the complexity of
the transient expression of ETnERV3-int which extended from the
late epiblast into the endoderm and mesoderm. To expand on this,

Fig. 1 scTE workflow and applications. a Schematic of the workings of scTE. For scRNA-seq data the reads are mapped to the genome, and assigned to

either a gene, or a metagene model of a TE. Multimapping read data will assign the best mapping read to a type of TE. Reads are always mapped to a gene

first, and then a TE if no gene is found. The resulting assignments are then collapsed into a matrix of read counts for each cell, versus each gene/TE. This

matrix can be used in downstream applications. Genes are colored in green and TEs are colored in purple in all figures. b UMAP plot showing mixtures of

MEFs and ESCs in the indicated ratios. The top panels show scTE analysis, the lower panels show Cell Ranger analysis results. Cells are colored by their

sample of origin. c Percentage of reads mapping to genes, TEs or other regions of the genome in MEFs and ESCs. d Violin plot showing the expression of

selected TEs in MEFs and ESCs. e As in (b), but only TE expression was used.
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we reanalyzed an scRNA-seq dataset of the developing mouse
embryonic heart42 (Fig. 3i and Supplementary Fig. 5a–c), and
found that ETnERV3-int was expressed in the myocardium and
epicardium, but not in the endocardium, neural crest, and
embryonic cells (Fig. 3j). L1ME3D was expressed in Tnnt2+
myocardium, however, in an inverse pattern with respect to
ETnERV3-int (Fig. 3j, k). Therefore, ETnERV3-int is expressed in
an intermediate stage of cardiac lineage development. Intriguingly,
there was a close relationship between the expression of
ETnERV3-int and Isl1 gene, which marks multipotent progeni-
tors42 (Fig. 3j). These results highlight the complex patterns of TE
expression in developmental processes.

Widespread tissue-specific expression of TEs in somatic cells.
As we detected heterogeneity of TE expression during organo-
genesis and cardiac differentiation, we next took advantage of
scRNA-seq to explore TE expression heterogeneity in somatic
tissues. As we revealed unexpected heterogeneity of TEs in
somatic MEFs and during organogenesis, we next measured TE
expression in somatic cells using the Tabula Muris large scale
scRNA-seq dataset that profiles 20 mouse organs43 (Fig. 4a).
Surprisingly, our analysis identified in total 130 TEs that were

specifically expressed in distinct cell types (Fig. 4b and Supple-
mentary Fig. 6a). These associations include the expected
expression of LINE1 elements in brain cells, of which many L1
family members like L1MEh, L1M, L1MC4a, L1MA7, and
L1P5 elements are specifically expressed in oligodendrocytes
or microglia (Fig. 4c and Supplementary Fig. 6a). We also
found expression of LTR58, MLT1EA-int, MER110, and
RLTR46 specifically in B cells, T cells, type B pancreatic cells, and
hepatocytes, respectively (Fig. 4c).

TE expression is regulated by chromatin modification and
transcription factors (TFs)3, thus, we wondered if we could infer
the regulatory network between TFs and TEs from large scale
scRNA-seq data, taking advantage of the improved cell type
definitions from the scRNA-seq data. The co-expression relation-
ships often reflect biological processes in which many genes with
related functions are coordinately regulated. Therefore, we
reasoned that if a TE is regulated by a TF, they should be co-
expressed. To identify TF–TE regulatory relationships, we
performed co-expression analysis, and identified the specific co-
clustering of neural genes and TEs (Sox2 and Olig1), the immune
system (Cebpe, Tcf7, Pax5, and Sall1), the endoderm/pancreas
(Gfi1b, Nkx6-1, and E2f8), and other lineages (Fig. 4d, e and
Supplementary Fig. 6b). Motif analysis showed that the SOX2

Fig. 2 Dynamic transcription of TEs in ESCs and during cardiac differentiation. a UMAP plot of mouse ESCs. Cells are colored by cell type cluster. b Same

as (a), but cells are colored based on the expression of the indicated genes and TEs. Zscan4c and Tcstv3 are marker genes for the 2C-like cells. c Trajectory

reconstruction of single cells through a cardiac differentiation timecourse showing the definitive cardiomyocytes (dCMs) branch and noncontractile

branch. Days of differentiation (D) are labeled. d As in (c), but cells are colored by the expression of the indicated genes and TEs. e Heatmap of expression

differences between dCM (contractile) branch and noncontractile branch cells, selected differentially expressed genes and TEs are labeled. f As in (d), but

cells are colored by the expression level of the indicated genes and TEs.
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motif was significantly enriched within RLTR13F TEs (Supple-
mentary Fig. 6c). ChIP-seq data analysis also demonstrated the
binding of the TFs TCF744, SOX245, and TFAP2C46 to
RLTR10D2, RLTR13F and RLTR13D5 TEs, respectively (Fig. 4f).
These results highlight the deep link between TE and TF activity,
indicating those TFs may be responsible for activating TEs in the
corresponding cell types.

We next explored two cell lineages where TE activity is known
to be involved, the neural and immune cell lineages47–49. TEs
have contributed both exapted proteins, enhancer sequences, and
non-coding RNAs to regulate innate immune responses47,48. In
the neural system, LINE TEs are especially active and whilst their
activity remains unclearly understood they are deregulated in
many neurological disorders49. Subgrouping the cells from
microglia and neuron samples identified several distinct cell

types (Supplementary Fig. 7a–c), within which cell type-specific
expression of TEs was observed (Supplementary Fig. 7d, e). Next,
with the pooled immune cells from marrow, spleen, and thymus,
12 distinct immune cell subtypes were defined (Supplementary
Fig. 7f, g). Intriguingly, besides finding additional cell type-
specific TEs in T cells, B cells and granulocytes, a series of TEs
were restricted to subtypes of T cells and B cells (Supplementary
Fig. 7h and i). These data show different degrees of subtype
specific signatures of TEs in the neural and immune system, and
highlight the importance of looking beyond only genes when
exploring how those systems differ.

