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ABSTRACT 

We propose a new fingerprinting technique that differentiates 
between unique devices over a Wireless Local Area Network 
(WLAN) simply through the timing analysis of 802.11 probe 
request frames. Our technique can be applied to spoof detection, 
network reconnaissance, and implementation of access control 
against masquerading attacks. Experimental results indicate that 
our technique is consistent and accurate in differentiating between 
unique devices. In contrast with existing wireless fingerprinting 
techniques, our technique is passive, non-invasive and does not 
require the co-operation of fingerprintee hosts. 

Categories and Subject Descriptors 

C.2.0 [Computer – Communication Networks]: General – 
security and protection. 

C.2.1 [Computer – Communication Networks]: Network 
Architecture and Design – wireless communication. 

General Terms 

Measurement, Experimentation, Security. 

Keywords 

Wireless fingerprinting, spoof detection. 

1. INTRODUCTION 
Wireless LANs are much more difficult to secure compared to 
wired LANs, mainly due to that fact that wireless signals and 
network access may extend well beyond the physical boundaries 
and control of an organization. This inherent characteristic 
presents numerous security challenges – information may be 
sniffed promiscuously off the air; network services may be 
accessed without authorization; identity attacks, such as rogue 
access points, MAC address spoofing, ARP poisoning and session 
hijacking attacks are all made easier as a result. 

The initial 802.11 security scheme that attempted to deal with 
these problems was the Wired Equivalent Privacy (WEP). In spite 
of having mechanisms to provide authentication, confidentiality 
and data integrity, WEP was found to be insecure and trivially 
cracked after an attacker has collected enough frames with the 
same Initialization Vector [23]. By actively speeding up the 
collection of frames, the latest WEP attack has been able to 
achieve a breaking of WEP in under a minute [24]. WEP is 
increasingly being replaced by the Wi-Fi Protected Access (WPA) 
scheme, which has hardened WLANs from the security 
vulnerabilities of WEP. However, to retain backward 
compatibility, WPA has not completely resolved some security 
issues – while 802.11 data frames are encrypted and resistant to 
spoofing and replay attacks, control and management frames 
remain unencrypted and depend mainly on MAC address for 
identity resolution. Because control and management frames can 
be spoofed and forged even with WPA enabled, wireless LANs 
remain susceptible to identity attacks and denial of service attacks. 

In recent work, fingerprinting techniques have emerged as 
possible alternatives to counter the problem of identity in wireless 
LANs. Essentially, fingerprinting is a process by which a 
machine, driver or the software the machine is running can be 
uniquely identified due to its externally observable characteristics. 
For example, [3, 4, 25] made use of differences in physical 
properties of radio signals to identify unique radio-frequency 
based devices. Although the technique showed remarkable results, 
it required expensive equipment and cannot be easily deployed 
across WLANs. Other fingerprinting techniques that require just 
standard computing equipment have been proposed in [5, 6, 7]. 
We provide a more in-depth discussion of these techniques in 
Section 2. 

Contributions 
Our main contribution in this paper is to propose a new wireless 
fingerprinting technique that differentiates between unique 
devices through timing analysis of 802.11 probe request frames. 
More specifically, a unique device is defined as a unique 
combination of the following tuple: {Machine, Wireless NIC 
Driver, Operating System (OS)}, and our fingerprinting technique 
distinguishes between different combinations in the tuple. In 
contrast to existing techniques, our approach is based on the 
timing analysis of 802.11 probe request frames, which is passive 
and noninvasive. 
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The remaining of this paper is organized as follows. Section 2 
provides background and related work associated with network 
fingerprinting techniques. Section 3 details the design and 
implementation of our fingerprinting technique. In Section 4, we 
present the experimental results and analysis of the proposed 
solution on a controlled network, a public hotspot and data traces 
collected during a major conference. Section 5 briefly outlines the 
applications of our device fingerprinting, with its limitations 
discussed in Section 6. Section 7 concludes the paper, with 
directions for future work. 

2. RELATED WORK 

2.1 Clock Skew Deviations as Fingerprints 
Minute deviations between the clock oscillators of different 
machines could result in clock skews [8] observable from the 
network, which was found to be suitable as a basis for 
fingerprinting wired physical machines as described in [7]. Clock 
skews have also been found to be relatively stable and constant 
[9].  

Given the same time interval, the clock skew is observed through 
the measurement and comparison of relative notions of time 
between two different machines. The fingerprinting approach as 
proposed in [7] was based on measuring the approximate clock 
skew between a remote (fingerprintee) machine and a local 
(fingerprinter) machine, using packets that provide timestamps 
from the fingerprintee. In the TCP/IP protocol suite, such packets 
are found in the timestamp option field of the TCP header; 
timestamps may alternatively be obtained by sending ICMP 
timestamp requests to the fingerprintee. Thus for two consecutive 
packets received at the fingerprinter, the clock skew can be 
approximately measured by comparing the inter-packet interval as 
found in the packet timestamps, with the inter-packet arrival 
interval based on the local timestamps at the fingerprinter. The 
clock skew then becomes the fingerprint that uniquely identifies 
the remote fingerprintee machine. 

