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ABSTRACT 
 
Today’s society is becoming highly dependent on the services provided by 

various critical infrastructure networks. The increasing complexities and 

interdependencies among infrastructure networks have exacerbated their 

susceptibility to various disruption or failure events. It is therefore crucial to 

understand how the failure of the components in a critical infrastructure network 

affects the performance and integrity of the whole network. Different types of 

component failures may result in different levels of failure consequence and it is 

interesting to investigate which type of failure results in the largest failure 

consequence in an infrastructure network.  A review on critical infrastructure 

protection shows that there is a need to incorporate geographic proximities in the 

failure cascading process in infrastructure networks. Hence this research initially 

investigates the failure consequence in a critical infrastructure network resulting 

from different types of component removals using a proximity-based cascading 

model for failure propagation. The feasibility of the proposed study is tested on a 

real-world transportation network. 

 A review on critical infrastructure simulation and analysis also suggests that all 

the analyses and subsequent policy decisions on critical infrastructure networks 

have been made based on the assumption that the infrastructure 

interdependencies model has been constructed to a fair degree of completeness. 

Although such analyses that aim at the identification of weaknesses and 

vulnerabilities in infrastructure networks may go some way in preventing or 

alleviating disastrous outcomes, the failure to consider unforeseen 

interdependencies among critical infrastructures can result in extreme disruptions 

not being anticipated. The review also indicates that although approaches for 

vulnerability/consequence analysis have been widely studied, a complete risk 

assessment of infrastructure network disruptions incorporating the probabilities 

as well as consequences of disruption events has not been given serious 

attention. Therefore this research also proposes using an optimization algorithm 

to iteratively search for the possible unforeseen interdependencies as well as the 

failure points that can result in extreme risk in critical infrastructures, thereby 

anticipating extreme risk events. In order to illustrate the feasibility of the 

proposed approach, an agent based model of an infrastructure network along 
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with its known interdependencies has been presented, with a genetic algorithm 

applied to search for potential unforeseen interdependencies as well as failure 

modes/points that can result in extreme disruptions. The results from this study 

show the feasibility of anticipating extreme risk events in infrastructure 

networks, thereby providing valuable insights for proactive risk management of 

critical infrastructures.  
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1 CHAPTER 1: INTRODUCTION 
 

 

1.1 Background and Motivation 

        Today’s society is becoming increasingly dependent on services provided 

by various infrastructures. Here, the term “infrastructure” refers to the basic 

physical and operational structures needed for the functioning of a society like 

roads, railways, canals, pedestrian walkways, postal services, telephone 

networks, internet, drinking water supply, sewage collection, etc. “Critical 

Infrastructure” is a term that is used to refer to those infrastructures whose 

destruction causes crippling effects on a nation’s security as well as on the well-

being of its citizens [1]. Initially such critical infrastructures included only the 

large technical systems such as electric power grids, water and fuel supply 

systems, transportation and communication systems. Today’s critical 

infrastructures also include health services, banking and finance, safety and 

security, government, etc. that lay the foundation of most of the activities of our 

society. Due to the vitality of these systems, a sudden disruption in any one of 

them or part thereof may result in a severe strain on human life, safety and 

economy of the society. Some of the examples that illustrate such major 

infrastructure disruptions include the WTC (World Trade Center) terrorist 

attacks on September 11, 2001 [2], the U.S. Blackout on August 14, 2003 [3], 

the Sumatra earthquake in Indonesia on December 26, 2004 [4], and the Tohoku 

earthquake and Tsunami in Japan on March 11, 2011 [5]. These incidents and 

their aftermaths prove that the risks and inherent vulnerabilities in critical 

infrastructures should be addressed in a proactive manner since we should not 

wait for these incidents to happen and only then start planning how to react to 

them. 

       One of the works that has received much attention in the context of 

vulnerability analysis of critical infrastructure is the study on how the failure of 

the components in a critical infrastructure system affects the performance and 

integrity of the whole system. The failure of components in infrastructure 

systems can be triggered in a random (e.g. natural hazards, technical failures) or 
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intentional manner (e.g. terrorist attack) and these different triggers of failures 

may result in different levels of failure consequence in infrastructure systems. It 

is therefore motivating to study the failure consequences in critical infrastructure 

systems resulting from different types of component failures (e.g. random, 

intentional) in order to investigate which type of component failure results in the 

largest failure consequence.  

    The failure of components in critical infrastructure systems such as 

transportation systems, internet, power grids, etc. may also trigger cascading 

failures which occur in the form of traffic congestion, blackouts, etc. In most of 

the models describing the failure cascading/flow redistribution process in critical 

infrastructure systems, it is assumed that when a failure occurs, the flow/load at 

the failed infrastructure component (e.g. a rail transit station) will be 

redistributed to neighboring components. It is also assumed that the share of 

flow/load received by the neighboring components depends on the initial 

flow/load at these components. However, the geographic proximities of the 

neighboring components from the failed infrastructure component also play an 

important role in cascading dynamics. For example, when a failure occurs at a 

transit station in a rail transit network, the passengers will move to those stations 

which are closer to the failed station. A modification in the failure cascading 

mechanism incorporating geographic proximities is therefore another motivation 

behind the current work.  

        In addition to the fact that each of the critical infrastructures like 

transportation, power supply, etc. is highly complex, interconnected and also 

geographically dispersed, modern infrastructures also rely heavily on the 

services of other infrastructures. Such dependencies within an infrastructure 

sector (e.g. transportation) and  interdependencies between infrastructure sectors 

(e.g. transportation and power supply) has resulted in a global system of systems 

that is highly vulnerable to cascading failures initiated by technical errors, 

deliberate attacks, climate changes, natural disasters and so on. The WTC 

terrorist attack (September 11, 2001) gives an illustration of the 

interdependencies that exist among critical infrastructures. The fire and building 

collapses following the attack damaged two substations located under the World 

Trade Center as well as power transformers, transmission lines and other 
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distribution equipment which further resulted in the outage of a third substation. 

The collapse of twin tower building also resulted in breaks in the water-mains 

and this further caused flooding of rail tunnels, a commuter station, and a 

depository containing the most important telecommunication cables which were 

used to perform trades on the stock exchange [2]. This example shows how the 

World Trade Center attack affected power supply, water supply, transportation as 

well as telecommunication infrastructure systems. This example shows that 

identifying the risks and vulnerabilities in infrastructure systems is extremely 

important and must take into account the effects of failure propagation/cascade 

on the affected sector as well as on other interdependent sectors. Therefore, the 

infrastructure owners who were earlier concerned only with their own domains, 

now have to consider the influence from other domains. Although this has led to 

the great improvements in the area of multi-sector infrastructures, there are still 

many aspects that need attention like what models can be used, what we can do 

to handle the large number of failure scenarios to be studied, etc.  

       Although numerous methods and metrics have been developed to model 

interdependent critical infrastructures and to analyze their vulnerability to 

failures, one of the common features of all these works is that they assume that 

the information regarding the interdependencies among infrastructures is 

completely known. However, many of the interdependencies may be unforeseen 

due to the presence of several relations and complex feedback paths that exists 

among infrastructure components. Critical infrastructures often undergo many 

subsequent upgrades and hence the information regarding critical infrastructures 

may also be incomplete [6]. It has also been reported that infrastructure failures 

often cascade along indirect links that are mostly originated by proximity which 

emerge at the time of crisis [6]. Some of these unknown or unforeseen 

interdependencies may not be crucial because they may not result in any 

additional disruption consequences upon some failures in critical infrastructures. 

However, some of the unforeseen interdependencies may trigger cascading 

failure of many other components resulting in larger disruption consequences. 

The potential unforeseen interdependencies that can result in larger disruption 

consequences in infrastructures upon some failures therefore need to be 

unraveled. Hence, an approach incorporating the possible unforeseen 
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interdependencies among infrastructure components needs to be developed to 

anticipate extreme disruptions.  

       Different technical infrastructure systems are usually designed in such a way 

that they can withstand the frequently occurring incidents. Unfortunately, these 

infrastructures usually do not cope well with rare incidents that result in large 

scale disruptions [7]. A plot of the frequency of disruption events and 

consequences usually follow a power law distribution [8]. The region that 

concerns everyone is the distribution tail, i.e. the disruption events that has low 

probabilities of occurrence, but result in extreme consequences. This has raised 

an interesting question: “How can we anticipate these tail events or extreme risk 

events before they occur?”  

       All these concerns mentioned above motivated us to go further and develop 

the research objectives which will be discussed in the coming section. 

1.2 Research Objectives  

       It has been seen from the previous section that in the vulnerability analysis 

of critical infrastructures, it is interesting to study the failure consequences 

resulting from different types of component failures (e.g. random, intentional) in 

order to investigate which type of component failure results in the largest failure 

consequence. There is also a need for some modifications in the failure 

cascading mechanism incorporating geographic proximities between the 

infrastructure components. One of the primary aims of this research is therefore 

to use a proximity-based failure cascading model to investigate the failure 

consequences resulting from different types of component failures in critical 

infrastructure networks. It has also been seen from the previous section that the 

anticipation of extreme risk events in critical infrastructures is extremely 

important which also needs the incorporation of the possibility of unforeseen 

interdependencies. Therefore, a methodology to anticipate extreme risk events in 

critical infrastructure networks is secondly developed by considering the 

possibility of unforeseen interdependencies. This can be accomplished by 

identifying the set of critical infrastructure components to be modeled and their 

basic interdependencies, and then applying optimization techniques to modify 

the network iteratively with unforeseen interdependency relationships and failure 
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points until the disruption effects are maximized. The optimization algorithm 

will be multi-objective and the criteria for optimization will be both probability 

as well as consequence of failure. This helps in formulating a risk analysis 

framework for critical infrastructure disruptions.  

Therefore the main objectives of this research are:- 

a. To investigate the failure consequences in critical infrastructures resulting 

from different types of component (node) failures by incorporating a proximity-

based failure cascading mechanism. 

b. To investigate how the extreme risk events can be anticipated by solving the 

problem of optimizing infrastructure interdependency models for extreme failure 

consequences and low probabilities.  

c. To investigate how the problem of multi-objective optimization of risk can be 

formulated.  

1.3 Scope 

The scope of the formulated objectives has been discussed below: 

a. The failure consequences in critical infrastructure resulting from three 

different types of component failures will be investigated in the current research. 

Appropriate metrics will be used to measure the consequences of the 

removal/failure of components. The proximity-based failure cascading 

mechanism and the failure consequences of different types of component failures 

will be illustrated by taking transportation infrastructure as case study.  

b. The proposed approach for anticipating extreme risk events involves 

optimization of the infrastructure interdependencies model for extreme 

disruptions. This can be accomplished by integrating an analysis procedure with 

an optimization algorithm within a computational platform. Although other 

optimization approaches and analysis platforms may be applicable, this research 

plans to use a two-objective evolutionary algorithm for optimization and an 

agent-based modeling platform for analysis of network disruptions. 

c. As discussed earlier, since the objectives of the evolutionary algorithm include 

both probabilities of failure points as well as consequences, the methodology 
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represents a risk analysis framework for anticipating extreme disruptions. The 

decision variables of the evolutionary algorithm are the unforeseen 

interdependencies and the failure points within the network. In order to limit the 

scope, this research will mainly study the effect of adding up to two unforeseen 

interdependencies and up to two failure points, i.e. node failures. The study of 

link failures will be considered in future.  

1.4 Organization of the report 

       Chapter 2 presents a literature review on critical infrastructure modeling and 

simulation. The review covers various topics like complex networks, risk and 

vulnerability analysis in single as well as multi-sector infrastructures and so on. 

The investigation of the failure consequences in critical infrastructure networks 

resulting from different types of component failures by incorporating a 

proximity-based failure cascading mechanism has been reported in Chapters 3. 

Chapter 4 discusses on a method to anticipate extreme risks in infrastructure 

networks and the application of the proposed method to a case study. The report 

concludes with Chapter 5 which discusses on the conclusions and future work of 

this research. 
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2 CHAPTER 2: LITERATURE REVIEW 
 

  

2.1 Perspectives on risk and vulnerability 

         Risk is a term that is used in day-to-day life. Humans think in terms of risk 

in almost every field like business, safety, engineering, investment, finance and 

politics. Traditional risk analysis is based on a set of triplets: the failure events 

that can occur, the probability of occurrence of those events and their 

consequences [9]. Risk analysis therefore requires the identification of all the 

possible events that can degrade a system, the probabilities of those events and 

their consequences. If the studied system is very complex, the quality of risk 

analysis will have to be compromised due to the poor quality of probability and 

consequence estimates.     

       Vulnerability is yet another concept that is used in many research areas, but 

its meaning is quite ambiguous. In many definitions, vulnerability is the overall 

susceptibility of a system to loss due to a failure, i.e. the magnitude of damage 

due to a failure [7].  Vulnerability is therefore more related to network 

weaknesses and consequences of a failure. The main concept of vulnerability 

analysis is the anticipation of weaknesses in a system, i.e. identifying locations in 

a system where the system failures will have the gravest consequences [10]. 

Vulnerability can be seen from two perspectives: the first is to assess the overall 

vulnerability of a system, i.e. from a global perspective and the second is to find 

the critical parts or components in a system [7].  

       The various perspectives on risk and vulnerability have been explained in a 

number of works [11-13]. According to Johansson [7], the major difference 

between the concept of risk and vulnerability is whether or not the type and 

likelihood of an initiating failure event is estimated. In this respect, vulnerability 

analysis can be considered to be a part of risk analysis and combining 

vulnerability with the probability of a failure event exploiting the vulnerability 

yields risk. However, it is not always easy to find the probabilities of initiating 

failure events such as weather conditions or even random component failures in 

a system. Therefore, vulnerability assessment is critical since it provides 
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information on how a system performs when exposed to failures. In this research 

too it is believed that vulnerability/consequence analysis is a part of risk analysis 

and it has to be combined with the probability of failures in order to obtain a 

flawless value of risk as shown in Fig. 2.1.  

 

 

Fig. 2.1 Risk as a function of probability of failure and consequence of failure 

 

2.2 Critical Infrastructures as Complex Networks 

       Conventionally, the study of networks was a branch of discrete mathematics 

called “Graph Theory”. With the exciting works of Euler and his Konigsberg 

bridge problem, major developments took shape in graph theory. In addition, the 

concepts of social network analysis also emerged which focused on the 

relationship between social entities, trade between nations, communication 

between members of a group, etc. However, most of the studies were focused on 

static networks. The development of random network model was one among the 

pioneering works on dynamic networks [14]. In spite of the dynamic nature of 

random networks, it proved to be a bad model for explaining the various real 

world networked structures. Watts and Strogatz [15] were able to overcome these 

limitations by developing the small-world network model which could explain 

some of the characteristics of real world networks. A year later, Barabási et al. 

[16] came up with the scale-free nature of World Wide Web that led to a very 

famous model known as Barabási–Albert model. Most of the real world 
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networks, from the minute neuron network in the brain to the vast network of 

World Wide Web can be explained by these complex dynamic network models. 

       The various terminologies used in network theory like nodes, links, paths, 

loops, circuits, trees, spanning trees, degree, etc. has been explained in Appendix 

A.  

        Most of the critical infrastructures of today can be characterized as complex 

networks. The nodes in critical infrastructure networks abstractly represent cities, 

railway stations, power stations, gas stations, telephone switches, etc. and the 

links represent railway lines, transmission lines, pipelines, communication 

lines/channels, etc. Both dependencies within an infrastructure network as well 

as interdependencies between infrastructure networks can be modeled as links. 

Once modeled, both topological and functional analysis can be performed to 

identify the overall vulnerability as well as the critical components of these 

infrastructure networks. Such an analysis helps to identify the vulnerable parts of 

critical infrastructure networks and thereby fortification facilities can be planned 

to improve their robustness. 

       Before going into the details of vulnerability or consequence analysis of 

critical infrastructure networks, there is a need to understand the fundamentals of 

the three basic types of networks seen in real world today: random, small-world 

and scale-free networks. There are also three main concepts: the average path 

length of a network, its clustering coefficient and its distribution of degree that 

can be used to explain and differentiate between these networks [17].  

The average path length of a network can be defined as follows [18]. 

Definition 2.1 

The average path length of a network is defined as the mean of the shortest path 

lengths between all pairs of nodes in the network. 

Let   refer to the number of nodes,   refer to the set of all nodes and     refer to 

the shortest path length between   and  , then the average path length of a 

network is given by equation (2.1). 
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                    (2.1) 

   Clustering coefficient can be explained using the following example. In a 

network, for example a network of friendship, it is not uncommon that you and a 

friend of your friend know each other. This property is known as clustering. 

Suppose that a node   in a network connects to    other nodes which are called 

neighbors. Then, the clustering coefficient of a node   can be defined as follows 

[19]. 

Definition 2.2 

Clustering coefficient of a node can be defined as the ratio between the number 

of links (  ) that actually exist between the   neighbors of node   to the 

maximum possible number of links (      ) between them. 

Clustering coefficient of node   is given by equation (2.2).  

                            (2.2) 

The clustering coefficient of a network is the average of the clustering 

coefficients of the individual nodes in the network.  

According to Albert and Barabási [19], degree distribution can be explained as 

follows. 

Definition 2.3 

The spread of node degrees of a network is characterized by its degree 

distribution function     , which is the probability that a randomly selected 

node has exactly   degrees.  

With the help of these three concepts, the differences between random, scale-free 

and small-world networks can be explained. 



11 
 

2.2.1 Random Networks 

       Random networks do not have a particular pattern or structure. The random 

network model was developed by Erdös and Rényi [14]. The model consists of   

nodes where any two nodes are randomly linked with a linkage probability   . 
Fig. 2.2 shows three random networks with an equal number of nodes but 

different probabilities   . The average path length scales as         and the 

clustering coefficient is the same as   . Random networks are homogenous 

because the nodes in the network do not differ too much with respect to their 

degrees. These networks show similar behavior to both random and targeted 

attacks because of their homogenous nature.  

