Identities in tensor products of Banach algebras

R. J. Loy

Let A_1, A_2 be Banach algebras, $A_1 \otimes A_2$ their algebraic tensor product over the complex field. If $\|\cdot\|_{\alpha}$ is an algebra norm on $A_1 \otimes A_2$ we write $A_1 \otimes_{\alpha} A_2$ for the $\|\cdot\|_{\alpha}$ -completion of $A_1 \otimes A_2$. In this note we study the existence of identities and approximate identities in $A_1 \otimes_{\alpha} A_2$ versus their existence in A_1 and A_2 . Some of the results obtained are already known, but our method of proof appears new, though it is quite elementary.

1. Preliminaries

The four results collected here are probably already known in one form or another; the proofs are included for completeness.

PROPOSITION 1. Let A be a Banach algebra, $\{e_{\lambda}\}$, $\{f_{\mu}\}$ nets in A such that $||e_{\lambda}x-x|| \neq 0$, $||xf_{\mu}-x|| \neq 0$ uniformly on the unit ball of A. Then A has an identity.

Proof. Take $s \in \{e_{\lambda}\}$ such that $||sx-x|| \leq \frac{1}{2}$ for $||x|| \leq 1$. Then s is not a left topological divisor of zero, for otherwise there would be $\{x_n\} \subseteq A$, $||x_n|| = 1$, with $sx_n \neq 0$, contradicting $||sx_n-x_n|| \leq \frac{1}{2}$ for each n. Similarly there is $t \in A$ which is not a right topological divisor of zero.

Received 10 January 1970.

253

Now for each positive integer n take $e_n \in \{e_\lambda\}$, $f_n \in \{f_\mu\}$ such that $||e_n x - x|| \leq \frac{1}{n}$, $||xf_n - x|| \leq \frac{1}{n}$ for $||x|| \leq 1$. Then certainly $||(e_n - e_m)t|| \leq \left(\frac{1}{n} + \frac{1}{m}\right)||t||$, $||s(f_n - f_m)|| \leq \left(\frac{1}{n} + \frac{1}{m}\right)||s||$ and so, by the choice of s and t, $\{e_n\}$, $\{f_n\}$ are Cauchy, and so converge to elements $e, f \in A$. But then e and f are respectively left and right identities for A, and so e = f is an identity.

We will also require the following modification of Proposition 1. As usual ν , ^ denote spectral radius and Gelfand transform respectively.

PROPOSITION 2. Let A be a commutative Banach algebra, $\{e_{\lambda}\}$ a net in A such that $v(e_{\lambda}x-x) \neq 0$ uniformly for $v(x) \leq 1$. Then there is an idempotent $e \in A$ with $\hat{e} \equiv 1$.

Proof. By the same argument as in Proposition 1 there is a sequence $\{e_n\} \subseteq A$ with $v(e_n x - x) \neq 0$ uniformly for $v(x) \leq 1$, and $v(e_n - e_m) \neq 0$. It follows that $\{\hat{e}_n\}$ converges uniformly to the constant function 1 on the carrier space of A, which is thus compact. Also, for n sufficiently large \hat{e}_n is bounded away from zero, and the elementary argument of [5], pp. 171-2 now furnishes the desired idempotent e.

PROPOSITION 3. Let A be a Banach algebra which does not consist entirely of right (left) topological divisors of zero. If A has a left (right) approximate identity $\{d_{\rho}\}$ then it has a bounded left (right) approximate identity. Indeed, if A is commutative and $\{d_{\rho}\}$ is countable, then $\{d_{\rho}\}$ is bounded.

Proof. Let F be the family of all finite subsets of A, and define a directed set $\Lambda = \{(F, \delta\} : F \in F, 1 > \delta > 0\}$ where $(F_1, \delta_1) \leq (F_2, \delta_2)$ if $F_1 \leq F_2$ and $\delta_2 \leq \delta_1$. Take $z \in A$ not a right topological divisor of zero. Then for $\lambda = (F, \delta) \in \Lambda$, take $e_{\lambda} \in \{d_{\rho}\}$ such that $||e_{\lambda}y-y|| < \delta$ for $y \in F \cup \{z\}$, so that if $x \in A$, $1 > \varepsilon > 0$, $||e_{\lambda}x-x|| < \varepsilon$ provided $\lambda \geq (\{x\}, \varepsilon)$. It follows that $\{e_{\lambda}\}$ is a left approximate identity in A. Also, $||e_{\lambda}z|| < 1 + ||z||$ for all λ , so that, by the choice of z , $\{e_{\lambda}\}$ is bounded.