The main advantage of this technique is that it relies on the clock 
skews between machines, which are relatively stable and do not 
deviate much over time. However, this technique was designed for 
wired networks and it actually requires some co-operation from 
the fingerprintee machine – both the TCP timestamp option and 
response to ICMP timestamp requests can be disabled and even 
on Windows machines, TCP timestamps are not enabled by 
default. 

We propose a fingerprinting technique with the same basic 
concept as the clock skew fingerprinting approach. In contrast, 
our technique is meant to work on wireless LANs. Further, our 
technique does not require co-operation from the fingerprintee 
because our approach infers the fingerpintee’s timestamp 
information without any dependency on timestamp values 
explicitly given by the fingerprintee. 

2.2 Identifying MAC Spoofing by Detecting 

Sequence Number Anomalies 
Techniques to identify wireless client stations with masqueraded 
MAC addresses based on 802.11 sequence numbers were 
presented in [10, 28]. The basis for these techniques is that the 
12-bit sequence number field in IEEE 802.11 frames increments 
by one for each frame generated. A wrap around will occur after 

4095, the maximum frame number. Hence, by keeping track of 
MAC addresses to its corresponding sequence number at any 
point of time, it becomes possible to approximately detect an 
illegitimate client station with a spoofed MAC. But frames that 
are lost or retransmitted will affect the tracking of 802.11 frame 
sequence numbers. 

Although the approach works well for the temporal identification 
of unique wireless client stations, it requires the constant tracking 
of sequence number growth for all clients in the network. It is also 
susceptible to sequence number spoofing attacks, and given the 
small 12-bit sequence number space (for IEEE 802.11), the 
probability of sequence number collision increases with the 
number of wireless client stations in the network. 

2.3 Location Fingerprinting through RSSI 

Levels and Physical Layer Link Signatures 
Indirect methods to detect spoofed MAC addresses were 
introduced in [22, 26, 27] by fingerprinting the physical location 
of wireless clients. The technique in [22] fingerprints the location 
of each client by measuring the received signal strength (RSSI) of 
client-transmitted packets with respect to n access points within 
its range. The resultant RSSI n-tuple constitutes the “signalprint” 
of each client at that particular location. To deal with non-
stationary clients, the signalprint of each wireless client is 
constantly tracked and updated. Spoofing is detected when 
significantly different signalprints are simultaneously detected for 
the same MAC address, indicating the existence of distinct 
wireless clients transmitting from different locations. 

The physical layer approach to location fingerprinting was 
proposed in [26, 27], because the transmission medium between 
any two points is distinctive in space, time and frequency 
characteristics in a way that is location-specific [26]. Thus in 
applications where wireless nodes rarely alter their positions, it is 
possible to identify them through distinctive channel signatures. 
Taking this idea further, this physical characteristic can be further 
exploited to support secret key dissemination through 
probabilistic encryption [26]. 

The main limitation of this spoof detection technique is its 
association of identity to physical location. Methods that employ 
RSSI have limitations in their ability to resolve entities, as noted 
by the authors in [22]. On the other hand, methods that employ 
the characteristics of the RF channel are limited in their resolution 
by the wavelength of the wireless technology, which can be on the 
order of tens of centimeters for IEEE 802.11b/g. In addition, 
similar to the previous technique in section 2.2 based on sequence 
number tracking [10], the fingerprints are temporal in nature and 
not fundamentally linked to the identity of clients. Thus if a 
legitimate client changes its location while it is switched off, its 
legitimacy will be difficult to truly establish thereafter. 

2.4 Wireless AP Fingerprinting 
In [5], an active wireless fingerprinting technique that identifies 
unique access points (APs) instead of client stations is described. 
The author claimed the technique works because “physical 
differences in NICs board layout (paths dimensions, soldering, 
etc.) might lead to time variability when electrical signals are 
transmitted.” 



The test setup was such that a wireless client station would be 
regularly transmitting authentication request frames to the APs. 
Upon receiving each authentication frame, an AP replied with an 
acknowledgement, followed immediately by an authentication 
response frame. The fingerprinting approach was to conduct 
precise measurements of the time intervals between generation of 
the acknowledgement and the authentication response frame. 
Differences in timing intervals between APs were used to 
distinguish between unique APs. The Support Vector Machine 
(SVM) was used as the classification algorithm. 

On average, the success rate in recognizing unique APs was 
reported to be approximately 86%. However, the technique was 
limited to the fingerprinting of APs but not wireless client 
stations, and is hence more useful for rogue AP detection. In 
addition, since elicits responses from APs, it is also an active, 
noisy approach which can be easily detected. 