 

Fig. 2.2 Random networks with different linkage probabilities [20] 

2.2.2 Small-World Networks 

       Small-world networks are those in which a majority of the network’s nodes 

are not neighbors of each other, however most of the nodes can reach each other 

via a small number of links. These networks show a tendency to have cliques 

(i.e. subnetworks in which there are links between any two nodes) as shown in 

Fig. 2.3. The small-world network model was developed by Watts and Strogatz 

[15] in 1998. In the construction of the network model (with   nodes), initially 

there is a one dimensional ring lattice where every network node links with   

neighbors. With a rewiring probability   , each link is then rewired with one end 

remaining fixed and the other node randomly selected, without loops. 

When     , the network has a regular lattice structure and when     , the 

resulting network is random as shown in Fig. 2.4. Small-world networks exhibit 

a high clustering coefficient for most values of   , but when    tends to 1, they 

act as random networks. They can also be seen as a homogenous network like 

random networks, but the rewiring decreases the average path length [21].  
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Fig. 2.3 Cliques in small-world networks [22] 

 

 

Fig. 2.4 The effect of increasing randomness on small-world networks [15] 

 

2.2.3 Scale-free Networks 

 

 

Fig. 2.5 Scale-free network [23] 
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          Scale-free networks are those in which a few nodes have a very large 

number of links connected to them, but a majority of the nodes have a few 

number of links (Fig. 2.5). In that sense, they are non-homogeneous and follow a 

power law degree distribution. The reason for this phenomenon is that the new 

nodes that get added to the network gets preferentially linked to the existing 

nodes with a large number of links. In comparison with a random network (with 

similar number of nodes and average node degree), the average path length of 

scale-free networks is low and the clustering coefficient is high. The scale-free 

model was developed by Albert et al. [24]. The construction of scale-free model 

begins with a small number of nodes and whenever a new node gets added to the 

network, the links of the new node gets preferentially linked to the existing 

nodes with larger degrees. These networks are robust to random failures, but 

vulnerable to targeted attacks [24].  

       Most of the real world infrastructure networks like transport networks, 

electric power grids and World Wide Web have either random, small-world or 

scale-free properties. There are a multitude of papers discussing the analysis of 

various infrastructures as random or scale-free or small-world on the basis of 

their average path lengths, degree distributions, etc. Such an analysis is very 

helpful because it can help in understanding the hubs (hubs are the nodes with 

the largest degrees), flexibility or availability of alternate paths (good clustering 

ensures alternate paths to ensure dynamic routing upon emergencies) and also 

can help us to understand the survivability of networks [21]. As an example, in 

Sapre and Parekh [25], the Airport Network of India has been studied. The 

degree distribution shows its scale-free nature and therefore it is robust to 

random removal of nodes but breaks down on targeted attacks. The paper also 

mentions the benefits of such an analysis in planning during emergencies like 

closure of airports due to adverse weather, promoting tourism in the country and 

also preventing the spread of disease. The above discussion reveals that the 

analysis of infrastructures as random, small-world or scale-free provides us with 

valuable insights that can be helpful in many ways. 
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2.3 Impact or vulnerability analysis of single sector of 

infrastructure networks 

 

       There are a variety of methods available for the consequence or vulnerability 

analysis of single sector of infrastructure networks. The review mainly discusses 

on network theoretic and optimization approaches in the case of a single sector 

of infrastructure networks. Simulation methods like system dynamics and agent 

based modeling for vulnerability analysis will be discussed later in the case of 

multi-sector infrastructure modeling and analysis. 

2.3.1 Network Theoretic Methods 

 

      There are basically two types of network theoretic approaches for assessing 

infrastructure network vulnerability. One type of analysis (which has been 

referred to as Approach 1) emphasizes on either the global or local vulnerability 

study by using various centrality indices and other network metrics and the 

second type of analysis (referred to as Approach 2) focuses on finding critical 

nodes using various node failure scenarios.  

2.3.1.1 Approach 1 

 

        In the first type of network theoretic approach for vulnerability assessment, 

various measures are used to find either the global vulnerability of the entire 

infrastructure network or local vulnerability of the individual nodes.  

     Table 2.1 summarizes the important global measures and Table 2.2 

summarizes the important local measures of vulnerability that are calculated for 

the individual nodes in a network. These tables are based on the work presented 

by Grubesic et al. [26]. The global measures listed in Table 2.1 were developed 

by Garrison and Marble [27] and Haggett and Chorley [28].  

 

 



15 
 

Table 2.1 Global Measures of Network Vulnerability 

Metric Formulae Interpretations 

Beta index      

                                 

It is a measure of complexity:     

indicates that the network has a tree 

structure,      indicates one more link 

than a tree and     indicate networks 

with circuits. 

Cyclomatic 

number 

        A measure of the number of circuits in a 

network and also how many links can be 

removed without affecting connectivity. If 

the network is a spanning tree (i.e. no 

circuits),      and if the network has 

one circuit      .  

Alpha 

index 

                      

 

It provides a measure of connectivity. 

When    , the network is a spanning 

tree (i.e. removing any link would break 

the network into components) and 

when    , the network is maximally 

connected (i.e. no more links can be 

added). 

 

 

Gamma 

index 

 

                 

It is the ratio of the number of existing 

links in a network to the maximum 

possible number of links and so is a 

measure of relative connectivity of a 

network. When   approaches a value of 1, 

the network is more connected and 

when    , the network is fully 

connected.  

 

Note:   is the number of links,   is the number of nodes,   is the number of subnetworks and      is the maximum possible number of links in the network. 
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Table 2.2 Local Measures of Network Vulnerability 

Metric Formulae Interpretation 

Degree 

centrality 

 

               

      refers to the degree centrality of a 

node  . If nodes   and   are connected,       and   is the set of all nodes in the 

network. Higher degree nodes are 

considered to be more critical since they 

indicate the direct connection to many other 

nodes. 

Betweenness 

centrality 

                          

      refers to node  ’s betweenness 

centrality,        is the number of shortest 

paths between nodes   and   that passes 

through node  ,      is the total number of 

shortest paths between the nodes   and   

and   is the set of all nodes in the network. 

A higher value of betweenness centrality of 

a node indicates that the node is a part of 

many shortest routes and is hence 

important. 

Closeness 

centrality 
               

      refers to the closeness centrality of a 

node  ,     is the shortest path length 

between nodes   and   and   is the set of all 

nodes in the network. A high closeness 

value indicates that the node is accessible to 

many other nodes. 

Clustering 

coefficient 
                The clustering coefficient        of a node   

has already been explained in Definition 2.2 

(Section 2.2). Good clustering ensures the 

availability of alternate paths to ensure 

dynamic routing upon emergencies. 
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    To sum up, the global measures reveal the overall structure of a network and 

the local network centrality measures indicate individual node criticality. But it 

is not clear how useful these measures are in assessing which nodes if removed 

would be most damaging. Therefore, another trend in vulnerability assessment 

(Approach 2) emerged that is based on assessing the criticality of nodes by 

interdicting/removing them and then measuring some properties of the network 

that remain after disruption. 

2.3.1.2 Approach 2 

(a) Identification of cut nodes 

       A cut or articulation node is the one which when removed from the network 

would make the network disconnected. Therefore, if the cut nodes are found, it 

can be the critical nodes in a network [29].  

(b) Ranking and interdiction 

        Here, the nodes are ranked based on their importance (for example based on 

centrality, etc.) and then removed on the basis of their rank. For example, Li et 

al. [30]  have ranked the nodes based on their centrality measures like degree, 

closeness, etc. and then removed the nodes based on their ranks to find the 

critical nodes. In Gorman et al. [31] there is a mention about other indices of 

nodal ranking that is used to plan the node removals. They have studied the 

effect of various rankings like accessibility index, capacity index, global 

connectivity index, etc. 

       Apart from the different approaches for vulnerability assessment, there is a 

study on various measures used to indicate the failure consequence in a network. 

These measures mainly focus on the connectivity of the network as given 

below:- 

(a) Diameter [18] 

Definition 2.4 

The diameter of a network is the length (in number of links) of the longest 

geodesic (shortest) path between any two nodes in the network. 
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If the diameter of the network that remains after removing each node is 

measured, it can be a fairly good indication of the loss of connectivity due to the 

failure of that node. Such an approach has been used by Gorman et al. [31]. 

(b) Giant component Size 

When failures occur in a network, some nodes may get separated from the 

network and therefore the size or the number of nodes in the largest connected 

component or giant component of the network is a measure which can indicate 

the vulnerability of the network. When there are no failures, largest connected 

component of the network will include all the nodes in the network. However 

when failures occur, some of the nodes may get separated thereby reducing the 

giant component size. There are a number of papers that uses giant component 

size to measure the vulnerability of networks [32, 33]. 

(c) Spanning tree 

Definition 2.5 

A spanning tree of a network   is a tree    :           where      

represents the set of nodes in the tree and      is the set of all nodes in the 

network. 

After nodes and related links are deleted, the fewer is the number of spanning 

trees, the more important is the node [30]. 

             A disadvantage with the network theoretic approaches for vulnerability 

assessment is that the identification of worst-case failure becomes a difficult task 

when the complexity of the network increases.  

2.3.2 Optimization Methods 

       Optimization methods help to identify which combination of nodes if failed 

would result in the most extreme consequences. The greatest advantage of 

optimization-based approach is that it allows us to examine a range of disruption 

scenarios, both best and worst case that helps to better plan for the protection and 

mitigation of threats. A review on the optimization based approaches for 

evaluating network vulnerability is given by Murray [34], with the main 

approaches summarized in Table 2.3. 
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Table 2.3 Optimization Methods 

The 

performance 

function being 

optimized 

General problem statement  Initially proposed by 

Maximal flow Find   nodes/links or both in a 

network that upon removal would 

most decrease the maximum flow 

possible between an O-D (origin-

destination) node pair. 

Wollmer  [35], 

Baran  [36] 

Shortest path Find   nodes/links or both in a 

network that upon removal would 

most increase the shortest path 

possible between an O-D node pair. 

 Fulkerson and 

Harding  [37], 

Corley and Sha  [38] 

 

Connectivity Find   nodes/links or both in a 

network that upon removal would 

most decrease the connectivity of 

the network. 

Albert et al. [24] 

System flow Find   node/links or both in a 

network that upon removal would 

most decrease the system flow. 

Myung and Kim [39] 

Access 

fortification 

Find   nodes/links or both that upon 

fortification would most increase the 

level of service access in a network. 

Church et al. [40] 

Component 

attributes 

Find   nodes/links in a network that 

upon removal would most decrease 

the total attribute impact (e.g., for 

attribute is population at nodes). 

Grubesic and Murray 

[41] 

 

 

2.3.3 Other approaches for vulnerability assessment 

       Other than the above mentioned network theoretic and optimization 

concepts, there have been other concepts on evaluating the vulnerability of single 

sector of infrastructure networks. According to Jenelius [42], links that act as 

alternate routes during emergencies are considered important. A link that has 
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small amount of flow is generally not considered very important in normal 

situations. However, if the link acts as a rerouting alternative for one of the 

heavily used links, a high priority should be given to that link. Yet another 

approach for vulnerability analysis in complex networks uses the concept of 

community detection which helps in the identification of the set/group of nodes 

that is vital to the  connectivity of the network and its communities [43]. A 

community can be considered as a group of nodes that are highly connected to 

each other but connected to the remaining nodes with only a small number of 

links. 

2.4 Cascading failure models of single sector of 

infrastructure networks 

       Although the behavior of an infrastructure network such as internet, 

transportation network, power grid, etc. largely depends on its topology, these 

real world networks are not only specified by their structure, but also by the 

dynamical properties of processes taking place in them, such as the flow of 

information, traffic flow, flow of electricity, etc. among the components of the 

network. Although previous studies have shown that node removals can have 

significant consequences, later, failure cascading/flow redistribution mechanisms 

have been studied widely [44]. Such failure cascading mechanisms triggered by 

the removal of nodes are common phenomena in real-life systems and can occur 

in many infrastructure networks including the transportation networks, internet, 

power grids, etc. Typical examples of cascading failures include blackouts, 

traffic congestion, etc. In these networks, load or flow is reassigned to bypass 

failed nodes leading to overloading of other nodes that are not equipped to 

handle this extra flow [45]. The overloading of the nodes can result in their 

failure resulting in further flow redistribution and this cascading process can 

eventually make other portions of the network also overloaded resulting in larger 

failure consequences. If the load/flow at a node is small, major changes will not 

occur with respect to the balance of loads and there are low chances of overload 

failures. However, a relatively large load at a node can result in a chain of 

overload failures thereby resulting in larger failure consequences. There are a 

multitude of papers that discusses on different types of dynamic models that 

considers such cascading or redistribution of flow/loads following failures. For 
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example, a cascading model proposed by Crucitti et al. [46] showed that a single 

node with a large load is sufficient to cause large failure consequences in a 

network. In Wang et al. [44], adopting the initial load/flow of a node to be a 

linear function of its degree, a cascading model is proposed and the cascading 

failures in a typical scale-free network is studied. In the load/flow redistribution 

process, the load at the failed node is reassigned to neighboring nodes that are 

linked to the failed node and the amount of additional load received by the 

neighboring nodes depends on the initial load at these neighboring nodes. In 

Mirzasoleiman et al. [47], the cascading failures following edge removals have 

been investigated and the flow passing through the removed edge is redistributed 

to its neighboring edges. This cascading model has been applied to a number of 

real world networks including the US airport network. Fang et al. [48] studied 

the cascading behavior of complex networks in the case of directed networks and 

tested their model on a directed random network, a directed scale-free network 

and an IEEE 118 network model.  

         In most of the cascading models studied in literature, the load/flow at a 

node was generally calculated as a function of its degree or betweenness 

centralities and after the failure cascading or flow redistribution process, the 

overloaded nodes fail and get separated from the network.  However, in many 

physical networks such as Internet and transportation networks, the overloaded 

nodes result in only congestion or increased traveling times and are not separated 

or removed from the network. To incorporate this factor into cascading dynamic 

models, Wang et al. [49] defined a congestion function for each node to show its 

extent of congestion and applied this model to an Internet network. Furthermore, 

in many real world networks, the amount of load distributed to the neighboring 

nodes following failures not only depends on their initial loads but also depends 

on the proximities of the neighbors from the failed nodes. For example, when a 

failure occurs at a transit station in a rail transit network, more passengers will 

move to those stations which are closer to the failed station. In addition, in many 

infrastructures there may be nodes (e.g. railway stations) that lie in close 

geographic proximity with each other even though there are no physical links 

(i.e. railway lines) connected between them. In such cases, when a node (i.e. 

station) fails, its load (passenger flow) will be transferred not only to the 
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neighboring nodes (stations) having physical links with the failed node, but also 

to other nodes (stations) which lie in close proximity with the failed node 

(station). Therefore there is a need to incorporate geographic proximity into 

cascading dynamics model. 

2.5 Types of Technical Infrastructure Networks 

This section mainly discusses on the different types of networks to which 

vulnerability analyses have been applied. The vulnerability analysis has been 

done mainly on three types of networks: power grids, telecommunication 

infrastructure and transportation infrastructure. Even though there are a few 

works on other sectors, it is not included in the current discussion. 

2.5.1 Power grids 

       Power grids refer to networks of high-voltage transmission lines that 

transport electric power over long distances both within and between countries. 

The nodes in a power grid correspond to generating stations and switching 

substations, and the links correspond to the high-voltage transmission lines.  

        There are a number of works that discusses on the vulnerability of power 

grids. For example, Arianos et al. [50] has conducted a complex network 

analysis of  an IEEE test power network where the performance of the network 

to both random and targeted node removals is studied. A community detection 

approach has been applied to assess the vulnerability of an Italian 380 kV power 

system by Rocco S and Ramirez-Marquez [43]. Rocco et al. [51] explains the 

vulnerability assessment of Venezuelan national electric power system using an 

optimization approach. Different cascading models are also used to study flow 

redistribution mechanisms in power grids [52]. 

2.5.2 Telecommunication infrastructure networks 

        Telecommunication infrastructure that has been mainly discussed in 

literature includes telephone networks, computer data networks and the Internet. 

Murray et al. [53] has applied an optimization approach to find the critical 

components that would most decrease the network performance in Abilene 

Internet network. The network performance has been quantified with respect to 

both connectivity as well as flow. Gorman et al. [31] discusses about the 
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vulnerability analysis of computer data networks. The paper gives information 

on different nodal hierarchies (accessibility index, capacity hierarchy, global 

connectivity index and so on) and node failures based on those hierarchies. 

Rocco S and Ramirez-Marquez [43] has applied a community detection method 

for the vulnerability analysis of a telephone network in Belgium. A comparison 

of various global and local network theoretic metrics and optimization 

approaches, applied to Abilene internet network has been made by Grubesic et 

al. [26]. Different cascading models have also been used to study failure 

cascading mechanisms in Internet [47, 49]. 

2.5.3 Transportation infrastructure 

       Of all the critical infrastructure networks, transportation networks are crucial 

for the development of a country. The ease of transporting goods as well as 

people depends on the topology and geographic distribution of a transportation 

system. Transportation networks include airline, road, rail as well as shipping 

networks that aid in transportation from one place to another.  

       Of all modes of transportation, the road networks play a very important role 

in transportation. A lot of research work has been done on vulnerability analysis 

of road networks of different countries. For example, the concepts from complex 

network theory have been applied to the vulnerability analysis of the street 

network of Helsinki, Finland [29]. Rocco  and Ramirez-Marquez [43] studied the 

vulnerability of a road network in an Italian province using community detection 

approach. In Rocco et al. [51], the vulnerability of a road network in Italy has 

been studied using an optimization approach. 

