Identities in tensor products of Banach algebras

R. J. Loy

Abstract

Let A_{1}, A_{2} be Banach algebras, $A_{1} \otimes A_{2}$ their algebraic tensor product over the complex field. If $\|\cdot\|_{\alpha}$ is an algebra norm on $A_{1} \otimes A_{2}$ we write $A_{1} \otimes_{\alpha} A_{2}$ for the $\|\cdot\|_{\alpha}$-completion of $A_{1} \otimes A_{2}$. In this note we study the existence of identities and approximate identities in $A_{1} \otimes_{\alpha} A_{2}$ versus their existence in A_{1} and A_{2}. Some of the results obtained are already known, but our method of proof appears new, though it is quite elementary.

1. Preliminaries

The four results collected here are probably already known in one form or another; the proofs are included for completeness.

PROPOSITION 1. Let A be a Bonach algebra, $\left\{e_{\lambda}\right\},\left\{f_{\mu}\right\}$ nets in A such that $\left\|e_{\lambda} x-x\right\| \rightarrow 0,\left\|x f_{\mu}-x\right\| \rightarrow 0$ uniformly on the unit vall of A. Then A has an identity.

Proof. Take $s \in\left\{e_{\lambda}\right\}$ such that $\|s x-x\| \leq \frac{1}{2}$ for $\|x\| \leq 1$. Then s is not a left topological divisor of zero, for otherwise there would be $\left\{x_{n}\right\} \leq A,\left\|x_{n}\right\|=1$, with $s x_{n} \rightarrow 0$, contradicting $\left\|s x_{n}-x_{n}\right\| \leq \frac{1}{2}$ for each n. Similarly there is $t \in A$ which is not a right topological divisor of zero.

Now for each positive integer n take $e_{n} \in\left\{e_{\lambda}\right\}, f_{n} \in\left\{f_{\mu}\right\}$ such that $\left\|e_{n} x-x\right\| \leq \frac{1}{n},\left\|x f_{n}-x\right\| \leq \frac{1}{n}$ for $\|x\| \leq 1$. Then certainly $\left\|\left(e_{n}-e_{m}\right) t\right\| \leq\left(\frac{1}{n}+\frac{1}{m}\right)\|t\|, \quad\left\|s\left(f_{n}-f_{m}\right)\right\| \leq\left(\frac{1}{n}+\frac{1}{m}\right)\|s\|$ and so, by the choice of s and $t,\left\{e_{n}\right\},\left\{f_{n}\right\}$ are Cauchy, and so converge to elements $e, f \in A$. But then e and f are respectively left and right identities for A, and so $e=f$ is an identity.

We will also require the following modification of Proposition 1. As usual v, \wedge denote spectral radius and Gelfand transform respectively.

PROPOSITION 2. Let A be a commutative Banach algebra, $\left\{e_{\lambda}\right\} a$ net in A such that $v\left(e_{\lambda} x-x\right) \rightarrow 0$ uniformly for $v(x) \leq 1$. Then there is an idempotent $e \in A$ with $\hat{e} \equiv 1$.

Proof. By the same argument as in Proposition 1 there is a sequence $\left\{e_{n}\right\} \subseteq A$ with $v\left(e_{n} x-x\right) \rightarrow 0$ uniformly for $v(x) \leq 1$, and $v\left(e_{n}-e_{m}\right) \rightarrow 0$. It follows that $\left\{\hat{e}_{n}\right\}$ converges uniformly to the constant function l on the carrier space of A, which is thus compact. Also, for n sufficiently large \hat{e}_{n} is bounded away from zero, and the elementary argument of [5], pp. 17l-2 now furnishes the desired idempotent e.

PROPOSITION 3. Let A be a Banach algebra which does not consist entirely of right (left) topological divisors of zero. If A has a left (right) approximate identity $\left\{d_{\rho}\right\}$ then it has a bounded left (right) approximate identity. Indeed, if A is commutative and $\left\{d_{0}\right\}$ is countable, then $\left\{d_{\rho}\right\}$ is bounded.

