
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2005

Identifying Useful Subgoals in Reinforcement
Learning by Local Graph Partitioning
Özgür Şimşek
University of Massachusetts - Amherst

Alicia P. Wolfe
University of Massachusetts - Amherst

Andrew G. Barto
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Şimşek, Özgür; Wolfe, Alicia P.; and Barto, Andrew G., "Identifying Useful Subgoals in Reinforcement Learning by Local Graph
Partitioning" (2005). Computer Science Department Faculty Publication Series. 19.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/19

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/19?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Identifying Useful Subgoals in Reinforcement Learning
by Local Graph Partitioning

Özgür Şimşek ozgur@cs.umass.edu
Alicia P. Wolfe pippin@cs.umass.edu
Andrew G. Barto barto@cs.umass.edu

Department of Computer Science, University of Massachusetts, Amherst, MA 01003-9264 USA

Abstract

We present a new subgoal-based method for
automatically creating useful skills in rein-
forcement learning. Our method identifies
subgoals by partitioning local state transi-
tion graphs—those that are constructed us-
ing only the most recent experiences of the
agent. The local scope of our subgoal discov-
ery method allows it to successfully identify
the type of subgoals we seek—states that lie
between two densely-connected regions of the
state space—while producing an algorithm
with low computational cost.

1. Introduction

Recent methods in Reinforcement Learning (RL) al-
low an agent to plan, act, and learn with temporally-
extended actions (Dietterich, 2000; Parr, 1998; Pre-
cup, 2000; Sutton et al., 1999). A temporally-extended
action, or a skill , is a closed-loop policy over one-step
actions, for example one that takes a robot to its bat-
tery charger using lower level sensory and motor ac-
tions. A suitable set of skills can help improve an
agent’s efficiency in learning to solve difficult problems.
If an agent can develop such skill sets automatically,
it should be able to efficiently solve a variety of prob-
lems without relying on hand-coded skills tailored to
specific problems.

A number of methods have been suggested towards
this end. One approach is to search for commonly oc-
curring subpolicies in solutions to a set of tasks and
to generate skills with corresponding policies (Pickett
& Barto, 2002; Thrun & Schwartz, 1995). A second

Appearing in Proceedings of the 22 st International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

approach is to identify subgoals—states that are use-
ful to reach—and to learn skills that take the agent
efficiently to these subgoals. Subgoals proposed in the
literature include states that are visited frequently or
that have a high reward gradient (Digney, 1998), states
that are visited frequently on successful trajectories
but not on unsuccessful ones (McGovern & Barto,
2001), and states that lie between densely-connected
regions of the state space (Mannor et al., 2004; Men-
ache et al., 2002; Şimşek & Barto, 2004). In addition,
Hengst (2002) has used the notion of a subgoal in per-
forming temporal and spatial abstraction simultane-
ously, defining subgoals to be those states that lead to
transitions that the agent can not correctly represent
or predict at the current level of state abstraction.

We propose a new subgoal-based method for learn-
ing skills in RL. We define our subgoals in terms of
two regions of the state space that have the following
property: transitioning from one region to the other in
one step has a low, but strictly positive, probability,
and most of these transitions go through a small set
of states. The states in this set are our subgoals. A
simple example is a doorway between two rooms: all
transitions from one room to the other go through the
doorway.

Our subgoal definition is very similar to those of Man-
nor et al. (2004), Menache et al. (2002), and Şimşek
and Barto (2004); we adopt the terminology of Şimşek
and Barto (2004) and call them access states. The
main appeal of access states is that they allow more ef-
ficient exploration of the state space by providing easy
access to neighboring regions. Furthermore, because
access states are defined independently of the reward
function, they are useful in solving not only the current
task, but also a variety of other tasks that share the
same state transition matrix but differ in their reward
functions—getting to the doorway is useful regardless
of what the agent needs to do in the other room.

(a) (b)

Figure 1. (a) The state transition graph of a simple gridworld domain. The dashed line shows a cut of the graph that
minimizes NCut .(b) A sample local transition graph in this domain.

The main distinction between our method and those
that were proposed earlier is in how access states are
identified. Our method identifies access states by peri-
odically constructing a local transition graph (a state-
transition graph that reflects only the most recent ex-
periences of the agent), finding a cut of this graph
with a low between-blocks transition probability, and
accepting as subgoals those states that are endpoints of
edges that consistently cross identified cuts. We call
our method L-Cut, emphasizing its local perspective
and its graph-theoretic basis.