     However, with the growth of population, road transportation alone is unable 

to meet the travel demands of population and therefore urban metro railway 

systems are developed to relieve congestion in cities. Metro railway systems are 

rapid transit train systems with high capacity and speed, capable of providing 

clean, safe and reliable transit service for millions of customers daily throughout 

cities. There have been various works done on the vulnerability analyses of the 

metro rail systems of different countries. For example, the topological properties 

of the Shanghai subway network have been studied by Zhang et al. [54]. The 

study shows that the network is robust to random node removals but highly 
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vulnerable to targeted node removals. Deng et al. [55] have used two measures 

of efficiency and average path length to find the vulnerability of a metro network 

in China. Different cascading models are also applied to metro rail networks [47, 

56]. 

     In addition, there has also been works on vulnerability analysis of the air 

transportation network of different countries [57].    

2.6 Multi-sector Infrastructures 

 

Fig. 2.6 Interdependencies in Critical Infrastructures [58] 

        Today’s infrastructures are highly interdependent on each other (Fig. 2.6). 

The linking between infrastructure components of different sectors is very 

critical for the optimal and economic operation of various infrastructures and can 

improve the operation and performance of these infrastructures in many ways. 

However, the interconnectedness or interdependency can also introduce more 

weaknesses in the interdependent networks. Therefore, apart from understanding 

the performance of a single sector of infrastructure network, there is a need to 

understand the working and behavior of interdependent/interconnected 

infrastructures [59]. 

2.6.1 Types of Interdependencies 

      The interdependencies among infrastructure components of different sectors 

have been classified in many ways by various scientists. Rinaldi [60] has 

classified the interdependencies into four categories: physical, cyber, geographic 
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and logical. Dudenhoeffer et al. [61] proposed a slightly different but similar 

categorization of interdependencies as physical, geospatial, policy and 

informational. Setola et al. [62] employed the same categorization as that of 

Rinaldi [60], but added social interdependency as a fifth category. Table 2.4 

summarizes the different types of interdependencies existing in critical 

infrastructures.  

Table 2.4 Commonly Classified Infrastructure Interdependencies 

Type of 

interdependency 

Description 

Physical A physical or topological reliance between 

infrastructure components like material flow between 

them. 

Information/Cyber An informational or control requirement between 

infrastructures like SCADA. 

Geographic/Geospatial A binding that exists between the infrastructure 

components due to proximity. 

Policy/Procedural A binding that exists between the infrastructure 

components due to policy or higher level decisions: 

for example, government’s emergency orders on a 

particular area due to the influence of an event. 

Societal/Logical A relationship that exists due to societal factors like 

public opinion, fear, cultural issues, etc.  

 

       In recent years, efforts have been made by various researchers to study the 

interdependencies that exist in infrastructure networks. For example, Jönsson et 

al. [63] modeled both physical and geographical interdependencies in a fictional 

electrified railway network. Both physical as well as cyber interdependencies 

between power grid and communication infrastructure have been modeled by 

Hadjsaid et al. [64]. However, Mussington [65] states that one of the shortfalls in 

knowledge related to critical infrastructure protection is the incomplete 

understanding of interdependencies among infrastructure components. 
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2.6.2 Modeling and Simulation of Multi-sector Infrastructures 

       The modeling of multi-sector infrastructures is difficult because the single 

infrastructures are already complex and therefore the coupling between various 

infrastructures adds an extra complexity to the problem. Generally, the 

interdependency studies and vulnerability assessment of multi-sector 

infrastructures has been carried out using predictive approaches or empirical 

approaches [66]. Predictive approaches include network theoretic models, 

inoperability models, system dynamic models, agent-based models, etc. On the 

other hand, empirical modeling aims at studying past events in order to increase 

our understanding of infrastructure interdependencies. 

2.6.2.1 Predictive Approaches 

(a) Network Theoretic Models 

       The main advantage of network theoretic models is that they are accurate, 

but their complexity increases when the system grows [67]. There are a number 

of works that use network theoretic models for vulnerability analysis of multi-

sector infrastructure networks. For example, Johansson and Hassel [66] mentions 

about a network theoretic model for vulnerability analysis of a Swedish railway 

system which is interdependent to four other systems. In addition to constructing 

the topology of the systems using network theory, the flow in these networks, i.e. 

the functioning of these networks is also modeled using concepts from network 

theory. Chai et al. [3] uses various centrality measures mentioned in Table 2.2 

(Section 2.3) to find the most critical infrastructure among a set of 

interdependent infrastructures. Yet another network theoretic framework that 

captures the interactions between electric power networks, telephone networks 

and gas supply networks has been proposed by Svendsen and Wolthusen [68]. In 

this model, various attack scenarios have been considered for the vulnerability 

analysis such as single node removal, removal of a small connected component 

(which can represent natural disasters like flooding), etc. 

(b) Input-Output Inoperability Models (IIM) 

       Haimes and Jiang  [69] put forward an inoperability model based on 

Leontief input-output model to model the interdependencies existing between 

infrastructures. In their approach, a system comprising ‘ ’ interconnected 
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infrastructures is modeled. The input of the model includes the various failures 

like natural disasters, terrorist attacks, random failures, etc. and the output of the 

model is measured in terms of inoperability (usually measured as a continuous 

variable between 0 and 1 where 0 refers to the system where there are no failures 

and 1 refers to the condition where the system is completely inoperable), 

economic losses, etc. [70]. A case study on using IIM is given by Haimes et al.  

[71]. The study presents the application of IIM to various High-altitude 

Electromagnetic Pulse (HEMP) attack scenarios in United States. The impacts of 

the attacks are measured in terms of economic losses, inoperability, workforce 

earnings losses and the number affected in the workforce. Since HEMP attack 

has immediate effects in the power sector, the study aims to find out which 

sector is most affected when power infrastructure is disturbed. Yet another 

example is provided in Setola et al. [62] where IIM has been applied to capture 

the interdependencies between eleven critical infrastructure sectors in Italy 

where the effect of power outages are considered. The IIM is definitely a 

valuable tool for assessing economic losses for a system of infrastructures, but it 

requires the knowledge of financial data. 

(c) System Dynamics 

       The real world complex systems have certain important properties like 

dynamism (they have stocks and flows), nonlinearity, feedback and time delays. 

System Dynamics is an approach developed by Jay Forrester [72]. In this 

method, a causal loop diagram is used to represent a system that takes into 

consideration all the components of the system along with their relationships. By 

capturing the relationships, the feedback loops can be found which can have 

either positive or negative identifier. The positive identifier indicates that a 

perturbation in the first component of the system causes a change in the same 

direction in the second component. Thus a causal loop diagram provides us with 

a qualitative understanding, helping us to understand the structure and behavior 

of a complex infrastructure system. In order to have a detailed quantitative 

understanding, the causal loop diagram has to be converted to a stock and flow 

diagram. A stock and flow diagram consists of stocks (any entity that changes, 

i.e. adds or decreases over time), flows (rate of change of stock), valves (controls 

the flows) and clouds (sources and sinks for the flows). The stock and flow 
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diagram can then be converted to various mathematical relationships. Conrad et 

al.[73] have studied the interdependencies among communication, power and 

emergency services using system dynamics.  

       A drawback of system dynamic modeling is the fixed structure of a system 

dynamics model: the stock levels, rates of flow, and the equations linking them 

have to be determined before starting the simulation [74]. Yet another feature of 

System Dynamics is that it does not possess spatial explicitness [75]. This means 

that if an attack occurs at a specific node in a networked infrastructure, the 

ability of the attack event to cascade depends on the behavior of the direct 

neighbors of the attacked node, but, in the case of system dynamic modeling the 

cascade can be evaluated using only the overall behavior of the network rather 

than the behaviors of the individual nodes. Moreover, System Dynamics 

supports only continuous modeling, i.e. if we need to model an attack we can 

only model it as a continuous process. At any time, the attack is present and what 

changes throughout the simulation is the proportion of nodes attacked.  

(d) Agent-based simulations           

 

Fig. 2.7 Agent Based Model development [76] 

       Agent-based modeling is yet another modeling technique belonging to 

artificial intelligence. An agent is an autonomous computational entity and its 

behavior is dependent on its experience. In agent-based simulations, the agents 

interact with each other and also with its environment. The objectives, behavior, 
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and constraints of agents are modeled in the form of rules [76, 77]. The agent-

based model development process is explained in Fig. 2.7. 

              Basically, there are two types of multi-agent approaches that are used to 

model the interdependencies: macro-agent and micro-agent approaches. In 

micro-agent based approach, every single component of an infrastructure is an 

agent and therefore there is a need to implement each infrastructure model from 

the scratch. In macro-agent approach, each infrastructure as a whole is 

represented as an agent and is simulated using a specific sector simulator. The 

detailed functions of each infrastructure agent are hidden from other 

infrastructure agents and only the shared functionalities between the 

infrastructures are exposed. Casalicchio et al. [78] used a macro-agent approach 

to model interdependent infrastructures.  

       One advantage of agent-based model compared to system dynamic models is 

that it can handle spatial explicitness [75]. Agent based modeling also supports 

both discrete as well as continuous modeling, i.e. we can model an attack as a 

discrete event, it can have a specific beginning and end.  

2.6.2.2 Empirical approaches 

       Empirical approaches aim at studying past events, compiling data from those 

events and thus identifying general patterns of interdependencies and 

consequences of disruptions. As an example, McDaniels et al. [79] describes an 

empirical framework for multi-sector infrastructure interdependency and 

vulnerability assessment which includes compiling data related to the failure 

event, characterizing interdependencies according to their type (physical, logical, 

geographic, cyber), impacted systems (buildings, finance, food supply, health 

care), order (direct, second order, higher order), etc. as well as characterizing the 

consequences of the interdependencies according to their severity (minor, 

moderate, major), spatial extent (local, regional, national), number of people 

affected (few, many), etc. The authors applied the framework to examine the 

patterns of interdependencies that occurred in 2003 North American blackout, 

1998 Quebec ice storm and 2004 Florida hurricanes. Yet another example is that 

of Zimmerman [80] who proposed an empirical approach in which several 

indicators were used to characterize the disaster data collected, like the types of 
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infrastructures that most frequently damaged other infrastructures, the types of 

infrastructures more commonly affected by other infrastructures, combinations 

of failures that were more frequent, the number of people affected, etc.  

       The two categories of approaches: empirical and predictive are 

complementary to each other. The empirical studies helps to provide input to 

predictive approaches thus aiding decision and planning. 

2.6.3 Cascading failures in interconnected networks 

       In Section 2.4, cascading models of isolated networks had been discussed. 

The corresponding models for interconnected or interdependent networks are 

presented in this section. Interdependent networks are actually network of 

networks. Therefore the failures in one infrastructure network may induce 

failures in the other network which further results in failure of more nodes in the 

first network thus triggering a cascade of failures. Some of the cascading models 

discussed in the case of independent networks have been extended to 

interdependent networks as well. For example, in Tan et al. [81], the cascading 

failures in two interdependent scale free networks have been discussed where the 

load/flow at a node is estimated by its betweenness centrality. In their model, 

when a node is removed, the shortest paths between many other nodes are 

affected, thus changing the loads of other nodes resulting in the overloading of 

many nodes and their subsequent failures. Another example for cascading failure 

model in interconnected infrastructure is that of Hernandez-Fajardo and Dueñas-

Osorio [82] where an enhanced betweenness centrality is used for load/flow 

estimation. The test networks used are a power sub-transmission system and a 

potable water mains network. In Wang et al. [83], the failure of edges have been 

studied by considering the interdependency between a power system and a gas 

pipeline system. The initial load at an edge is defined as a function of the product 

of the degrees of its end nodes and the load on a failed edge will be transferred to 

neighboring edges resulting in their overloading, failure and further flow 

redistribution. 

2.7 Risk Analysis of Critical Infrastructures  

       It has already been stated in Section 2.1 that vulnerability analysis can be 

considered to be a part of risk analysis and complementing vulnerability analysis 
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with probability of failure gives risk. Even though there have been a large 

amount of work on the vulnerability analysis of critical infrastructure, there are 

only a few works on the risk analysis of critical infrastructure networks. As an 

example, Dalziell and Nicholson [84] have studied the various hazards that can 

close a road section in New Zealand. The hazards that have been investigated 

include snow, volcanic eruptions, traffic accidents, etc. and risk is quantified in 

terms of frequency of occurrence of the hazard events and duration of road 

closure (consequence). Yet another example is that of Winkler et al. [85] where 

risk assessment of a power grid to hurricane events is performed. The component 

fragility models are used to find the failure probabilities of individual power 

network components and transmission lines and the consequences of failures are 

estimated by various network topological measures. 

In risk analysis, extreme risks can be defined as follows. 

Definition 2.6 

The risk of a failure event can be classified as an extreme risk if the failure 

probability of the event is very low and the consequence upon failure is high.  

 The term Black Swan is sometimes used to refer to these low probability, high 

consequence events that are quite difficult to predict. The terrorist attack of 

September 11, 2001, the 2004 Indonesian tsunami, etc. can be regarded as Black 

Swans. The term “Black Swan” was coined by Nassim Nicholas Taleb. 

According to Taleb [86], a Black Swan is an outlier as it lies outside the realm of 

regular expectations, it carries an extreme impact and in spite of its outlier status, 

humans concoct explanations for its occurrence after the fact, making it 

explainable and predictable. 

      The world today is ruled by power law because of the occurrence of extreme 

events. The distribution of frequency versus consequence of many disruption 

events like floods, landslides, etc. can often be approximated by power-law 

distributions. This is because even though a10-year flood is more frequent than a 

100-year flood, the 100-year flood will be more devastating. It is the events in 

the heavy tail (like the 100-year flood) that creates deadly consequences and 

becomes an extreme risk event.   
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      The critical infrastructures of today are extremely susceptible to extreme risk 

events. The anticipation of these extreme risk events is therefore very important 

in disaster planning and mitigation activities. 

2.8 Summary of the state-of-the-art in critical 

infrastructure protection 

      Sections 2.1-2.7 of Chapter 2 provides a summary of the research work in the 

domain of critical infrastructure protection with respect to mainly the methods 

and models used for analysis and the type of networks used. The literature 

review shows that the challenging problem of modeling and constructing the 

models of critical infrastructures has motivated much work over the last decade. 

The review also shows that these works have emphasized on the identification of 

methods for describing the structure and functioning of critical infrastructure 

systems, with a focus on identifying the most critical infrastructure 

component/asset.  

       These identified problems show that all analyses and subsequent policy 

decisions in critical infrastructure protection are made based on the assumption 

that the infrastructure interdependencies model has been constructed to a fair 

degree of completeness, i.e. the set of interdependencies is completely known 

beforehand. They fail to assume that a significant part of the network 

interdependencies/links may in fact be unforeseen. Setola and De Porcellinis [6] 

has reported that the information regarding interdependencies may be incomplete 

due to the frequent upgradation of infrastructures and O’Rourke [2] has reported 

that since many of the networks are underground, the proximity of aging and 

weakened pipelines to other important facilities like high-pressure gas mains is 

not frequently recognized. Furthermore, Mussington [65] has stated that one of 

the major shortfalls in the knowledge of critical infrastructure protection is the 

incomplete understanding of the interdependencies among infrastructure 

components. This research therefore challenges the current thinking and 

paradigm about infrastructure modeling and analysis which is based on the 

assumption that the network of infrastructure interdependencies has been 

constructed to a fair degree of completeness. By assuming that a significant part 

of the network interdependencies is unforeseen, the novelty of the proposed 
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approach for identifying extreme risk lies in the application of an optimization 

algorithm to search for unforeseen interdependencies and failure points that can 

give rise to extreme disruptions in critical infrastructure networks. 

      Furthermore, most of the works discussed in literature focuses on the 

vulnerability or consequence analysis of infrastructure networks neglecting the 

probabilities of failure. However, a complete risk analysis involving the 

probabilities of different failure events is very crucial for anticipating extreme 

risk events.  

       The literature review also shows that investigating the failure consequences 

in critical infrastructures resulting from component/node removals or failures is a 

widely researched topic in critical infrastructure protection. Although there are 

numerous models describing the failure cascading mechanism following 

component removals/failures, there still needs to be some modifications 

incorporating geographic proximities between infrastructure components. This is 

because in real world, the amount of flow distributed from a failed node to the 

neighboring nodes following failures not only depends on their initial loads but 

also depends on the proximities of these neighbors from the failed node. In 

addition, in many infrastructures such as the transportation network, there may 

be nodes (e.g. railway stations) that lie in close proximity with each other even 

though there are no physical links (e.g. railway lines) connected between them. 

In such cases, when a node fails, its load (passenger flow) will be transferred not 

only to the neighboring nodes having physical links with the failed node, but also 

to the nodes which lie in close proximity with the failed node.  

In order to close these identified gaps, this research proposes the following: 

a. Using a proximity-based failure cascading mechanism to investigate the 

failure consequences in infrastructure networks which helps to incorporate 

geographic proximities into vulnerability analysis. 

b. The concept of synthesizing (optimizing) the infrastructure network by the 

addition of unforeseen interdependencies which helps to overcome the limitation 

of assuming the completeness of the network model. 
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c. Formulating the optimization problem as multiobjective risk maximization 

problem which helps to incorporate both probability as well as consequence into 

risk analysis thereby providing a framework for anticipating extreme risk events. 

 The details of the proposed approaches will be discussed in the coming 

Chapters. 
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3 CHAPTER 3: IDENTIFYING VULNERABILITES IN 

CRITICAL INFRASTRUCTURE NETWORKS BY A 

PROXIMITY-BASED FAILURE CASCADING 

MODEL 

 

Critical infrastructure networks play a crucial role in the economic development 

of a country and also in the well-being of its citizens. These networks are 

however vulnerable to failures due to natural disasters, component aging, 

terrorist attacks and so on and the resulting service disruptions may result in 

debilitating impacts on the whole society. It is therefore crucial to understand 

how the failure of the components in a critical infrastructure network affects the 

performance and integrity of the whole network. Different triggers/types of 

failures (e.g. random, intentional) may result in different levels of failure 

consequence and hence it is important to investigate which type of component 

failure results in the largest failure consequence in an infrastructure network. The 

literature review shows that there is a need to incorporate geographic proximities 

in the failure cascading process in infrastructure networks because the amount of 

load distributed to the neighboring nodes following failures not only depends on 

their initial loads but also depends on the proximities of the neighboring nodes 

from the failed node. Hence a proximity-based failure cascading model for 

vulnerability analysis of critical infrastructure networks is proposed and the 

failure consequences in these networks following random and 

targeted/intentional node removals will be studied. The following sections 

provide the details of the cascading model together with case studies on 

transportation infrastructure networks. 