TEs are activated during somatic cell reprogramming, in a
heterogonous and cell branch restricted manner. The above
analysis has revealed the well-ordered dynamic expression of TEs

Fig. 3 Widespread cell type-specific expression of TEs during gastrulation. a UMAP plots of the mouse gastrulation data using both genes and TEs.

Selected lineages are labeled (Leiden, resolution= 0.3). b Dot plot showing a selection of marker genes and TEs for the indicated cell lineages. c Expression

of the indicated extra embryonic ectoderm gene Tfap2c and selected TEs. d Expression of the extra embryonic endoderm marker gene Apoa2 and selected

TEs. e Expression of the indicated TEs and marker genes in bulk RNA-seq data from ESCs, EpiSCs, XEN (extra embryonic endoderm cells) and TSCs

(trophoblast stem cells). Tfcp2l1, Fgf5, Gata3, and Sox17 serve as markers for ESCs, EpiSCs, TSCs, and XEN cells, respectively. Data are displayed as a z-

score using the variance from all genes. f Expression of the erythroid marker gene Gypa, and selected TEs. g Expression of the cardiac marker gene Tnnt2

and selected TEs. h Expression of the indicated TEs and marker genes from bulk RNA-seq data. i UMAP plot of the embryonic mouse heart scRNA-seq data

using both TEs and genes. The indicated developmental stages are labeled as in the original study. j, k UMAP as (i), but cells are colored by the expression

of indicated genes/TEs.
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in developmental processes, we then wondered if TEs undergo
similar stage-specific regulation during somatic reprogramming.
Somatic cells can be reprogrammed to induced pluripotent stem
cells (iPSCs) by various methods, such as ectopic expression of a
group of pluripotency transcription factors28,50,51, or cocktails of
chemicals52,53. The reprogramming process is highly hetero-
geneous, with abundant non-reprogramming cells and divergent
cell fate transition routes28,54. We took advantage of repro-
gramming scRNA-seq data to investigate the expression of TEs
during these drastic cell fate transitions. Reprogramming induced
by Oct4/Pou5f1, Klf4, Sox2, and c-Myc (OKSM) generates
detectable intermediate branches, including iPSCs, trophoblast,
stromal and neural-like cells (Fig. 5a and Supplementary
Fig. 8a–d)54. We identified specifically expressed TEs in each cell

branch (Supplementary Fig. 8a–d). For example, the TEs
ERVB7_1-LTR_MM, IAPEz-int, RLTR4_Mm, and Lx were spe-
cifically expressed in iPSCs, trophoblast, stromal and neural-like
branches, respectively (Fig. 5b). ERVB7_1-LTR_MM (MusD) and
IAPs are upregulated during reprogramming55, however using
scRNA-seq data we show that only ERVB7_1-LTR_MM, as well
as ETnERV-int and RLTR13G, were upregulated in the successful
reprogramming route, initiating at the mesenchymal-to-epithelial
transition (MET) and peaking at the iPSCs stage (Fig. 5b and
Supplementary Fig. 8a). In contrast, the trophoblast-branch
expressed IAPEz-int and IAPLTR1_Mm (Fig. 5b and Supple-
mentary Fig. 8c), which are also expressed in in vivo extra
embryonic ectoderm cells (Fig. 3c), suggesting consistent reg-
ulation between development and reprogramming.

Fig. 4 Class-specific expression of TEs in somatic cells. a UMAP plots of the Tabula Muris data, using both genes and TEs as analyzed with scTE. The

tissue sources for the cells are indicated. b UMAP plot as in (a), but clustered into groups (Leiden, resolution= 0.5). c Same as (b), but cells are colored by

the expression of indicated genes/TEs. d Correlation heatmap showing the co-expression of TFs and TEs. e UMAP plots showing the expression of

indicated TFs and TEs. f Read count tag density pileups for TCF7, SOX2, and TFAP2C ChIP-seq data on the indicated TEs.
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We then analyzed reprogramming induced by Oct4, Klf4, and
Sox2 (OKS)28 or only chemicals31. There are two validated
branches during OKS-mediating reprogramming28 (Fig. 5c), and
we found many TEs, such as ERVB7_1-LTR_MM, that were
specifically upregulated in the reprogramming-potential (RP)
branch, and were excluded from the non-reprogramming (NR)
branch (Fig. 5d and Supplementary Fig. 9a). As OKS reprogram-
ming data was generated with both the 10x (3’ biased) and C1
(full-length) methods, we took advantage of these matching
datasets to compare the influence of the single-cell RNA-seq
protocol. Broadly, they matched well between each other for both
genes and TEs (Supplementary Fig. 9b), and we could detect
similar patterns of TE expression in both the 10x and C1
(Supplementary Fig. 9c, d). However, as the 10x results in
considerably more cells than the C1 platform, a unique cell type
“neuron-like” (NL) could only be detected in the 10x data, and
these cells expressed LINE1 elements (Supplementary Fig. 9c, d).
IAPEz-int and IAPLTR1_Mm were expressed in the RP branch
but were ultimately silenced in the reprogrammed cells (Fig. 5e,
f), suggesting IAPs were only activated in a pre-reprogrammed
state and are down-regulated before the finalization of repro-
gramming. Bulk RNA-seq can identify overall changes in TE
expression, however, the dynamics and branch-restricted TE
expression can only be observed from the scRNA-seq. We
validated the expression of ERVB7_1-LTR_MM and IAPs by
qRT-PCR (Supplementary Fig. 9e), demonstrating that IAPs are
silenced in ESCs. Similar to OKS-mediated reprogramming,
chemical-mediated reprograming bifurcates into two branches

(Fig. 5g and Supplementary Fig. 9f)31, and TEs, marking an
intermediate 2C-like program, were activated at the root of the
successful branch (Supplementary Fig. 9g, h). ERVB7_1-
LTR_MM and RLTR13G were specifically upregulated in the
successful branch, whilst IAPEz-int and IAPLTR1_Mm were
activated in the pre-branch and failed branch (Fig. 5h and
Supplementary Fig. 9i, j).

