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Abstract 

Reconstructing neuronal morphology across different regions or even the whole brain 

is important in many areas of neuroscience research. Large-scale tracing of neurites 

constitutes the core of this type of reconstruction and has many challenges. One key 

challenge is how to identify a weak signal from an inhomogeneous background. Here, 
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we addressed this problem by constructing an identification model. In this model, 

empirical observations made from neuronal images are summarized into rules, which 

are used to design feature vectors that display the differences between the foreground 

and background, and a support vector machine is used to learn these feature vectors. 

We embedded this identification model into a tool that we previously developed, 

SparseTracer, and termed this integration SparseTracer-Learned Feature Vector 

(ST-LFV). ST-LFV can trace neurites with extremely weak signals 

(signal-to-background-noise ratio <1.1) against an inhomogeneous background. By 

testing 12 sub-blocks extracted from a whole imaging dataset, ST-LFV can achieve an 

average recall rate of 0.99 and precision rate of 0.97, which is superior to that of 

SparseTracer (which has an average recall rate of 0.93 and average precision rate of 

0.86), indicating that this method is well suited to weak signal identification. We 

applied ST-LFV to trace neurites from large-scale images (approximately 105 GB). 

During the tracing process, obtaining results equivalent to the ground truth required 

only one round of manual editing for ST-LFV compared to 20 rounds of manual 

editing for SparseTracer. This improvement in the level of automatic reconstruction 

indicates that ST-LFV has the potential to rapidly reconstruct sparsely distributed 

neurons at the scale of an entire brain.  
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1. Introduction 

Neuronal morphology is usually considered the basic structural unit in the brain 

(Marx 2012). The reconstruction of neuronal morphology, including soma localization, 

soma shape reconstruction, neurite tracing, and spine detection, is a key issue in many 

areas of neuroscience research, such as identifying neuronal types, inferring structural 

connections between neurons, drawing neuronal circuits, and modeling neuronal 

functions (R. Parekh and Ascoli 2013; Donohue and Ascoli 2011; Lu 2011; Meijering 

2010; Svoboda 2011). Neurites form the core of neuronal morphology (Ruchi Parekh 

and Ascoli 2015; Peng et al. 2015), and correspondingly, tracing neurites plays an 

important role in the reconstruction of neuronal morphology.  

In recent years, a series of breakthroughs in molecular labeling (Feng et al. 2000; L. 

Luo and Callaway 2008; Ugolini 2010; Jefferis and Livet 2012) and optical imaging 

techniques (A. Li et al. 2010; Gong et al. 2013; Gong et al. 2016; Ragan et al. 2012; 

Silvestri et al. 2012; Osten and Margrie 2013; Chung and Deisseroth 2013) have 

enabled us to rapidly collect brain-wide neuronal images at submicron resolution. 

These imaging datasets display the detailed structure of neurons at an unprecedented 

scale and contain nearly complete morphological information about neurons (Osten 

and Margrie 2013). However, the high-throughput and accurate reconstruction of 

neuronal morphology from these large-scale datasets still faces many challenges. One 

key challenge is to automatically identify neurites with weak signals. This 

identification is universally required to reconstruct neuronal morphology from a 

large-scale dataset due to the complicated nature of neuronal morphologies and the 

characteristics of imaging datasets.  

To some extent, neuronal morphologies are closely linked to the characteristics of 

imaging datasets. A certain level of weak signal exists, originating from the size 

differences in portions of neuronal morphology. Some soma radii can be up to several 

tens of micrometers, while the radii of some neurites are several hundred nanometers. 

When imaging neurites with small radii, a few fluorescent molecules can serve as 

labels, resulting in low signal intensity from these neurites. Images are collected at a 
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relatively low spatial sampling rate, increasing the difficulty in identifying weak 

signals. Because neuronal morphology varies across different brain regions or even 

the whole brain, a balance must be achieved between the sampling rate and the 

imaging speed. Therefore, a relatively low sampling rate is practical. The background 

of large-scale neuronal images is also inhomogeneous, generally as a result of the 

complicated imaging procedure used and the structural differences in different brain 

regions. Some key characteristics of neuronal images can be illustrated in Fig. 1. Two 

sub-blocks were chosen from a whole-brain imaging dataset (Figs. 1a-c), both of 

which contained a neurite with weak signals whose signal-to-background-noise ratios 

(SBRs) are low, approximately 1.05 (Figs. 1d-f). Furthermore, as indicated in Fig. 1f, 

the background intensity of sub-block b is even higher than the foreground intensity 

of sub-block c.  

Many methods trace neuritis well and demonstrate a good ability to identify neurites 

with weak signals (De et al. 2016; Acciai et al. 2016; Sreetama Basu et al. 2016; 

Mukherjee et al. 2015; Xu and Prince 1998; Cai et al. 2006; Saurav Basu et al. 2013; 

Radojevic and Meijering 2017; Choromanska et al. 2012; Zhao et al. 2011; 

Santamaria-Pang et al. 2015; Wang et al. 2011; G. Luo et al. 2015; Peng et al. 2010; 

Turetken et al. 2011; Chothani et al. 2011; Yang et al. 2013; Bas and Erdogmus 2011; 

Rodriguez et al. 2009; Liu et al. 2016; T. Quan et al. 2016; S. Li et al. 2016; Frangi et 

al. 1998). Some of these methods are listed below: model-fitting (Zhao et al. 2011; 

Santamaria-Pang et al. 2015), open-snake (Wang et al. 2011; Cai et al. 2006; G. Luo 

et al. 2015; Xu and Prince 1998), graph-based (Peng et al. 2010; Turetken et al. 2011; 