The last statement is proved in [6], p. 279.

REMARK. The converse is false: $L^{1}(0, 1)$ is a radical algebra under convolution, so that all elements are topological divisors of zero, but has a (countable) bounded approximate identity.

Now let U_1 , U_2 be seminormed spaces under p_1 , p_2 respectively. Corresponding to the normed case define seminorms p_{γ} , p_{λ} on $U_1 \otimes U_2$ by

$$\begin{split} p_{\gamma}(x) &= \inf \left\{ \sum p_{1}\left(u_{i}\right)p_{2}\left(v_{i}\right) \, : \, x = \sum u_{i} \otimes v_{i} \right\} ,\\ p_{\lambda}(x) &= \sup \left\{ \left| \sum \varphi_{1}\left(u_{i}\right)\varphi_{2}\left(v_{i}\right) \right| \, : \, x = \sum u_{i} \otimes v_{i}, \, \varphi_{j} \in U_{j}^{*}, \, \left\|\varphi_{j}\right\|_{p_{j}} = 1, \\ & j = 1, \, 2 \right\} . \end{split}$$

As in the normed case p_{γ} is the greatest seminorm p on $U_1 \otimes U_2$ such that $p(u \otimes v) = p_1(u)p_2(v)$, $u \in U_1$, $v \in U_2$; and so in particular $p_{\lambda} \leq p_{\gamma}$. Using the terminology of [1] a seminorm p on $U_1 \otimes U_2$ will be called admissible if there are positive constants m, M such that $mp_{\lambda} \leq p \leq Mp_{\gamma}$.

PROPOSITION 4. Let U_j , p_j , j = 1, 2 be as above, and p an admissible seminorm on $U_1 \otimes U_2$, with m as above. If $x = \sum_{i=1}^{n} u_i \otimes v_i \in U_1 \otimes U_2$ with $\{v_i\}$ (or $\{u_i\}$) linearly independent, then $p_1(u_i)p_2(v_i) \leq \frac{1}{m}p(x)$, i = 1, 2, ..., n.

Proof. Take $1 \leq i \leq n$. If $p_1(u_i)p_2(v_i) = 0$ the result is immediate for this i, otherwise the Hahn-Banach theorem furnishes $\varphi_j \in U_j^*$, j = 1, 2 such that $\|\varphi_j\|_{p_j} = 1$, $\varphi_2(v_k) = \delta_{ik}p_2(v_k)$, $\varphi_1(u_i) = p_1(u_i)$. But then for $w = \sum s_k \otimes t_k \in U_1 \otimes U_2$, $\varphi_1 \otimes \varphi_2(w) = \sum \varphi_1(s_k)\varphi_2(t_k) \leq p_\lambda(w) \leq \frac{1}{m}p(w)$, and so $\varphi_1 \otimes \varphi_2(x) = p_1(u_i)p_2(v_i) \leq \frac{1}{m}p(x)$.

2. The general (non-commutative) case

For the remainder of this paper A_j will denote a Banach algebra with norm $\|\cdot\|_j$, spectral radius v_j , j = 1, 2; $\|\cdot\|_{\alpha}$ will be an algebra norm on $A_1 \otimes A_2$ with spectral radius v_{α} . If A is commutative its carrier space, with the Gelfand topology, will be denoted Φ_A .

THEOREM 1. Let $\|\cdot\|_{\alpha}$ be an admissible algebra norm on $A_1 \otimes A_2$. Then $A_1 \otimes_{\alpha} A_2$ has an identity ι if and only if A_1 , A_2 have identities e, f, and $\iota = e \otimes f$.