2.5 Wireless NIC Driver/Firmware 

Identification 
Unlike other previously described work, the technique introduced 
in [6] identified the drivers and firmware used by wireless NIC 
instead of physical machines. Similar to the concept of OS 
fingerprinting, the purpose was to identify the wireless NIC driver 
used by a remote machine. Since vulnerabilities are often 
firmware and driver specific, this information may be used by a 
hacker to launch a directed attack based on that vulnerability. 

The fingerprinting technique relied on subtle differences between 
driver developers on the implementation of the active scanning 
process – when wireless client stations periodically send out 
probe request frames to scan for APs. During the process of active 
scanning, the client cycles through each channel in the 2.4 GHz 
ISM band to broadcast probe request frames. After each frame is 
broadcasted in a channel, it waits for a period of time defined as 
the MinChannelTime if the channel is idle; otherwise it waits for 
MaxChannelTime before scanning the next channel. Because the 
standard does not specific the exact implementation details, the 
differences in implementations of the active scanning process was 
the basis for device driver fingerprinting in [6]. 

The fingerprinting technique was essentially a time-series analysis 
based on passively monitoring the network for 802.11 probe 
request frames and recording the time intervals between frames. 
By building the distributions of the time interval bins 
characterized by each known wireless NIC driver, a database of 
probabilistic signatures was built for each driver. The NIC driver 
from an unknown source could then be discovered using the 
Bayesian Classifier. 

This technique was shown to be completely passive and did not 
require cooperation from the fingerprintee hosts. Since our 
approach is also based on the timing analysis of probe request 
frames, the advantages of this approach are shared by our 
technique. However, we have discovered consistent minute 
differences in timing intervals of probe request frames emitted 
from different machines, even when they used identical NIC 
drivers. Thus we have generalized this approach to distinguish 
between unique combinations of the tuple {Machine, Wireless 
Network Interface Card (NIC) Driver, Operating System} instead 
of just between unique drivers. 

3. WIRELESS DEVICE FINGERPRINTING 
Our fingerprinting technique aims to resolve the problem of 
identity resolution between 802.11 wireless client stations, by 
distinguishing between unique combinations of the tuple 
{Machine, Wireless Network Interface Card (NIC) Driver, 
Operating System}. We define the term device as this tuple for the 
remaining of this paper. 

Our fingerprinting technique is a process with three phases: 

1. Traffic Capturing Phase – Passive collection of wireless traces. 

2. Fingerprint Generation Phase – Processing raw data to extract 
meaningful information. 

3. Analysis Phase – Employing statistical significance testing to 
distinguish between unique devices. 

 

Figure 1: High Level Overview of Fingerprinting Technique 

3.1 Traffic Capturing Phase 
In essence, the Traffic Capturing Phase involves the passive 
collection of probe request frames emitted from wireless client 
stations for timing analysis in the Fingerprint Generation Phase. 
The task of collecting probe request frames may be performed 
using tools such as Kismet. 

Probe requests are used for active scanning in 802.11 to allow 
wireless client stations to detect the presence of APs within the 
vicinity, so that they can subsequently associate to a suitable AP. 
The process of active scanning, and thus the transmission of probe 
requests, starts automatically upon initialization of wireless NICs. 
Further, probe requests are still transmitted even after a client is 
associated with an AP, albeit at a different rate as compared to its 
unassociated state. 

3.1.1 Intuition behind Timing Analysis on Probe 

Request Frames 
The key idea of our technique is to distinguish between unique 
devices by timing analysis of probe request frames. It is critical to 
establish that for timing analysis of probe request frames to be 
meaningful, the probe request intervals for any particular device 
have to be cyclical or at least be predictable over the initial traffic 
capturing phase, during an adversary-free period of operation. 

Our initial experiments appeared to confirm what has already been 
found in prior work [6], that periodic probe request intervals 
appear to be different across wireless NIC drivers. Figures 2 and 3 
show the time delta between successive probe request frames 
received at the fingerprinter from two different types of wireless 
NIC drivers from a single channel. 

The existence of repeated pulses of consistent amplitudes with 
different values for each wireless NIC confirms the results from 
the device driver fingerprinting technique in [6]. Probing deeper, 
what we have found to be even more interesting was that these 
timing intervals changed in amplitude when we repeated the same 
set of experiments using the same NIC driver, substituted with 
different machines, or when we changed the operating system. 
This means that these other factors also affect probe request 



intervals, suggesting that the NIC driver-specific fingerprints 
discovered in [6] may be OS specific and may have to be made 
more probabilistic to tolerate errors when the same NIC driver is 
used with different machines and/or different operating systems. 
What we found was the most challenging case was when different 

machines used the same NIC driver and the same OS, such that 
differences in timing intervals may become small and less 
apparent. 