Saurav Basu et al. 2013; Chothani et al. 2011; Yang et al. 2013), principal curve (Bas 

and Erdogmus 2011), voxel scooping (Rodriguez et al. 2009), multi-scale 

(Choromanska et al. 2012; Frangi et al. 1998), density filters (Radojevic and 

Meijering 2017), and others. However, most of these methods use a set of thresholds 

to determine whether the traced neurite continues or not, and thus may encounter 

difficulty separating weak signals from an inhomogeneous background. Recently 

proposed machine learning methods (R. Li et al. 2017; Chen et al. 2015; Megjhani et 

al. 2015; Gu et al. 2017; Hernandez-Herrera et al. 2014; Becker et al. 2013) can 
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generate tracing results with better accuracy than traditional methods. However, these 

methods may fail to rapidly trace neurites in large-scale images. Machine learning 

methods consider many image features and use an algorithm to detect dominant image 

features, thereby requiring intensive computations. Some of these methods instead 

separate the identification and tracing procedures (R. Li et al. 2017; Chen et al. 2015; 

Megjhani et al. 2015) and attempt to identify as many signal voxels as possible, which 

generates the detailed shape of a neurite. However, heavier computation costs are 

incurred for larger images. 

In this study, we propose a method for identifying weak signals and embed this 

method into the neurite tracing pipeline. Our strategy closely links the identification 

and tracing procedures, and requires only a few foreground voxels in the tracing 

process for identification. We observed many neuronal images and determined 

identification rules: the local background must be smooth, and the neurite must have a 

strong anisotropic shape that can be identified with a carefully chosen threshold value. 

These rules can be summarized as a feature vector that distinguishes foreground and 

background voxels. By training feature vectors on foreground and background voxels, 

we obtained a classifier (Suykens and Vandewalle 1999; Cortes and Vapnik 1995) that 

we combined into our previous tool, SparseTracer (S. Li et al. 2016), naming the 

combination tool SparseTracer-learned feature vector, ST-LFV. We verified that 

ST-LFV can identify weak signals well from relatively low-sampling-rate images and 

can overcome the identification difficulties caused by inhomogeneous backgrounds. 

We demonstrated that ST-LFV significantly enhances the performance of 

SparseTracer in large-scale tracing of neurites.  

 

2. Methods 

In this section, the components of ST-LFV are outlined. First, we describe the 

method used to extract the feature vector of a voxel, which displays the differences 

between the foreground and background voxels. Second, we introduced support 

vector machine (SVM) to the feature vectors space to build an identification model 

that can detect weak signals (Suykens and Vandewalle 1999; Cortes and Vapnik 1995). 
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Third, we implemented this identification model as part of our previous work, 

SparseTracer (S. Li et al. 2016), for the purpose of neurite tracing. We also discuss 

how to select parameters in ST-LFV.  

2.1 Feature extraction for identifying weak signals  

The extraction of representative image features is key to identifying weak 

signals and is based on premises drawn from the images themselves. Here, our 

premises are that the shape of a neurite can be described by a series of touching 

cylinders; the background is locally smooth; and, in a small local region, the 

foreground and background intensity can be distinguished with a well-chosen 

threshold value.  

In general, for a given voxel, the extraction of its corresponding features consists of 

several steps: a) set a series of threshold values, in descending order; b) for each 

threshold value, generate the growth region of the current voxel; c) form a feature 

vector for this voxel composed of elements corresponding to the rate at which 

regional volumes grow to fill the pre-determined neighborhood volume of this voxel, 

called the volume filling rate. Note that the pre-determined neighborhood used in this 

study contained 19 × 19 × 19 voxels whose size is much larger than the radius of a 

neurite. We describe how to extract features in detail and explain why the extracted 

features are consistent with our premises.  

First, set a series of threshold values to generate the growth region. For a given voxel, 

we collected in its neighborhood a number of voxels that connect with each other and 

whose signal intensities are greater than the pre-determined threshold. These collected 

voxels form a growth region. In obtaining a growth region, the threshold setting is a 

key factor. Here, we set a series of descending threshold values for a given point p* in 

an image:  

( ) ( )

( )

* *
1 1 2
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2
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( ) 0,1,...8

mc w p c w p c
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Here, p* represents a 3-dimensional vector containing x, y, and z coordinates; the 

rounding operation of p* equals its corresponding voxel o*; and c1 and c2 are two 
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predetermined constants, c1 = 0.025 and c2=1.5. Here, 1-mc1 is a ratio. w(p*) is a 

weighted value calculated from the signal intensities and the positions of the voxels 

adjacent to o*, and provides a robustness result. This value can be calculated as  
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Here, T is the set that includes [p*] and its 6-voxel neighborhood, [] represents the 

rounding operation of the point’s coordinates; we denote the voxel o* by [p*]; c(o) is 

the intensity value of the voxel o; and || ||2 represents the 2-norm.  

The threshold value is codetermined by a series of ratios and the weight value of a 

given point. The threshold values vary when the weighted value changes. To simplify 

the form of this expression, threshold values are represented by invariable ratios, 

denoted as 1-mc1, where m=0,1,…,8. 

When the signal value of a given point is small, the decrease in the threshold values 

v(﹒) calculated by Eq. 1 varies extremely slowly. To avoid this case, we set a lower 

bound (c2 = 1.5) to meet the decreased amplitude of the threshold values. 

