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Abstract

We establish a criterion for a semigroup identity to hold in the monoid of n × n upper

unitriangular matrices with entries in a commutative semiring S. This criterion is

combinatorial modulo the arithmetic of the multiplicative identity element of S. In the

case where S is non-trivial and idempotent, the generated variety is the variety Jn−1,

which by a result of Volkov is generated by any one of: the monoid of unitriangular

Boolean matrices, the monoid Rn of all reflexive relations on an n element set, or the

Catalan monoid Cn . We propose S-matrix analogues of these latter two monoids in

the case where S is an idempotent semiring whose multiplicative identity element is

the ‘top’ element with respect to the natural partial order on S, and show that each

generates Jn−1. As a consequence we obtain a complete solution to the finite basis

problem for Lossy gossip monoids.

Keywords Semigroup identities · Unitriangular matrices · Gossip monoids

1 Introduction

The finite basis problem for semigroups asks: which semigroups have an equational

theory admitting a finite basis of identities? Such semigroups are called finitely based.

In contrast to the situation for finite groups [12], it has long been known that there

exist finite semigroups which are non-finitely based [13], and there is a rich literature

studying the finite basis problem from viewpoint of finite semigroups (see the survey

[17]). As observed by Volkov [19], infinite semigroups are far less frequently studied
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in the context of the finite basis problem, due to the fact that many natural infinite

semigroups are in some sense ‘too big’ to allow for the kind of universal coincidences

demanded by identities. For example, if S is a commutative semiring into which the

semiring of natural numbers can be embedded, then for n > 1 the monoid of all n × n

(upper triangular) matrices over S satisfies no non-trivial identities, since the free

monoid of rank 2 embeds into all such semigroups (see [19] for example). The finite

basis problem is increasingly studied for families of infinite semigroups of combina-

torial interest for which identities are known to exist, with complete results available

for one-relator semigroups [14] and Kauffman monoids [2], and several recent partial

results for various semigroups of upper triangular matrices with restrictions on the

size of the matrices and the entries permitted on the diagonals [6,7,19,20].

In this work we consider the identities satisfied by several families of matrix

semigroups, beginning with upper triangular matrices with entries in a commuta-

tive semiring. Daviaud, the first author and Kambites [8] established necessary and

sufficient conditions for a semigroup identity to hold in the monoid of upper triangular

matrices over the tropical semifield, in terms of equivalence of certain tropical poly-

nomials, leading to an algorithm for checking whether such an identity holds in time

polynomial in the length of the identity and size of the alphabet. In Sect. 2 we show

how the analysis of [8] may be generalised to the setting of commutative semirings S

to provide necessary and sufficient conditions for a semigroup identity to hold in the

monoid of n ×n upper triangular matrices with entries in S. This result is then applied

in Sect. 3 to establish a criterion for a semigroup identity to hold in the submonoid of

n × n upper unitriangular matrices, showing that the generated variety depends only

upon the isomorphism type of the subsemiring generated by the multiplicative iden-

tity element of S. In the case where S is a (non-trivial) idempotent semiring our result

together with a result of Volkov [18] yields that the generated variety is Jn−1, that is,

the variety of semigroups generated by the monoids of height n − 1 in Simon’s hier-

archy of finite J -trivial monoids [15]. In Sect. 4 we introduce the submonoid Rn(S)

of the full matrix monoid over a (non-trivial) interval semiring S, and show that this

generates the same variety as its finite (Boolean) counterpart, the reflexive monoid.

In Sect. 5 we consider several monoids related to the Catalan monoid, including the

so-called lossy gossip monoid Gn (that is, the monoid generated by all “metric” matri-

ces in the full matrix monoid over the tropical semiring [5]). By [18] this common

variety is once again seen to be Jn−1. Blanchet-Sadri has shown that the variety Jn−1

is finitely based for n ≤ 4 [3], and non-finitely based otherwise [4], and so this settles

the finite basis problem for the above mentioned families of monoids.