Proof. Suppose that $A_1 \otimes_{\alpha} A_2$ has an identity ι , the converse being immediate. Let $\varepsilon > 0$, and take $x = x_{\varepsilon} \in A_1 \otimes A_2$ with $\||x-\iota||_{\alpha} < \varepsilon$. Then if $x = \sum u_i \otimes v_i$ and $\||s \otimes t||_{\alpha} \le 1$,

$$\left\| \sum u_i s \otimes v_i t - s \otimes t \right\|_{\alpha} < \varepsilon , \quad \left\| \sum s u_i \otimes t v_i - s \otimes t \right\|_{\alpha} < \varepsilon .$$

Now let $\sum u'_j s \otimes v'_j$, $\sum su''_k \otimes v''_k$ be alternative expressions for $\sum u_i s \otimes v_i t$, $\sum su_i \otimes tv_i$ respectively, where $v'_1 = v''_1 = t$ and $\{v'_j\}$, $\{v''_k\}$ are linearly independent sets. Then

$$\left\| (u_1's-s) \otimes t + \sum_{j \ge 2} u_j's \otimes v_j' \right\|_{\alpha} < \varepsilon , \quad \left\| (su_1''-s) \otimes t + \sum_{k \ge 2} su_k'' \otimes v_k'' \right\|_{\alpha} < \varepsilon ,$$

and so by Proposition 4 $||u_1's-s||_1||t||_2 < \frac{\varepsilon}{m}$, $||su_1''-s||_1||t||_2 < \frac{\varepsilon}{m}$, where $m||\cdot||_{\lambda} \leq ||\cdot||_{\alpha} \leq M||\cdot||_{\gamma}$. Now u_1' , u_1'' depend on t only, not upon s, and so, noting that if $||s||_1 \leq 1$ then $||s \otimes t||_{\alpha} \leq M||t||_2$, it follows that $||u_1's-s||_1 \leq \frac{M}{m}\varepsilon$, $||su_1''-s||_1 \leq \frac{M}{m}\varepsilon$, for $||s||_1 \leq 1$. Taking $\varepsilon = 1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots$ we thus obtain sequences $\{e_n\}$, $\{e_n'\} \leq A_1$ such such that $||e_ns-s||_1 \neq 0$, $||se_n'-s||_1 \neq 0$ uniformly on the unit ball of A_1 , so that by Proposition 1 A_1 has an identity e.

Similarly A_2 has an identity f , whence $e\otimes f$ is an identity on

$A_1 \otimes_{\alpha} A_2$ and so must equal ι .

By an equally simple argument we have the following.

THEOREM 2. Let $\|\cdot\|_{\alpha}$ be an admissible algebra norm on $A_1 \otimes A_2$. If A_1 and A_2 each possess a bounded left (right) approximate identity then so does $A_1 \otimes_{\alpha} A_2$. Conversely, if $A_1 \otimes_{\alpha} A_2$ has a left (right) approximate identity then so do A_1 and A_2 .

Proof. Let $m\|\cdot\|_{\lambda} \leq \|\cdot\|_{\alpha} \leq M\|\cdot\|_{\gamma}$, and take $\{e_{\lambda}\}$, $\{f_{\mu}\}$ bounded left approximate identities in A_1 and A_2 respectively, with $\sup\|e_{\lambda}\|_{1} \leq C$, $\sup\|f_{\mu}\|_{2} \leq C$ for some C. Then the set $\{e_{\lambda} \otimes f_{\mu}\} \subseteq A_{1} \otimes A_{2}$ is bounded, $\sup\|e_{\lambda} \otimes f_{\mu}\|_{\alpha} \leq MC^{2}$, and with the product direction is a left approximate identity in $A_{1} \otimes A_{2}$ (under $\|\cdot\|_{\alpha}$). Since $A_{1} \otimes A_{2}$ is dense in $A_{1} \otimes_{\alpha} A_{2}$ it follows easily that $\{e_{\lambda} \otimes f_{\mu}\}$ is a bounded left approximate identity in $A_{1} \otimes_{\alpha} A_{2}$.

Conversely, let $\{d_{\rho}\}$ be a left approximate identity in $A_1 \otimes_{\alpha} A_2$. Let F be a finite subset of A_1 , $K = \max\{\|s\|_1 : s \in F\} + 1$, $\delta > 0$, and take $t \in A_2$, $\|t\|_2 = 1$. Choose $x \in \{d_{\rho}\}$ such that $\|x(s \otimes t) - s \otimes t\|_{\alpha} < \frac{\delta m}{2M}$, $s \in F$, and then take $\sum u_i \otimes v_i \in A_1 \otimes A_2$ with $\|x - \sum u_i \otimes v_i\|_{\alpha} < \frac{\delta m}{2KM^2}$. But then $\|\sum u_i s \otimes v_i t - s \otimes t\|_{\alpha} < \frac{\delta m}{M}$ for all $s \in F$. Proceeding as in Theorem 1 it follows that there is $u \in A_1$ with $\|us - s\|_1 < \delta$ for $s \in F$. Now proceed as in Proposition 3, but without the element z, to obtain a net $\{e_{\lambda}\}$, consisting of such u, which is a left approximate identity in A_1 .