Key to our subgoal discovery method is the local scope
of the transition graph. The cuts that are identified
are not cuts of the entire state space but of only a small
part of it encountered recently. This local perspective
parallels how access states are defined—locally, in re-
lation to the states that surround them, rather than
in relation to the entire state space—and is essential
in correctly identifying them. Methods that use cuts
of the entire state space., e.g., Q-Cut (Menache et al.
2002), will not be able to correctly identify these states
because an access state may or may not be part of a
global cut.

The only other existing subgoal discovery method that
shares the local perspective of L-Cut is the Rela-
tive Novelty Algorithm (RN) of Şimşek and Barto
(2004). L-Cut and RN both use the most recent part
of the transition history in identifying access states,
but differ in how they do this. L-Cut takes a graph-
theoretic approach, while RN uses a heuristic mea-
sure of novelty. In the discussion section, we pro-
vide a more detailed comparison of L-Cut, RN, and
other subgoal-based approaches to automatically cre-
ating temporally-extended actions.

In the following sections we expand on the utility of

local cuts, describe L-Cut in detail, empirically evalu-
ate its performance, and conclude with a discussion of
our results, related work, and future directions.

2. The Utility of Local Cuts

We illustrate the utility of local cuts using a simple
gridworld with the state transition graph shown in Fig-
ure 1(a). All edges are bi-directional; edge directions
and weights are omitted from the figure. In addition to
north, south, east, and west transitions, this domain
includes a shortcut between the two states colored in
black. These two states are access states—they pro-
vide the only one-step transition from their vicinity to
the other part of the grid.

The dashed line in Figure 1(a) shows a cut of this
graph using edge weights of one and the NCut metric
(which we discuss in the following sections). This cut
is not useful in identifying the access states: While the
two access states border an edge that crosses the cut,
so do an additional 20 states that do not conform to
our subgoal definition. In fact, any cut of this graph
will either not include the edge between the access
states or will have a large number of additional states
bordering the cut edges.

We show in Figure 1(b) what a local transition graph
in this domain might look like. The figure communi-
cates clearly the utility of a local perspective: A cut
of this graph is likely to single out the edge between
the two access states. Of course, not all transition
sequences will yield a graph that looks like this fig-
ure. Some will not include the shortcut edge at all,
many will show a different edge connecting two oth-
erwise unconnected sets of states of about equal size,
and others will have no clear separation between two
sets of states. How to deal with noise due to sampling

is an important problem that needs to be addressed.
L-Cut does this by combining the evidence from an
ensemble of local transition graphs as we describe in
the following sections.

The argument for local cuts extends beyond this sim-
ple example that we have created to convey the intu-
ition behind our method. Most real-world problems
will show a complex connectivity structure that will
not lend itself to the use of global cuts in identifying
the access states. For example, analogous situations
exist in continuous control problems where sequential
composition of “funnels” in system dynamics can give
rise to access-like states (Burridge et al., 1999).

We note here an alternative use of local cuts to identify
access states: Build the entire transition graph, but
perform cuts on local neighborhoods, for example on
a part of the graph that contains only the states that
are within a certain distance of a randomly selected
state. This approach would be effective in identifying
the access states and, unlike L-Cut, would not have to
address any issues that result from sampling the graph.
It would, however, require the agent to maintain the
entire state transition graph and therefore would not
scale well to problems with large state sets.

3. Description of the Algorithm

L-Cut is an iterative algorithm. Each iteration takes as
input a state trajectory—a sequence of states visited
by the agent while an RL algorithm is executing or in
exploration mode, for example as the agent performs
a random walk. Using this trajectory, the agent con-
structs a corresponding local transition graph, finds a
cut of this graph such that the transition probability
within blocks is high but between blocks is low, and, if
any state qualifies as a subgoal, generates a skill that
takes the agent efficiently to this state. Iterations are
performed periodically, after the agent experiences a
certain number of transitions and also at the end of
each episode if the task is episodic. The input state
trajectory is the one experienced since the last itera-
tion of the algorithm.

3.1. Constructing the Local Transition Graph

The local transition graph is a weighted and directed
graph constructed from the input state trajectory.
Vertices in the graph correspond to the states in the
trajectory; edges correspond to transitions between
these states. Edge weights are equal to the number
of corresponding transitions that take place in the tra-
jectory.