Proof. Let F be the family of all finite subsets of A, and define a directed set $\Lambda=\{(F, \delta): F \in F, 1>\delta>0\}$ where $\left(F_{1}, \delta_{1}\right) \leq\left(F_{2}, \delta_{2}\right)$ if $F_{1} \leq F_{2}$ and $\delta_{2} \leq \delta_{1}$. Take $z \in A$ not a right topological divisor of zero. Then for $\lambda=(F, \delta) \in \Lambda$, take $e_{\lambda} \in\left\{d_{\rho}\right\}$ such that $\left\|e_{\lambda} y-y\right\|<\delta$ for $y \in F \cup\{z\}$, so that if $x \in A, l>\varepsilon>0$, $\left\|e_{\lambda} x-x\right\|<\varepsilon$ provided $\lambda \geq(\{x\}, \varepsilon)$. It follows that $\left\{e_{\lambda}\right\}$ is a left approximate identity in A. Also, $\left\|e_{\lambda} z\right\|<1+\|z\|$ for all λ, so
that, by the choice of $z,\left\{e_{\lambda}\right\}$ is bounded.
The last statement is proved in [6], p. 279.
REMARK. The converse is false: $L^{1}(0,1)$ is a radical algebra under convolution, so that all elements are topological divisors of zero, but has a (countable) bounded approximate identity.

Now let U_{1}, U_{2} be seminormed spaces under p_{1}, p_{2} respectively. Corresponding to the normed case define seminorms p_{γ}, p_{λ} on $U_{1} \otimes U_{2}$ by

$$
\begin{gathered}
p_{\gamma}(x)=\inf \left\{\sum p_{1}\left(u_{i}\right) p_{2}\left(v_{i}\right): x=\sum u_{i} \otimes v_{i}\right\}, \\
p_{\lambda}(x)=\sup \left\{\left|\sum \varphi_{1}\left(u_{i}\right) \varphi_{2}\left(v_{i}\right)\right|: x=\sum u_{i} \otimes v_{i}, \varphi_{j} \in U_{j}^{*},\left\|\varphi_{j}\right\|_{p_{j}}=1\right.
\end{gathered}
$$

As in the normed case p_{γ} is the greatest seminorm p on $U_{1} \otimes U_{2}$ such that $p(u \otimes v)=p_{1}(u) p_{2}(v), u \in U_{1}, v \in U_{2} ;$ and so in particular $p_{\lambda} \leq p_{\gamma}$. Using the terminology of [1] a seminorm p on $U_{1} \otimes U_{2}$ will be called admissible if there are positive constants m, M such that $m p_{\lambda} \leq p \leq M p_{\gamma}$.

PROPOSITION 4. Let $U_{j}, p_{j}, j=1,2$ be as above, and p an admissible seminorm on $U_{1} \otimes U_{2}$, with m as above. If $x=\sum_{i=1}^{n} u_{i} \otimes v_{i} \in U_{1} \otimes U_{2}$ with $\left\{v_{i}\right\}$ (or $\left\{u_{i}\right\}$) Zinearly independent, then $p_{1}\left(u_{i}\right) p_{2}\left(v_{i}\right) \leq \frac{1}{m} p(x), \quad i=1,2, \ldots, n$.

Proof. Take $1 \leq i \leq n$. If $p_{1}\left(u_{i}\right) p_{2}\left(v_{i}\right)=0$ the result is immediate for this i, otherwise the Hahn-Banach theorem furnishes $\varphi_{j} \in U_{j}^{*}, j=1,2$ such that $\left\|\varphi_{j}\right\|_{p_{j}}=1, \varphi_{2}\left(v_{k}\right)=\delta_{i k} p_{2}\left(v_{k}\right)$, $\varphi_{1}\left(u_{i}\right)=p_{1}\left(u_{i}\right)$. But then for $w=\sum s_{k} \otimes t_{k} \in U_{1} \otimes U_{2}$, $\varphi_{1} \otimes \varphi_{2}(w)=\sum \varphi_{1}\left(s_{k}\right) \varphi_{2}\left(t_{k}\right) \leq p_{\lambda}(w) \leq \frac{1}{m^{\prime}} p(w)$, and so $\varphi_{1} \otimes \varphi_{2}(x)=p_{1}\left(u_{i}\right) p_{2}\left(v_{i}\right) \leq \frac{1}{m} p(x)$.