We conclude this introduction by briefly recalling the necessary definitions, notation

and background.

1.1 Semigroup identities

We write N0 and N respectively for the natural numbers with and without 0. If � is a

finite alphabet, then �+ will denote the free semigroup on �, that is, the set of finite,

non-empty words over � under the operation of concatenation. Likewise, �∗ will

denote the free monoid on �. Thus �∗ = �+ ∪ {1} where 1 denotes the empty word.

For w ∈ �+ and s ∈ � we write |w| for the length of w and |w|s for the number of
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occurrences of the letter s in w. For 1 ≤ i ≤ |w| we write wi to denote the i th letter

of w. The content of w is the map � → N0, s �→ |w|s .

Recall that a (semigroup) identity is a pair of words, usually written “u = v”, in the

free semigroup �+ on an alphabet �. The identity is said to be balanced if |u|a = |v|a
for all a ∈ �. We say that the identity holds in a semigroup U (or that U satisfies

the identity) if every morphism from �+ to U maps u and v to the same element of

U . If a morphism maps u and v to the same element we say that it satisfies the given

identity in U ; otherwise it falsifies it. We write Id(U ) to denote the set of all identities

satisfied by the semigroup U .

1.2 Semirings

Throughout we shall assume that S is a commutative semiring, that is, S is a set

equipped with two binary operations + and ·, such that (S,+) and (S, ·) are commu-

tative monoids, with additively neutral element 0S and multiplicatively neutral element

1S satisfying:

a · (b + c) = a · b + a · c and 0S · a = 0S,

for all a, b, c ∈ S. We say that S is trivial if 0S = 1S , and S is idempotent if

a + a = a for all a ∈ S. Examples include the Boolean semiring B = {0, 1} in which

the only undetermined operation is defined by 1 + 1 = 1, and the tropical semifield

T:=(R ∪ {−∞},⊕,⊗), where a ⊕ b = max(a, b) and a ⊗ b = a + b, and in which

−∞ is the ‘zero’ element, and 0 is the ‘one’. There is a natural partial order on every

idempotent semiring S given by a ≤ b if and only if a + b = b; it is clear from

definition that a + b ≥ a, b for all a, b ∈ S. Thus 0S is the least element of S with

respect to this order. Moreover, if a ≤ b in S, then cad ≤ cbd and a + c ≤ b + c for

all c, d ∈ S.

We say that a commutative semiring S is an interval semiring if S is idempotent and

1S is the greatest element of S with respect to the natural partial order on S. Examples

of interval semirings include: the Boolean semiring B; the semiring I = ([0, 1], ·,⊕)

with usual multiplication of numbers and addition given by taking the maximum; the

semiring (R≤0 ∪{−∞},⊗,⊕) with multiplication given by usual addition of numbers

and addition given by taking the maximum; any complete distributive lattice L with

addition ∨ and multiplication ∧.

1.3 Matrix semigroups

It is easy to see that the set of all n ×n matrices with entries in S forms a monoid under

the matrix multiplication induced from the operations in S. We denote this semigroup

by Mn(S) and write U Tn(S) to denote the subsemigroup of Mn(S) consisting of the

upper-triangular matrices in Mn(S) whose entries below the main diagonal are zero.

We also write Un(S) to denote the semigroup of unitriangular matrices, namely those

elements of U Tn(S) whose diagonal entries are all equal to 1S .

In the case where S is an idempotent semiring we define a partial order � on

Mn(S) by A � B if and only if Ai, j ≤ Bi, j for all i and j . It is easy to see that matrix
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multiplication respects the partial order � (i.e. Mn(S) is an ordered monoid). Indeed,

for A, B, C ∈ Mn(S) with A � B, for all i, j we have

(C A)i, j =

n
∑

k=1

Ci,k Ak, j ≤

n
∑

k=1

Ci,k Bk, j = (C B)i, j ,

and in the same way it can be verified that AC � BC .