The three reprogramming systems described above can
progress along different paths to reprogramming28,31,54, however,
the same TEs are regulated in similar patterns in the three
systems, suggesting common regulatory mechanisms for TEs.
Indeed, we found IAPLTR1_Mm TEs are rich in DNA-binding
motifs for JUN and IRF2 (Supplementary Fig. 9k), whose
expression closely matched IAP expression in all three repro-
gramming systems (Supplementary Fig. 9l) and are known to
impair reprogramming56,57. This suggests that their downregula-
tion deactivates the IAPs before the finalization of reprogram-
ming. Overall, these results unveiled a deeper unappreciated role
of dynamic TE expression in iPSC formation.

Passive transcription is not a major contributor to TE
expression in single cells. We next evaluated the effects of TE
expression from passive co-transcription with genes, especially
TEs that are retained in transcribed introns58,59. First, we
observed that the 10x data are significantly 3′ biased, with most
read counts in the 3′ end of genes, and a very low tag density for
the gene body (Supplementary Fig. 10a), indicating read-through
across the gene body is not a major part of the expression

Fig. 5 Stage-specific expression of TEs in somatic cell reprogramming. a Trajectory reconstruction during OKSM reprogramming, cells are colored by

time point. b As in (a), but cells are colored by the expression of the indicated TEs. c Force-directed (FR) layout of cells during OKS reprogramming, cells

are colored by time point. d Same with (c), but cells are colored by the expression change of the ERVB7_1-LTR_MM TE during reprogramming. e

Expression heatmap of the top 145 dynamically expressed TEs in a pseudotime ordering for the RP branch, selected TEs are indicated. f Expression changes

of the indicated TEs during reprogramming. g Trajectory reconstruction during chemical reprogramming, cells are colored by time point. h As in (g), but

showing TE expression specific to the successful or failed branches of reprogramming.
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measure. Nonetheless, to rule out a major influence of intronic
TEs on determining cell type-specific TEs, we performed TE
counts using only reads from outside gene bodies (using the
nointronic mode in scTE). Analysis of the cell type-specific TEs
between MEFs and ESCs in the default mode (exclusive) (Sup-
plementary Fig. 1d), indicated that the majority of those cell type-
specific TEs remained specific in the nointronic mode (94/108),
and just 14 TEs were altered in the nointronic mode (Supple-
mentary Fig. 10b). To explore the impact of genomic proximal
genes to those cell type “inconsistent” TEs, we collected cell type-
specific genes (Supplementary Fig. 10c), and then compared these
genes with the locations of those cell type “inconsistent” TEs. We
did not detect any significant genomic proximal correlation
between them (Supplementary Fig. 10d), indicating that intronic
read counts from high expressed genes is not a major issue for TE
analysis in 10x data from whole-cell scRNA-seq. Potentially this
may be more of an issue in nuclear scRNA-seq, where intron
retention is more common. Nonetheless, we noticed some cell
type-specific expressed TEs that are inside the intron of a gene
that was not expressed (Supplementary Fig. 10e), indicating that
the removal of intronic reads may bias TE quantification for some
TEs in single cells. We next expanded this analysis to the Tabula
Muris atlas dataset performed using the C1 platform. Similarly,
most cell type-specific TEs did not correlate with cell type-specific
genes, but there were a limited number of correlations (11/129),
especially for LTR90A, RLTR19B etc. (Supplementary Fig. 10f–h).
Above all, these results suggesting that a relationship between
genes and proximal TEs occurs, but only in a minority of cases.

To evaluate the influence of TE mappability on quantification
accuracy, we performed cross correlation analysis between read
mappability, read counts and the coefficient of variance (CV) for
each TE sub-type, and show there was no obvious correlation,
and generally the cell type-specific expressed TEs with high
variance (CV high) had a high mappability score (Supplementary
Fig. 10i, j), indicating that the cell type specific TEs identified by
scTE are reliable.

Inferring TE-associated accessibility from scATAC-seq data.
Beyond scRNA-seq, many other single-cell sequencing techni-
ques60–62 have shown great potential to explore cell hetero-
geneity, and increased insight could be fueled by the additional
information provided by scTE. For instance, we reasoned that
scTE would be informative for the analysis of scATAC-seq data
and potentially other single-cell epigenetic data because TEs have
a wide array of chromatin states3, are widely bound by tran-
scription factors63, and can act as enhancers15 (Fig. 6a). We then
applied scTE to a dataset of fluorescence-activated cell sorted
(FACS) mouse cells64, including cardiac progenitor cells (CPCs),
CD4+ T cells, ESCs and skin fibroblasts (SFs). Intriguingly, scTE
could accurately recover the expected cell types, based on only the
reads that mapped to TEs (Fig. 6b). Specific accessibility of
RLTR13A, RLTR4_Mm, RLTR13G and RMER19B/C was found
in the CPCs, CD4+ T cells, ESCs and SFs, respectively (Fig. 6c, d
and Supplementary Fig. 11a). And motif enrichment of these cell-
type specific TEs identified known master regulators of these cell
types, such as GATA4/HAND1/T for CPCs, ETS1/TCF3 for
T cells, SOX2/POU5F1/NR5A2 for ESCs and FOS/MAF for SFs
(Supplementary Fig. 11b), indicating these TEs may act as cis-
regulatory elements bound by transcription factors. For instance,
scTE identified an RLTR13A TE within an intron of Smyd1, a
gene essential for heart development65–67, which was specifically
open in CPCs (Fig. 6e), and was specifically expressed in the
myocardium of the fetal heart (Fig. 6f). The above dataset was
presorted, which meant there was a priori information about the
cell type. In a more challenging case, we analyzed single-cells