2. The general (non-commutative) case

For the remainder of this paper A_{j} will denote a Banach algebra with norm $\|\cdot\|_{j}$, spectral radius $v_{j}, j=1,2 ;\|\cdot\|_{\alpha}$ will be an algebra norm on $A_{1} \otimes A_{2}$ with spectral radius ν_{α}. If A is commutative its carrier space, with the Gelfand topology, will be denoted Φ_{A}.

THEOREM 1. Let $\|\cdot\|_{\alpha}$ be an admissible algebra norm on $A_{1} \otimes A_{2}$. Then $A_{1} \otimes_{\alpha} A_{2}$ has an identity ι if and only if A_{1}, A_{2} have identities e, f, and $i=e \otimes f$.

Proof. Suppose that $A_{1} \otimes_{\alpha} A_{2}$ has an identity ι, the converse being immediate. Let $\varepsilon>0$, and take $x=x_{\varepsilon} \in A_{1} \otimes A_{2}$ with $\|x-\imath\|_{\alpha}<\varepsilon$. Then if $x=\sum u_{i} \otimes v_{i}$ and $\|s \otimes t\|_{\alpha} \leq 1$,

$$
\left\|\sum u_{i} s \otimes v_{i} t-s \otimes t\right\|_{\alpha}<\varepsilon, \quad\left\|\sum s u_{i} \otimes t v_{i}-s \otimes t\right\|_{\alpha}<\varepsilon .
$$

Now let $\sum u_{j}^{\prime} s \otimes v_{j}^{\prime}, \quad \sum s u_{k}^{\prime \prime} \otimes v_{k}^{\prime \prime}$ be alternative expressions for $\sum u_{i} s \otimes v_{i} t, \quad \sum s u_{i} \otimes t v_{i}$ respectively, where $v_{1}^{\prime}=v_{1}^{\prime \prime}=t$ and $\left\{v_{j}^{\prime}\right\}$, $\left\{v_{k}^{\prime \prime}\right\}$ are linearly independent sets. Then

$$
\left\|\left(u_{1}^{\prime} s-s\right) \otimes t+\sum_{j \geq 2} u_{j}^{\prime} s \otimes v_{j}^{\prime}\right\|_{\alpha}<\varepsilon,\left\|\left(s u_{1}^{\prime \prime}-s\right) \otimes t+\sum_{k \geq 2} s u_{k}^{\prime \prime} \otimes v_{k}^{\prime \prime}\right\|_{\alpha}<\varepsilon
$$

and so by Proposition $4\left\|u_{1}^{\prime} s-s\right\|_{1}\|t\|_{2}<\frac{\varepsilon}{m},\left\|s u_{1}^{\prime \prime}-s\right\|_{1}\|t\|_{2}<\frac{\varepsilon}{m}$, where $m\|\cdot\|_{\lambda} \leq\|\cdot\|_{\alpha} \leq M\|\cdot\|_{\gamma}$. Now $u_{1}^{\prime}, u_{1}^{\prime \prime}$ depend on t only, not upon s, and so, noting that if $\|s\|_{1} \leq 1$ then $\|s \otimes t\|_{\alpha} \leq M\|t\|_{2}$, it follows that $\left\|u_{1}^{\prime} s-s\right\|_{1} \leq \frac{M}{m}, \quad\left\|s u_{1}^{\prime \prime}-s\right\|_{1} \leq \frac{M}{m} \varepsilon$, for $\|s\|_{1} \leq 1$. Taking $\varepsilon=1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots$ we thus obtain sequences $\left\{e_{n}\right\},\left\{e_{n}^{\prime}\right\} \subseteq A_{1}$ such such that $\left\|e_{n} s-s\right\|_{1} \rightarrow 0,\left\|s e_{n}^{\prime}-s\right\|_{1} \rightarrow 0$ uniformly on the unit ball of A_{1}, so that by Proposition $1 A_{1}$ has an identity e.