1.4 Polynomials

By a formal polynomial in variables from a set X we mean an element of the commu-

tative polynomial semiring S[X ], that is, a finite formal sum in which each term is a

formal product of a non-zero coefficient from S and formal powers of finitely many

of the variables of X , considered up to the commutative and distributive laws in S.

We view S as a subsemiring of S[X ] by identifying 0S with an empty sum, and each

non-zero element a ∈ S with the term having coefficient a and in which all exponents

of x ∈ X are zero. If S is trivial, then S[X ] is isomorphic to S. If S is idempotent, we

consider the summation up to idempotency of addition.

Each formal polynomial naturally defines a function from SX to S, by interpreting

all formal products and formal sums as products and sums within S. Two distinct

formal polynomials may define the same function. For example, x⊗2 ⊕ x ⊕ 1 and

x⊗2 ⊕ 1 are distinct formal tropical polynomials defining the same function, since x

can never exceed both x⊗2 and 1. We say that two formal polynomials are functionally

equivalent over S if they represent the same function from SX to S.

2 The identities of triangular matrices

We begin by providing analogues of [8, Lemma 5.1 and Theorem 5.2] for upper

triangular monoids over more general commutative semirings. The two mentioned

results are stated for the class of ‘chain structured tropical matrix semigroups’, defined

over the tropical semifield using a fixed partial order on the set [n]. In the case where

this partial order is total, one obtains the upper triangular monoid U Tn(T).

Let [n] = {1, 2, . . . , n}. By a k-vertex walk (or walk of vertex length k) in [n] we

mean a k-tuple (v1, . . . , vk) such that v1 ≤ v2 ≤ · · · ≤ vk . A k-vertex path (or path

of vertex length k) is a k-vertex walk in which consecutive vertices (and hence all

vertices) are distinct.

Let w be a word over the alphabet �. For 0 ≤ p < q ≤ |w| + 1 and s ∈ � we

define

βw
s (p, q) = |{i ∈ N | p < i < q, wi = s}|

to be the number of occurrences of s lying strictly between wp and wq . For each

u ∈ �∗ with |u| ≤ n − 1 and each (|u| + 1)-vertex path ρ = (ρ0, ρ1, . . . , ρ|u|) in [n],

we define a formal polynomial (over an arbitrary, but fixed, commutative semiring S)

having variables x(s, i) for each letter s ∈ � and vertex i ∈ [n] as follows:
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f w
u,ρ =

∑ ∏

s∈�

|u|
∏

k=0

x(s, ρk)
βw

s (αk ,αk+1),

where the sum ranges over all 0 = α0 < α1 < · · · < α|u| < α|u|+1 = |w|+1 such that

wαk
= uk for k = 1, . . . , |u|. If S is non-trivial it is thus easy to see that f w

u,ρ �= 0S

if and only if u is a scattered subword of w of length ℓ − 1, where ℓ is the vertex

length of path ρ. Note that taking u to be the empty word forces ρ = (ρ0) for some

ρ0 ∈ [n] and hence f w
u,ρ =

∏

s∈� x(s, ρ0)
|w|s is a monomial completely determined

by the content of w.

Lemma 2.1 (cf [8, Lemma 5.1]) Let S be a commutative semiring, and let φ : �+ →

U Tn(S) be a morphism. Define x ∈ S�×[n] by

x(s, i) = φ(s)i,i .

Then for any word w ∈ �+ and vertices i, j ∈ [n] we have

φ(w)i, j =
∑

u∈�∗,
|u|≤n−1

∑

ρ∈[n]
|u|
i, j

⎛

⎝

|u|
∏

k=1

φ(uk)ρk−1,ρk

⎞

⎠ · f w
u,ρ(x), (1)

where [n]
|u|
i, j denotes the set of all (|u| + 1)-vertex paths from i to j in [n].