from unsorted mouse spleen64. In this scATAC-seq dataset with
scTE we can detect the major spleen cell types, including B cells,
macrophages (Mq), granulocytes, natural killer (NK) cells and
T cells, based on accessibility at known cell type-specific genes
(Supplementary Fig. 11c, d). Additionally, each cell type had
specifically opened TEs (Supplementary Fig. 11e). Finally, we
applied scTE to scATAC-seq data of human primary cells, of a
peripheral blood monocyte (PBMC) population, and could
recover the major cell types and cell type-specific TEs (Supple-
mentary Fig. 11f–i), which could be validated by independent
bulk ATAC-seq data from FACS sorted cells (Supplementary
Fig. 11j)68. These results indicate that quantifying chromatin
accessibility on TE regions is informative for characterizing cell
types and may assist the problems posed by scATAC-seq analysis
due to its especially sparse nature69.

Disease-specific expression of TEs. The unexpected widespread
TE heterogeneity amongst embryonic and somatic cell types
raised the question as to whether there is TE heterogeneity in
diseased cells. Alzheimer’s disease (AD) is an age-associated
neurodegenerative disorder that is characterized by progressive
memory loss and cognitive dysfunction for which there is no
known cure. TEs have been reported to be highly active during
aging and may contribute to age-dependent loss of neuronal
function70. To explore the expression of TEs in AD, we reana-
lyzed the scRNA-seq data from a mouse model of AD expressing
five human familial AD gene mutations, which contained
13,114 single cells with age and sex-matched wild-type (WT)
controls using the MARS-seq platform71 (Fig. 7a). Projecting the
cells with a UMAP, we recovered the major groups of cells in AD
and WT, including the unique disease-associated microglia
cluster cells (M2) identified in the original study (Fig. 7b and
Supplementary Fig. 12a). Differential expression analysis
demonstrated significant changes in gene expression in M2,
including previously described AD risk factors such as Apoe,
Tyrobp, Lpl, Cstd, and Trem2 (Fig. 7c and Supplementary
Fig. 12b). Intriguingly, we also found many TEs such as
ERVB7_2-LTR_MM, RLTR17, RLTR28 and Lx4B that were sig-
nificantly higher and specifically expressed in M2 (Fig. 7c, d and
Supplementary Fig. 12c), indicating those TEs may also be
involved in AD development.

Type 2 diabetes (T2D) is a common human disease caused by a
combination of increased insulin resistance and reduced mass or
dysfunction of pancreatic beta cells. We reanalyzed scRNA-seq
from two independent studies of the human pancreas in healthy
and T2D individuals72,73. The major cell types in the pancreas,
including alpha, beta, gamma/PP, and delta cells clustered
without a visible disease-specific pattern, indicating no drastic
change in cell type (Fig. 7e and Supplementary Fig. 12d).
Contrasting the transcriptome from healthy and T2D in each cell
type independently, CD36 and DLK1 was upregulated in T2D
alpha and beta cells respectively (Fig. 7f), as reported by the
original studies72,73. Notably, many TEs were significantly highly
expressed in T2D beta cells, including L1MC, L1MA4A, Tigger3a,
MLT2B4. This differential expression pattern was near identical
between the two independent datasets (Fig. 7f). Critically, none of
these observations could be observed using bulk RNA-seq
datasets (Fig. 7g and Supplementary Fig. 12e)72,74, which might
be due to the high expression of these TEs in both normal and
T2D alpha cells, emphasizing the importance of analysis at single-
cell resolution.

As a final human disease dataset, we reanalyzed a glioblastoma
scRNA-seq experiment75, and were able to identify TEs
specifically expressed in neoplastic cells and that were correlated
with the expression of EGFR (Supplementary Fig. 12f–h), a gene
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upregulated in a large percentage of glioblastomas75. Above all,
these results revealed the dysregulation of TE expression in
diseased human cells, which deserves further mechanistic study
and may help to identify new diagnostic markers and therapeutic
targets.

Discussion
TEs are the most abundant elements in the genome, however, the
understanding of their impact on genome evolution, function and
disease remains limited. The rise of genomics and large-scale
high-throughput sequencing has shed light on the multi-faceted
role of TEs. However, many genomic studies exclude TEs due to
difficulties in their analysis as a consequence of their repetitive
nature22. Thus, TE analysis often requires the use of specialized
tools to extract meaning5,23. Here, we developed scTE specifically
for the analysis of TEs from single-cell sequencing data. By taking
advantage of this tool, we could observe previously identified
phenomena such as MERVL and LTR7/HERVH expression in
mouse and human ESCs, respectively. We then observed wide-
spread heterogeneity of TE expression throughout embryonic
development, in mature somatic cells, during the reprogramming
process and in human diseases, and discovered a wealth of cell

fate-specific TE expression. These associations cannot be
observed when only considering bulk samples, demonstrating the
power of single-cell sequencing, and the importance of analyzing
TE expression. A recent study76 reported quantification of
transposable elements chimeric transcripts in single-cell RNA-seq
data assisted by transcript assembly, and identified hetero-
geneously expressed TE transcripts during mouse gastrulation
and early organogenesis, which is consistent and complementary
with our findings.