3.1 The failure cascading (flow redistribution) process 

       When a node loses its ability to continue functioning normally due to 

equipment damage, climatic conditions or intentional attacks, the load/flow at 

this node will be redistributed quickly to other nodes in the network. In this 

section, a description of how flow/load is redistributed upon node failures has 

been provided. We represent a generic critical infrastructure network as an 

undirected network        where   represents the set of all nodes in the 
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network,   represents the set of links and       represents the number of 

nodes in the network. The distribution of flow/load at nodes (e.g. rail transit 

stations, etc.) in a critical infrastructure network depends on various factors like 

the topology of the network, population of the area, facilities available and so on. 

All these factors contribute to the usage or utilization of various nodes in a 

network. It is not always easy to determine the actual load at each node, or 

perhaps such information is not readily available to the public. Hence it is quite 

reasonable to assume that the load or flow at a node is dependent on the 

topological properties of the node. It is therefore wise enough to use topological 

metrics like degree of a node as a proxy/substitute for the load or flow at the 

node. The degree of a node indicates the number of links connected to that node. 

It is also known that the degree of a node has an important relationship with the 

geographical population density of that node [54] and hence the degree of a node 

is looked at as an indicator for estimating load/flow in the current work. 

Compared to the real physical models explaining the behaviour of critical 

infrastructure networks under failures, the computational demand of analyses 

using such proxy load metrics is also not very high. Furthermore, such analyses 

using proxy metrics help to understand the basic flow adjustments taking place 

in these networks after failures.  

       Following previous models addressing cascading phenomenon, each node in 

a critical infrastructure network also has a capacity threshold, which is the 

maximum load or flow the node can handle. Since the node capacity cannot be 

extremely large and is generally limited by cost, it is natural to assume that the 

capacity of a node   denoted by    is proportional to its initial load    as shown 

in equation (3.1). In this equation, the constant of proportionality    denotes the 

tolerance parameter. 

                                 (3.1) 

      Under normal operating conditions, the load at a node will be less than the 

assigned capacity of the node. Under certain conditions like terrorist attacks, 

random technical failures, climatic conditions, etc., nodes can fail. When a node 
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is subjected to failure, it is assumed that the load at that node will be 

redistributed to neighbouring nodes. There are some nodes which are 

geographically very close to each other (within 1 km in this case) which are not 

connected by links. Apart from the physical links that represent the railway lines, 

roads, etc. these geographic proximities are also modeled in the current work. 

During load redistribution, it is assumed that the load or flow at the 

disrupted/failed node will be redistributed to those neighboring nodes that have 

either a physical link connection or geographic proximity with the disrupted 

node as illustrated in Fig. 3.1. The amount of load received by these 

neighbouring nodes depends on the initial load at these nodes as well as the 

geographic distance of these neighbouring nodes from the disrupted/failed node.  

 

Fig. 3.1 An illustration of the failure cascading mechanism following a node 
removal in an infrastructure network. 

       The additional load    received by a neighbouring node   upon failure of a 

node   is given by equation (3.2) where    and     represents the initial loads at 

node   and   respectively,    represents the set of neighbour nodes of node   and      represents the real geographic distance between nodes   and  . 
                            (3.2) 

Hence the total load at a neighboring node   following flow redistribution 

becomes the sum of its initial load and the additional load as shown in equation 

(3.3).  
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                (3.3) 

    If the load at a node after flow redistribution exceeds the capacity of the node, 

congestion develops and the level of congestion depends on how much the load 

exceeds the capacity. Congestion function     is used to indicate the level of 

congestion on node   and has been represented by equation (3.4) where    
represents the capacity of node   and   represents the number of nodes. 

        
                                                                                                                                                                                                          (3.4) 

                

       The three cases in equation (3.4) refers to normal, congested and heavily 

overloaded states of nodes and only the heavily overloaded nodes are assumed to 

be removed (like the temporarily shut down of a transit station) leading to further 

load flow redistribution.  

3.2 The Networks used for Analysis 

       The proposed failure cascading model will be illustrated on transportation 

networks. In this work, the networks used for study are the rapid transit railway 

network of Singapore, the network of bus interchanges/terminals of Singapore 

and the combined rapid transit-bus network. Singapore is located at the southern 

tip of the Malay Peninsula in South East Asia. With an estimated population of 

5.4 million people and a land area of only          , Singapore is the third 

densest country in the world. Since its independence in 1965, Singapore has 

experienced tremendous economic development and a major part of its progress 

can be attributed to an efficient transportation system. 

3.2.1 The Rapid Transit Rail Network of Singapore 

        Like other urban cities, Singapore faces the challenges of meeting the travel 

demands of the growing population against the constraints of physical space. The 

construction of a reliable rapid transit railway transport system to support the 

ground transportation thus became one of the crucial transport strategies of the 
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nation. The rapid transit railway system is the hallmark of Singapore’s success, 

and the network is also very important to the society and economic growth of 

Singapore. Due to the heavy reliance of the society on the public rail transport, 

even simple service disruptions in the system can easily lead to unacceptable 

outcomes affecting a large number of commuters, thereby affecting the day-to-

day activities and economic development of the nation. Large disruption events 

will not only cause inconvenience and travel delay for commuters; commuters 

can lose confidence in public transport and be encouraged to use private 

transport in the long run. A sequence of serious disruptions happened in the rapid 

transit network in 2011 and the disruptions affected over thousands of passengers 

and commuters. During the disruptions, traffic congestions were reported in 

many major areas in Singapore. For example, on 20th September 2011, a power 

fault disrupted train services at 16 stations. The resulting four hour delay left 

thousands of commuters (approx. 27,000) stranded during rush hour [87]. 

Similar incidents took place in Dec 2011: train service at 11 stations was 

disrupted for 5 hours and the commuters had to walk through the train tunnels to 

the nearest station in order to exit [88]. With these recent frequent breakdowns in 

the rail services, questions were raised about the vulnerability of the rapid transit 

network. Hence, the rapid transit rail network of Singapore is taken as an 

example to illustrate the proposed model and also to analyze its vulnerability to 

disruptions.  

       The range of public rail transport that provides services covering the entire 

island nation includes the Mass Rapid Transit (MRT) system and Light Rail 

Transit (LRT) system. The MRT system constitutes the major component of the 

railway system in Singapore, spanning the entire city-state. The MRT system 

currently includes the North South (red) Line, East West (green) Line, North 

East (purple) Line, Circle (yellow) Line and Downtown (blue) Line [89]. The 

MRT network is complimented by a small number of regional LRT network 

lines that link MRT stations with Housing Development Board (HDB) public 

housing estates. The LRT lines act as feeder services to the MRT network. The 

LRT system currently includes three lines, each serving a public housing estate. 

Apart from the MRT and LRT lines in operation, new lines also have been 

proposed. 
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         In order to construct the network for study, all the MRT and LRT lines in 

operation has been incorporated together with a few of the new lines for which 

the latitude and longitude data was available. The studied railway network is 

generated by considering stations as nodes and involves a total of 141 nodes. 

Any pair of stations is considered to be connected by a physical link when there 

is a real railway line between both these stations. Apart from the physical link, a 

different kind of link based on geographic proximity has also been incorporated 

into the network model; two stations are connected by a geographic dependency 

link if the stations are separated only by a distance of maximum 1 km. In order to 

identify the geographic dependency links, the distance between every pair of 

nodes/stations was calculated. This was done by first obtaining the latitude and 

longitude information of the various stations [90] and then obtaining the distance 

between them in kilometres. There are total of 159 physical links and 84 

geographic dependency links in the rail transit network. An illustration of the 

rapid transit network used in the current study is shown in Fig. 3.2. The stations 

(represented by black circles) are placed according to real geographic positions 

based on latitude and longitude. The red, green, yellow, purple and blue lines are 

shown in their respective colors and the LRT lines are shown in black. The 

geographic dependency links are shown by fluorescent green lines. 

 

Fig. 3.2 An illustration of the rapid transit network of Singapore where 
geographic dependency links (fluorescent green) are also included. 
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3.2.2 The Bus Network 

         Buses form a major part of land transportation in Singapore. The bus 

transportation complements the Urban Rapid Transit Rail network of Singapore 

in transporting people to almost any corner of the city state. Buses are operated 

by two companies: SBS (Singapore Bus Service) Transit Limited and SMRT 

(Singapore Mass Rapid Transit) Corporation. There are a number of bus 

interchanges, terminals and bus stops in Singapore. A bus terminal is the start or 

end point of a bus route. Bus interchange is a bus terminal that has intersection 

or connection to the rapid transit rail network. For simplicity, the current work 

has considered only the bus interchanges and terminals. Singapore is divided into 

different planning regions. Each of the bus interchange/terminal is located in any 

one of the planning areas. Fig. 3.3 shows the distribution of the different 

interchanges and terminals in the different planning areas. The nodes are 

numbered from 142 to 182 as a continuation of the node numbering in rail transit 

network. 

 

Fig. 3.3 Distribution of bus nodes (blue circles) in the different planning areas in 
Singapore 

       In order to construct a simplified bus network, it is assumed here that any 

two interchanges/terminals are connected by a direct bus route if they are located 

in adjacent planning areas as shown in Fig. 3.4. In the figure, the black circles 

and bold lines represent nodes and links respectively. 
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Fig. 3.4 Construction of the simplified bus network  

         In this way a network of bus interchanges/terminals is constructed for the 

case study. The constructed network has a total of 41 nodes and 181 links. 

Similar to the rapid transit network, the latitude and longitude information of the 

bus interchanges/terminals was retrieved to calculate the real distances (in 

kilometres) between the nodes in the bus network. There are no geographic 

dependency links in the constructed network. Fig. 3.5 shows an illustration of the 

constructed network of bus interchanges/terminals. The interchanges/terminals 

(blue circles) are placed according to real geographic positions based on latitude 

and longitude. 

 

Fig. 3.5 Illustration of the bus network of Singapore 

3.2.3 The Combined Rapid transit-Bus Network 

        In Singapore, the rapid transit rail network and the bus network works in an 

interconnected manner. Many of the rail transit stations are co-located with the 

bus interchanges. In order to construct the combined rapid transit-bus network, 

the geographic proximities are considered. If a node in the rapid transit network 

is within proximity of one kilometre with a node in the bus network, a 
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geographic interdependency is considered to be present between the two. These 

links are called geographic interdependency links rather than geographic 

dependency links as we called in the case of rapid transit networks because they 

exist between two types of networks. The geographic interdependencies are also 

represented by links. An illustration of the constructed combined rapid transit-

bus network is shown in Fig.3.6. In the figure, the green and blue circles 

respectively represent the rapid transit stations and bus interchanges/terminals. 

The constructed network has a total of 182 nodes and 495 links. The 

consideration of interdependencies between the two networks is important 

because during a failure in the rapid transit network, the passengers will be 

transferred to not only other transit stations, but also to the nodes in the bus 

network. This can relieve some of the overloading of nodes in the rapid transit 

network, but at the same time can also introduce overloading of nodes in the bus 

network. This is a characteristic of an interdependent network: on one hand 

interdependency between networks is very essential for optimal and improved 

operation of infrastructures; on the other hand it induces more vulnerability into 

the system. 

 

Fig. 3.6 An illustration of the combined rapid transit-bus network 

3.3 Measuring the performance loss after failures 

       After node failures and flow/load redistribution, the failure consequence in 

the network has to be quantified using suitable vulnerability metrics/measures. 
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Since the proposed failure cascading model will be illustrated on transportation 

networks, two measures (efficiency and accessibility) that are suitable for 

measuring the vulnerability or failure consequence in transportation networks 

has been used.  

3.3.1 Efficiency 

       Network efficiency is one of the measures used to describe the failure 

consequence of networks. If   denotes the total number of nodes in the network,     represents the shortest path length between nodes   and   and   represents the 

set of all nodes in the network, efficiency is given by equation (3.5). 

                             (3.5) 

    It is assumed that the efficiency of flow/transfer between a pair of nodes is 

inversely proportional to the shortest path length between them. If two nodes   
and   are not connected, then the shortest path length     tends to infinity and the 

efficiency of flow/information transfer between those nodes tends to zero. If the 

efficiency of the network after a node removal is low, the removed node is 

critical. There are a number of papers that uses efficiency to measure the 

vulnerability/failure consequence of networks [46, 54, 91, 92]. 

        Different from the normal definition of efficiency, a modified efficiency 

measure is used in this work in which the efficiency of load transfer or traffic 

flow between a pair of nodes depends on the congestion of the nodes in its path 

[49]. Instead of assuming that the efficiency of flow between a pair of nodes is 

inversely proportional to the length of the shortest path connecting them, it is 

assumed that the efficiency of flow is inversely proportional to the sum of 

congestion functions of the nodes along the shortest path. Therefore, if the nodes 

along the shortest path between a pair of nodes are not heavily congested the 

efficiency of flow will be high; else the efficiency will be low. An efficiency 

measure that incorporates the extent of congestion instead of shortest path length 

is important in evaluating the failure consequences in infrastructure networks 

such as transportation networks. The modified network efficiency used in this 

work is given by equation (3.6). 
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                                                 (3.6) 

      Here   refers to the number of nodes in the network during normal operation,   refers to the set of all nodes,   refers to the shortest path (with the smallest 

number of hops) connecting   and   and     refers to the congestion of node  . 

      When the infrastructure network is operating normally, let the efficiency be 

represented by    which is represented by equation (3.6). In fact the node 

removal changes the efficiency of the network since some of the nodes may 

become congested and overloaded after flow redistribution. Let the efficiency of 

the network remaining after the removal of   nodes be denoted by   . The 

number of nodes    in equation (3.6) is replaced by      and the set of nodes   is replaced by    which denotes the set of nodes remaining after node removal. 

The percentage efficiency loss after the cascading process is therefore obtained 

by equation (3.7). 

                                (3.7) 

3.3.2 Accessibility 

      Another vulnerability measure that has been used to measure the 

consequences after node removals is accessibility. The notion of accessibility in 

infrastructure networks such as transportation networks can be illustrated 

through a basic definition: accessibility is the ease with which desired 

destinations may be reached [93]. People who are in places that are highly 

accessible can reach many other destinations quickly while people in less 

accessible places can only reach fewer places. In certain situations where the 

level of service varies widely over hours of the day, this broad definition of 

accessibility may be modified to include factors such as time dependency [94]. 

In the current work, the accessibility between different nodes can be quantified 

as the average fraction of reachable nodes from each node [95]. If   denotes the 

total number of nodes under normal conditions, the passengers at each node can 
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reach the other     nodes by taking one or several trains or buses. If   denotes 

the number of nodes which can be reached from the     node, then accessibility 

of the transportation infrastructure network can be given by equation (3.8).  

                        
    (3.8) 

         The fraction of reachable nodes from each and every node is totalled and 

then divided by the number of nodes to produce the average fraction called 

accessibility. Under normal conditions, since the network is a single connected 

component,    is equal to     and hence the accessibility is equal to 1. 

       When the infrastructure network is operating normally, let the accessibility 

be represented by     computed by equation (3.8). After the removal of   nodes, 

let    denote the accessibility of the remaining network. The number of nodes   

in equation (3.8) is replaced by (     which denotes the number of nodes 

remaining after node removal. The percentage accessibility loss after node 

failures and cascading process is therefore obtained as in equation (3.9). 

                                   (3.9) 

3.4 The Simulation Framework 

        The key purpose of understanding the dynamics of cascading failures is to 

control it with proper strategy. Different triggers of cascading failures may result 

in different levels of failure consequences in networks. The malfunctions in a 

critical infrastructure network can be initiated by natural hazards, technical 

failures, terrorism and so on. Incidents such as natural disasters, technical 

failures or accidents mostly occur in a random manner in these networks. 

Incidents like terrorist attacks target crucial nodes in the network. For a critical 

infrastructure network we therefore investigate the removal/failure of nodes 

based on different node removal strategies. Specifically, three different node 

removal strategies have been investigated in this work. For each strategy, 

different removal fractions i.e. percentages of the total number of nodes to be 
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removed are fixed and the required number of nodes corresponding to those 

fractions are removed. While removing a node, the links attached to the node are 

also removed. Once nodes are removed, flow/load redistribution occurs. Through 

these removal strategies, the current work attempts to investigate whether 

different removal strategies can lead to different levels of consequences 

following failures and load redistribution. The current work also attempts to 

investigate which removal strategy results in the largest failure consequence in a 

critical infrastructure network. The removal strategies used in this work has been 

explained in detail as follows [96]. 

3.4.1 Random removal of nodes 

         Random disruptions or failures represent natural hazards (floods, 

earthquakes), technical failures, etc. in which each node has an equal probability 

of being removed. Such failures can therefore be simulated by randomly 

choosing nodes in a critical infrastructure network corresponding to a node 

removal fraction and removing those nodes from the network. After nodes and 

their corresponding links are removed, load at the removed nodes is 

redistributed. 

3.4.2 Removal of nodes based on node degree 

        In targeted failures that represent failures such as terrorist attacks, 

“important” or highly central nodes have more probability of failure than others. 

In this work, node degree (i.e. the number of links connected to a node) is used 

as an indicator of node importance. In order to simulate degree-based removal 

strategy, the nodes are selected in the decreasing order of degrees in the initial 

network until the number of nodes reaches the required removal fraction. The 

selected nodes are then removed together with their corresponding links. 