3.2. Cut Metric

Given a graph G = (V, E) where V is the set of ver-
tices and E is the set of edges, a cut (A, B) of G is a
partition of V ; the edges that cross the cut are those
with one endpoint in block A and the other in block
B. We seek to minimize the Normalized Cut metric
(NCut) (Shi & Malik, 2000), defined as follows:

NCut(A,B) =
cut(A,B)
vol(A)

+
cut(B,A)
vol(B)

(1)

where cut(A,B) is the sum of the weights on edges
that originate in A and end in B, and vol(A) is the
sum of weights on all edges that originate in A.

Our choice of NCut as a cut evaluation metric is not
arbitrary. For a local transition graph, the first term
in Equation 1 is the number of observed transitions
from a state in block A to a state in block B, divided
by the total number of transitions from states in block
A. This is an estimate of the probability that the agent
transitions to block B in one step given that it starts
in block A under its current policy. A similar argu-
ment can be made for the second term in Equation 1.
Their sum, NCut , is an estimate of the sum of prob-
abilities of crossing the cut from each block, a metric
particularly well suited for our problem—partitioning
the graph such that transitioning between blocks has
a low probability and transitioning within blocks has
a high probability.

Alternative cut metrics commonly used in graph par-
titioning are MinCut (Wu & Leahy, 1993) and Ratio-
Cut (Hagen & Kahng, 1992). MinCut is the sum of
edge weights that cross the cut, while RatioCut equals
cut(A,B)/|A|+cut(A,B)/|B| for an undirected graph.
Neither of these meets our needs as well as NCut does.
MinCut , in particular, creates a bias towards cuts that
separate a small number of nodes from the rest of the
graph, for example a single corner state in a gridworld,
and is clearly inferior to the other two metrics.

3.3. Partitioning Algorithm

Finding a partition of a graph that minimizes NCut is
NP-hard, but there exist good approximate algorithms
for undirected graphs. We use the spectral clustering
algorithm of Shi and Malik (2000), computing NCut on
an undirected version of the local transition graph, in
which edge weights show the number of transitions in
either direction. In other words, we approximate our
true metric shown in Equation 1 with the NCut value
in the undirected graph, which takes the following form
if stated in terms of the quantities in Equation 1:

N̂Cut(A,B) =
cut(A,B) + cut(B,A)
vol(A) + cut(B,A)

+
cut(B,A) + cut(A,B)
vol(B) + cut(A,B)

(2)

Let us first consider how the first term in Equation 1
is influenced by this approximation. Both the numera-
tor and the denominator are incremented by the same
amount which will cause the value of this first term
to be greater in the approximation than in the true
metric. (Recall that in the true metric this term rep-
resents a proportion and is therefore between 0 and 1.)
In general, the difference can be arbitrarily large, but
for small values of NCut we expect it to be small—if
NCut is small, cut sizes will typically be much smaller
than the volume of the blocks. The second term is
influenced in a similar manner. Because we seek cuts
with small NCut , Equation 2 is a reasonable approxi-
mation.

We next briefly describe the partitioning algorithm.
Let N be the number of vertices in the graph, wij be
the weight on the edge between vertices i and j, D be
a diagonal matrix with D(i, i) =

∑
j wij , and W be a

matrix with W (i, j) = wij . Shi and Malik (2000) show
that, for an undirected graph, the second eigenvalue
of the matrix (D−W)

D gives an approximation of the
minimum NCut value and that the second eigenvector
gives an approximation of the corresponding partition
labels. Ideally the eigenvectors would take two integer
values that tell us exactly how to split the nodes, but
typically they take continuous values which requires
us to choose a splitting point. Following Shi and Ma-
lik (2000), we compute NCut for the N − 1 possible
partitions consistent with the eigenvector ordering and
select the partition with the lowest NCut value.

This algorithm has a running time of O(N3). When
using L-Cut, N will typically be much smaller than
the total number of states in the MDP because L-Cut
constructs a local transition graph that shows only a
small part of the agent’s state trajectory.