 

Figure 2: Active Scanning by Cisco Aironet 340 

 

 

Figure 3: Active Scanning by DLink DWL-G650 

 

Since an attempt to explain all the above effects based on hard 
evidence requires massive reverse engineering efforts, we adopt 
an inductive reasoning approach to explain our observations 
based on known facts – (1) The scanning interval in each channel 
is driver-specific as found in [6] and described in Section 2.5;  (2) 
Clock skews exists between machines as found in [7] and 
described in Section 2.1; (3) Implementations of timing 
mechanisms are known to be operating system dependent;  (4) 
Variability is also introduced through noisy channel effects. Now, 
let τ be the observed interval between two probe request frames. 
We can see that τ is ultimately the summation of following 
individual components: 

τ = τ dev + δm + δos + δn, 

where τ dev is the driver-specific scanning interval; δm is variability 
due to clock skew between machines; δos is the variability due to 
the operating system; and δn is the variability due to noise. 

When we compare between the probe request intervals of two 
machines using the same driver and the same OS, we are left with 
mainly δm + δn, which is miniscule in nature. Thus, in order to 
develop a feasible fingerprinting approach to distil out these 
differences, we must deal with two main problems: (1) The clock 
skew between machines must be measurable using our approach, 
i.e. it must not fall beyond the resolution limits of software-based 
measurement; (2) Our approach must expect data instances where 
noise dominates the probe request interval. To deal with this, it 
should separate the noisy data from relatively noiseless data, and 
perform robust comparisons in the presence of noise. 

Motivated by the above reasons, we have designed the Course-
Grained Data Selection in Section 3.2. to ensure that we extract 
the meaningful data where the clock skew is measurable. We 
accept that in some cases, the effects of noise will dominate the 
probe request interval. Our approach to deal with noise is to 
recognize and distil noisy data from relatively noiseless data by 
clustering, which we describe under Fine-Grained Data Selection 
(Section 3.2.2). The resultant set of clusters obtained for each 
device is what we call its device fingerprint. Finally, in order to be 
able to robustly compare between sets of device fingerprints, we 
adopt statistical tests of significance in our Analysis Phase. We 
will show through our experimental results in Section 4 that our 
technique can be used to detect changes in either the machine, 
NIC driver, or the OS. 

3.2  Fingerprint Generation Phase 
After the Traffic Capturing Phase, we would have acquired traces 
of probe request frames being transmitted by the device that we 
wish to fingerprint during its active scanning process. The next 
phase of Fingerprint Generation requires the selection of key 
points from the data that are valuable for distinguishing between 
devices. 

3.2.1 Coarse-Grained Data Selection 
The active scanning process may be seen to be characterized as 
cycles where each cycle involve: (1) a rapid burst of zero or more 
probe requests with tiny timing intervals in the range of 
milliseconds, followed by (2) a probe request after a large timing 
interval in the range of tens of seconds, which are seen as peaks in 
Figure 2 and Figure 3. We note that skews in timing between 
distinct machines are miniscule in nature – in [7], clock skews 
between distinct machines were found to be typically in the range 
of tens to hundreds of µs/s, or ppm (parts per million). This means 
that an attempt to distill differences in timing skews from 
measuring timing intervals in the range of milliseconds will not be 
meaningful, as the timing skews falls far below the resolution 
limits of software-based measurement. On the other hand, by 
focusing on the probe requests with large timing intervals in the 
range of tens of seconds (the large amplitudes in the figures), it 
becomes possible to distinguish between devices, though further 
processing would be required (as we will show in the next 
section) to remove the noise. 

For ease of discussion, we term these large delays between cycles 
as the “inter-burst latencies”. Figure 4 illustrates where inter-burst 



latencies are found when probe request frames are time-stamped 
against the first observed frame.  

 

Figure 4: Inter-burst latency 

Our first step to generate device fingerprints is hence to compile a 
series of inter-burst latencies observed from the devices, 
discarding the remaining points. Upon closer inspection of the 
resultant data, we also observed that the inter-burst latencies were 
actually packed into distinct groups rather than clustered around a 
centroid. Figure 5 and Figure 6 show the clusters of inter-burst 
latencies as captured from two different wireless NIC drivers. 

 

Figure 5:  Inter-burst latencies of Cisco Aironet 340 

 

 

Figure 6: Inter-burst latencies of Netgear WG511v2 

 

We believe the inter-burst latencies occupied distinct clusters due 
to rate adaptation algorithms implemented on the wireless NIC 
drivers [11]. Distinct clusters were formed due to the fact that the 
rate adaptation algorithms switch between transmission rates 
depending on wireless channel conditions. We use clustering 
techniques to automatically partition the inter-burst latencies into 
distinct clusters, a process that we call Fine-Grained Data 
Selection. 

3.2.2 Fine-Grained Data Selection through 

Clustering 
We employ a modified version of the Maximum Variance 
Clustering, where the reader is referred to [12, 13] for the details. 
The Maximum Variance Clustering approach requires the 

maximum variance (σ2
max) within a cluster to be known a priori 

and specified as input, in contrast to k-means clustering which 
requires the number of clusters k to be known a priori. Since it is 
more practically feasible to determine the maximum variance of 
each cluster rather than the number of clusters, we have chosen 
the Maximum Variance Clustering as our clustering approach. 