3.4.3 Removal of nodes based on recalculated node degree 

        The degree-based removal strategy uses the information on the initial 

network. However when nodes are removed, the network structure changes thus 

leading to different distributions of node degree. Therefore in recalculated 

degree-based removal strategy, after the removal of a node and its corresponding 

links, the node degrees of all the remaining nodes are recalculated. The 

recalculation of node degrees and the removal of nodes with the highest degrees 
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continue until the required fraction or percentage of nodes is removed. This type 

of recalculated removal is a more natural way of removing nodes in some 

circumstances. As an example, consider the process of finding the critical nodes 

in a rapid transit rail network. The closure of any one station is likely to affect 

the criticality of the remaining stations and hence it justifies the use of 

recalculated removal strategy to study the vulnerability of critical infrastructure 

networks such as transportation networks. 

       To measure the vulnerability of critical infrastructure networks to 

disruptions or failures, the node removal strategies are used to remove the nodes 

in the network and the consequences are measured using the two measures: 

efficiency and accessibility. These vulnerability measures are calculated at 

different removal fractions starting from a minimum of 2% (of the total number 

of nodes) up to a maximum of 50%. For each removal fraction, about 10 

realizations or runs are averaged. In the simulations, the tolerance parameter    is 

set to 1.1. This means that the network nodes (i.e. the rail stations, etc.) are 

operating at a capacity that is 110% of their initial loads. NetLogo, an integrated 

modelling environment is used to perform the simulations [97]. It is particularly 

well suited for modelling complex systems. For simulating node removals in 

NetLogo, the nodes are assumed as autonomous agents that can leave the 

network randomly or through removal in a targeted way. The information 

regarding links between the nodes can be provided to NetLogo using external 

files. The entire procedure has been illustrated in Fig. 3.7.  
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Fig. 3.7 Illustration of the simulation framework used in the current study 
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3.5 Simulation Results 

      In the current work, the vulnerability of three different transportation 

networks (Singapore’s rapid transit rail network, bus network and rapid transit-

bus combined network) to three node removal strategies has been investigated 

based on the proposed flow redistribution/cascading mechanism. The 

vulnerability indicators: efficiency and accessibility are measured at different 

removal fractions for each node removal strategy. 

3.5.1 Analysis of Rapid Transit Rail Network 

3.5.1.1 Results on Rapid Transit Rail Network Efficiency 

Network efficiency is an important indicator measuring the vulnerability or 

failure consequence of a network. Fig. 3.8 shows how efficiency of the studied 

rapid transit rail network decreases under different node removal strategies as a 

function of the fraction or percentage of nodes removed and Table 3.1 shows the 

percentage efficiency loss of the network under different removal strategies and 

removal fractions. 

Fig. 3.8 The plot showing the efficiency degradation with different percentages 

of node removals in the rapid transit network 
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Table 3.1 The efficiency as well as % efficiency loss under the three node 
removal strategies in rapid transit rail network 

% of 

node

rem-

oved 

Random removal Degree-based removal Recalculated degree-

based removal 

Efficiency Efficiency 

loss (%) 

Efficiency Eficiency 

loss (%) 

Efficiency  Efficiency 

loss (%) 

0 0.116819 0 0.116819 0 0.116819 0 

2 0.07994 31.56938 0.092406 20.89803 0.084423 27.73203 

4 0.062333 46.64151 0.070532 39.6228 0.060702 48.03769 

6 0.048601 58.39615 0.049878 57.30358 0.048038 58.87859 

8 0.043963 62.36685 0.038045 67.43277 0.043968 62.36259 

10 0.036641 68.63414 0.028897 75.26319 0.032281 72.36644 

12 0.027728 76.26388 0.025896 77.8324 0.029346 74.87914 

14 0.016 86.30365 0.021345 81.72811 0.012735 89.09881 

16 0.017572 84.95756 0.016048 86.26223 0.011589 90.07953 

18 0.011323 90.30731 0.010803 90.75212 0.005012 95.71001 

20 0.008134 93.03693 0.011512 90.14541 0.004034 96.54661 

22 0.008736 92.52193 0.008386 92.82156 0.003362 97.12206 

24 0.005236 95.51793 0.007401 93.66444 0.002448 97.90436 

26 0.00406 96.52471 0.003814 96.73517 0.001935 98.34397 

28 0.003537 96.97206 0.00441 96.22488 0.001291 98.89516 

30 0.002636 97.74367 0.003045 97.39349 0.001146 99.01872 

32 0.001966 98.31731 0.002827 97.57961 0.000657 99.43757 

34 0.001914 98.3614 0.002498 97.86136 0.000662 99.43307 

36 0.0017 98.54439 0.001606 98.62507 0.000346 99.7037 

38 0.001377 98.82116 0.001791 98.46706 0.000236 99.79834 

40 0.001391 98.8091 0.001192 98.97982 0.000173 99.85192 

42 0.00136 98.83608 0.000831 99.28838 5.91E-05 99.94944 

44 0.0009 99.22948 0.000682 99.41627 2.33E-05 99.98009 

46 0.000816 99.30114 0.000658 99.43672 1.46E-05 99.98752 

48 0.000416 99.6439 0.0004 99.65764 1.11E-05 99.99051 

50 0.000291 99.75122 0.000344 99.70527 7.18E-06 99.99385 

 

 It can be seen from Fig. 3.8 that the efficiency decreases in a similar manner for 

random, degree-based and recalculated node removal strategies. This is an 

indication that the studied rapid transit network is a random network. Therefore, 

the removal of a node, no matter randomly or intentionally does not result in 
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much variation on the performance of the whole network. That is the reason why 

the efficiency curves are close to each other in all the removal strategies. As an 

example, Table 3.1 shows that after 10% of nodes are removed, there is a loss of 

68.63 % and 72.36 % of network efficiency in the case of random and 

recalculated removal strategies respectively. Fig. 3.8 also shows that the drop in 

efficiency is fast for all the removal strategies which is further validated by Table 

3.1 which shows that by about 16-18 % of node removal, approximately 90% 

efficiency has been lost. 

3.5.1.2 Results on Rapid Transit Rail Network Accessibility  

 

Accessibility is yet another vulnerability indicator and the accessibility of any 

network under normal conditions is 1. When nodes are removed, the network’s 

accessibility worsens since failures make it increasingly difficult for different 

stations to be reachable from each other. Fig. 3.9 shows the plot of accessibility 

and Table 3.2 lists the accessibility loss of the network under different node 

removals.  

 

Fig. 3.9 The plot showing the reduction in accessibility with different fraction of 
node removals  in the rapid transit network 
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Table 3.2 The accessibility as well as % accessibility loss under the three node 
removal strategies in rapid transit rail network 

% of 

nodes 

remo-

ved 

Random removal Degree-based removal Recalculated degree-

based removal 

Accessib-

ility 

Accessibi-

lity loss % 

Accessibil

-ity 

Accessibi-

lity loss % 

Accessibil

-ity 

Accessibi-

lity loss % 

0 1 0 1 0 1 0 

2 0.950871 4.912867 0.948217 5.178318 0.957751 4.224924 

4 0.905714 9.428571 0.909625 9.037487 0.906413 9.35867 

6 0.805309 19.4691 0.827062 17.29382 0.800679 19.93212 

8 0.673121 32.68794 0.627629 37.23708 0.699534 30.04661 

10 0.581783 41.82168 0.587163 41.28369 0.574357 42.56434 

12 0.46997 53.00304 0.486272 51.37285 0.49613 50.38703 

14 0.36074 63.92604 0.367882 63.21175 0.303982 69.60182 

16 0.366261 63.37386 0.324843 67.5157 0.163941 83.60588 

18 0.290952 70.90476 0.244144 75.58561 0.081064 91.89362 

20 0.18003 81.99696 0.173931 82.60689 0.042705 95.72948 

22 0.187112 81.28875 0.128886 87.11145 0.028146 97.18541 

24 0.131337 86.86626 0.136282 86.37183 0.024813 97.51874 

26 0.115937 88.40628 0.169858 83.01418 0.018116 98.18845 

28 0.121743 87.82573 0.097822 90.21783 0.014498 98.55015 

30 0.071773 92.8227 0.095076 90.4924 0.012421 98.75785 

32 0.051236 94.87639 0.091388 90.8612 0.010294 98.97062 

34 0.060892 93.91084 0.051641 94.83587 0.008622 99.13779 

36 0.048784 95.12158 0.050598 94.94022 0.007528 99.24721 

38 0.046586 95.34144 0.042594 95.74063 0.005765 99.42351 

40 0.029807 97.01925 0.028723 97.12766 0.004154 99.5846 

42 0.034245 96.57548 0.036555 96.34448 0.002847 99.7153 

44 0.023333 97.66667 0.02768 97.23202 0.002209 99.77913 

46 0.020284 97.97163 0.030922 96.9078 0.001459 99.8541 

48 0.019797 98.02026 0.015947 98.40527 0.001155 99.8845 

50 0.019949 98.00507 0.012695 98.7305 0.000932 99.90679 

 

       It can be seen from Fig. 3.9 that similar to the case of efficiency, the 

accessibility decreases in a similar manner for random and degree-based removal 

strategies. The decrease in efficiency under  recalculated degree-based removal 

strategy is similar to the other two node removals up to about 13-14% of node 
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removal after which the accessibility decreases slightly more in the case of 

recalculated strategy than the other two strategies. For example in the case of 

random removal, at about 18 % of node removal the accessibility loss of the 

rapid transit network is 70.90476 % whereas the accessibility loss in the case of 

recalculated removal is 91.89362 %.  This may be because the importance of a 

node may change after node removals. After removals, the nodes which were 

previously trivial due to low degrees now become the nodes with highest 

degrees.          

        Figs. 3.10, 3.11 and 3.12 shows the fragmentation of the studied rapid 

transit network after nodes are removed based on random, degree-based and 

recalculated degree-based removal strategies respectively. The removal fraction 

chosen is 18% since it is at this fraction that the difference between the 

accessibilities of random, degree-based and recalculated removals is the highest. 

A comparison of the figures shows that the network becomes just slightly more 

fragmented in the case of recalculated removal when compared to random and 

degree-based removals.         

 

Fig. 3.10 The figure showing the network fragmentation in the rapid transit 
network when 18% of nodes are removed randomly 
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Fig. 3.11 The figure showing the network fragmentation in the rapid transit 
network when 18% of nodes are removed based on degree 

 

 

 

Fig. 3.12 The figure showing the network fragmentation in the case of 
recalculated degree-based removals when 18% of nodes are removed in the rapid 

transit network. 
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       In general, the studied rapid transit network shows the behaviour of a 

random network since the network behaves in a similar manner to random as 

well as degree-based node removals. The network behaves in a similar manner to 

all the removal strategies with respect to efficiency. The recalculated strategy 

results in only slightly more damage to the network for higher removal fractions 

with respect to accessibility. 

3.5.2 The Analysis of Bus Network 

3.5.2.1 Results on Bus Network Efficiency 

 

       Fig. 3.13 shows how efficiency of the studied bus network decreases under 

different removal strategies as a function of the fraction or percentage of nodes 

removed and Table 3.3 shows the percentage efficiency loss of the network 

under different removal strategies and removal fractions. 

 

Fig. 3.13 The plot showing the reduction in efficiency with different fraction of 
node removals in the bus network 
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Table 3.3 The efficiency and % efficiency loss under the three node removals in 
the bus network 

% of 

node 

remo-

ved 

Random removal Degree-based removal Recalculated degree-

based removal 

Efficiency Efficiency 

loss (%) 

Efficiency Efficiency 

loss (%) 

Efficiency  Efficiency 

loss (%) 

0 0.315032 0 0.315032 0 0.315032 0 

2 0.251517 20.1623 0.256347 18.62813 0.228401 27.49913 

4 0.197824 37.20637 0.208776 33.7285 0.156218 50.41196 

6 0.145032 53.96472 0.16072 48.98292 0.097553 69.03387 

8 0.118133 62.50378 0.118087 62.51576 0.05779 81.65589 

10 0.085016 73.01627 0.07679 75.62475 0.043122 86.31172 

12 0.091156 71.06732 0.089162 71.69756 0.046531 85.22963 

14 0.084151 73.29093 0.053231 83.10293 0.038601 87.74705 

16 0.043785 86.10455 0.039414 87.48896 0.022596 92.82737 

18 0.0398 87.36973 0.046302 85.30251 0.018512 94.1239 

20 0.027689 91.21426 0.020517 93.48741 0.017747 94.36673 

22 0.01159 96.32453 0.021122 93.29534 0.01588 94.95916 

24 0.017526 94.44029 0.027325 91.32629 0.01972 93.74026 

26 0.012959 95.89006 0.01479 95.30514 0.015337 95.13146 

28 0.014913 95.26979 0.010108 96.79151 0.015482 95.0855 

30 0.007276 97.69418 0.009251 97.06342 0.008365 97.3446 

32 0.006348 97.98882 0.006485 97.94154 0.008287 97.36953 

34 0.006738 97.86477 0.00896 97.1559 0.003471 98.89805 

36 0.006627 97.90012 0.005826 98.15057 0.003553 98.87202 

38 0.005584 98.23112 0.004988 98.41676 0.001899 99.39722 

40 0.004187 98.67462 0.003755 98.80805 0.001566 99.50277 

42 0.003547 98.87799 0.003393 98.92282 0.001274 99.5955 

44 0.003742 98.81605 0.003643 98.84359 0.00104 99.66992 

46 0.003252 98.97141 0.002742 99.12955 0.000883 99.71974 

48 0.00278 99.12122 0.002688 99.14681 0.00093 99.70469 

50 0.002942 99.06984 0.001618 99.48643 0.000326 99.89659 

 

It can be seen from Fig. 3.13 that the efficiency decreases in a similar manner for 

random as well as degree-based node removal strategies. However, the efficiency 

of the bus network under recalculated degree-based removals is slightly lower 

compared to random or degree-based removals. As an example, Table 3.3 shows 
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that under random node removal strategy, after 10% of nodes are removed, the 

efficiency loss is 73.01627 % whereas under recalculated degree-based removal 

strategy the efficiency loss is 86.31172 %. The above analysis shows that the 

degradation of the efficiency of the bus network subjected to recalculated 

degree-based removals is only slightly more severe than that of random or 

degree-based node removals. Towards higher removal fractions, the three 

removal strategies perform almost in a similar manner. Fig. 3.13 also shows that 

the efficiency curve is very steep in the case of all the removal strategies, i.e. the 

efficiency decreases very fast initially, after which the curve becomes flat.  

3.5.2.2 Results on Bus Network Accessibility 

 

Fig. 3.14 shows the plot of accessibility under different percentages of node 

removals. The accessibility loss of the bus network under different removals has 

been listed in Table 3.4. 

 

Fig. 3.14 The plot showing the accessibility degradation with different fraction 
of node removals in the bus network 
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Table 3.4 The accessibility as well as % accessibility loss under the three node 
removal strategies in the bus network 

% of 

node 

remo-

ved  

Random removal Degree-based removal Recalculated degree-

based removal 

Accessib-

ility 

Accessib-

ility loss 

(%) 

Accessib-

ility 

Accessib-

ility loss 

(%) 

Accessib-

ility 

Accessibil

ity loss 

(%) 

0 1 0 1 0 1 0 

2 0.95122 4.878049 0.95122 4.878049 0.95122 4.878049 

4 0.903659 9.634146 0.903659 9.634146 0.903659 9.634146 

6 0.857317 14.26829 0.857317 14.26829 0.848293 15.17073 

8 0.812195 18.78049 0.786098 21.39024 0.785854 21.41463 

10 0.768293 23.17073 0.751463 24.85366 0.759756 24.02439 

12 0.768293 23.17073 0.768293 23.17073 0.73439 26.56098 

14 0.72561 27.43902 0.72561 27.43902 0.692927 30.70732 

16 0.676098 32.39024 0.684146 31.58537 0.574878 42.5122 

18 0.620732 37.92683 0.620732 37.92683 0.552683 44.73171 

20 0.532927 46.70732 0.597317 40.26829 0.532982 46.7018 

22 0.519512 48.04878 0.523902 47.60976 0.407317 59.26829 

24 0.510488 48.95122 0.49 51.000 0.38098 61.902 

26 0.467317 53.26829 0.47878 52.12195 0.330922 66.9078 

28 0.416829 58.31707 0.442683 55.73171 0.240244 75.97561 

30 0.362683 63.73171 0.396829 60.31707 0.205366 79.46341 

32 0.366341 63.36585 0.303659 69.63415 0.184645 81.5355 

34 0.358537 64.14634 0.390488 60.95122 0.139744 86.0256 

36 0.263415 73.65854 0.272195 72.78049 0.11561 88.43902 

38 0.314878 68.5122 0.30561 69.43902 0.10878 89.12195 

40 0.235854 76.41463 0.272195 72.78049 0.075122 92.4878 

42 0.181951 81.80488 0.243171 75.68293 0.050488 94.95122 

44 0.178049 82.19512 0.200732 79.92683 0.05678 94.322 

46 0.188537 81.14634 0.248049 75.19512 0.03465 96.535 

48 0.18122 81.87805 0.210976 78.90244 0.02389 97.611 

50 0.168537 83.14634 0.160732 83.92683 0.021345 97.8655 

 

       It can be seen from the Fig.3.14 that similar to the case of efficiency, 

accessibility decreases in a similar manner for random and degree-based node 

removal strategies. Accessibility under recalculated strategy is almost similar to 
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random or degree-based strategies for initial node removals, however when the 

percentage of node removals increase, accessibility under recalculated removal is 

lower than the other two strategies. As an example under random removal 

strategy, after 10% of nodes are removed, the accessibility loss is 23.17073% 

and for the recalculated strategy the accessibility loss is 24.02439 %. However 

when the percentage of removal increases to say, 40% under random removal, 

the accessibility loss is 76.41463% and under recalculated removal the 

accessibility loss is 92.4878%. However, in general, the damage on the 

accessibility of the bus network subjected to recalculated degree-based node 

removal is higher than that of random or degree-based node removals. 