3.4. Subgoal Evaluation Criteria

A cut of the local transition graph with a low NCut
value (below a threshold value tc) indicates a good sep-
aration between the blocks, and those states that are
endpoints of the edges that cross the cut are subgoal
candidates. We call these states hits. Accepting all
hits as subgoals is not an effective strategy. In addi-
tion to the access states of the domain, it identifies as
subgoals a number of other states that look like access
states in the sample transition graph. This is a conse-

quence of using short trajectory samples to construct
the graph. Even in a domain with no access states, for
example a square gridworld, a local transition graph
may have a cut with a low NCut value.

We need to be able to differentiate those states that
are access states of the domain from those that ap-
pear to be so in the current local transition graph.
In other words, we need to deal with noise, and the
tool at our disposal is repeated sampling. Let targets
be the access states in the domain. Because targets
are more likely to be hits than non-targets, over re-
peated samples, a target is a hit relatively more of-
ten than a non-target. In fact, assuming independent,
identically-distributed sampling, the number of times
a given state qualifies as a hit follows a Binomial dis-
tribution, with a success probability that is higher for
targets than for non-targets. If we make the simplify-
ing assumption that all targets have the same success
probability p, and all non-targets have the same suc-
cess probability q, the optimal decision rule is to label
a state as target if the following inequality holds (Duda
et al., 2001) :

nt

n
>

ln 1−q
1−p

lnp(1−q)
q(1−p)

+
1
n

ln(λfa

λmiss
· p(N)

p(T))

lnp(1−q)
q(1−p)

, (3)

where nt is the number of times the state was a hit,
n is the number of observations on this state (i.e., the
number of times the state was part of the sample tran-
sition graph), p is the probability that a target is a hit,
q is the probability that a non-target is a hit, λfa is
the cost of a false alarm, λmiss is the cost of a miss,
p(T) is the prior probability of a target, and p(N) is
the prior probability of a non-target.

Inequality 3 is a threshold on the proportion of times a
state was a hit when it was part of the sample graph.
The first term on the right hand side is a constant;
the second term is inversely related to the number of
observations, therefore its influence decreases with in-
creasing number of observations. While we can not
use it directly—we do not know the values of many
of the quantities involved—we use it to motivate the
following algorithm: Accept a state as subgoal only if
the number of observations on this state (n) is above
a threshold value (to) and the proportion of observa-
tions in which the state was a hit is greater than some
threshold value (tp).

3.5. Generating Skills

We represent skills using the options framework (Pre-
cup, 2000; Sutton et al., 1999). When a new subgoal
is identified, L-Cut generates an option whose policy

G

(a)

10

20

30

(b)

10

20

30

40

(c)
20 40 60 80 100 120

0

500

1000

1500

Episodes

S
te

ps
 to

 g
oa

l

RN

L−Cut

Q−Learning

Random

(d)

Figure 2. (a) Two-room gridworld environment. (b) Subgoals identified by L-Cut. (c) Subgoals identified by RN. (d)
Mean steps to goal.

efficiently takes the agent to this subgoal. The op-
tion’s initiation set is specified using those cuts that
identified the subgoal as a hit. It includes those states
that were in the opposite block and whose distance in
the sample graph to the subgoal was less than option
lag (lo), a parameter of the algorithm. The option’s
policy is specified through an RL process employing
action replay (Lin, 1992) using a pseudo reward func-
tion (Dietterich, 2000). The policy learned takes the
agent to the subgoal state in as few transitions as possi-
ble while remaining in the option’s initiation set. After
the agent starts using the option, the algorithm con-
tinues to improve the option’s policy using the new
experiences of the agent (although it is not necessary
to continue adjusting the option’s policy after it be-
comes stable). The option terminates with probabil-
ity 1 if the agent reaches the subgoal or if the agent
leaves the initiation set; otherwise, it terminates with
probability 0.

3.6. Algorithmic Complexity

The time complexity of a single iteration of L-Cut
is O(h3), where h is the length of the state trajec-
tory used to construct the sample transition graphs.
The running time does not grow with the size of the
state space because the algorithm always works with
a bounded set of states, regardless of the size of the
actual state space. This is a key property of the algo-
rithm that makes it possible to scale to problems with
large state sets.

4. Experimental Results

We present an empirical evaluation of L-Cut aimed at
understanding whether L-Cut is effective in identifying

the access states in an environment and whether the
skills it generates are useful. We present results in
two environments: a two-room gridworld and the taxi
domain introduced by Dietterich (2000).