Similarly A_{2} has an identity f, whence $e \otimes f$ is an identity on
$A_{1} \otimes_{\alpha} A_{2}$ and so must equal ι.

By an equally simple argument we have the following.
THEOREM 2. Let $\|\cdot\|_{\alpha}$ be an admissible algebra norm on $A_{1} \otimes A_{2}$. If A_{1} and A_{2} each possess a bounded left (right) approximate identity then so does $A_{1} \otimes_{\alpha} A_{2}$. Conversely, if $A_{1} \otimes_{\alpha} A_{2}$ has a left (right) approximate identity then so do A_{1} and A_{2}.

Proof. Let $m\|\cdot\|_{\lambda} \leq\|\cdot\|_{\alpha} \leq M\|\cdot\|_{\gamma}$, and take $\left\{e_{\lambda}\right\},\left\{f_{\mu}\right\}$ bounded left approximate identities in A_{1} and A_{2} respectively, with $\sup \left\|e_{\lambda}\right\|_{1} \leq C, \quad \sup \left\|f_{\mu}\right\|_{2} \leq C$ for some C. Then the set $\left\{e_{\lambda} \otimes f_{\mu}\right\} \subseteq A_{1} \otimes A_{2}$ is bounded, $\sup \left\|e_{\lambda} \otimes f_{\mu}\right\|_{\alpha} \leq M C^{2}$, and with the product direction is a left approximate identity in $A_{1} \otimes A_{2}$ (under $\|\cdot\|_{\alpha}$). Since $A_{1} \otimes A_{2}$ is dense in $A_{1} \otimes_{\alpha} A_{2}$ it follows easily that $\left\{e_{\lambda} \otimes f_{\mu}\right\}$ is a bounded left approximate identity in $A_{1} \otimes_{\alpha} A_{2}$.

Conversely, let $\left\{d_{\rho}\right\}$ be a left approximate identity in $A_{1} \otimes_{\alpha} A_{2}$.
Let F be a finite subset of $A_{1}, K=\max \left\{\|s\|_{1}: s \in F\right\}+1, \delta>0$, and take $t \in A_{2},\|t\|_{2}=1$. Choose $x \in\left\{d_{p}\right\}$ such that $\|x(s \otimes t)-s \otimes t\|_{\alpha}<\frac{\delta m}{2 M}, s \in F$, and then take $\sum u_{i} \otimes v_{i} \in A_{1} \otimes A_{2}$ with $\left\|x-\sum u_{i} \otimes v_{i}\right\|_{\alpha}<\frac{\delta m}{2 K M^{2}}$. But then $\left\|\sum u_{i} s \otimes v_{i} t-s \otimes t\right\|_{\alpha}<\frac{\delta m}{M}$ for all $s \in F$. Proceeding as in Theorem 1 it follows that there is $u \in A_{1}$ with $\|u s-s\|_{1}<\delta$ for $s \in F$. Now proceed as in Proposition 3, but without the element z, to obtain a net $\left\{e_{\lambda}\right\}$, consisting of such u, which is a left approximate identity in A_{1}.

Similarly A_{2} has a left approximate identity.
REMARK. The first half of this result appears known, it is used implicitly in [4], Theorem 2.2. The present author has been unable to determine whether addition of the hypothesis of boundedness of $\left\{d_{\rho}\right\}$ in the converse half would ensure boundedness of the resulting nets $\left\{e_{\lambda}\right\}$, $\left\{f_{\mu}\right\}$ in A_{1}, A_{2} respectively. However, if A_{1} and A_{2} are commutative
and $\left\{\vec{a}_{\rho}\right\}$ is countable and unbounded then not both $\left\{e_{\lambda}\right\},\left\{f_{\mu}\right\}$ are bounded, for otherwise $\left\{e_{\lambda} \otimes f_{\mu}\right\}$ is a bounded approximate identity in $A_{1} \otimes_{\alpha} A_{2}$, contradicting [6], p. 279. In the general case, if A_{1} and A_{2} do not consist entirely of right (left) topological divisors of zero then Proposition 3 shows that they have bounded left (right) approximate identities, and hence so does $A_{1} \otimes_{\alpha} A_{2}$. Thus if A_{1} and A_{2} are commutative and $\left\{d_{\rho}\right\}$ is countable, then $\left\{d_{\rho}\right\}$ is bounded.