One of the key findings of our analysis has revealed the various
TEs that are specifically expressed in different cell types. The
expression of TEs during the pre-implantation development stage
has been demonstrated previously7, our findings extend this to
gastrulation and early organogenesis. We find a wide array of
expression of TEs in the extraembryonic tissues, which may be
related to their activity as enhancers77. Furthermore, we show the
expression of TEs within the specific lineages in the developing
fetal heart. In addition, TEs are also heterogeneously expressed
between cell types in adult somatic cells, which has not been
demonstrated before, as TEs are thought to be primarily silent in
adult tissues. Notably, we found a vast of trove of TEs that are
expressed in the brain and the immune system, and individual TE
types that are specifically expressed in different sub cell types.

Fig. 6 Analysis of the chromatin state of TEs in single-cell ATAC-seq data. a Schematic plot of scTE for scATAC-seq data analysis. The reads are

mapped to the genome, and assigned to a metagene TE, and then the cells were clustered based on the TE matrix. b UMAP plot of the TE chromatin state

from scATAC-seq data for a selection of FACS-purified mouse cell types. c Heatmap of the top 50 cell type-specific opened TEs in the indicated cell types,

selected example TEs are indicated. d UMAP plot as in (b), but cells are colored by chromatin-state of the indicated TEs. e Genome tracks showing the

aggregate scATAC-seq profiles (top panel). Randomly selected 100 single cell profiles are show below the aggregated profiles (bottom panel). Which

include (unique+multiple), or exclude (unique), multiple mapped reads. f UMAP plot of the expression of the myocardium marker gene Smyd1, from the

cardiogenesis data, see Fig. 3i.
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Considering the close relationship between the evolution of
immune system, brain and TEs47–49, these results hint at further
functions for TEs in these two systems.

How cells decide their fate is a fundamental question in biol-
ogy. Stem cell differentiation and somatic cell reprogramming are
both powerful in vitro models that mimic in vivo development
and have provided great insight into cell fate decisions. However,
how TEs are involved in these processes is still largely unknown.
In this study, we have identified the TEs LTR32 and MLT1H1
that were differentially regulated between contractile and non-
contractile cell fate decisions during human cardiac differentia-
tion. In addition, we also observed the divergent expression of
ERVB7_1-LTR_Mm and IAP elements during reprogramming.
Whereas ERVB7_1-LTR_Mm was highly expressed in iPSCs, IAP
elements were silenced at the final stage, just before commitment
to iPSCs formation (Fig. 5b, f, h). These mechanisms are shared
among the Yamanaka factor based and chemical based repro-
gramming systems, indicating a tight association between TE
expression and cell fate.

Overall, whilst the information content of TEs is lower than
that of genes, TEs are a useful addendum to the gene information,
and, in some cases, they are a major source of information on
their own. For example, MERVL expression alone is capable of
discriminating 2C-like cells. The routine inclusion of TEs in
scRNA-seq analysis pipelines will identify more instances like the
2C/MERVL relationship, and enrich our understanding of cell
type, diseases and TE expression control. In addition to scRNA-

seq, TE information may be particularly informative in scATAC-
seq, and other scChIP-seq-like data. As scATAC-seq is so sparse,
individual peaks in individual cells are challenging to resolve.
However, by merging TE data it may be possible to infer TEs as
enhancer information in single cells.

Considering the growing implication that TEs are important
contributors to human disease, their study is becoming increas-
ingly important. In addition to the ability of TEs to impact
genomic stability as they duplicate78, which has clear implications
for the development of cancer79, TEs are also playing more subtle
roles in epigenetic control and transcript expression. For example,
TEs are spliced into chimeric transcripts that drive the expression
of oncogenes12. Similarly, the expression of TEs has been asso-
ciated with several nervous system-related disorders, including
neurodegeneration11, and L1 LINE expression is important in
inflammation during aging80. In our work, we demonstrate that
in single cells of the pancreas there is substantial TE expression
deregulation in the beta cells, which is suggestive of epigenetic
dysfunction and a loss of control over TE expression. Critically,
this observation cannot be observed from bulk pancreatic islet
samples. Considering the growing importance of exploring
human disease using primary patient samples, the analysis of TEs
should be included. However, to date the contribution of TE
expression to the aging and diseased states remains relatively
unexplored. Our approach will be an important tool in under-
standing the contributions of TEs to cellular heterogeneity in a
variety of systems and in human disease.

Fig. 7 TEs are differentially expressed in single cells in the diseased state. a UMAP plot of the single cells genes and TE expression, cells are colored by

WT (wild-type) and AD (Alzheimer’s disease) state. b UMAP plot, as in (a), but clustered into groups (Leiden, resolution= 0.5). c Dot plot showing the

differential expressed genes (top) and TEs (bottom) between disease-associated microglia (M2) and homeostatic microglia (M1/3) in AD mice. d UMAP

plot, as in (a), but cells are colored by the expression of the indicated Apoe or the TE RLTR17. e UMAP plots of pancreatic islet cells. Cells are colored by cell

types (left) or disease-state (right). Cell types were annotated according to the metadata from the original study, and matched the expression of known

marker genes. f Dot plot showing marker gene expression (green) or TEs (red) differentially expressed between healthy and T2D alpha and beta cells

(Benjamini–Hochberg corrected Wilcoxon rank-sum test, P < 0.01, and at least >2-fold change between groups). g Bar charts showing the expression of the

indicated TEs from bulk RNA-seq data. Data are presented as mean values ± SD. P-value was from an unpaired Student’s t-test.
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Methods
Software availability. scTE is available at https://github.com/JiekaiLab/scTE. The
code is freely available and is released under the MIT license. scTE requires Python
>3.6, and the python module numpy, scTE supports the Linux and Mac platforms.
Software code for the analysis of the data in this paper can be found at: https://
github.com/JiekaiLab/scTE/tree/master/example.