Our approach towards selecting an appropriate σ2
max is as follows. 

As discussed in [12], cluster homogeneity can be read from the 
sum-of-squared-errors criterion, Je. Since changing the value of 

σ
2
max affects the cluster homogeneity, if we are able to compute 

constant values of Je for a substantial range of σ2
max as σ2

max is 
varied over a range, then there is a high possibility of having real 

cluster structure within this range of σ2
max. 

 

Figure 7: Je as a function of σσσσ
2
max 

As illustrated in the diagram above, Je plateaus are formed as 

σ
2
max varies, indicative of significant clusters forming at those 

corresponding σ
2
max values. For each plateau, let σ

2
A be the 

lower-bound variance that forms the plateau and σ2
B be the upper-

bound variance, so that σ2
A < σ2

B. The strength of each Je plateau 
can then be defined as the ratio: 

 

As noted in [12], the strength of each Je plateau, S(σ2
A , σ2

B), is 
indicative of the extent to which the clusters formed in the range 

σ
2
A ≤ σ

2
max ≤ σ

2
B are represented by real structures in the data. 

Through experiments with artificial and real data sets in [12], the 
rule of thumb suggested was that real cluster structures start to be 
observed when the plateau approaches 2. Intuitively, the 
explanation for this is that two real clusters will be lumped 

together if the variance constraint σ
2
max is higher than the 

individual variance of each cluster.  



Based on the above observations, our strategy is to find σ2
A at the 

maxima of S(σ2
A , σ2

B) within the range S(σ2
A , σ2

B) ≤ 2, in the 

search space σ2
A , σ2

B ∈ { 1.. σ2
 U }, where σ2

 U is the upper limit 

in the search space for σ2
max. The variance thus obtained, σ2

A, is 

then used as the Maximum Variance σ
2
max in the Maximum 

Variance Clustering algorithm. 

We observed from Figures 5 & 6 that the data points of perceived 
clusters were generally located within 10ms from one another, 

consistent with the results in [14]. Thus we used σ2
 U = 50 as the 

upper limit in the search space for σ2
max since this is the variance 

derived from a cluster with two points 10 ms apart. 

 

Figure 8: Appropriate Fitting with suitable σσσσ
2
max 

Figure 8 shows the results of applying the clustering algorithm on 
a series of inter-burst latencies from a wireless device equipped 
with Asus WL-167G in a relatively noise free environment, where 
the data points have been sorted for presentation. At present, our 
algorithm only retains clusters of size larger than or equal to 8 – 
clusters smaller than that are discarded. 

To summarise, these clusters of inter-burst latencies are the 
processed timing measurements of the probe requests generated 
by a wireless client device during active scanning. Hence, the 
fingerprints of unique devices are represented by the clusters of 
inter-burst latencies. We now proceed to the Analysis Phase 
where comparisons between sets of fingerprints are used to 
determine if they were actually generated from different devices 
with at certain probability. 

3.3 Analysis Phase 
The Analysis Phase is the final step where the task of fingerprint 
comparison is performed to distinguish between unique devices. 
Using the data point clusters obtained after the Fingerprint 
Generation Phase, we employ statistical hypothesis testing to 
determine if supposedly different traffic traces captured (based on 
inspection of the MAC addresses) are actually emitted from 
different devices. 

We note that the key consideration in statistical hypothesis testing 
is to choose the right statistical test based on the nature of the data 
collected [21]. We propose the use of the Mann-Whitney U-test 
[16] for its statistical strength in determining if two samples are 
derived from the same distribution. In which case, two samples of 
inter-burst latencies can be tested if they are from the same 
distribution. Furthermore, the Mann-Whitney U-test is a non-

parametric test, hence does not rely on any assumptions that the 
data are drawn from a given distribution. This is significant as it 
would be inappropriate to assume that all wireless devices 
generate probe request frames based on a common underlying 
distribution. 

Before running the U-test, we need to extract the best suited 
clusters from the two traces to compare. At present our approach 
is to compare the cluster means between the two sets of device 
fingerprints and select the nearest two clusters for statistical 
testing. It is however also possible to use multiple clusters from 
each fingerprint set to increase accuracy in comparison - we 
discuss the possibility of this in the last section on future work. 

4. EXPERIMENTAL RESULTS 
The objectives of our experiments were to determine whether our 
fingerprinting technique was able to: 

1. Accurately differentiate between unique devices; 

2. Produce consistent results for each particular device over 
time, on separate occasions, and under varying network 
loads; and 

3. Distinguish between different machines in the most 
challenging case where the machines have the same 
specifications (model, RAM, processor, etc), and are 
equipped with the same OS and wireless NIC drivers. 