We next generate the growth region with a pre-determined threshold value. For the 

given voxel o*, equal to [p*], the growth region is generated in its neighborhood 

region N, which is a cubic region of 19 × 19 × 19 voxels with o* as its central voxel.  

The steps used to generate the growth region are listed below.  

a) Set the initial seed as the voxel o*, labeled with an arrow in Fig. 2a, and 

search for its neighboring voxels whose intensity ( )c o  satisfies Eq. 3  

( ){ }1 1G o N N c o v= ∈ ⊂ >

               (3) 

Here, N1 is the 26-voxel neighborhood of the voxel o*; v is one of the threshold 

values calculated by Eq. 1; and the voxel o* and the searched voxels form the voxel 

set G1, which is then labeled.  

b) In the unlabeled region of N, search for the 26-voxel neighborhoods of every 
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voxel in the set G1, denoted by N2. According to N2 and the threshold v, use Eq. 3 to 

generate G2, and then label G2. 

c) Repeat the above procedure until no new voxel sets can be generated in N. All 

labeled voxels form the growth region of the voxel o* with respect to the threshold v, 

denoted by G(v).  

The above procedure used to generate a growth region is similar to that described in 

our previous work (S. Li et al. 2016), and a series of growth regions can be generated 

when the threshold value in Eq. 1 varies. Figs. 2b and c illustrate the procedure of 

obtaining the growth region of a signal voxel and a background voxel, respectively. 

The total number of the labeled voxels is determined by the current threshold. Note 

that according to the specific expression of the threshold in Eq. 1, the same ratios do 

not represent the same threshold values for different voxels.  

Next, calculate the feature vector of a given voxel. For a given voxel, we can obtain 

its corresponding growth region with a pre-determined threshold. The volume filling 

rate between the growth region volume (number of labeled voxels) and the 

neighborhood region volume (total number of voxels in the neighborhood) is then 

computed. The feature vector of a point is composed of a series of rates derived from 

different ratios, and this vector is denoted by R . The mth component of R  is defined 

by  

                 

( )
( )

( )
, 0,1, ,8m

m

G v
r m

N

Ω
= =

Ω
L  

                    (4)

 

where
 

( )Ω � is the total number of voxels in the set.  

Following the above mentioned steps, we can achieve the corresponding feature 

vector for every voxel (both foreground and background) in the image. 

Here, we explain why the extracted features are consistent with our premises. If a 

point belongs to the background, the volume filling rate in the feature vector will 

increase to 1.0 rapidly because of the smoothness of the local background. For the 

feature vector of a foreground point, the volume filling rate will increase much more 

slowly, and may not even reach 1.0, as the cylindrical shape of a neurite takes up a 
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small amount of space in its neighborhood and the intensities of foreground and 

background voxels will vary. The differences between foreground and background 

feature vectors are shown in Fig. 2d.  

2.2 The SVM identification model used to identify weak signals  

This section is composed of two parts: 1) automatically extracting raining sets 

from neuronal images; 2) generating the identification model after obtaining the 

training set.  

In a supervised learning framework, a training set is necessary. Here, the training set 

used contains the feature vectors of foreground and the background points. The 

automatic generation of training sets thus requires only computationally obtaining 

some foreground and background points, which may be practical for the following 

reasons. Existing tracing methods can identify weak signals at a certain level, which 

can provide foreground points. The voxels of neurites comprise an extremely small 

proportion of the total voxels in neuronal images. This indicates that there is an 

extremely small chance that some foreground points are included in the several 

hundred background points that are randomly chosen (uniformly distributed) from 

neuronal images.  

Here, we used our previous tool, SparseTracer, to trace neurites and extract 

foreground points from the traced results. The traced results provide the skeleton of a 

neurite, being composed of a series of points in which the adjacent points connect. 

These skeleton points can be recognized as foreground points (Chen et al. 2015). If 

fewer than 500 skeleton points are selected, we calculate the feature vectors of all 

skeleton points. Otherwise, we choose those skeleton points with median signal 

intensities and calculate their corresponding feature vectors. These feature vectors 

constitute the positive training set, denoted by S={s1,s2,…,sn}, (Left, Fig. 2e).   

To obtain negative training samples, we randomly (from a uniform distribution) 

selected points from neuronal images that had same number of positive training 

samples and calculated their feature vectors, denoted by B={b1,b2,…,bn} (Right, Fig. 

2e). Considering that the number of foreground voxels is extremely small compared 

to the total number of voxels in neuronal images, the probability that a selected point 
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is a foreground point is extremely low. Furthermore, the positive training set is known. 

We identified whether a feature vector in B was an outlier by measuring two degrees 

of similarity: one is the inner product between this feature vector and the mean values 

of the negative training set B, and the other is the inner product between this feature 

vector and the mean values of the positive training set S. If the former value is larger 

than the latter, the vector is regarded as an outlier and is deleted from the dataset B. 

The remaining vectors in the dataset comprise the negative training samples.  

To simplify descriptions, we used {yk, xk},k=1,2, …, K to denote the positive and the 

negative training sets. Here, yk=1 or -1, xk is a feature vector, and K is equal to the sum 

of the number of training feature vectors in the set S and in the set B. If yk=1, xk is then 

positive and equal to a component in the set S. Otherwise, xk is equal to a component 

in the set B. After obtaining the training set, we introduced a support vector machine 

(SVM) (Suykens and Vandewalle 1999; Cortes and Vapnik 1995) to build a 

supervised classifier that distinguishes between foreground and background voxels. 