3. The commutative case

The first result concerning identities in $A_{1} \otimes_{\alpha} A_{2}$ was that of Gelbaum [2], Theorem 4, who considered the case A_{1}, A_{2} commutative semisimple, and $\|\cdot\|_{\alpha}=\|\cdot\|_{\gamma}$. This case is included in Theorem labove. Recently Lardy and Lindberg [3] have defined an algebra norm $\|\cdot\|_{\alpha}$ on $A_{1} \otimes A_{2}$ to be a spectral tensor norm in the case $\nu_{\alpha}(u \otimes v)=\nu_{1}(u) v_{2}(v)$, $u \in A_{1}, v \in A_{2}$. They showed that the natural map of $\Phi_{A_{1}} \otimes_{\alpha} A_{2}$ into $\Phi_{A_{1}} \times \Phi_{A_{2}}$ is surjective if and only if $\|\cdot\|_{\alpha}$ is spectral, and in this case $A_{1} \otimes_{\alpha} A_{2}$ has an identity if and only if A_{1} and A_{2} have identities. In this section we obtain an elementary proof of this result.

LEMMA. Let A_{1}, A_{2} be commutative Banach algebras, $\|\cdot\|_{\alpha}$ an algebra norm on $A_{1} \otimes A_{2}$. Then $\|\cdot\|_{\alpha}$ is a spectral tensor norm if and only if v_{α} is an admissible seminorm on $A_{1} \otimes A_{2}$, taking the seminorms ν_{1}, ν_{2} on A_{1}, A_{2}. Indeed, $\|\cdot\|_{\alpha}$ is spectral if and only if $\nu_{\alpha}=\nu_{\lambda}$.

Proof. Suppose $\|\cdot\|_{\alpha}$ is spectral. Then by [3], Theorem 1, every multiplicative linear functional on $A_{1} \otimes A_{2}$ is $\|\cdot\|_{\alpha}$-continuous, and so if $x \in A_{1} \otimes A_{2}$,

$$
\begin{aligned}
\nu_{\alpha}(x) & =\sup \left\{|\varphi(x)|: \varphi \in\left(A_{1} \otimes A_{2}\right)^{*}, \varphi \text { multiplicative }\right\} \\
& =\sup \left\{|\varphi \otimes \psi(x)|:(\varphi, \psi) \in \Phi_{A_{1}} \times \Phi_{A_{2}}\right\} \\
& \leq \nu_{\lambda}(x)
\end{aligned}
$$