scTE pipeline. The input data for scTE consists of the annotation files for genes
and TEs, and alignment files in either the SAM or BAM format81. By default, scTE
uses GENCODE82 and the UCSC genome browser Repeatmasker track83 anno-
tations for genes and TEs, respectively. The SAM/BAM file contains the aligned
read genome locations. Many alignment programs can distinguish reads that have a
unique alignment in the genome (termed unique-reads) or map to multiple
genomic loci (termed multimapping reads or non-unique reads). Multimapping
reads are critical for TE quantification, as TEs contain many repeated sequences
and non-unique reads often map inside the TEs. To get an accurate quantitation of
the number of reads mapping to TEs these reads should be preserved. However, in
many analyses pipelines these reads are discarded. scTE recommends aligners to
keep all of the mapped reads, and we recommend that only the best single aligned
multimapped read be kept. The reads can be aligned by any genome aligner, but
the aligned reads must be against the genome (i.e., not against a set of genes or
transcript assembly). scTE is most tuned to STAR-solo27 or the Cell Ranger
pipeline outputs, and can accept BAM files produced by either of these two pro-
grams. For other aligners, the barcode should be stored in the ‘CR:Z’ tag, and the
UMI in the ‘UR:Z’ tag in the BAM file. If the UMI is missing or not used in the
scRNA-seq technology (for example, on the Fluidigm C1 platform), it can be
disabled with –UMI False (the default is True) switch in scTE. If the barcode is
missing it can be disabled with the –CB False (the default is True), and instead the
cell barcodes will be taken from the names of the BAM files (multiple BAM files
can be provided to scTE with the –i option).

scTE gene and TE indices. scTE builds genome indices for the fast alignment of
reads to genes and TEs. These indices can be automatically generated using the
commands:

scTE_build -g mm10 # mouse genome,
scTE_build -g hg38 # human genome.
These two scripts will automatically download the genome annotations,

for mouse:
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M21/

gencode.vM21.annotation.gtf.gz,
http://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/rmsk.txt.gz.
Or for human:
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_30/gencode.

v30.annotation.gtf.gz,
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz.
These annotations are then processed and converted into genome indices. The

scTE algorithm will allocate reads first to gene exons, and then to TEs, by default.
Hence TEs inside exon/UTR regions of genes annotated in GENCODE will only
contribute to the gene, and not to the TE score. This feature can be changed by
setting ‘–mode/-m exclusive’ in scTE, which will instruct scTE to assign the reads
to both TEs and genes if a read comes from a TE inside exon/UTR regions of genes.

Analysis of 10x-style data. scRNA-seq data was processed using the scTE 10x
pipeline, Briefly, reads were aligned to the genome using STARsolo27 with the
setting ‘--outSAMattributes NH HI AS nM CR CY UR UY --readFilesCommand
zcat --outFilterMultimapNmax 100 --winAnchorMultimapNmax 100 --out-
MultimapperOrder Random --runRNGseed 777 --outSAMmultNmax 1’. The
default scTE parameters for 10x were used to get the molecule count matrix. The
count matrix was lightly filtered to exclude cell barcodes with low numbers of
counts: Cells with less than 1000 UMIs and less than 500 genes detected were
filtered out, and only the top 10,000 cells with the highest gene count were kept
(these default setting can be altered with the ‘--expect-cells, --min_count and
--min_genes’ switches in scTE, note that the cell counts are further filtered on a
case-by-case basis for each experiment, as detailed below). Other downstream
analysis was performed by SCANPY25. Specific analysis settings for the individual
datasets are described below. Normalized expression, used in the UMAP plots, is
calculated using the normalize_total function in scanpy, or the calculateSumFactors
from SCRAN which estimates size factors for each cell to remove bias within the
cell counts, and improve cross-cell comparison of cell expression values. Relative
expression values, used in the dotplots and heatmaps scales the expression within
the range 0 to 1, representing the minimum or maximum relative expression across
a set of cells or clusters.

Analysis of C1/SMART-seq-style data. scRNA-seq data were processed using
the scTE C1/SMART–seq pipeline, Briefly, reads were aligned to the genome using
STAR27, with the setting ‘--winAnchorMultimapNmax 100 --outSAMmultNmax 1
--outSAMmultNmax 1’. The default scTE parameters for C1/SMART-seq were
used to get the molecule count matrix. Cells with less than 10,000 counts and less
than 2000 expressed genes were filtered out. Cells with more than 20% fraction of

mitochondrial counts were discarded. Downstream analysis was performed the
same as for the 10x data pipeline. Fluidigm C1/SMART-seq data comes as a single
BAM file per barcode. To analyze this data, the ‘barcode’ is taken from the input
BAM filenames, and both -CB and -UMI should be False:

scTE -i *.bam -p 4 -o <output_name> --genome mm10 -x mm10.exclusive.idx
-CB False -UMI False.

The resulting matrices can then be integrated into an scRNA-seq analysis
pipeline.