In our simulations, the agent used intra-option Q-
learning with ε-greedy exploration with ε = 0.1. The
learning rate (α) was kept constant at 0.05; initial Q-
values were 0. The agent started the trials with the
availability of only primitive actions; no options were
pre-defined. The parameters of L-Cut were set as fol-
lows: h = 500, lo = 10, tc = 0.05, tp = 0.25, to = 10.
These settings were based on our intuition; develop-
ing methods for setting them automatically is a topic
of current research. We did not set any limits on the
number of options that could be generated; nor did we
employ any filters to exclude certain states from being
identified as subgoals.

4.1. Two-Room Gridworld

We first present results in a two-room gridworld shown
in Figure 2(a). This domain allows us to examine the
performance of L-Cut in an environment we under-
stand well. In addition, it allows us to compare it to an
idealized version of RN—the only other local method
for identifying access states—using the parameter set-
tings reported in Şimşek and Barto (2004) which op-
timize its performance in this particular domain.

The agent started each episode on a random square in
the west room. The goal was the grid square in the
southeast corner of the grid. The four primitive ac-
tions, north, south, east, and west, moved the agent
in the intended direction with probability 0.9 and in
a uniform random direction with probability 0.1. If
the direction of movement was blocked, the agent re-

R G

Y B

5

4

3

2

1

2

y

x

1 3 4

5

50

100

150

200

250

200 400 600 800 1000

−800

−600

−400

−200

0

Episodes

R
ew

ar
d

ob
ta

in
ed RN

L−Cut

Q−Learning

(a) (b) (c)

Figure 3. (a) The taxi domain. (b) Subgoals identified by L-Cut. (c) Reward obtained.

mained in the same location. The agent received a
reward of 1 at the goal state and a small negative re-
ward (10−6) at all other states. We found that the
action penalty is important for L-Cut to perform well
(also improving the performance of the baseline Q-
learning algorithm). In its absence, the agent receives
little feedback from the environment in early stages
of learning and does not prefer one action over an-
other. The action penalty allows the agent to take
into account the fact that options have a higher cost
of execution than primitive actions due to their longer
execution time.

Figure 2(b) shows a visual representation of the loca-
tion and frequency of the subgoals identified by L-Cut
in 50 trials. The shading of a square in this figure
corresponds to the number of times it was identified
as a subgoal, with lighter colors indicating larger fre-
quencies. L-Cut identified exactly one subgoal in each
trial. In 34 of the trials, this was the doorway; in the
remaining trials it was one of the two states that are
one transition away from the doorway. For compari-
son, Figure 2(c) shows the subgoals identified by RN
(mean = 2.40 subgoals per trial).

Figure 2(d) shows the mean number of steps taken to
reach the goal state. The figure compares the per-
formance of L-Cut to three other algorithms: RN, Q-
learning with no option discovery process, and Ran-
dom. Random refers to an agent that picked subgoals
randomly: With each state transition, with a small
probability p, the agent identified its current state as
a subgoal and generated an option, employing a pro-
cedure similar to those used by RN and L-Cut. This
random subgoal selection was started after 2000 tran-
sitions in the environment, so that the agent could
gather enough experience to set the option policies
correctly through action replay, and continued un-

til 40,000 transitions were experienced. This period
roughly corresponded to the period during which RN
and L-Cut identified their subgoals. Having a fixed
number of transitions for random subgoal selection al-
lowed us to set p so that the expected number of op-
tions matched the mean number of options generated
by L-Cut. The figure shows that random subgoal se-
lection was not effective, while the subgoals identified
by L-Cut and RN allowed the agent to learn the task
much more efficiently. The figure also shows that L-
Cut slightly improved on the performance of RN, par-
ticularly in later episodes.

4.2. Taxi Task

The task in this next domain is to pick-up and deliver a
passenger to her destination on a 5×5 grid depicted in
Figure 3(a). Source and destination are selected uni-
formly at random from among the grid squares marked
with R, G, B, Y. The initial location of the taxi is one
of the 25 grid squares, picked uniformly at random. At
each grid location, the taxi has six primitive actions:
north, east, south, west, pick-up, and put-down.
The navigation actions succeed in moving the taxi
in the intended direction with probability 0.80; with
probability 0.20, the action takes the taxi to the right
or left of the intended direction. If the direction of
movement is blocked, the taxi remains in the same lo-
cation. The action pick-up places the passenger in the
taxi if the taxi is at the same grid location as the pas-
senger; otherwise it has no effect. Similarly, put-down
delivers the passenger if the passenger is inside the
taxi and the taxi is at the destination; otherwise it
has no effect. Reward is −1 for each action, an ad-
ditional +20 for passenger delivery, and an additional
−10 for an unsuccessful pick-up or put-down action.
Successful delivery of the passenger marks the end of