Constructing a supervised classifier can be equivalent to searching an optimal 

hyperplane that separates the positive training and negative training samples with 

maximum margin criteria. The optimal hyperplane can be mathematically described 

by  

0Tw x b+ =
                             (5) 

This hyperplane was determined by solving the classifying problem [49] as  

2
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1 1
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Here, 1{ , }K

k k k
y x

= are training samples; as described above, k
x refers to the kth feature 

vector. If 1
k

y = , k
x is positive and is negative otherwise. γ is used to control the 

tradeoff between training error and generalization ability. The corresponding 

Lagrange problem is given as 
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where k
α are the Lagrange multipliers. Using Kuhn-Tucker conditions, we can obtain 

an optimal solution (Suykens and Vandewalle 1999), and the optimal hyperplane is 

given by  

( )* *

1
0

K

k k kk

T

y x x bα
=

+ =∑
                        

(8)

 

The corresponding supervised classier can be denoted by  

( )* *

1
( )

K T

k k kk
R x sign y x x bα

=
= +∑

                  
(9)

 

We used this classifier to identify whether a point belongs to the foreground, using the 

following method. Submit the feature vector of a point into the classifier. If the 

resulting value is greater than zero, the point is a foreground point; otherwise, it is a 

background point. We also applied the classifier to the training samples. The results 

show that most of the positive and negative values are nearly 1 and -1, respectively 

(Fig. 2f), which illustrates the large differences in the feature vectors of foreground 

and background points (Fig. 2e).  

2.3 Using the identification model for neurite tracing 

Neurite tracing is the process of obtaining the skeleton of a neurite. The skeleton 

is formed from tracing points in which any two adjacent points connect. When tracing 

a neurite, if the current tracing point is identified as a background point, the tracing 

will be terminated. Therefore, accurately identifying foreground points is a key 

component of neurite tracing. We applied the developed identification model to our 

previous tool, SparseTracer, to obtain better neurite tracing results. Specifically, the 

pipeline is described as follows and is shown in Fig. 3.  

Step 1) Use SparseTracer to trace the neurite. When the point 1n
p

+ is identified as a 

background point, tracing stops and an initial skeleton is generated, represented by

{ }1 2, ,..., ,...,
i n

P p p p p= . Here
ip is the ith point on the skeleton.  

Step 2) Extract the feature vectors of foreground and background points separately; 

these form the positive and negative training sets, respectively. Note that the 

foreground points are the point set P.  

  
Step 3) Obtain the SVM identification model with the training set.  
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Step 4) Apply the obtained model to the identification of the points n
p and 1n

p
+ . If 

one of these two points is identified as a foreground point, continue tracing with 

SparseTracer. Otherwise, terminate tracing. 

Our identification model can be combined with most existing tracing methods to 

improve the process of neurite tracing. This statement is based on the fact that most 

tracing methods require identifying whether the current tracing point is a foreground 

or background point. Here, we combined our identification model with SparseTracer 

to improve tracing performance. SparseTracer can successfully trace a neurite with a 

relatively weak signal, which provides as many positive training samples as possible. 

In addition, SparseTracer can rapidly trace a neurite at a large scale, which is 

important for the complete reconstruction of a neuron.  

When analyzing images, the SVM identification model can be updated iteratively to 

detect weaker signals. During neurite tracing, some signal points are identified by the 

initial model, and their corresponding feature vectors are added into the positive 

training set. The updated training set then generates the updated identification model. 

The updated model can detect weaker signals, as the added positive samples provide 

information on weaker signal points. Repeating the above procedure, more neurites 

can be traced, and we used this strategy in our analysis.  

2.4. Parameter settings in the identification model  

To construct the SVM identification model to detect weak signals, certain key 

parameters must be pre-determined, including the size of the training set, the ratios 

used in feature vector extraction, and the size of the neighborhood.  

The size of the training set: The positive training set depends on tracing results. If 

the total number of foreground points in the traced neurites is less than the 

pre-determined number (500), we select all foreground points and calculate their 

feature vectors to form the positive training set. In this case, though the size of the 

positive training set is small (dozens of points), the identification model can still 

behave well, and therefore we did not use upsampling to increase the size of the 

training set. Otherwise, when the traced neurites include many points, many positive 

feature vectors can be generated. In this case, the upper limit for the number of feature 

vectors in the positive training set is 500. The selection of this number is based on a 

tradeoff between computation cost and classification performance. More training 
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samples may not improve identification performance. This selection can ensure that 

the time required to identify weak signals is approximately the same as that required 

for neurite tracing. In addition, balanced training sets are helpful for a supervised 

SVM classifier, and the negative training set is therefore nearly the same size as the 

positive training set (Tang et al. 2009).  

The ratios used in feature vector extraction: The feature vector of a point depends 

on the setting of ratios, as described in Eq. 1. In our analysis, the ratios used in 

descending order range from 1 to 0.8, and the difference between two adjacent ratios 

is c1=0.025. The choice of a small c1 is based on one of our premises, namely, that the 

local background is smooth. Consequently, a slight decrease in the ratio used (i.e., a 

small c1) can fill the entire neighborhood of a background point through region 

growth, and the corresponding component of its feature vector will be equal to 1. 

Therefore, a small value of c1 can capture the smoothness of the background. A 

rapidly decreasing ratio (i.e., a large c1) indicates lower threshold values. With these 

lower thresholds, the growth region of a weak signal point will quickly fill its entire 

neighborhood, and thus the features of the neurite’s morphology will not be captured. 

Overall, the selection of a small c1 is intended to capture the feature differences 

between weak signal points and background points.  