Analysis of human cardiac differentiation scRNA-seq data. The raw data were
download from E-MTAB-626835. As this data were generated using the Single Cell
3′ Library, Gel Bead and Multiplex kit (version 1, 10x Genomics, Cat. #PN-
120233), the cell barcode and UMI sequence are not in the same read. First, we
merged the cell barcode and UMI sequence into the same read using a custom
script, and then aligned the modified fastq file to the hg38 genome using STARsolo,
as described above. Cells with less than 500 expressed genes/TEs and cells that have
more than 20% fraction of mitochondrial reads were discarded. Single cell tra-
jectory was analyzed by Harmony84 and the top 1000 highly variable genes were
used for PCA, and the force directed layout was computed using first 150 PCs
(principle components). Differentially expressed genes and TEs were analyzed
using the SCANPY rank_genes_groups functions by t-test method, the top
500 specifically expressed TEs and genes with Benjamini–Hochberg corrected p-
value <0.01 and log2(fold-change) >0.5 are selected for downstream analysis.

Analysis of the gastrulation scRNA-seq data. The raw data were download from
E-MTAB-6967, and aligned to the mm10 genome using STARsolo27, with the
parameters “--readFilesCommand zcat --outFilterMultimapNmax 100 --winAn-
chorMultimapNmax 100 --outMultimapperOrder Random --runRNGseed 777
--outSAMmultNmax 1”. Cells with less than 3000 expressed genes/TEs, and less
than 8000 UMIs were discarded. Genes expressed in less than 50 cells were
removed from the analysis. The count matrix was normalized using normal-
ize_total function of SCANPY, and the top 2000 most highly variable genes were
used for PCA, and the first 20 PCs (principle components) were used, as described
in the original publication17. UMAP plots were generated (min_dist=0.6). Data is
from E-MTAB-696717.

Analysis of Tabula Muris scRNA-seq data. The C1/Smart-seq2 scRNA-seq raw
data was download from GSE10977443, the reads were aligned to the mm10
genome using STAR with the parameters ‘--readFilesCommand zcat --out-
FilterMultimapNmax 100 --winAnchorMultimapNmax 100 --out-
MultimapperOrder Random --runRNGseed 777 --outSAMmultNmax 1’. The
genes/TEs and cell expression matrix was generated using scTE. Cells with less than
50000 counts or more than 27 counts, less than 1000 expressed genes, or more than
20% fraction of mitochondrial counts were removed. The filtered matrix was
normalized using scran85. The top 4000 most highly variable genes were used for
PCA, and the first 50 PCs were used for downstream analysis. The cell cluster
specific expressed genes/TEs was calculated using SCANPY rank_genes_groups
functions by t-test method, the top 500 specifically expressed TEs and genes with
Benjamini–Hochberg corrected p-value <0.01 and log2(fold-change) >0.5 compare
to all other groups of cells were kept.

Analysis of the OKSM/chemical reprogramming data. The raw data were
download from GSE11594354 and GSE11495231. Cells with less than 10000 UMIs
or more than 1,000,000 UMIs, or expressed less than 1000 expressed genes, or
more than 20% fraction of mitochondrial counts were removed. The filtered
matrices were normalized using scran85. The top 4000 most highly variable genes
were used for PCA, and the first 50 PCs were used for downstream analysis. The
cell trajectory routes were taken from the original studies. Differentially expressed
genes/TEs were calculated using SCANPY rank_genes_groups functions by the t-
test method, the TEs and genes with Benjamini–Hochberg corrected p-value <0.01
and log2(fold-change) >0.5 compared to all other branches of cells were kept.

Analysis of the OKS reprogramming data. The C1/SMART-seq data were taken
from GSE10322128. the reads were aligned to the mm10 genome using STAR with
the parameters “--readFilesCommand zcat --outFilterMultimapNmax 100
--winAnchorMultimapNmax 100 --outMultimapperOrder Random --runRNGseed
777 --outSAMmultNmax 1”. The genes/TEs and cells expression matrix was
generated using scTE. Cells with less than 10,000 counts or more than 27 counts,
less than 1000 expressed genes, or more than 20% fraction of mitochondrial counts
were removed. The filtered matrix was normalized using scran85. The top 4000
most highly variable genes were used for PCA, and the first 50 PCs were used for
downstream analysis. The genes/TEs expression trajectories on pseudotemporal
orderings of cells (Fig. 5e) were analyzed by LineagePulse (https://github.com/
YosefLab/LineagePulse) according to the pseudotime taken from the original study.

Analysis of the embryonic heart scRNA-seq data. The raw data was download
from GSE12612842. This data was aligned to the genome using STARsolo27, as
described above. Cells with less than 3000 expressed genes/TEs and the cells with
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less than 8000 UMIs or more than 100,000 UMIS were deleted from the analysis.
The count matrix was normalized using normalize_total function of SCANPY. The
top 2000 most highly variable genes were used for PCA, and the first 20 PCs were
used for downstream analysis. UMA projections were generated (min_dist=0.7).

Analysis of Alzheimer’s disease scRNA-seq data. The MARS-seq scRNA-seq
raw data were download from GSE9896971. The raw fastq file were modified using
custom scripts to embed the cell barcode and UMI in the same read, as in the 10x
scRNA-seq format. The modified reads were aligned to the mm10 genome with
STARsolo as described above. Cells with less than 5000 UMIs or more than
1,000,000 UMIs, or expressed less than 500 genes, or more than 20% fraction of
mitochondrial counts, were removed. The filtered matrix was normalized using
scran85. The top 4000 most highly variable genes were used for PCA, and the first
50 PCs were used for downstream analysis. The differentially expressed genes and
TEs between M2 and M1/3 were analyzed using SCANPY rank_genes_groups
functions by t-test method, the genes or TEs with Benjamini–Hochberg corrected
p-value <0.01 and log2(fold-change) >0.5 compared to each other were kept.