200 400 600 800 1000

−600

−500

−400

−300

−200

−100

0

Episodes

R
ew

ar
d

ob
ta

in
ed

t
p
=0.05

t
p
=0.5

Q−Learning

t
c
 = 0.05

200 400 600 800 1000

−600

−500

−400

−300

−200

−100

0

Episodes

R
ew

ar
d

ob
ta

in
ed

t
p
=0.05

0.3

0.5

t
c
 = 0.01

Figure 4. Sensitivity analysis in the taxi domain.

an episode. The domain has 500 states: 25 grid loca-
tions, 5 passenger locations (including in-taxi), and 4
destinations.

We evaluated the performance of L-Cut in 100 trials.
Figure 3(b) is a visual representation of the grid loca-
tions of the subgoals identified, ignoring the other two
state variables. The mean number of subgoals identi-
fied in a trial was 12.23. Of these, 93.2% corresponded
to arriving at the passenger location or picking up the
passenger; 4.3% were grid squares (2,3) and (3,3)—
the main navigational bottlenecks in the domain. Fig-
ure 3(c) shows learning curves for L-Cut, Q-learning,
and RN (using the same parameter settings as in Sec-
tion 4.1). The results are similar to those obtained in
the previous domain: Both L-Cut and RN showed an
early improvement in performance in comparison to
Q-learning, and L-Cut performed slightly better than
RN in later episodes.

4.3. Sensitivity Analysis

It is important to examine the behaviour of L-Cut
under various settings of its key parameters: tc, the
threshold on cut quality, and tp, the threshold on the
number of hits required for a state to qualify as a sub-
goal. The former parameter defines a threshold on
the probability of transitioning between blocks in the
sample graph. Higher values will cause more states
to qualify as subgoals. This intuitive interpretation
makes setting tc relatively easy. Furthermore, we ex-
pect its ideal setting to be fairly consistent between
domains.

In the taxi domain, we experimented with tc=0.05,
0.01 and tp=0.05, 0.1, 0.2, 0.3, 0.4, 0.5. For both set-
tings of tc, we observed a gradual decrement in perfor-
mance with increasing values of tp. We present some
of the learning curves in Figure 4, including the best

and the worst for both settings of tc. All settings of
the parameters either improved on or replicated the
performance of the baseline Q-learning algorithm.

5. Discussion

L-Cut is closely related to a number of algorithms pro-
posed in the literature, most notably to Q-Cut (Men-
ache et al., 2002), RN (Şimşek & Barto, 2004), and the
abstraction method of Mannor et al. (2004). All four
algorithms search for the same type of subgoals but
differ in how they do this search. The main distinction
between Q-Cut and L-Cut is the scope of the transi-
tion graph they construct. Q-Cut constructs the entire
transition graph of the underlying MDP, reflecting the
entirety of the agent’s experience, and finds cuts of
this global graph. In contrast, L-Cut constructs a lo-
cal view of the graph and performs cuts on this small
part. This distinction between the two algorithms,
while subtle, gives rise to two fundamentally differ-
ent algorithms and has two implications. First, they
are expected to identify different states as subgoals be-
cause a local cut may or may not be a global cut of the
entire transition graph. Second, the running time of
L-Cut’s subgoal discovery method does not grow with
the size of the state space, while Q-Cut’s subgoal dis-
covery method has time complexity O(N3), where N is
the number of states visited. The scope of the transi-
tion graph is also the key difference between L-Cut and
the abstraction method of Mannor et al. (2004) which
performs clustering on the entire transition graph.

We note that the spectral clustering algorithm we used
may also be incorporated into Q-Cut. Q-Cut performs
cuts using a min-cut/max-flow algorithm but evaluates
the quality of the cuts using RatioCut . Incorporating
a spectral clustering algorithm into Q-Cut would al-
low the cuts to be created using the actual evaluation

metric (RatioCut) and would eliminate the need for
specifying a source and a sink for the min cut/max
flow algorithm.