       Figs. 3.15, 3.16 and 3.17 illustrate the topology of the bus network under the 

three removal strategies when 30% nodes are removed. The figures show that 

even at 30% node removals, the network remains as a single connected 

component indicating that the bus network is more robust than the rapid transit 

rail network.  

 

 

Fig. 3.15 The topology of the bus network when 30% nodes are removed 
randomly 
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Fig. 3.16 The topology of the bus network when 30% nodes are removed based 
on degree 

 

 

Fig. 3.17 The topology of the bus network when 30% of nodes are removed in 
the case of recalculated degree-based removal 
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3.5.3 The Analysis of the Combined Rapid Transit-Bus network 

3.5.3.1 Results on Combined Network Efficiency 

       Fig. 3.18 shows how efficiency of the combined network decreases under 

different removal strategies as a function of the percentage of nodes removed. 

Table 3.5 shows the percentage efficiency loss of the network under different 

removal strategies and removal fractions. It can be seen from the figure that the 

efficiency decreases in a similar manner for random as well as degree-based 

node removal strategies. However, the efficiency under recalculated degree-

based node removals is lower compared to random or degree-based removals. As 

an example the table shows that under random node removal strategy, after 6% 

of nodes are removed, the loss of efficiency is 45.94 %. Under recalculated 

degree-based removal strategy, the efficiency loss is 84.20% when 6% nodes are 

removed. Fig. 3.18 also shows that the efficiency curve is very steep in the case 

of recalculated removal strategy, i.e. the efficiency decreases very fast initially, 

after which the curve becomes flat. 

 

Fig. 3.18 The plot showing the efficiency degradation with different fraction of 
node removals in the combined network 
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Table 3.5 The efficiency as well as % efficiency loss under the three node 
removal strategies in the combined network 

% of 

node

rem-

oved 

Random removal Degree-based removal Recalculated degree-

based removal 

Efficie-

ncy 

Efficiency 

loss (%) 

Efficiency Efficiency 

loss (%) 

Efficie-

ncy  

Efficiency 

loss (%) 

0 0.19452 0 0.19452 0 0.19452 0 

2 0.15515 20.239382 0.159784 17.857058 0.101141 48.004668 

4 0.113166 41.82310825 0.124126 36.18863751 0.048835 74.89470057 

6 0.105156 45.94065013 0.098941 49.13600558 0.03073 84.2021754 

8 0.070733 63.63706407 0.070335 63.84189289 0.017992 90.7506374 

10 0.053408 72.54365866 0.051715 73.41429646 0.011999 93.83136553 

12 0.0413 78.76825037 0.042901 77.94508206 0.009032 95.35679613 

14 0.03628 81.3487268 0.032488 83.29844269 0.006231 96.79649401 

16 0.022744 88.30739649 0.026412 86.42221318 0.004834 97.51496128 

18 0.017402 91.05386916 0.019534 89.9576172 0.003663 98.11676236 

20 0.01227 93.69203668 0.01367 92.97267599 0.002722 98.60060497 

22 0.011486 94.0951447 0.010199 94.75663946 0.0015 99.22880649 

24 0.008868 95.44113305 0.010755 94.47115302 0.001449 99.25527626 

26 0.007578 96.10442081 0.006891 96.45722538 0.001293 99.33547097 

28 0.005898 96.96795775 0.005253 97.2995266 0.000975 99.49860081 

30 0.004606 97.63217522 0.004156 97.86340131 0.000697 99.64189838 

32 0.00414 97.87163217 0.004003 97.94204486 0.000639 99.67153229 

34 0.002877 98.52110696 0.002614 98.65633205 0.000338 99.82598579 

36 0.002606 98.66039936 0.002298 98.81874657 0.000436 99.77587055 

38 0.001758 99.09615226 0.001769 99.09057904 0.000269 99.86146901 

40 0.001586 99.18458199 0.001455 99.25215486 0.000212 99.89121458 

42 0.000979 99.49649111 0.001225 99.37032884 0.000154 99.92067066 

44 0.000724 99.6275575 0.001028 99.47133851 0.000106 99.94557917 

46 0.000729 99.62514345 0.000738 99.62077673 3.51E-05 99.98197114 

48 0.000788 99.59475025 0.000791 99.59341189 2.87E-05 99.98526814 

50 0.000579 99.70255918 0.000573 99.70542743 1.25E-05 99.99358367 
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3.5.3.2  Results on Combined Network Accessibility 

 

       Fig. 3.19 shows the reduction in accessibility for various removal fractions 

in the combined network and Table 3.6 show the accessibility loss for different 

removal fractions and removal strategies. The figure shows that the recalculated-

degree based removal strategy results in a higher reduction in accessibility of the 

whole system when compared to the other two strategies. For example at 14% of 

node removals, the random removal of nodes results in an accessibility loss of 

33.3301% whereas at the same removal fraction, the recalculated removal results 

in 71.37514% accessibility loss. 

 

 

Fig. 3.19 The plot showing the reduction in accessibility with different fraction 
of node removals  in the combined network 
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Table 3.6 The accessibility as well as % accessibility loss under the three node 
removal strategies in the combined network 

%of 

node 

remo-

ved  

Random removal Degree-based removal Recalculated degree-

based removal 

Accessi-

bility 

Accessib-

ility loss 

(%) 

Accessib-

ility 

Accessibil-

ity loss (%) 

Accessib-

ility  

Accessi-

bility 

loss (%) 

0 1 0 1 0 1 0 

2 0.954259 4.5741 0.954259 4.5741 0.674458 32.55419 

4 0.899338 10.06618 0.907486 9.251412 0.627321 37.26793 

6 0.857932 14.20679 0.857823 14.21772 0.570894 42.91057 

8 0.801979 19.80208 0.827491 17.25093 0.522883 47.71174 

10 0.753348 24.66517 0.75897 24.10297 0.469225 53.07753 

12 0.652857 34.71435 0.722943 27.70566 0.434193 56.58066 

14 0.666699 33.3301 0.67345 32.65497 0.286249 71.37514 

16 0.561095 43.89047 0.615057 38.49432 0.225475 77.45249 

18 0.543574 45.64264 0.581993 41.80074 0.155898 84.41018 

20 0.511651 48.83492 0.494141 50.58588 0.158375 84.16247 

22 0.451351 54.86491 0.466517 53.34831 0.058989 94.10115 

24 0.412507 58.74932 0.420557 57.94427 0.051569 94.84306 

26 0.424455 57.55449 0.365406 63.45941 0.045838 95.41619 

28 0.354453 64.55467 0.300322 69.96782 0.029118 97.08822 

30 0.295817 70.41831 0.315172 68.48279 0.017291 98.2709 

32 0.253658 74.63421 0.266177 73.38231 0.015397 98.46032 

34 0.235651 76.43495 0.204748 79.52523 0.011851 98.81489 

36 0.178836 82.11645 0.20833 79.16702 0.006715 99.32852 

38 0.185478 81.45225 0.166924 83.30763 0.005573 99.44266 

40 0.150301 84.96995 0.137539 86.24613 0.004031 99.59687 

42 0.135134 86.48655 0.114261 88.57386 0.003278 99.67215 

44 0.107474 89.25263 0.119398 88.06023 0.002817 99.71829 

46 0.106344 89.36555 0.093012 90.6988 0.002307 99.76929 

48 0.064356 93.56445 0.081987 91.80135 0.001469 99.85308 

50 0.049979 95.00212 0.069893 93.01075 0.00119 99.881 
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       Figs. 3.20, 3.21 and 3.22 give an illustration of fragmentation of the 

combined network when 30% nodes are removed based on random, degree-

based and recalculated degree-based removal strategies.  

 

 

Fig. 3.20 The network fragmentation of the combined network when 30% of 
nodes are removed randomly. 

 

 

Fig. 3.21 The network fragmentation of the combined network when 30% of 
nodes are removed based on degree. 
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Fig. 3.22 The network fragmentation of the combined network when 30% of 
nodes are removed based on recalculated degree. 

 

       Figs. 3.20, 3.21 and 3.22 show that recalculated strategy results in more 

fragments than the random or degree-based removal. Furthermore, the figures 

also show that for recalculated removal more nodes are removed from the bus 

network than the transit network. It may be because the nodes in the bus network 

have higher degree compared to the nodes in the rail network. 

3.5.4 Comparison of rapid transit, bus and combined networks 

       In general, the studied networks show the behaviour of a random network 

since the networks behave in a similar manner to random as well as degree-based 

node removals. However, recalculated node removal strategies are more 

effective in reducing the efficiency and accessibility than non-recalculated 

removal strategies in all the three networks. This may be because the importance 

of a node may change significantly after one or multiple node removals. For 

instance, a transit station which was not important in an urban transit network 

could become important after one or more stations are closed. In the studied 

model, once nodes are removed, the other nodes which were previously trivial 

due to low degrees now become the nodes with highest degrees. Therefore 

recalculated node removal strategies are more effective in diminishing the 

efficiency and accessibility values than the other node removal strategies because 

the recalculated strategies select nodes with the largest degree at each step. 
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3.5.4.1 Comparison of efficiency loss of the three networks 

 

        Fig. 3.23 shows the percentage efficiency loss of the three studied networks 

at different percentages of node removals under the random node removal 

strategy. The figure shows that the three networks perform in an almost similar 

manner, i.e. the interdependency of rapid transit network to the bus network does 

not result in an increase in the efficiency loss in the combined rapid transit-bus 

network when the nodes are removed randomly. 

 

Fig. 3.23 A plot showing the efficiency loss of the three networks when different 
percentages of nodes are removed randomly 

 

Fig. 3.24 shows the percentage efficiency loss of the three studied networks at 

different percentages of node removals under the degree-based node removal 

strategy. The figure shows that similar to the random removal strategy, the three 

networks perform in an almost similar manner. This means that the 

interdependency of rapid transit network to the bus network does not result in an 

increase in the efficiency loss in the combined rapid transit-bus network when 

the nodes are removed based on degree. 
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Fig. 3.24 A plot showing the efficiency loss of the three networks when different 
percentages of nodes are removed based on degree 

 

  

Fig. 3.25 A plot that shows the efficiency loss of the three networks when 
different percentages of nodes are removed based on recalculated degree 
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Fig. 3.25 illustrates the percentage efficiency loss of the three studied networks 

at different percentages of node removals under the recalculated node removal 

strategy. The figure shows that there is an increased efficiency loss in the 

combined rapid transit-bus network when compared to the independent rapid 

transit and bus networks. This shows that the presence of interdependent links 

between the two independent networks make the combined network more 

vulnerable under recalculated removals, resulting in an increased efficiency loss.        

3.5.4.2 Comparison of accessibility loss of the three networks 

         

 

Fig. 3.26 A plot showing the accessibility loss of the three networks when 

different percentages of nodes are removed randomly 

     A plot showing the accessibility loss of the three networks when different 

percentages of nodes are removed randomly is illustrated in Fig. 3.26. The 

accessibility loss of the combined network is more when compared to the bus 

network, but less when compared to the rapid transit network. This shows that 

the presence of interdependency links can result in an improved operation but at 

the same time can also make the network more vulnerable. To make it more 

clear, for the bus network, when an interdependent layer of rapid transit network 
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is added, the accessibility loss in the whole combined rapid transit-bus network 

increased when compared to the accessibility loss in the independent bus 

network. However for the rapid transit network when an interdependent layer of 

bus network is added, the whole combined rapid transit-bus network 

performance improved, i.e. the accessibility loss decreased when compared to 

the independent rapid transit network. 

       

 

Fig. 3.27 A plot showing the accessibility loss of the three networks when 
different percentages of nodes are removed based on degree 

 

  A plot showing the accessibility loss of the three networks when different 

percentages of nodes are removed based on degree is illustrated in Fig. 3.27. 

Similar to random removal, the accessibility loss of the combined network is 

more when compared to the bus network, but less when compared to the rapid 

transit network. When an interdependent layer of rapid transit network is added 

to the bus network, the accessibility loss in the whole combined rapid transit-bus 

network increased when compared to the accessibility loss in the independent 

bus network. For the rapid transit network when an interdependent layer of bus 

network is added, the whole combined rapid transit-bus network performance 
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improved, i.e. the accessibility loss decreased when compared to the independent 

rapid transit network. 

 

 

Fig. 3.28 A plot showing the accessibility loss of the three networks when 
different percentages of nodes are removed based on recalculated degree. 

 

Yet another plot that shows the accessibility loss under recalculated removals is 

shown in Fig. 3.28. The plot shows that the accessibility loss of the combined 

rapid transit-bus network is more compared to the independent bus network. The 

plot also shows that for lower removal fractions in the recalculated strategy, the 

accessibility loss of the combined network is more compared to the independent 

rapid transit network and for higher removal fractions, the accessibility loss is 

less. 

3.6 Summary 

This chapter mainly discusses on the investigation of vulnerability/failure 

consequence in a critical infrastructure network resulting from three different 

node removal strategies using a proximity-based failure cascading model. The 

investigation was applied to study the behaviour of three transportation 



73 
 

networks: a rapid transit rail network, a bus network and a combined rapid 

transit-bus network. The study mainly shows that recalculated removal strategies 

result in more failure consequences in the studied networks when compared to 

the other two removal strategies. The study also shows that the presence of 

interdependencies can have both positive as well as negative consequences. On 

one hand interdependencies can improve the operation (e.g. accessibility) of the 

combined rapid transit-bus network; on the other hand, the interdependencies can 

make the combined network more vulnerable leading to larger network 

performance degradation or larger failure consequences (e.g. efficiency). 

However, those interdependencies that make the system more vulnerable, i.e. the 

ones that increase the failure consequences in the combined network are of great 

concern and should be further studied. 
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4 CHAPTER 4: ANTICIPATING EXTREME RISKS 

IN INFRASTRUCTURE NETWORKS BY 

EVOLUTIONARY OPTIMIZATION  

 

 

Although a variety of models and methods have been developed by various 

researchers to model and analyze infrastructure networks and their 

interdependencies, most of them are based on the assumption that the 

infrastructure interdependencies model has been constructed to a fair degree of 

completeness. As an example, in the previous chapter the interdependencies 

between networks were constructed based on geographic proximities between 

the two networks and the network model was assumed to be complete. However, 

some of the interdependencies that exist among infrastructures may be 

unforeseen due to the presence of complex feedback paths, frequent upgradation 

of infrastructures and so on and they may be revealed only after the occurrence 

of some disaster or disruption. Some of these unknown or unforeseen 

interdependencies may not be critical because they may not result in any 

additional disruption effects. However, some of the unforeseen 

interdependencies may be crucial because they may result in the cascading 

failure of many other components resulting in larger disruption effects and they 

have to be unraveled. Since the network models are incomplete, it is futile to 

perform the required analyzes on them since they may underestimate the 

disruption effects of extreme events. Hence, instead of analyzing a given 

infrastructure network to determine the disruption effects of any failure, the 

network that will result in the most extreme disruption due to some failure is 

synthesized in order to anticipate extreme risk events. This can be accomplished 

by identifying the set of critical infrastructure components to be modeled and 

their basic interdependencies, and then applying optimization methods to modify 

the network iteratively with unforeseen interdependencies (additional links) and 

failure points (nodes) until the disruption effects are maximized. The disruption 

effect is measured using risk which is a function of the probability of failure 

events as well as consequence. Since risk has two components the optimization 

problem is multiobjective, the objectives being maximization of failure 
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probability and maximization of failure consequence. However, in reality, the 

failure events that have high frequencies of occurrence may not result in 

extremely high consequences, while the ones that occur very rarely like a 100-

year flood event may result in disastrous consequences. Since the two objectives 

of probability and consequence are often conflicting in nature, the multiobjective 

optimization procedure would generate a set of trade-off solutions rather than a 

single optimal solution. The decision variables of the optimization procedure 

would be the unforeseen interdependencies as well as failure points (node 

failures) within the network. Towards the end of optimization, the multiobjective 

optimization procedure would generate a set of solutions (networks with 

corresponding failure points) converging towards Pareto-optimality. Of all the 

solutions, the ones with maximum failure consequences can be examined to 

determine the unforeseen interdependencies as well as failure points (node 

failures) that may lead to the realization of extreme risk events. 

4.1 The steps involved in extreme risk identification 

4.1.1 Identification of the relevant infrastructure components and 

interdependencies 

The key building blocks of the network model would be the infrastructure nodes 

and the known interdependencies or relationships which are represented by links. 

Firstly, all the relevant components/nodes of various infrastructure sectors and 

their characteristics have to be identified. Secondly, the different types of known 

interdependencies (physical, cyber, geographic, policy and societal) among the 

components of various sectors have to be established. Concepts from agent-

based modeling are used to construct the network. Agent-based models are well 

suited for studying cascading behaviors in infrastructure networks. Agents can be 

anything from simple software entities without much intelligence to smart agents 

with intelligence. In the current work, agents are simple software agents that are 

used to represent nodes with their characteristics and the interactions between the 

agents are represented as links. The construction of network model has been 

illustrated in Fig. 4.1. 
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Fig. 4.1 Building the network of infrastructure interdependencies 

 

4.1.2 Analysis of Network Disruptions 

In this report, the failure events studied include only node failures. The 

infrastructure network will be analyzed based on risk which is considered to be a 

function of failure probability and failure consequence as shown in equation 

(4.1).  

                                          (4.1) 

In order to analyze network risk, probabilities of node failures as well as 

consequences have to be calculated. A methodology to calculate the node failure 

probabilities is yet to be investigated and therefore for the purpose of case study, 

probabilities are randomly assigned. The consequence of failure will be 

quantified using a suitable measure from network theory. In this work, failure 

consequence has been quantified by measuring the giant component size of the 

network after node failures. When a node fails, the failure cascades through the 

network and additional nodes may fail due to overloading and the network may 

disintegrate into several components. According to Percolation theory, the 

functional nodes would be the one in the largest/giant component and the other 

nodes will be non-functional [98]. Therefore, the size (number of nodes) of the 

giant component formed or the giant component size      is used as an indicator 

of network failure consequence. Since smaller giant component sizes are 

indicators of catastrophic failures, giant component size has to be minimized to 

obtain the maximum failure consequence. 
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4.1.3 Optimization of network models 

The proposed methodology for anticipating extreme risk involves using an 

optimization algorithm to synthesize infrastructure networks for maximum risk. 