The size of the neighborhood in feature vector extraction: In feature vector 

extraction, the neighborhood of a point contains 19 × 19 × 19 voxels. This is based on 

the following considerations: if the size of a neighborhood is small, the local 

morphology of a neurite extracted with a relatively low threshold may span the entire 

neighborhood in some situations, preventing the capture of its local morphology. 

However, a large neighborhood gives rise to the need for highly complex computation 

to obtain the growth region, which is a key step in feature vector extraction. Taking 

into account the local shape of a neurite whose radius is the size of approximately 1-3 

voxels, we set the size of a neighborhood at 19 × 19 × 19 voxels. This setting satisfies 

the condition that the local morphology of a neurite occupy a small portion of the 

neighborhood. 

All of the parameters discussed here remain unchanged in our analysis.  

 

3. Results 
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The experimental datasets used in our analysis include the fMOST (Gong et al. 

2013), DIADEM (Brown et al. 2011) and BigNeuron datasets (Peng et al. 2015). The 

FMOST datasets include typical sub-blocks from an imaging dataset of a single 

mouse’s whole brain. This whole-brain image dataset was collected with the fMOST 

imaging system (Xiong et al. 2014), with a voxel size of 0.3 × 0.3 × 1 um3. The 

DIADEM (http://www.diademchallenge.org) and BigNeuron 

(http://alleninstitute.org/bigneuron/data/) datasets are freely available; information 

about these datasets can be found at the abovementioned websites, respectively. We 

performed experiments on a computer workstation (Intel® Xeon® CPU 3.46 GHz 

computing platform, Quadro K4000 3G GPU, 192 GB RAM, Windows 7). Our 

analysis involved two algorithms: an automatic tracing algorithm, SparseTracer, and a 

combination of SparseTracer and the learned feature vector (LFV), ST-LFV. When 

using SparseTracer to analyze each image stack, we carefully chose the parameters 

used to produce better tracing results. When using ST-LFV, the default settings for 

tracing parameters were used, which can provide an initial training set in most 

situations; the identification parameters are fixed in the following analysis and have 

been discussed in detail in the Methods section.  

We demonstrated that ST-LFV can trace neurites in inhomogeneous neuronal images. 

We selected two image stacks and the related image features are displayed in Figs. 

4a-4f. One dataset had a strong background (Fig. 4a) and the other had a weak 

background (Fig. 4d). By enlarging the selected sub-blocks (Figs. 4b and c), 

differences are visible between the foreground and the background intensities. These 

differences provide a basis by which a human annotator can obtain the ground truth of 

the neurites (Examples: red curves in Figs. 4a and d). We estimated the background 

values of the voxels labeled with red curves (Figs. 4a and d) using our previous 

method (S. Li et al. 2016) and calculated the foreground values of the voxels with Eq. 

2. In most cases, the background intensities (blue curve in Fig. 4c) estimated from Fig. 

4a are 2-3 times larger than the foreground intensities (red curve in Fig. 4c) calculated 

from Fig. 4c. This result indicates that background intensities vary sharply in 

brain-wide imaging datasets. In this case, we compared the tracing results drawn from 

SpareTracer and ST-LFV (Figs. 4g and h, respectively). SparseTracer failed to trace 

one neurite (red curve in Fig. 4a) regardless of the tracing thresholds used, and 

successfully traced the other neurite with a well-chosen threshold. ST-LFV can 
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provide trace results nearly equal to the ground truth (red curves in Figs. 4a and d). 

We conclude that ST-LFV can overcome the influence of varying background 

intensity on tracing results. Note that for SparseTracer, ‘high threshold’ refers to the 

default threshold set in the algorithm, which can provide robust tracing results in most 

cases; ‘low threshold’ refers to a well-chosen threshold that produces better tracing 

results in a specific case.  

We used an experimental dataset to verify that ST-LFV can identify weak signals. The 

experimental dataset used includes a long neurite with weak signals at several sites 

(Fig. 5a). We selected two sites and extracted their corresponding sub-blocks (Figs. 5b 

and c). With the same procedure used to produce Figs. 4c and f, we estimated the 

foreground and background values of voxels from the two sub-neurites (Figs. 5b and 

c). This estimation indicated that these two sub-neurites have extremely weak signals 

and signal-to-background ratios (SBRs) as low as 1.05 (Figs. 5d and e). SparseTracer 

cannot address this case and only traces part of this neurite (Fig. 5f), despite our best 

efforts to select threshold values. Compared to SparseTracer, ST-LFV can produce 

perfect tracings (red curves, right in Fig. 5f). ‘High threshold’ and ‘low threshold’ in 

Fig. 5f have the same meanings as in Figs. 4g and h.   

Furthermore, we showed that ST-LFV is superior to SparseTracer when tracing 

neurites with 12 experimental image stacks. Each sub-block was 600 × 600 × 600 

voxels. Two typical datasets and their corresponding tracing results are provided (Figs. 

6a and b). These two datasets are extracted from the whole brain dataset, and their 

sites are labeled with arrows in Fig. 6c. The sites of ten other datasets are also given 

(Fig. 6c). These sites show that these twelve datasets are distributed among different 

brain regions. When using SparseTracer to analyze these datasets, we set the tracing 

threshold value to maximize the average tracing accuracy. This is why, for some 

datasets with strong backgrounds, as shown in the middle of Fig. 6a, SparseTracer 

confuses noise with the neurite’s signals and produces more tracing results than 

ST-LFV. We quantified the tracing results from SparseTracer and ST-LFV (Figs. 6d 

and e). The average recall rate and the average precision rate are 0.93 and 0.86 for 

SparseTracer, and 0.99 and 0.97 for ST-LFV, respectively. The formula used to 

calculate the recall and precision rates can be found in our previous work (T. Quan et 

al. 2016).  