L-Cut is similar to RN in that both methods search
for access states using only the most recent part of the
transition history. RN never constructs a transition
graph but uses a heuristic that uses a measure of rel-
ative novelty to identify subgoal states. An advantage
RN has over L-Cut is its algorithmic simplicity—the
running time of its subgoal discovery method has a
time complexity of O(1).

The overall utility of our method will depend on the
degree to which access states exist in the difficult real-
world problems for which there is a need to scale re-
inforcement learning. But the results we have pre-
sented suggest that L-Cut is effective in identifying
access states and that the temporally-extended actions
it generates are useful in problems where such states
exist.

Acknowledgments

This work was supported by the National Science
Foundation under Grant No.CCF-0432143 and by a
subcontract from Rutgers University, Computer Sci-
ence Department, under Award number HR0011-04-
1-0050 from DARPA. Any opinions, findings and con-
clusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
This research was sustained in part by fellowship sup-
port from the National Physical Science Consortium
Fellowship and Sandia National Laboratories.

References

Burridge, R., Rizzi, A. A., & Koditschek, D. E. (1999).
Sequential composition of dynamically dexterous robot
behaviors. The International Journal of Robotics Re-
search, 18, 534–555.

Dietterich, T. G. (2000). Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. Jour-
nal of Artificial Intelligence Research, 13, 227–303.

Digney, B. (1998). Learning hierarchical control structure
for multiple tasks and changing environments. From An-
imals to Animats 5: The Fifth Conference on the Simu-
lation of Adaptive Behaviour. MIT Press.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern
classification. New York: Wiley.

Hagen, L., & Kahng, A. B. (1992). New spectral methods
for ratio cut partitioning and clustering. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 11, 1074–1085.

Hengst, B. (2002). Discovering hierarchy in reinforcement
learning with HEXQ. Proceedings of the Nineteenth In-
ternational Conference on Machine Learning (pp. 243–
250). Morgan Kaufmann.

Lin, L. (1992). Self-Improving reactive agents based on
reinforcement learning, planning and teaching. Machine
Learning, 8, 293–321.

Mannor, S., Menache, I., Hoze, A., & Klein, U. (2004). Dy-
namic abstraction in reinforcement learning via cluster-
ing. Proceedings of the Twenty-First International Con-
ference on Machine Learning. Banff, Alberta, Canada:
ACM Press.

McGovern, A., & Barto, A. G. (2001). Automatic discovery
of subgoals in reinforcement learning using diverse den-
sity. Proceedings of the Eighteenth International Con-
ference on Machine Learning (pp. 361–368). Morgan
Kaufmann.

Menache, I., Mannor, S., & Shimkin, N. (2002). Q-Cut -
Dynamic discovery of sub-goals in reinforcement learn-
ing. Proceedings of the Thirteenth European Conference
on Machine Learning (pp. 295–306). Springer.

Parr, R. (1998). Hierarchical control and learning for
markov decision processes. Doctoral dissertation, Com-
puter Science Division, University of California, Berke-
ley.

Pickett, M., & Barto, A. G. (2002). PolicyBlocks: An
algorithm for creating useful macro-actions in reinforce-
ment learning. Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning (pp. 506–513).
Morgan Kaufmann.

Precup, D. (2000). Temporal abstraction in reinforce-
ment learning. Doctoral dissertation, University of Mas-
sachusetts Amherst.

Shi, J., & Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22, 888–905.

Şimşek, Ö., & Barto, A. G. (2004). Using relative novelty
to identify useful temporal abstractions in reinforcement
learning. Proceedings of the Twenty-First International
Conference on Machine Learning (pp. 751–758). Banff,
Alberta, Canada: ACM Press.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Be-
tween MDPs and Semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial
Intelligence, 112, 181–211.

Thrun, S., & Schwartz, A. (1995). Finding structure in
reinforcement learning. Advances in Neural Information
Processing Systems (pp. 385–392). MIT Press.

Wu, Z., & Leahy, R. (1993). An optimal graph theoretic
approach to data clustering: theory and its application
to image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15, 1101–1113.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2005

	Identifying Useful Subgoals in Reinforcement Learning by Local Graph Partitioning
	Özgür Şimşek
	Alicia P. Wolfe
	Andrew G. Barto
	Recommended Citation

	tmp.1273077280.pdf.vIaWP