Similarly A_2 has a left approximate identity.

REMARK. The first half of this result appears known, it is used implicitly in [4], Theorem 2.2. The present author has been unable to determine whether addition of the hypothesis of boundedness of $\{d_{\rho}\}$ in the converse half would ensure boundedness of the resulting nets $\{e_{\lambda}\}$, $\{f_{\mu}\}$ in A_1 , A_2 respectively. However, if A_1 and A_2 are commutative and $\{d_{\rho}\}$ is countable and unbounded then not both $\{e_{\lambda}\}$, $\{f_{\mu}\}$ are bounded, for otherwise $\{e_{\lambda} \otimes f_{\mu}\}$ is a bounded approximate identity in $A_1 \otimes_{\alpha} A_2$, contradicting [6], p. 279. In the general case, if A_1 and A_2 do not consist entirely of right (left) topological divisors of zero then Proposition 3 shows that they have bounded left (right) approximate identities, and hence so does $A_1 \otimes_{\alpha} A_2$. Thus if A_1 and A_2 are commutative and $\{d_{\rho}\}$ is countable, then $\{d_{\rho}\}$ is bounded.

3. The commutative case

The first result concerning identities in $A_1 \otimes_{\alpha} A_2$ was that of Gelbaum [2], Theorem 4, who considered the case A_1, A_2 commutative semisimple, and $\|\cdot\|_{\alpha} = \|\cdot\|_{\gamma}$. This case is included in Theorem 1 above. Recently Lardy and Lindberg [3] have defined an algebra norm $\|\cdot\|_{\alpha}$ on $A_1 \otimes A_2$ to be a spectral tensor norm in the case $v_{\alpha}(u \otimes v) = v_1(u)v_2(v)$, $u \in A_1$, $v \in A_2$. They showed that the natural map of $\Phi_{A_1} \otimes_{\alpha} A_2$ into $\Phi_{A_1} \times \Phi_{A_2}$ is surjective if and only if $\|\cdot\|_{\alpha}$ is spectral, and in this case $A_1 \otimes_{\alpha} A_2$ has an identity if and only if A_1 and A_2 have identities. In this section we obtain an elementary proof of this result.

LEMMA. Let A_1 , A_2 be commutative Banach algebras, $\|\cdot\|_{\alpha}$ an algebra norm on $A_1 \otimes A_2$. Then $\|\cdot\|_{\alpha}$ is a spectral tensor norm if and only if ν_{α} is an admissible seminorm on $A_1 \otimes A_2$, taking the seminorms ν_1 , ν_2 on A_1 , A_2 . Indeed, $\|\cdot\|_{\alpha}$ is spectral if and only if $\nu_{\alpha} = \nu_{\lambda}$.

Proof. Suppose $\|\cdot\|_{\alpha}$ is spectral. Then by [3], Theorem 1, every multiplicative linear functional on $A_1\otimes A_2$ is $\|\cdot\|_{\alpha}$ -continuous, and so if $x \in A_1\otimes A_2$,

$$\begin{split} \nu_{\alpha}(x) &= \sup\{|\varphi(x)| : \varphi \in (A_1 \otimes A_2)^*, \varphi \text{ multiplicative}\}\\ &= \sup\{|\varphi \otimes \psi(x)| : (\varphi, \psi) \in \Phi_{A_1} \times \Phi_{A_2}\}\\ &\leq \nu_{\gamma}(x) \end{split}$$