Analysis of the type 2 diabetes/glioblastoma sc-RNA-seq data. The raw data
was download from GSE8647372, GSE8160873. The data was aligned to the hg38
genome using STAR27, as described above for C1 data. Cells with less than 5000
expressed genes/TEs and cells with less than 1 × 106 counts or more than 6 × 106 or
were deleted from the analysis. The count matrix was normalized using the nor-
malize_total function of SCANPY. There was a strong batch effect based on the sex
of the donor in the type 2 diabetes datasets, this was removed using the regress_out
function of SCANPY25. We did not detect any other batch effect from other con-
founding variables (age, body-mass index, race). The top 2000 most highly variable
genes were used for PCA, and the first 15 PCs (type 2 diabetes) or 25 PCs (glio-
blastoma) were used. UMAP plots were generated using SCANPY (min_dist= 0.7).

Bulk RNA-seq analysis. Analysis of bulk RNA-seq data was performed essentially
as previously described3,86, with some modifications. Briefly, reads were aligned to
the mouse or human genome/transcriptome (GENCODE transcript annotations,
mouse M21 or human 30) using STAR (v2.7.1a)27. TEtranscripts87 or scTE (with
the setting -CB False -UMI False) was used to quantitate reads on TEs. Reads were
GC normalized using EDASeq (v2.16.3)88, and analyzed using glbase89.

Motif enrichment analysis. The TF motif enrichment in TEs (Supplementary
Fig. 6c and 9k) was measured using AME from the MEME suite90 with the options
“--control --shuffle”.

Bulk ATAC-seq analysis. Analysis of bulk ATAC-seq data was performed
essentially as previously described3,91. Briefly, reads were aligned to the mouse or
human genome (mm10 or hg38) using bowtie292 (v2.3.5.1), with the options: “-p 6
--mm --very-sensitive --no-unal --no-mixed --no-discordant -X2000”, and reads
mapping to TEs were counted using te_counter (https://github.com/oaxiom/
te_counter). The counts per million (CPM) reads metric was used for enrichment
scores.

ChIP-seq data analysis. Analysis of ChIP-seq data was performed as previously
described3. Briefly, reads were mapped to mouse genome (mm10) genome using
bowtie292 with the options: -p 20 --very-sensitive --end-to-end --no-unal. For pair-
end sequence data, only concordantly aligned pairs were kept. All mapped reads
were kept, but only the best alignment is reported for multimapped reads, if more
than one equivalent best alignment was found, then one random alignment was
reported. Alignment bam files were transformed into read coverage files (bigwig
format) using deepTools93 with the RPKM (reads per kilobase per million mapped
reads) normalization method.

Analysis of the scATAC-seq data. Three datasets were used for to test scTE
performance on scATAC-seq data. Presorted mouse cells and unsorted mouse
spleen cells, using a custom scATAC-seq technology64, and human PBMC data
from 10xgenomics. The first two datasets could be aligned directly to the mouse/
human genome. The 10xgenomics data required preprocessing: we downloaded the
scATAC-seq data from the 10xgenomics website (https://support.10xgenomics.
com/single-cell-atac/datasets/1.1.0/atac_pbmc_10k_v1). The barcode was inserted
into the read name, so that the mapping could keep track of the cell ID. This
yielded read names inside the FASTQ, such as: (where CCACGTTGTGGACTGA
sequence is the cell barcode).

@CCACGTTGTGGACTGA:A00519:269:H7FM2DRXX:1:1101:1325:1000 1:
N:0:AAGCATAA.

The genome indices were prebuilt using:
wget -c -O mm10.te.txt.gz ‘http://hgdownload.soe.ucsc.edu/goldenPath/mm10/

database/rmsk.txt.gz’,
zcat mm10.te.txt.gz | grep -E ‘LINE|SINE | LTR | Retroposon|DNA’|cut -f6-

8,11>mm10.te.bed,
python3/share/apps/genomics/unstable/scTE/bin/scTEATAC_build -g mm10.

te.bed -o mm10.te.atac,

wget -c -O hg38.te.txt.gz ‘http://hgdownload.soe.ucsc.edu/goldenPath/hg38/
database/rmsk.txt.gz’,

zcat hg38.te.txt.gz | grep -E ‘LINE|SINE|LTR | Retroposon|DNA’|cut -f6-
8,11>hg38.te.bed,

python3/share/apps/genomics/unstable/scTE/bin/scTEATAC_build -g hg38.te.
bed -o hg38.te.atac.

The data were aligned to the mouse mm10 or human hg38 genome using
bowtie292 with the command options “-p 6 --mm --very-sensitive --no-unal --no-
mixed --no-discordant -X2000”. The resulting data was then processed using scTE
with the command:

scTEATAC -i <in> -x <genome>.te.atac.idx -g <genome> -p 1 -UMI False -CB
True -o <out>.

scTE will internally deduplicate reads, by allowing only a single read per base
pair of the genome. scTE will produce a matrix containing cell barcodes (rows) and
TEs (columns). The information across all genomic TEs is merged into a single TE
subtype. This matrix is then processed in a manner similar to RNA-seq. TEs were
first filtered to remove low “expressed” TEs with less than 1000 read counts, then
samples were normalized using SCANPY or scran, and TE counts placed onto a
normalized scale. Downstream analysis used SCANPY.

Quantitative PCR. Total RNAs were extracted by chloroform-isopropanol
method. The first-strand cDNAs were synthesized with ReverTra Ace (Toyobo)
and oligo-dT (Takara), and then qRT-PCR was performed on a CFX96 real-time
system (Bio-Rad) with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad).
The primers used for qRT-PCR were listed in Supplementary Table 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All sequencing datasets used in this study were obtained from public data repositories.
Detailed information, including accession URLs for published datasets are available in
Supplementary Table 1. All relevant data are available from the corresponding authors
on reasonable request.

Code availability
The full package of scTE94 is available at: https://github.com/JiekaiLab/scTE.
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