The objectives of the optimization procedure include maximization of failure 

probability and minimization of giant component size (since the smaller the giant 

component size, the worse the consequence). The decision variables include 

unforeseen interdependencies as well as node failures. The optimal solutions (the 

resulting networks) are then analyzed to find the unforeseen interdependencies 

and node failures that can lead to extreme risk. 

4.1.3.1  Formulation of the optimization problem 

Before formulating the optimization problem, there is a need to provide a formal 

definition of unforeseen interdependency. An unforeseen interdependency can be 

defined as follows: 

Definition 4.1 

An unforeseen interdependency in a critical infrastructure network can be 

considered to be an interdependency/link that is not a part of the defined or 

known set of interdependencies/links  .  

The proposed optimization problem can now be stated as follows: 

Given a set of nodes  , a set of known interdependencies   and a set of 

unforeseen interdependencies  , construct a set of networks          that 

maximizes risk due to some failure.  

Let    and    represent two unforeseen interdependencies and    represent a 

node to be failed. The consequence   of network failure is measured by 

calculating the giant component size       of the network that arises when    and    are added to the network and    is made to fail. The probability   of failure is 

a property of the node to be failed   . The problem can be formulated as follows: 

Minimize                    
Maximize        
Decision variables:                                              
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4.1.3.2 The optimization process using genetic algorithms 

 

 

Fig. 4.2 A plot of Pareto optimal solutions obtained from evolutionary 
optimization, with network solutions of extreme disruption representing extreme 

risk events. 

 

The multiobjective nature of the optimization problem together with the discrete 

nature of the problem explains the suitability of evolutionary optimization 

algorithms like genetic algorithms for performing the optimization. Genetic 
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algorithm (GA) is a heuristic algorithm based on the theory of evolution by 

Darwin [99, 100]. In genetic algorithms, the solutions or individuals are 

characterized by their chromosomes which are usually represented in binary 

form as strings of 0’s and 1’s, but other encodings like integer are also possible. 

The chromosomes represent the decision variables (unforeseen 

interdependencies and node failures) of optimization. The objective/fitness 

functions are maximization of failure probability and minimization of giant 

component size. The whole optimization process using GA is illustrated in Fig. 

4.2. In the figure, the nodes in red represent the ones to be failed and the lines in 

bold represent unforeseen interdependencies. The details of GA (both simple and 

multiobjective) are provided in the subsequent sections.  

 (a) The working of a simple genetic algorithm 

In a simple genetic algorithm, a population of individuals (network models) is 

initially generated in a random manner and the algorithm continues for 

generations. There is only one objective to be optimized in a simple genetic 

algorithm and therefore the fitness of each individual is calculated as the value of 

the objective/fitness function for that individual. In each generation, every 

individual’s fitness is calculated and several individuals will be selected based on 

their objective/fitness values which then crossover and get mutated to generate 

next generation individuals. The termination criteria is usually the number of 

generations or the fitness level of individuals [99, 100]. The three basic operators 

in a genetic algorithm: selection, mutation and crossover are explained below.  

Selection 

In the theory of evolution, only the best individuals (with respect to fitness 

values) survive and generate new offspring individuals. There are many methods 

for selecting the best individuals like roulette wheel selection, tournament 

selection, rank selection, etc.  

Crossover 

In crossover, two individuals are combined or mated to generate offspring 

individuals. The offspring individuals may take the best characteristics from 
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parents and produce individuals better than their parents. Crossover occurs based 

on a user-defined crossover probability.  

Mutation 

In mutation, one or more genes in the chromosome of an individual are modified 

and these new genes may drive GA to reach the optimal solutions. Mutation is 

very important since it prevents GA from reaching local optimal solutions. 

Mutation occurs based on a user-defined mutation probability.  

 (b) Multiobjective genetic algorithms 

Most of the real world problems have multiple objectives. There are generally 

two ways to solve a multiobjective optimization problem. In one of the ways, the 

individual objective/fitness functions are combined to form a weighted objective 

function in which the selection of weights is often an issue. In the second way, a 

set of Pareto optimal or trade-off solutions are determined. A Pareto optimal set 

is a set of solutions that are nondominated with respect to each other. A solution     in a multiobjective optimization problem is said to dominate another solution    if both of the following conditions are satisfied: 

a. The solution    is no worse than     in all the objectives. 

b. The solution    is strictly better than    in at least one objective. 

Pareto optimal sets have the advantage that the obtained solution is always a 

trade-off [101]. In this research, a multiobjective optimization algorithm called 

Nondominated Sorting Genetic Algorithm II [100] will be used for optimizing 

the two objectives of probability and consequence of failures. 

The Nondominated Sorting Genetic Algorithm II (NSGA II) algorithm 

In NSGA II, a population of individuals of size   is randomly generated at the 

beginning. This forms the initial parent population which is then sorted based on 

nondomination concept into different fronts or levels. The first front includes the 

individuals in the entire population that are nondominated with respect to each 

other, but dominates all other individuals in the population. The second 

front/level includes all the individuals that are dominated only by the individuals 
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in the first front and the sorting is continued until every individual in the 

population belongs to their respective front. The individuals in the population are 

assigned a rank based on the front they belong to. An offspring population of 

size   is then generated from the parent population by applying genetic 

operators (selection, crossover and mutation). The selection process is based on 

the assigned rank. Thus, the first phase of NSGA II, i.e. generating the initial 

parent population as well as the initial offspring population is completed. 

After this phase, the NSGA II algorithm works a bit differently. The initial 

parent and offspring populations are combined to generate a merged population. 

The parent population of the next generation is formed by selecting the best   

individuals from the merged population, based on nondomination criteria. In 

addition to rank, crowding distance is calculated for every individual. Crowding 

distance shows the closeness of an individual to its neighbor individuals. If the 

mean crowding distance of a population is high, the diversity of the population is 

better. The offspring individuals of this generation are then produced by 

applying genetic operators to the newly formed parent population. The selection 

is now based on rank as well as crowding distance. Among individuals with the 

same rank, the ones in the less crowded region are considered better. The new 

parent and offspring populations are combined to produce the new merged 

population and the process is repeated until the number of generations reaches a 

predefined value.  

A number of overlapping solutions may exist when NSGA II is applied for 

combinatorial optimization. Two strategies to remove overlapping individuals 

have been explained by Nojima et al. [102]. The removal strategies works in 

such a manner that no two individuals with either the same objective 

values/decision variables exist in each generation. The random generation 

process to produce the initial set of parent individuals has been repeated several 

times until   individuals differing in either objective values/decision variables 

are generated. The generation mechanism of the offspring population is not 

modified. However, once the merged population has been formed, the 

individuals with the same objective values/decision variables are removed except 

for a single remaining individual. The individuals after the merging process are 
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evaluated in a similar way as that of NSGA II to select the   best individuals 

from the merged population. 

4.2 The network used for modeling 

Fig. 4.3 shows an illustration of the infrastructure network used for case studies 

which is adapted from Lam et al. [103].  

 

Fig. 4.3 The infrastructure network used for case studies. 

          In the figure, the nodes are represented as circles and labelled with their 

respective numbers. The solid and dashed lines respectively represent primary 

and secondary interdependencies. The components of various infrastructure 

sectors are represented as nodes and the interdependencies between them are 

represented as directed links. There are a total of 43 nodes and 64 links (56 

primary and 8 secondary interdependencies). Some general properties of nodes 

and links are identified for modelling.  The characteristics identified for the 

nodes include buffer and recovery. Links are also identified to be of any of the 

two types: primary or secondary.  

4.2.1 Node characteristics 

(a) Buffer 

Infrastructure networks like oil and gas, food supply, etc. exhibit buffering 

properties since excess resources may be stored at their nodes (fuel filling 



83 
 

stations, food storages, etc.) thereby allowing their continued operation even 

during failures when resources have become unavailable. The availability of 

buffer at a node allows it to remain operational even after the resources from all 

other infrastructure nodes get depleted. Buffering time refers to the time period 

for which the node is able to continue its operation without support/input from 

other nodes. 

(b) Recovery 

The recovery capacity of a node enables it to restore its operation within an 

appropriate time period and recovery time refers to the corresponding time 

period. 

4.2.2 Interdependency characteristics 

(a) Primary Interdependencies 

 They constitute the various interdependencies/reliance between nodes of various 

infrastructures like the supply of materials, geographic proximities, etc.  

(b) Secondary Interdependencies (Redundancies) 

They come into action only when all the inputs to a node are unavailable and all 

the buffer has been used up. When these interdependencies come into operation, 

the node becomes functional and hence they act as redundancies to the node. 

These two types of interdependencies, i.e. primary and secondary form the basic 

interdependencies or the known set of interdependencies. 

4.3 The simulation framework 

4.3.1 Building the network model 

         Fig. 4.4 shows the infrastructure network used for study created using the 

NetLogo platform [97]. In the figure, the nodes are laid out as a circle for clarity; 

primary and secondary links are shown in black and blue color respectively. In 

NetLogo, each node is represented as an agent. The information regarding 

primary and secondary link connections between the nodes/agents is provided to 

the NetLogo program using external text files (see Appendix B). The buffering 

and recovery times as well as failure probabilities of nodes are randomly 
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assigned to the different nodes in this study since they are mainly for illustration 

purposes (see Appendix B for their values inputted). These values are also stored 

in external text files which are then read by the program as input files. Since 

buffer and recovery are incorporated as time delays, a time factor has to be taken 

into consideration during modeling. In Netlogo, time can be modeled using a 

function called “tick”. The concept of tick is very generic and it can represent a 

second, an hour or a day, depending on the application. 

 

Fig. 4.4 The model built using NetLogo. 

4.3.2 Implementing node failures in NetLogo 

Node failures can result from different factors like random errors, intentional 

attacks, natural hazards, etc. When a node is made to fail, it is assumed that it is 

completely destroyed. There may be many nodes that depend on the failed node 

for resources or input and these nodes will be affected. These dependent/affected 

nodes however will not fail instantly since they exhibit buffering and recovery 

properties and also may have secondary interdependencies. Those dependent 

nodes that have buffer would start using their buffers and when the entire buffer 

is used up, the existence of secondary interdependencies will be looked for.  If 

these dependent nodes have secondary interdependencies, they would become in 

normal operating state and if not, the affected or dependent nodes will be 
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checked for recovery. Those dependent/affected nodes with recovery property 

can restore their operation and the ones without recovery property would fail. 

When an additional node fails, checks for buffers, secondary interdependencies 

and recovery will be continued until all the infrastructure nodes enter their steady 

states, i.e. normal or failed condition. The entire cascading process has been 

illustrated in Fig. 4.5. After all nodes have reached their steady states, the 

consequences of failure can be quantified by measuring the size or the number of 

nodes in the largest connected component or the giant component of the network. 

The giant component size can be calculated using Depth First Search algorithm 

from network theory [104]. Another component of risk, i.e. the failure 

probabilities are already randomly assigned to the nodes. 

 

Fig. 4.5 Algorithm illustrating node failure and failure propagation in an 
infrastructure network 
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4.3.3 Implementing the genetic algorithm for optimization 

4.3.3.1 Single objective optimization: minimization of giant component size 

In order to investigate whether unforeseen interdependencies can cause an 

exacerbation of disruption consequence, i.e. a reduction in the giant component 

size, different single objective optimization experiments were performed using a 

simple genetic algorithm. For all the experiments, the objective/fitness function 

is minimizing of giant component size, but there is a variation in the number of 

decision variables depending on the number of unforeseen interdependencies 

added to the network model. The parameter settings of the genetic algorithm 

(GA) experiments are listed in Table 4.1. 

Table 4.1 Parameter settings of single objective optimization experiments 

Index Parameter Setting 

1 Population size 50 

2 Number of generations 50 

3 Crossover rate 0.10 – 1.00 

4 Mutation Rate 0.01 – 0.10 

 

a. Single Objective Optimization Experiment 1: In this experiment, single node 

failures are studied and the addition of unforeseen interdependencies is not 

considered. Each individual in GA represents an integer that encodes the node 

number of the node to be failed. The effect of this failure is propagated through 

the network model until all the nodes reach their steady states. The node whose 

failure results in the least giant component size is obtained by the optimization 

process in which single nodes will be failed iteratively in the network.  

b. Single Objective Optimization Experiment 2: In this experiment, single node 

failures and addition of a single unforeseen interdependency is studied. A GA 

individual in this experiment is encoded as linear sequence of three integers 

(Fig.4.6). During optimization, a single unforeseen interdependency will be 

added to the network and single nodes will be failed iteratively until the network 

with the least giant component size is obtained. 
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Fig. 4.6 Encoding of GA individuals in Single Objective Optimization 
Experiment 2 

 

c. Single Objective Optimization Experiment 3: In this experiment, the addition 

of two unforeseen interdependencies together with single node failures is 

studied. A GA individual in this experiment can be encoded as a linear sequence 

of five integers (Fig. 4.7). During optimization, two unforeseen 

interdependencies are added iteratively to the network model and one node is 

failed until the network with the least giant component size is obtained. 

 

Fig. 4.7 Encoding of GA individuals in Single Objective Optimization 
Experiment 3 

 

4.3.3.2 Multiobjective optimization: minimization of giant component size 

and maximization of probability 

The aim of multiobjective optimization is to find the Pareto-optimal solutions 

(networks with corresponding failures) corresponding to maximum risk in order 

to anticipate extreme risk events. The well-known multiobjective evolutionary 

algorithm, NSGA II is used for optimization. Two different multiobjective 

optimization experiments are performed corresponding to single and two node 

failures. Table 4.2 lists the parameter settings of NSGA II.  
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Table 4.2 Parameter settings of NSGA II used for multiobjective optimization 

Index Parameter Setting 

1 Population size 100 

2 Number of generations 100 

3 Crossover rate 0.10 – 1.00 

4 Mutation Rate 0.01 – 0.10 

 

a. Multiobjective optimization experiment 1: An NSGA II individual in this 

experiment is formulated as a linear sequence of five integers as in Fig 4.7. For 

each individual in NSGA II, the two unforeseen interdependencies represented 

by the individual are added to the network model and then the node specified is 

made to fail. The effect of this failure is propagated through the network model 

until all the nodes reach their steady states. The failure consequence of each 

individual is then calculated by measuring the giant component size. The 

probability of each individual is the same as the failure probability of the node to 

be failed. 

b. Multiobjective optimization experiment 2: An NSGA II individual in this 

experiment is formulated as a linear sequence of six integers (Fig 4.8). Similar to 

the previous experiment, for each NSGA II individual, the two unforeseen 

interdependencies represented by the individual are added to the network model 

and the two nodes specified are made to fail. The failure consequence of each 

individual is then calculated by measuring the giant component size and the 

probability of each individual is calculated as the product of the individual 

failure probabilities of the two nodes represented by the individual. 

 

Fig. 4.8 Encoding of the NSGA II individual in multiobjective optimization 
experiment 2 

For both experiments, a set of Pareto-optimal solutions (networks with 

corresponding failures) corresponding to maximum risk will be generated 
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towards the end of optimization. Among them, the solutions with minimum giant 

component sizes can be analyzed to determine the unforeseen interdependencies 

as well as the node failures that may lead to extreme risks in infrastructure 

networks.  

4.4 Simulation Results 

The total number of single node failures to be investigated in the infrastructure 

network is 43 since the network has 43 nodes. The number of ways in which a 

directed link can be added to the network is given by          which refers to 

the permutation of 43 elements by taking 2 elements at a time as given by 

equation (4.2). 

                         (4.2) 

Assume that the set of unforeseen interdependencies has not been specified, i.e. 

they can be added between any two infrastructure nodes in the network which 

does not already have an existing interdependency between them. There are 64 

known interdependencies in the network and therefore a single unforeseen 

interdependency can be added in     , i.e.         ways. A combination of 

1742 elements taking two elements at a time provides information on how many 

ways in which two unforeseen links can be added as shown in equation (4.3). 

                                    (4.3) 

The total number of cases in which single node failures and addition of two 

unforeseen interdependencies are studied becomes                    . 

For the case where two node failures need to be studied, the search space 

becomes even larger. The total number of cases to be investigated increases 

exponentially with the number of interdependencies and node failures. This 

makes it difficult for using exhaustive search methods like brute-force for 

solving this particular optimization problem and also justifies the use of GA for 

solving the problem. 
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4.4.1 Simulation results of single objective optimization experiments 

 

      Multiple runs (about 25) of the single objective optimization experiments 

were performed by varying the mutation and crossover probabilities and the 

experiments showed that GA could effectively search from large scenario space 

to find the optimal solutions with reasonable running times (approx. 114 sec). 

Fig. 4.9 shows how the giant component size reduces with the number of 

generations in single objective GA experiments 2 and 3. The optimal solution 

was found in the case of single objective experiment 2 by 17th generation and in 

the case of experiment 3 by the 40th generation.  

 

 

 

 

 

 

 

Fig. 4.9 Plot showing the improvement of fitness over successive generations in 
(a) Single objective GA Experiment 2 and (b) Single objective GA Experiment 3 

        

4.4.1.1 Identifying Node Failure that results in the smallest giant 

component size 

All the single objective GA experiments showed that the failure of node 28 

results in the smallest giant component size. This may be because node 28 has 

interdependencies to many other nodes. In other words, many of the nodes in the 

infrastructure network rely on node 28 for input. Therefore, the failure of node 

28 triggers cascading failure of many other nodes resulting in a greater reduction 

of giant component size when compared to other node failures.  
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Fig. 4.10 A figure illustrating the disintegration of the studied infrastructure 
network when node 28 fails in GA Experiment 1. 