Our premises are the basis of ST-LFV. If the features of neuronal image stacks are 
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consistent with our premises, then ST-LFV can effectively identify neurites with weak 

signals from these image stacks and provide perfect tracing results. Here, we 

examined whether our premises apply in general to DIADEM datasets. Two datasets 

were used for this purpose, both of which are labeled by green fluorescent protein. 

One of the datasets is shown in Fig. 7a (Neocortical Layer 6 Axons dataset) and was 

imaged by a two-photon microscope, and the other (OP dataset) was imaged by 

2-channel confocal microscopy. Using the same procedure described in the Methods 

section, we extracted foreground points and background points and calculated 

corresponding feature vectors. The calculated feature vectors (Figs. 7c-f) demonstrate 

large differences between the extracted foreground and extracted background points. 

These differences result in an identification model for detecting weak signals with an 

extremely low training error (0%/2.6% for Fig. 7g and 0%/0% for Fig. 7h). These 

results indicate that along with the MOST datasets, our premises hold for the 

DIADEM dataset. Note that the extracted background points also include a few points 

located in regions adjacent to or at the boundaries of neurites, especially for images 

(Fig. 7a) in which the number of signal voxels is not extremely small compared to the 

total number of voxels. In this case, these few points can be regarded as positive for 

the training classifier (see Fig. 7g).  

We also demonstrated that our premises hold for BigNeuron datasets. Two typical 

datasets (checked6_mouse_tufts and checked_mouse_korea) were used for this 

purpose (Figs. 8a and b). Both datasets have strong background noise, but the 

respective feature vectors for the extracted foreground and background points are 

different and are easily classified into two groups (Figs. 8c-f). Furthermore, these 

feature vectors, as the training set, can be used to derive identification models with a 

training error rate of 0.4%/0.4% for Fig. 8g and 0.8%/1.6% for Fig. 8h, respectively. 

The low training errors indicate the large differences between the features of the 

foreground and background points. These differences originate from the fact that our 

premises are consistent with the features of the analyzed datasets. Note that in Figs. 8 

g and h, some training errors occur that can be attributed to the interference of the 

strong background.  

We demonstrated that ST-LFV can address the challenges illustrated in Fig. 8. The 

two datasets selected include weak signals and strong background noise. We 

compared the tracing results from SparseTracer and ST-LFV (Figs. 9a-d), and found 

that SparseTracer cannot trace some neurites with extremely weak signals (arrows in 

Fig. 9a and c). ST-LFV provided tracing results that included almost all of the neurites 
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that could not be traced with SparseTracer. In addition, this result verified that the 

identification model (Figs. 8g and h) is usable even with some training errors.  

Due to the superior tracing performance of ST-LFV, we found that it could vastly 

enhance the automation level of SparseTracer software, enabling the rapid tracing of 

neurites at a large scale. To illustrate this property, we selected a dataset that included 

several long axons, with a total size of 1.99 × 1.93 × 1.32 mm3 (voxel size, 0.3 × 0.3 × 

1 µm3, 105 GB). We adopted the divide-and-conquer strategy used in our previous 

work (S. Li et al. 2016) for large dataset analysis. We also added a manual editing 

module into the SparseTracer tool, which helps to obtain an initial tracing direction 

and sites for continuous tracing when neurites with weak signals are not detected by 

the algorithm. Due to the manual editing module, SparseTracer and ST-LFV can 

provide the same tracing results (Figs. 10b and c). However, the number of manual 

editing sessions required for SparseTracer (20 times) is far greater than for ST-LFV (1 

time). This shows the advantage of ST-LFV in large-scale tracing of neurites. We 

quantified this advantage by comparing the total time required by ST-LFV with that of 

SparseTracer. In this tracing, ST-LFV required approximately 5 minutes, and 

SparseTracer required approximately 20 minutes. In ST-LFV, the time required to 

identify weak signals is 47% of the total time, which is less than the time required for 

tracing neurites. Using SparseTracer to trace neurites requires intensive manual 

editing and to provide a fair comparison we counted the total time that a skillful 

annotator spent on this tracing. Therefore, 20 minutes is a conservative estimate for 

SparseTracer. Image reading time is not included in the total time, as a RAID is 

connected to the workstation directly and the time required can be neglected here. 

Using the above comparisons, we conclude that ST-LFV significantly improves the 

tracing performance of SparseTracer and is valuable for large-scale tracing of 

neurites.  

4. Discussion  

ST-LFV involves more rules deduced from images by human beings than other 

methods (R. Li et al. 2017; Chen et al. 2015). These rules are based on the fact that 

our premises are commonly applicable to most neuronal images collected with optical 

microscopes, and provide a basis for constructing a feature vector that displays the 

differences between foreground and background voxels. Using more rules avoids a 
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complicated procedure for extracting valid features and identifying weak signals, 

indicating that intensive computation is avoidable. This is the primary reason why 

ST-LFV is suitable for large-scale tracing of neurites.  

In ST-LFV, the identification model is embedded into the tracing procedure, which is 

different from other methods (R. Li et al. 2017; Chen et al. 2015). When the tracing 

termination conditions are effective, the identification method works and identifies 

whether the current tracing point is a foreground voxel. If yes, tracing is continuous. 