Now let
$$x = \sum u_i \otimes v_i$$
, and take $\varepsilon > 0$. Then there are $\varphi_j \in A_j^*$,
 $\|\varphi_j\|_{\nu_j} = 1$, $j = 1, 2$, with $\nu_\lambda(x) \leq \left|\sum \varphi_1(u_i)\varphi_2(v_i)\right| + \varepsilon$. Since
 $|\varphi_1(u)| \leq \nu_1(u)$, $u \in A_1$, there is $\varphi_1' \in \Phi_{A_1}$ with
 $\left|\varphi_1'\left[\sum u_i\varphi_2(v_i)\right]\right| \geq \left|\varphi_1\left[\sum u_i\varphi_2(v_i)\right]\right|$ so that
 $\nu_\lambda(x) \leq \left|\sum \varphi_1'(u_i)\varphi_2(v_i)\right| + \varepsilon$. Similarly, there is $\varphi_2' \in \Phi_{A_2}$ with
 $\nu_\lambda(x) \leq \left|\sum \varphi_1'(u_i)\varphi_2'(v_i)\right| + \varepsilon \leq \nu_\alpha(x) + \varepsilon$. Since $\varepsilon > 0$ is arbitrary it
follows that $\nu_\lambda(x) \leq \nu_\alpha(x)$. Thus $\nu_\alpha = \nu_\lambda$ and so ν_α is certainly
admissible.

Suppose conversely that v_{α} is admissible, with $mv_{\lambda} \leq v_{\alpha}$, and that $\|\cdot\|_{\alpha}$ is not spectral. Since $v_{\alpha}(u \otimes v) \leq v_{1}(u)v_{2}(v)$ for all $u \in A_{1}$, $v \in A_{2}$, there must be u, v with $v_{\alpha}(u \otimes v) \leq kv_{1}(u)v_{2}(v)$ for some k, 0 < k < 1. But then

 $\begin{array}{l} \displaystyle \mathrm{v}_{\alpha}\left(\boldsymbol{u}^{n}\otimes\boldsymbol{v}^{n}\right)\,\leq\,k^{n}\mathrm{v}_{1}\left(\boldsymbol{u}^{n}\right)\mathrm{v}_{2}\left(\boldsymbol{v}^{n}\right)\,=\,k^{n}\mathrm{v}_{\lambda}\left(\boldsymbol{u}^{n}\otimes\boldsymbol{v}^{n}\right)\,\leq\,\frac{k^{n}}{m}\mathrm{v}_{\alpha}\left(\boldsymbol{u}^{n}\otimes\boldsymbol{v}^{n}\right)\,\,\text{, which is impossible for }n\,\,\text{ sufficiently large. Thus }\left\|\cdot\right\|_{\alpha}\,\,\text{is spectral, and so by the above }\,\,\mathrm{v}_{\alpha}\,=\,\mathrm{v}_{\lambda}\,\,.\end{array}$

THEOREM 3 (Lardy and Lindberg). Let A_1 , A_2 be commutative Banach algebras, $\|\cdot\|_{\alpha}$ an algebra norm on $A_1 \otimes A_2$. If $\|\cdot\|_{\alpha}$ is a spectral tensor norm then $A_1 \otimes_{\alpha} A_2$ has an identity if and only if A_1 and A_2 have identities.

Proof. Suppose $A_1 \otimes_{\alpha} A_2$ has an identity, the converse being immediate. Arguing as in Theorem 1, but using v_1 , v_2 , v_{α} in place of $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_{\alpha}$, there is $\{e_n\} \subseteq A_1$ with $v_1(e_ns-s) \neq 0$ uniformly for $v_1(s) \leq 1$. But then by Proposition 2 there is an idempotent $e \in A_1$ with $\hat{e} \equiv 1$. Similarly there is an idempotent $f \in A_2$ with $\hat{f} \equiv 1$. The result now follows as in [3], Theorem 4.

R.J. Loy

References

- [1] H.R. Fischer, "Über eine Klasse topologischer Tensorprodukte", Math.
 Ann. 150 (1963), 242-258.
- [2] B.R. Gelbaum, "Tensor products and related questions", Trans. Amer. Math. Soc. 103 (1962), 525-548.
- [3] L.J. Lardy and J.A. Lindberg Jr, "On maximal regular ideals and identities in the tensor product of commutative Banach algebras", *Canad. J. Math.* 21 (1969), 639-647.
- [4] Kjeld B. Laursen, "Ideal structure in generalized group algebras", Pacific J. Math. 30 (1969), 155-174.
- [5] Charles E. Rickart, General theory of Banach algebras (Van Nostrand, Princeton, New Jersey, 1960).
- [6] C. Robert Warner and Robert Whitley, "A characterization of regular maximal ideals", Pacific J. Math. 30 (1969), 277-281.

Carleton University, Ottawa, Canada.