We conducted experiments across different environments in both 
controlled and real operating environments to validate our 
technique and for all the tests performed, where the Null 

Hypothesis H0 for our Mann-Whitney U-test was that the samples 
were generated by the same wireless device. Thus depending on 
whether the same or different devices were used in the actual 
condition, the test outcomes could be Correct or Wrong as defined 
in Table 1. 

Table 1: Table of Test Outcomes based on Actual Conditions 

Actual Condition 
 

Different Devices Same Device 

Positive  

(Reject H0) 
Correct  

(True Positive) 
Wrong  

(False Positive) Test 

Result Negative  
(Fail to reject H0) 

Wrong  
(False Negative) 

Correct  
(True Negative) 

4.1 Controlled Environments 
The first set of experiments was conducted in a controlled 
environment with little noise and interference, with only a single 
AP and four laptops (one laptop as the fingerprinter and the other 
three acts as the fingerprintees) in the vicinity. The fingerprintees 
were three Fujitsu laptops (P1, P2 and P3) with identical 

specifications (Intel Centrino 1.6 GHz, 512 MB RAM), the same 

OS - Windows XP Service Pack 2, and the same wireless NICs 

and drivers. Thus the only variable within the tuple constituting 
the device was the machine. The experiment involved collecting 
traffic from each of them simultaneously for eight hours. This 
process was repeated for three different wireless NICs and their 
respective drivers (Asus WL-167G, DLink DWL-G650 and the 
built-in Intel Wireless NIC). 



4.1.1 Comparisons between Similar Devices 
Our first experiment aimed to determine if we could successfully 
differentiate between the three devices (P1, P2 and P3) despite all 
their similarities. For the Asus and DLink wireless NIC drivers, 
we did six pair-wise U-tests (on the hourly generated fingerprints) 
between P1 vs P2, P1 vs P3 and P2 vs P3. And for the Intel 
wireless NIC driver, three pair-wise U-tests were conducted. In 
total 15 U-tests were conducted for each pair of comparison. 

Table 2: Results of fingerprinting 3 wireless devices with 

identical specifications, OS and wireless NIC Driver 

 
Correct 

(True Positive) 

Wrong 

(False Negative) 

P1 vs P2 86.67% 13.33% 

P1 vs P3 100.00% 0% 

P2 vs P3 60.00% 40.00% 

Average 82.22% 17.78% 

 
On average, our fingerprinting technique was 82% accurate at 
differentiating between these three similar devices, at a confidence 
level of 95%. We noticed that between P2 and P3, our 
fingerprinting technique did not fare as well. A probable reason 
for this was that these two machines happened to be too similar, 
sharing little physical hardware / clock disparities. We discuss 
possible refinements to improve our technique on such machines 
in the last section on future work. 

4.1.2 Fingerprinting the Same Device 
We next investigate the effect of performing pair-wise 
comparisons between traces from the same device using the exact 
test settings. For these tests we should desire a conclusion that 
fails to reject the Null Hypothesis (“Correct”). The comparisons 
were done only for traces captured from one of the wireless NIC 
(Asus WL-167G) and a total of 15 U-tests were performed for 
each machine. 

Table 3: Results of fingerprinting the same device 

 Correct 

(True Negative) 

Wrong 

(False Positive) 

P1 vs P2 100.00% 0% 

P1 vs P3 86.67% 13.33% 

P2 vs P3 100.00% 0% 

Average 95.56% 4.44% 

 
Although in statistical hypothesis testing we could not draw the 
direct conclusion that the devices being tested were the same 
when we the Null Hypothesis was accepted, the results indicated 
at least that they were not uniquely different devices (True 
Negatives). On average, our fingerprinting technique was correct 
95% of the time. 

4.1.3 Investigating the Effects of Distance 
One of the most practical factors that we needed to test was the 
effect of distance between the fingerprintee and fingerprinter on 
our fingerprinting technique. We collected another five hours of 
traces from P1 and P2 (both equipped with DLink DWL-G650) 
after locating them approximately 50m and 25m further away 
from the fingerprinter. In addition, in this particular experiment 
there were walls in between the fingerprinter and {P1, P2}. We 

then ran a total of 100 pair-wise U-test of this data against the 
other hourly data sets previously collected from P1 and P2. 

We first present the overall results of comparing the newly located 
P1 against P2 and P3, and the newly located P2 against P1 and 
P3. For these tests we should desire a conclusion that rejects the 
Null Hypothesis to acknowledge that the devices were indeed 
different. 

Table 4: Effect of distance on fingerprinting different devices 

 Correct 

(True Positive) 

Wrong 

(False Negative) 

P1new vs P2 80.00% 20.00% 

P1 new vs P3 80.00% 20.00% 

P2 new vs P1 92.00% 8.00% 

P2 new vs P3 88.00% 12.00% 

Average 85.00% 15.00% 

 
Our results indicated a high average of 85% accuracy in 
differentiating the devices despite moving to them to new 
locations. It should be no surprise that the detection rate has 
decreased in some cases, due to the effects of signal attenuation, 
multi-path propagation and fading with increasing distance. 
However, the results indicate that our technique remains practical 
for the distances seen in real wireless LANs. 