The identification model enhances the ability of ST-LFV to trace neurites with weak 

signals and is linked to the tracing procedure. Other methods separate the 

identification and tracing procedures by using a machine learning method to identify 

as many foreground voxels as possible and then perform the tracing procedure, i.e., 

extract the skeleton of the identified foreground. These methods aim to identify all 

foreground voxels, and thus have the relatively high computational complexities, 

which is an obstacle to large-scale tracing of neurites. ST-LFV activates the 

identification model only when the tracing terminal conditions are effective, and thus 

only identifies a few foreground voxels when tracing a neurite. This contributes to the 

ability of ST-LFV to rapidly trace neurites in large-scale images.  

Similar to machine learning methods (Suykens and Vandewalle 1999; Cortes and 

Vapnik 1995), obtaining a training set is a key part of ST-LFV. Here, the training set 

contains positive (foreground) and negative (background) feature vectors. In our 

method, the training set is automatically generated and does not require manual 

labeling. A positive feature vector in the training set is determined by its 

corresponding foreground voxel (see the Methods section). The voxel is automatically 

generated by the tracing procedure, such as SparseTracer (S. Li et al. 2016) or other 

methods (Bas and Erdogmus 2011; Rodriguez et al. 2009). A negative feature vector 

is determined by its corresponding voxel randomly (from a uniform distribution) 

chosen from the image. This random selection assures that the chosen voxel has an 

extremely low probability of being in the foreground. This low probability is ensured 

by the fact that the spatial distribution of neurites is sparse and the number of 

foreground voxels is extremely small compared to the total number of voxels. 
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According to the above analysis, automatically obtaining a training set is feasible.  

In SparseTracer, we use a constrained principal curve to trace neurites with weak 

signals (S. Li et al. 2016; T. Quan et al. 2016). In general, it is difficult to obtain a 

forward tracing direction from this type of neurite because of inadequate local 

structure information. In this case, the constrained principal curve introduces 

directional information for the traced points, and this direction becomes the forward 

tracing direction. This feature allows SparseTracer to detect weaker signals compared 

to other methods (Rodriguez et al. 2009; Wang et al. 2011; Xiao and Peng 2013). 

When analyzing images that include weak signals, SparseTracer demonstrates highly 

accurate tracing performance (>85% recall at >90% precision). However, 

SparseTracer, like most other methods, uses a set of thresholds to determine whether a 

tracing termination situation has been reached. This termination condition may not be 

suitable for the detection of weak signals from an inhomogeneous background (See 

Figs. 4g and h). This type of weak signal detection is a common task when tracing 

large-scale neurites. Considering this situation, we proposed an identification model 

and combined it with SparseTracer, i.e., ST-LFV, for large-scale tracing of neurites. To 

provide better tracing performance, our proposed identification method can be 

embedded into the pipeline of most tracing methods, such as the voxel scoping 

method (Rodriguez et al. 2009), the model fitting method (Zhao et al. 2011), the 

principal curves method (Bas and Erdogmus 2011), and others.  

The identification model used in ST-LFV is based on rules drawn from various types 

of neuronal images. The identification method can be used directly for most neuronal 

images. However, in a few cases, some processing may be necessary before using the 

identification method. For example, if the neuronal images contain densely distributed 

somas, a certain amount of foreground voxels will appear in the randomly chosen 

voxels that are used to construct the negative training set. To some extent, this violates 

the assumption (see the Methods section) that the probability that the randomly 

chosen voxels contain some foreground voxels is extremely small. 

In this case, by identifying the soma region as in our previous work (Tingwei Quan et 

al. 2013; T. Quan et al. 2014), voxels in the soma region can be removed from the 
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negative training set. For images with densely distributed neurites, the difficulties in 

obtaining the negative training set and the corresponding solutions are similar to those 

in images with dense somas. For images with local backgrounds that are not smooth, 

some de-noising methods (Meijering 2010) can be used to generate a smooth 

background.  

5. Conclusion 

We proposed a method to identify neurites with weak signals from an 

inhomogeneous background. We verified that the extracted feature, which 

differentiates the foreground and background, is widely applicable across various 

types of datasets. We demonstrated that the identification method can vastly increase 

the accuracy of tracing neurites. We further demonstrated that this identification 

method is suitable for large-scale tracing of neurites, which aids in the reconstruction 

of a neuron across different brain regions or even the whole brain.  
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Figure Legends 

Figure 1. Some key characteristics of neuronal images at the brain-wide scale. (a) A thumbnail 

view of a mouse brain dataset in which two sub-blocks are highlighted with squares; (b) a 

sub-block with a single neurite, part of which is labeled with a square; (c) similar to (b); (d) 

maximum projections of the labeled view in (b) through a depth of 10 µm, with a scale bar of 2 

µm; (e) similar to (d); (f) The upper two curves represent the foreground (red) and the background 

(blue) of the neurite in (d), and the bottom two curves correspond to the neurite in (e).  

 

Figure 2. An illustration of feature vector extraction. (a) An image dataset including the labeled 

foreground voxels (light red) and background voxels (light blue). The foreground voxel (orange) 

labeled with an arrow and its corresponding growth regions in (b). (b) Calculating the growth 

regions of the selected foreground voxel (yellow) respective to different ratios. The neighborhood 

and the growth regions of this voxel are labeled by the yellow cubic and purple points, 

respectively. (c) The same as (b) for the selected background voxel (blue). (d) The foreground 

(yellow line) and background (blue line) feature vectors calculated from the given voxels in (b) 

and (c), respectively; (e) feature vectors of all labeled foreground (left) and background (right) 

voxels in (a); (f) generating an SVM identification model with feature vectors from (e). The 

positive (yellow circles) and the negative (blue triangles) results corresponding to the foreground 

and background feature vectors in (e), respectively.  