 

Fig 4.10 shows the disintegration of the infrastructure network when node 28 is 

failed in GA Experiment 1. In the figure, the black nodes refer to the failed nodes 

that separate from the network’s largest component thus reducing the giant 

component size to 36.  

4.4.1.2 Identifying Crucial Unforeseen Interdependencies 

Apart from the investigation of the crucial node failures that result in the least 

giant component size, there is a need to study the effect of adding unforeseen 

interdependencies on giant component size and also a need to identify the crucial 

unforeseen interdependencies in the network. Table 4.3 records the values of the 

giant component sizes obtained when node 28 fails and different number of 

unforeseen interdependencies are added to the infrastructure network. The table 

shows that adding more number of interdependencies results in greater reduction 

of giant component size. This implies that additional (unforeseen) 

interdependencies can indeed exacerbate the failure consequences. 
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Table 4.3 The effect of adding potential unforeseen interdependencies on giant 
component size after the failure of node 28 

Experiment 

Number 

No. of unforeseen 

interdependencies 

added  

Unforeseen 

Interdependency added 

by GA in optimal 

solutions  

Worst 

Giant 

comp. 

size  

1 0  Nil 36 

2 1  One of (73, 83, 

113, 153, 173, 

283, 313) 

32 

3 2  One of (73, 83, 

113, 153, 173, 

283, 313) and one 

of (319, 419, 

1319, 1519, 

2119, 2819) 

30 

A summary of the important unforeseen interdependencies obtained in the 

optimal solutions of the different GA experiments has also been provided in 

Table 4.3. An arrow is used to refer to a directed interdependency/link in the 

table, i.e.  73 refer to an unforeseen interdependency from node 7 to 3. The 

results from Table 4.3 show that the presence of an unforeseen interdependency 

to node 3 is the most crucial single unforeseen interdependency and the 

interdependencies to node 3 and 19 are the most crucial combination of two 

unforeseen interdependencies. One of the features common to node 3 and node 

19 is that they are supply nodes and many nodes in the network depend on them 

for input. When some other nodes fail in the network, these supply nodes 3 and 

19 also fail as a result of the unforeseen interdependencies added to them which 

further results in the failure of nodes dependent on them. This chain of failures 

reduces the giant component size to 30 which indicates a 30.23% reduction of 

giant component size. 
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4.4.2 Results of multiobjective optimization experiments 

4.4.2.1 Results of multiobjective optimization experiment 1 

The multiobjective optimization experiment 1 was run 15 times by varying the 

crossover and mutation probabilities. A plot of probability vs. giant component 

size of the individuals in the final generation of one of the runs has been shown 

in Fig.4.11. In the figure, the Pareto-optimal solutions corresponding to 

maximum risk are joined by a dashed line. The giant component sizes and 

probability values of the Pareto-optimal solutions obtained from all the 15 runs 

are listed in Table 4.4.  

 

Fig. 4.11 A plot of probability vs. giant component size of individuals in 
multiobjective optimization experiment 1. 

Table 4.4 Probabilities and giant component sizes of the Pareto-optimal solutions 
of multiobjective optimization experiment 1 

 

 

 

 

 

Failed Node  Probability Giant comp. size 

28 0.1 30 

9 0.26 33 

15 0.36 34 

31 0.41 35 

1, 5, 12, 43 0.5 36 
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In order to investigate which node failure as well as unforeseen 

interdependencies can result in the maximum consequence, the Pareto-optimal 

solutions with the smallest giant component size of 30 obtained in the different 

runs of the experiment were observed in detail. One of the Pareto-optimal 

solutions corresponding to the smallest giant component size is shown in Fig 

4.12.  

 

Fig. 4.12 One of the Pareto-optimal solutions corresponding to minimum giant 
component size in multiobjective optimization experiment 1 

 

In Fig. 4.12, node failed is shown in red, the nodes that failed due to failure 

propagation are shown in purple and the unforeseen interdependencies are shown 

by bold lines. An observation of these Pareto-optimal solutions or networks 

identified the failure of node 28 as a potential extreme risk event. The failure 

probability of node 28 is 0.1. An analysis of the Pareto-optimal solutions also 

showed that the most crucial unforeseen interdependencies are the ones added to 

node 3 and node 19. These crucial interdependencies can be interpreted by 

experts in the case of real world networks. 
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4.4.2.2 Results of multiobjective optimization experiment 2 

The multiobjective optimization experiment 2 was run 15 times by varying the 

crossover and mutation probabilities. A plot of probability vs. giant component 

size of the individuals in the final generation of one of the runs has been shown 

in Fig.4.13. In the figure, the Pareto-optimal solutions are joined by a dashed 

line.  

 

Fig. 4.13 A plot of probability vs. giant component size of individuals in 
multiobjective experiment 2 

 

 The giant component sizes and probability values of the Pareto-optimal 

solutions obtained from all the 15 runs are listed in Table 4.5. In order to 

investigate which combination of node failures as well as which unforeseen 

interdependencies can result in the maximum consequence or the smallest giant 

component size, the Pareto-optimal solutions with the smallest giant component 

size of 19 obtained in the different runs of the experiment were observed in 

detail. One of the Pareto-optimal solutions corresponding to the smallest giant 

component size is shown in Fig 4.14. In the figure, the two nodes failed are 

shown in red, the nodes that failed due to failure propagation are shown in purple 

and the unforeseen interdependencies are shown by bold lines. An observation of 
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these Pareto-optimal solutions identified the failure of node 28 together with the 

failure of node 41 as a potential extreme risk event. The probability of this 

failure event is calculated as the product of the individual node failure 

probabilities of 41 and 28 (assuming failure independence) and was found to be 

0.008. The crucial unforeseen interdependencies were found to be added to 

nodes 1 and 3.  

 

Table 4.5 Probabilities and giant component sizes of the Pareto-optimal solutions 
of multiobjective optimization experiment 2 

Failed Nodes  Probability Giant 

comp. size 

28, 41 0.0080 19 

28, 36 0.0130 21 

28, 14 0.0200 22 

28, 16 0.0320 27 

28, 1 0.0500 28 

9, 15 0.0936 30 

27, 15 0.1152 31 

27, 43 0.1600 32 

(1,15),(5,15),(12,15),(43,15) 0.1800 33 

(1,31),(5,31),(12,31),(43,31) 0.2050 34 

(12,43),(1,12),(1,5),(1,43), 

(5,43),(5,12) 

0.2500 35 
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Fig. 4.14 One of the Pareto-optimal solutions corresponding to minimum giant 
component size in multiobjective experiment 2. 

 

4.5 Summary  

This chapter mainly discusses on a framework to anticipate extreme risk events 

in critical infrastructure networks where risk is considered to be function of 

failure probability and consequence. The proposed approach starts from a set of 

infrastructure components/nodes with their known interdependencies and applies 

a genetic algorithm to search for potential failure events and unforeseen 

interdependencies that can maximize risk. The approach was applied to an 

infrastructure network model and the results showed the potential of the 

proposed approach in unraveling the crucial nodes and unforeseen 

interdependencies in the network. It was also found from the study that the 

presence of additional/unforeseen interdependencies can increase the 

vulnerability of infrastructure networks thereby exacerbating the failure 

consequences.  
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5 CHAPTER 5: CONCLUSIONS AND FUTURE 

WORK 
 

 

5.1 Conclusions 

       The modeling and simulation of critical infrastructure network failures is 

challenging, but is extremely important for disruption prevention, protection as 

well as for recovery planning. The research in both single sector infrastructure as 

well as multi-sector infrastructures is important because the improvements made 

in single sector of infrastructure networks may influence the performance of 

other interdependent infrastructure networks. 

       Since the research on critical infrastructure is relatively new, the literature 

on them is not very well organized. There are a variety of modeling methods 

being developed like network theory, agent based modeling, system dynamics, 

etc. and also a variety of metrics for quantifying infrastructure failure 

consequences. Therefore the primary requirement was to understand the area and 

to properly organize the literature. The detailed literature review presented in 

Chapter 2 shows the current research trends in critical infrastructure protection 

and the motivation behind the research objectives.  

    Chapter 3 has presented an investigation of the failure consequences in critical 

infrastructure networks resulting from different node removal strategies using a 

proximity-based failure cascading model. The study investigates the 

removal/failure of nodes based on random, degree-based and recalculated 

degree-based node removal strategies. Through these removal strategies, the 

proposed study attempts to investigate which removal strategy results in the 

largest failure consequence in an infrastructure network. The failure 

consequences are measured using two metrics: accessibility and efficiency. 

Three networks: Singapore’s rapid transit rail network, a network of bus 

interchanges/terminals and a combined rapid transit-bus network have been used 

for case studies. It was found from the results that in general, the studied 

networks show the behaviour of a random network since the networks behave in 

a similar manner to random as well as degree-based node removals. This means 
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that the failure consequence (reduction in both efficiency and accessibility) 

following node failures is similar for both random and degree-based removal 

strategies. However, recalculated node removal strategies result in more failure 

consequences when compared to non-recalculated removal strategies in all the 

three networks. The results also illustrate how the combined rapid transit-bus 

network behaves upon failures in comparison to the independent rapid transit and 

bus networks. The study shows that the presence of interdependencies can have 

both positive as well as negative consequences. On one hand interdependencies 

can improve the operation (in this case reduce the accessibility loss) of the 

combined network; on the other hand, the interdependencies can make the 

network more vulnerable leading to larger failure consequences (in this case the 

increase of efficiency loss). 

      Chapter 4 has presented a methodology to anticipate extreme risk events in 

critical infrastructure networks where risk is considered to be function of failure 

probability and consequence. On the assumption that a significant part of the 

network interdependencies is in fact unknown or unforeseen, the proposed 

approach starts from a set of infrastructure components/nodes with their known 

interdependencies and applies a genetic algorithm to search for potential failure 

points (node failures) and unforeseen interdependencies that can maximize risk 

in infrastructure networks. The approach was applied to an infrastructure 

network model. The failure consequence in the infrastructure network has been 

quantified using a metric called giant component size and the failure 

probabilities have been randomly assigned to the nodes for the purpose of case 

study. The results from the study mainly unraveled the single node failure as 

well as combination of two node failures that can maximize risk in the studied 

network. It was also found from the results that the presence of 

additional/unforeseen interdependencies can increase the vulnerability of 

infrastructure networks thereby exacerbating the failure consequences. The 

results also investigate those potential unforeseen interdependencies that can 

increase disruption consequences in these networks.   
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5.2 Original Contributions Arising from Work 

 The contributions at the end of this research are summarized below:- 

1. The proposed study for vulnerability/consequence analysis of critical 

infrastructure networks has been applied to Singapore’s transportation network. 

To the best of the author’s knowledge, there are no works studying the 

vulnerability or failure consequence of Singapore’s transportation networks to 

random and intentional component failures. 

2. As seen in the literature, all the previous works on critical infrastructure 

protection have been based on the assumption that the knowledge about the 

interdependent infrastructure network is complete. This research is based on the 

assumption that the knowledge about the network interdependencies is in fact 

incomplete. For the first time, the current trends and thinking about critical 

infrastructure protection has been challenged and an optimization algorithm has 

been used to search for the unforeseen interdependencies as well as failure points 

(node failures) resulting in extreme disruptions, thereby anticipating extreme risk 

events.  

3. Another highlight is that the methodology to anticipate extreme risk event 

complements the vulnerability or consequence analysis of networked 

infrastructures with node failure probabilities. A risk analysis approach has been 

given to the problem since both the consequence of failures and their 

probabilities of occurrence are computed as the criteria for optimization. The 

multiobjective maximization of risk is also a novel problem.  

5.3 Future Work 

The recommended future work of this research is summarized below:- 

1. The load/traffic at various nodes in transportation networks has been assumed 

to be a function of its topological property called degree. However, in reality, the 

load or passenger traffic flow at each station has to be estimated through 

electronic tap-in and tap-out data available with the Land Transport Authority. 

2. In the current research, only the node failure scenarios were investigated. 

There is a need to look at the effect of failure of links or interdependencies. For 
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this, new ways to implement cascading failures upon failure of links should be 

incorporated. 

3. The decision variables/vector of genetic algorithm incorporated unforeseen 

interdependencies as well as node failures within the network. There is a need to 

extend the decision vector to incorporate the concept of failure mode (the 

different ways in which a node may fail such as intentional attack, random 

failure, failure due to a natural disaster, etc). There is also a need to implement 

cascading failures depending on the failure mode. 

 4. The failure probabilities of nodes were randomly assigned for the purpose of 

case study. There is a need for further investigation on how to use information 

like failure statistics, technical data, and expert opinion in order to calculate the 

failure probabilities of different nodes. 

5. The approach to anticipate extreme risk events has to be further validated on 

more real world interdependent networks. The combined rapid transit-bus 

network can be further extended by adding more sectors and the proposed 

approach will be applied to study the critical nodes and unforeseen 

interdependencies in the interdependent network. 
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APPENDIX A 
Terms used in network theory 

A graph or network is a mathematical structure consisting of a set of vertices or 

nodes and a set of edges or links connecting the nodes. It is usually denoted by        where   is the set of nodes and   is the set of links.  

Node:-A node is a terminal point or an intersection point of a network. It is the 

abstraction of a location such as a city, a router in a data network, a bus stop, a 

transit terminal, a petrol pump station, etc. The node set of a network   is 

usually denoted by    ) or simply   and the number of nodes in a network is 

represented by  .  

Link:-A link is a connection between two nodes. A link is the abstraction of a 

transport mechanism supporting movements between nodes and it usually 

represents roads, communication channels, pipes, etc. The link set of   is usually 

denoted by     . The total number of links in a network is usually denoted by  . A link is directed if connects an ordered pair of nodes and a directed link can 

be represented graphically as an arrow drawn between the end nodes. A link is 

considered undirected if it disregards any sense of direction and treats both end 

nodes interchangeably.  

Directed and Undirected Networks:-A directed network is the one whose links 

are directed and an undirected network is the one in which the links are not 

directed. 

Degree:-The degree of a node in an undirected network is the total number of its 

links. For a directed network there are two types of degrees: in-degree and out-

degree. The in-degree of a node is the number of its incoming links and out-

degree of a node is the number of its outgoing links. 

Path:-A sequence of links that are traveled in the same direction. For a path to 

exist between two nodes, it must be possible to travel an uninterrupted sequence 

of links. 

Length of a link or path:-It can denote physical distance, the amount of traffic, 

the capacity or any attribute of a link.  
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Subnetwork: - A subnetwork of a network G is a network whose node set is a 

subset of that of the entire node set of network  . The subnetwork of a network   is denoted by  . 

Connected Network:- A network is connected if a path exists from any node to 

any other node in the network. 

Circuit:- If the path is a simple path, with no repeated nodes or links other than 

the starting and ending nodes, it is called a circuit. 

Cycle:-It can be a closed walk or a simple cycle. If the path is a simple path, with 

no repeated nodes or links other than the starting and ending nodes, it is called a 

circuit or simple cycle. If repeated nodes are allowed, the path is called a closed 

walk. 

Tree:- A connected network without a cycle is a tree. If a link is removed from 

such a network, it ceases to be connected. If a new link is added between any two 

nodes of a tree, a circuit is created. 

Spanning tree:-A spanning tree of a network G is a tree composed of all the 

nodes and some (or perhaps all) of the links of G. 

Order:-The order of a network is the number of its nodes. Order of a component 

is the number of nodes in that component. 

Loop:-A loop is a link whose endpoints are the same nodes.  

Complete networks:-A complete network is the one in which every node is 

connected to every other node in the network. 

Cut vertex:-A cut vertex is a vertex whose removal disconnects the network.  

Component:- A component of a network is defined as a subnetwork in which a 

path exists from every node to every other node(i.e., they are mutually 

reachable).  

Giant Component:-It is the largest component in a network.  

 



111 
 

APPENDIX B 
 

NODE PRIMARY 

LINKS 

SECOND-

ARY 

LINKS 

BUFFER-

ING TIME  

RECOVERY 

TIME 

PROBA-

BILITY OF 

FAILURE 

1 9, 39 0 9 9 0.500 

2 0 0 0 10 0.490 

3 20, 21, 25, 

27, 33, 43 

0 20 0 0.350 

4 0 0 0 0 0.480 

5 14 0 3 0 0.500 

6 0 0 0 7 0.460 

7 0 0 0 8 0.450 

8 0 0 0 12 0.440 

9 23, 29, 38, 

42 

0 2 2 0.260 

10 43 0 0 0 0.390 

11 0 0 0 9 0.380 

12 0 0 0 5 0.500 

13 0 0 0 0 0.360 

14 5, 32 0 3 3 0.200 

15 8, 17, 37 0 8 0 0.360 

16 20, 37 9, 27 0 3 0.320 

17 0 0 0 4 0.310 

18 16, 42 0 6 16 0.300 

19 24, 27, 43 0 0 0 0.290 

20 41 6 4 14 0.280 

21 4, 13 0 0 0 0.270 

22 9 0 9 0 0.260 

23 0 0 0 0 0.250 

24 0 0 0 2 0.240 

25 43 0 4 0 0.230 

26 0 28 0 0 0.220 
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27 2, 6, 10, 25 0 6 7 0.320 

28 7, 11, 15, 

30, 31, 37, 

39, 42 

9, 27 7 5 0.100 

29 0 0 0 0 0.200 

30 0 0 2 0 0.190 

31 32, 33 0 0 5 0.410 

32 30, 40 0 2 0 0.170 

33 0 0 0 12 0.160 

34 14 0 0 0 0.150 

35 34 0 3 3 0.300 

36 14 0 0 7 0.130 

37 12 0 12 2 0.350 

38 0 6 0 0 0.110 

39 10, 30, 40 0 10 0 0.100 

40 0 0 0 9 0.090 

41 22, 36 28 0 10 0.080 

42 0 0 0 0 0.070 

43 0 0 8 0 0.500 

 

 

 

 

 

 

 