We next examine the results of comparing between the 
fingerprints from the newly located devices with the fingerprints 
generated from their previous positions. 

Table 5: Results of fingerprinting the same device at different 

distances 

 Correct 

(True Negative) 

Wrong 

(False Positive) 

P1 68.00% 32.00% 

P2 72.00% 28.00% 

Average 70.00% 30.00% 

 
Although we have maintained our ability to perceive the same 
device as the distance increased, the False Positive Rate has 
increased as well. Nonetheless, the overall result achieved 70% 
accuracy rate in correctly identifying the same device. 

4.2 Public Hotspot 
Our next experiment was conducted in a public hotspot in real 
operational use. Our traffic capturing phase was conducted on 
four separate days of about three hours each. However, we 
performed the analysis only on devices that stayed in the hotspot 
for at least a continuous hour. 

The scenario for this set of experiments was drastically different 
from the previous controlled environments. We detected more 
than one AP in the vicinity and there were at least five wireless 
client stations at any one point of time. This environment 
provided a real-world scenario to determine if our technique 
would be able to perform well in practice. 

From our traces, we observed about 72 unique MAC addresses 
that stayed for at least a continuous hour within the WLAN. 
However, in some cases there were still insufficient data to form 
clusters of at least eight points, which our algorithm discarded as 
we have noted at the end of Section 3.2.2. After filtering the traces 



that did not provide sufficient data for our fingerprinting 
technique, we had 45 unique devices to perform comparisons 
against each other. 

Table 6: Fingerprinting technique applied in public hotspot 

 Correct 

(True Positive) 

Wrong 

(False Negative) 

Average 81.85% 18.15% 

 
The results indicated that our fingerprinting technique achieved an 
average of 81% accuracy at differentiating the different devices at 
a confidence level of 95%. We believe the variety of wireless NIC 
drivers and OS being used by different clients contributed partly 
to the accuracy of our technique. 

4.3 Large Scale Conference 
Our last test scenario involved the use of large scale traces [17] 
obtained during the Special Interest Group on Data 
Communications (SIGCOMM 2004) conference. As our previous 
experiments were performed on much smaller scales, the results 
were less conclusive for testing the effectiveness of our 
fingerprinting technique. The use of this large scale data set 
provided a much stronger conclusion. 

In total, we observe about 211 unique MAC addresses that stayed 
connected for at least a consecutive hour. After filtering the traces 
that did not provide sufficient data for our fingerprinting 
technique, we had 174 unique devices to perform comparisons 
against each other. 

Table 7: Fingerprinting technique applied on data from 

SIGCOMM 2004 

 Correct 

(True Positive) 

Wrong 

(False Negative) 

Average 71.30% 28.70% 

 
Our fingerprinting technique was able to differentiate the devices 
about 71% of the time. Again, we witnessed the rates decreasing 
slightly as the surrounding environment became saturated with 
wireless users. The effects of distance and walls also possibly 
contributed to the decrease in accuracy. 

5. APPLICATIONS 
We now consider some important applications that may be 
realized by our technique. Note that we do not elaborate 
extensively on applications as we consider our most important 
contribution to be the wireless device fingerprinting technique 
that we have laid in the previous sections. We believe that our 
technique can be tuned to suit any application where identity 
resolution in WLAN is a problem. 

5.1 Spoof Detection 
As mentioned in the Introduction section, at present WEP can be 
cracked and even with WPA, management and control frames 
remain susceptible to MAC spoofing / replay / masquerading 
attacks due to lack of authentication and encryption for such 
frames. 

We see potential in applying our fingerprinting technique to spoof 
detection, complementing the weaknesses of the existing 

WEP/WPA schemes. This requires, for example, the maintenance 
of a white-list of allowed devices, each associated with its MAC 
addresses and wireless fingerprint profile. An alien device that 
attempts to masquerade using a valid MAC address will be picked 
up through device fingerprinting. In stark contrast with 
identification based on MAC address, our technique would prove 
to be much more challenging to evade. 

We note that future improvements in accuracy will be desirable 
for our technique to be more effective for spoof detection. We 
believe there are many possible ways to improve our technique 
that we have not yet explored, for example, by comparing all 
obtained clusters from two device fingerprints, and not just the 
two nearest clusters. 

5.2 Network Forensics 
At present, network logs are recorded such that the notion of 
virtual identity is tied to IP addresses, MAC addresses and user 
accounts. A problem that easily arises in wireless LANs occurs 
especially when virtual identities are entirely spoofed during an 
attack. Thus intrusion detection records and network traces may in 
fact point to the wrong culprit, instead of identifying the right 
attacker. 