Now let $x=\sum u_{i} \otimes v_{i}$, and take $\varepsilon>0$. Then there are $\varphi_{j} \in A_{j}^{*}$,
$\left\|\varphi_{j}\right\|_{v_{j}}=1, j=1,2$, with $v_{\lambda}(x) \leq\left|\sum \varphi_{1}\left(u_{i}\right) \varphi_{2}\left(v_{i}\right)\right|+\varepsilon$. Since
$\left|\varphi_{1}(u)\right| \leq v_{1}(u), u \in A_{1}$, there is $\varphi_{1}^{\prime} \in \Phi_{A_{1}}$ with
$\left|\varphi_{1}^{\prime}\left(\sum u_{i} \varphi_{2}\left(v_{i}\right)\right)\right| \geq\left|\varphi_{1}\left(\sum u_{i} \varphi_{2}\left(v_{i}\right)\right)\right|$ so that
$\nu_{\lambda}(x) \leq\left|\sum \varphi_{1}^{\prime}\left(u_{i}\right) \varphi_{2}\left(v_{i}\right)\right|+\varepsilon$. Similarly, there is $\varphi_{2}^{\prime} \in \Phi_{A_{2}}$ with
$\nu_{\lambda}(x) \leq\left|\sum \varphi_{1}^{\prime}\left(u_{i}\right) \varphi_{2}^{\prime}\left(v_{i}\right)\right|+\varepsilon \leq \nu_{\alpha}(x)+\varepsilon$. Since $\varepsilon>0$ is arbitrary it
follows that $\nu_{\lambda}(x) \leq \nu_{\alpha}(x)$. Thus $\nu_{\alpha}=\nu_{\lambda}$ and so ν_{α} is certainly
admissible.
Suppose conversely that ν_{α} is admissible, with $m \nu_{\lambda} \leq \nu_{\alpha}$, and that
$\|\cdot\|_{\alpha}$ is not spectral. Since $\nu_{\alpha}(u \otimes v) \leq v_{1}(u) v_{2}(v)$ for all $u \in A_{1}$,
$v \in A_{2}$, there must be u, v with $\nu_{\alpha}(u \otimes v) \leq k \nu_{1}(u) \nu_{2}(v)$ for some k,
$0<k<1$. But then
$\nu_{\alpha}\left(u^{n} \otimes v^{n}\right) \leq k^{n} v_{1}\left(u^{n}\right) v_{2}\left(v^{n}\right)=k^{n} v_{\lambda}\left(u^{n} \otimes v^{n}\right) \leq \frac{k^{n}}{m} v_{\alpha}\left(u^{n} \otimes v^{n}\right)$, which is
impossible for n sufficiently large. Thus $\|\cdot\|_{\alpha}$ is spectral, and so by
the above $v_{\alpha}=v_{\lambda}$.

THEOREM 3 (Lardy and Lindberg). Let A_{1}, A_{2} be commutative Banach algebras, $\|\cdot\|_{\alpha}$ an algebra norm on $A_{1} \otimes A_{2}$. If $\|\cdot\|_{\alpha}$ is a spectral tensor norm then $A_{1} \otimes_{\alpha} A_{2}$ has on identity if and only if A_{1} and A_{2} have identities.

Proof. Suppose $A_{1} \otimes_{\alpha} A_{2}$ has an identity, the converse being immediate. Arguing as in Theorem 1 , but using $v_{1}, v_{2}, \nu_{\alpha}$ in place of $\|\cdot\|_{1},\|\cdot\|_{2}$ and $\|\cdot\|_{\alpha}$, there is $\left\{e_{n}\right\} \subseteq A_{1}$ with $v_{1}\left(e_{n} s-s\right) \rightarrow 0$ uniformly for $v_{1}(s) \leq 1$. But then by Proposition 2 there is an idempotent $e \in A_{1}$ with $\hat{e} \equiv 1$. Similarly there is an idempotent $f \in A_{2}$ with $\hat{f} \equiv 1$. The result now follows as in [3], Theorem 4.

References

[1] H.R. Fischer, "Über eine Klasse topologischer Tensorprodukte", Math. Ann. 150 (1963), 242-258.
[2] B.R. Gelbaum, "Tensor products and related questions", Trans. Amer. Math. Soc. 103 (1962), 525-548.
[3] L.J. Lardy and J.A. Lindberg Jr, "On maximal regular ideals and identities in the tensor product of commutative Banach algebras", Canad. J. Math. 21 (1969), 639-647.
[4] Kjeld B. Laursen, "Ideal structure in generalized group algebras", Pacific J. Math. 30 (1969), 155-174.
[5] Charles E. Rickart, General theory of Banach algebras (Van Nostrand, Princeton, New Jersey, 1960).
[6] C. Robert Warner and Robert Whitley, "A characterization of regular maximal ideals", Pacific J. Math. 30 (1969), 277-281.

Carleton University, Ottawa, Canada.