 

Figure 3. The pipeline of neurite tracing with ST-LFV. S1. Acquire the initial skeleton (green 

curve) of the neurite with SparseTracer. The site where SparseTracer fails is labeled with a circle; 

S2. Extract the feature vectors from the labeled voxels. These labeled voxels include foreground 

voxels (red) on the initial skeleton in S1 and background voxels (blue), and their corresponding 

feature vectors are located in the upper and lower panels, respectively; S3. Construct an SVM 

identification model with feature vectors in S2; S4. Use the identification model to identify weak 

signals and continue tracing. The final reconstruction (green) is thus obtained. 

 

Figure 4. Performance on datasets with inhomogeneous backgrounds drawn from SparseTracer 

(ST) and ST-LFV, respectively. (a) One dataset with a strong background and a manually traced 
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neurite (red). Part of this traced neurite is labeled with a square. (b) Maximum projections of 

labeled regions in (a) through a depth of 10 µm, with a scale bar of 10 µm; (c) The foreground (red) 

and background (blue) intensities of the traced neurite in (a). The intensities of the neurite in (b) 

are close to its background, labeled with dashed square; (d) One dataset with a weak background 

and one similar to (a); (e) and (f) have similar descriptions as (b) and (c), respectively; (g) Tracing 

results drawn from ST with a high threshold (purple) and a low threshold (yellow), respectively, 

and drawn from ST-LFV (green). The location of the weak neurite in (b) is labeled with circles. 

Over-traced results (arrow) drawn from ST with a low threshold; (h) similar to (g). 

 

Figure 5. Performance on a dataset with weak neurites drawn from SparseTracer (ST) and 

ST-LFV, respectively. (a) A neurite and its initial tracing skeleton (green) drawn from ST. Two 

typical weak signal regions (dashed squares b and c) contain portions of this neurite; (b) and (c) 

are the enlarged views of the labeled regions in (a). Both include maximum intensity projections 

through a depth of 10 µm, with a scale bar of 5µm; (d) and (e) are the foreground and background 

intensities of the neurites in (b) and (c), respectively; (f) Tracing results drawn from ST with a 

high threshold (purple) and a low threshold (yellow), respectively, and from ST-LFV (red). The 

manual tracing results are labeled with green curves. The location of the weak neurite in (b) and (c) 

is labeled with circles. 

 

Figure 6. Comparisons of neurite tracing results drawn from SparseTracer (ST) and ST-LFV. (a) 

One typical dataset with a strong background and its corresponding tracing results drawn 

manually (green), with ST (red), and with ST-LFV (yellow). Over-tracing results from ST are 

labeled with circles; (b) Another dataset with a weak background in which ST fails to trace part of 

a neurite labeled with an arrow; (c) The distribution of the datasets’ locations in the mouse brain. 

The locations of dataset (a) and (b) are labeled with yellow arrows; (d) and (e) are automatic 

tracing results from the datasets in (c) and are measured with a precision rate (d) and a recall rate 

(e), respectively. The red numbers '2'&'4' on the lateral axis represent the datasets shown in (a) and 

(b). 

 

Figure 7. Feature vector extraction from DIADEM datasets. (a) and (b) are two datasets, one from 

the Neocortical Layer 6 Axons datasets and the other from the Olfactory Projection Fibers datasets. 

The foreground (red) and background (blue) voxels used for feature extraction; (c) and (d) The 

foreground (yellow) and background (blue) feature vectors calculated from two labeled voxels in 

(a) and (b), respectively; (e) and (f) are feature vectors of all labeled foreground (upper) and 
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background (bottom) voxels in (a) and (b), respectively; (g) and (h) generate the SVM 

identification model with feature vectors from (e) and (f), respectively. The positive (yellow 

circles) and the negative (blue triangles) results correspond to foreground and background feature 

vectors. 

 

Figure 8. Feature vector extraction from BigNeuron datasets. (a) and (b) are two datasets, one 

from the checked6_mouse_tufts datasets and the other from the checked_mouse_korea datasets. 

The foreground (red) and background (blue) voxels used for feature extraction; (c) and (d) The 

foreground (yellow) and background (blue) feature vectors are calculated from two labeled voxels 

in (a) and (b), respectively; (e) and (f) are feature vectors of all labeled foreground (upper) and 

background (bottom) voxels in (a) and (b), respectively; (g) and (h) generate the SVM 

identification model with feature vectors from (e) and (f), respectively.  

 

Figure 9. Tracing performance on two BigNeuron datasets drawn from SparseTracer (ST) and 

ST-LFV. (a) The tracing results drawn from ST (red). Some neurites cannot be detected by ST, and 

these are labeled with arrows. The ground truth (green) is also provided. (b) ST-LFV can provide 

tracing results (purple) that are almost equivalent to the ground truth (green). The neurites that 

cannot be detected with ST can be traced successfully (see the labeled arrow); (c) and (d) share 

descriptions similar to (a) and (b), respectively. 

 

Figure 10. Tracing neurites at a large scale. (a) A large-scale dataset (approximately 105 GB) and 

the tracing results (ground truth) drawn from a human annotator (green); (b) the tracing results 

(red) drawn from SparseTracer (ST) equivalent to the ground truth. A total of 20 manual edits 

(interferences) are required, and their corresponding locations are labeled with white dots; (c) for 

ST-LFV, only one manual edit is required (arrow). 
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