Again, this problem can be resolved if wireless device fingerprints 
can be used as an independent mechanism to identify unique 
devices.  

5.3 Network Profiling and Reconnaissance 
Our technique can also be useful for the purpose of network 
profiling and reconnaissance. For example, a honeynet may be set 
up to simulate the presence of multiple virtual hosts on a single 
physical machine. The intention is normally to lure attackers into 
honeypots to keep them away from real production systems, as 
well as to study the attack techniques employed by the attackers. 

Our device fingerprinting technique can be applied to indicate 
(with some probability) whether a set of candidate MAC or IP 
addresses observed in the channel actually come from the same 
physical device. 

6. LIMITATIONS 
As with all other techniques, we acknowledge that our technique 
is faced with certain limitations and it is possible to develop 
countermeasures to evade our technique. 

The first limitation is fundamental to statistical hypothesis testing. 
When the Null Hypothesis - that the samples came from the same 
device - is not rejected, we cannot conclude that two devices are 
actually the same. Statistically, we can only establish that there is 
not enough evidence to affirm that the devices are different, but 
the rejection of the alternate hypothesis could be due to other 
factors, e.g. due to limited samples or simply because two unique 
devices simply happened to be extremely similar. 

The second issue is the amount of time and data required to 
fingerprint each device. As our device fingerprinting technique 
focuses mainly on analyzing the inter-burst latencies based on 
clustering, at present it takes about at least an hour before we can 
gather enough data to perform the fingerprinting. Some wireless 
NICs such as those from Intel perform the active scanning 



procedure at a much slower rate and require at least two hours 
before enough data can be harvested. 

Perhaps the most challenging issue we face is the lossy nature of 
wireless communications. Due to shadowing, interferences and 
channel fading effects, packet losses and delays inevitably occur, 
thereby decreasing the efficacy of our timing-based fingerprinting 
technique [18]. In particular, in a congested environment, 802.11 
medium access control kicks in, causing back-offs with a certain 
amount of random time involved. This makes it hard to 
characterize. By using measurements of the ambient background 
traffic, it is possible to normalize the device fingerprinting to cope 
with medium access control contention, as was done in [28]. 

While designing our technique, we have been constantly 
scrutinizing our implementation, looking for possible 
countermeasures that may potentially evade or fool our 
fingerprinting technique. One such possible method would be to 
modify parts of the driver code to inject randomness into the inter-
burst latency. Alternatively, an Attacker may also attempt to 
confuse our technique by mixing the probe request frames from 
his masqueraded device with the frames from a concurrently 
active legitimate device. This attack may cause a denial of service 
on the legitimate device being spoofed as this alters the measured 
inter-burst latency intervals and the fingerprints for that device. 

Last but not least, the effects of temperature may alter clock 
oscillations, which may affect the accuracy of fingerprint. This 
effect was studied in [20]. In fact, this concept was applied to 
fingerprint Tor servers in [21]. By similar logic, an attacker may 
alter the fingerprint of his own machine by altering its 
temperature; he could also remotely alter the fingerprint of his 
victim by deliberately increasing the CPU load (and thus the 
temperature) of his victim, thereby potentially deceiving our 
fingerprinting technique. 

To mitigate against the above attacks, we note that the overall 
robustness would be increased by using our technique in 
combination with other techniques based on different approaches. 
For example, when using our technique in combination with 
frame sequence number tracking (section 2.2, [10]) and RSSI-
based location tracking (section 2.3, [22]), an Attacker would 
have to also use the right frame sequence numbers from the right 
physical location in order for the attack to be successful. 

7. CONCLUSION 
We have proposed a new fingerprinting technique that 
differentiates between unique devices over a wireless Local Area 
Network simply through the timing analysis of 802.11 probe 
request frames. Our technique can be applied to spoof detection, 
network reconnaissance, and implementation of access control 
against masquerading attacks. In contrast with existing wireless 
fingerprinting techniques, our technique is passive, non-invasive 
and does not require the co-operation of fingerprintee hosts. 

Experimental results further justify the effectiveness of our 
technique. Depending upon the environment, we achieved an 
average accuracy rate of about 70% to 80% in differentiating 
between unique devices. Even for machines with the same 
specifications that were equipped with the same OS and similar 
wireless NIC drivers, we could achieve an accuracy rate of 82% in 
distinguishing between them. As part of the future work, we see 
the following areas as possible improvements: 

1. Multi-Cluster Comparison – Instead of selecting the cluster 
with the least intra-cluster variance as the fingerprint for 
inter-device comparison, we could instead perform a 
comparison using multiple clusters. The p-value of the U-test 
is a non-parametric measure of the overlap between two 
distributions. Thus, it might be useful to come up with an 
overall metric based on the p-values of individual cluster 
comparisons. 

2. Inclusion of More Test Metrics – Our current 
implementation relies solely on the inter-burst latency as 
criteria for differentiating the devices. More metrics could be 
included to increase the robustness of the technique. 
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