Proof We follow the proof given in [8].

Let i and j be vertices. Using the definition of the functions f w
u,ρ , the value given

to x and the distributivity of multiplication over addition, the right-hand-side of (1) is

equal to

∑

u∈�∗,
|u|≤n−1

∑

α∈Aw
u

∑

ρ∈[n]
|u|
i, j

⎛

⎝

|u|
∏

k=1

φ(uk)ρk−1,ρk

⎞

⎠ ·

⎛

⎝

∏

s∈�

|u|
∏

k=0

(φ(s)ρk ,ρk
)β

w
s (αk ,αk+1)

⎞

⎠

where

Aw
u = {(α0, . . . , α|u|+1) : 0 = α0 < α1 < · · · < α|u| < α|u|+1 = |w| + 1

with wαk
= uk}.

Notice that we are summing over all possible words u of length less than n, and then

over all scattered subwords of w equal to u. Thus, we are simply summing over all

scattered subwords of w of length less than n, so the above is equal to:

n−1
∑

l=0

∑

α∈Al

∑

ρ∈[n]li, j

(
l

∏

k=1

φ(wαk
)ρk−1,ρk

)

·

(

∏

s∈�

·

l
∏

k=0

(φ(s)ρk ,ρk
)β

w
s (αk ,αk+1)

)
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Identities in unitriangular and gossip monoids 343

where Al = {(α0, . . . , αl+1) : 0 = α0 < α1 < · · · < αl < αl+1 = |w| + 1}.

Now to each term in the above sum, defined by a choice of αi ’s and a ρ ∈ [n]li, j , we

can associate a (|w|+ 1)-vertex walk (σ0 = i, . . . , σ|w| = j) in [n] whose underlying

path is ρ and which transitions to vertex ρk after αk steps. Clearly every (|w| + 1)-

vertex walk from i to j arises exactly once in this way, and so we are summing over

all such walks. In each term, the first bracket gives a factor φ(wq)σq−1,σq when q = αk

for some k, while from the definition of the functions βw
s , the second bracket gives a

factor φ(wq)σq−1,σq for each q not of this form. Thus, the above is simply equal to:

∑
|w|
∏

q=1

φ(wq)σq−1,σq

where the sum is taken over all (|w| + 1)-vertex walks (i = σ0, σ1, . . . , σ|w| = j) in

[n]. But by the definition of multiplication in U Tn(S), this is easily seen to be equal

to
(

φ(w1) . . . φ(w|w|)
)

i, j
= φ(w)i, j . ⊓⊔

Let f w
u denote the polynomial f w

u,ρ with ρ = (1, 2, . . . , |u|+1) in variables x(s, i),

with s ∈ � and 1 ≤ i ≤ |u| + 1. We are now ready to prove the main theorem of this

section, which generalises [8, Theorem 5.2] modulo a reduction in the number of the

formal polynomials considered.

Theorem 2.2 Let S be a commutative semiring. The identity w = v over alphabet �

is satisfied in U Tn(S) if and only if for every u ∈ �∗ with |u| ≤ n −1 the polynomials

f w
u and f v

u are functionally equivalent over S.

Proof (In the case where S is trivial, U Tn(S) is the trivial group, whilst each of the

formal polynomials f w
u is equal to 0S . Thus the result holds trivially.)

Suppose first that f w
u (x) �= f v

u (x) for some word u ∈ �+ of length at most n − 1

and x ∈ S�×[n]. Define a morphism φ : �+ → U Tn(S) by

φ(s)p,p = x(s, p) ∈ S, for all p ∈ [n] and s ∈ �; and

φ(s)p,q =

{

1S if s = ui , p = i, q = i + 1,

0S otherwise.

Then by Lemma 2.1,

φ(v)i, j = f v
u (x) �= f w

u (x) = φ(w)i, j ,

and so the morphism φ falsifies the identity in U Tn(S).

Conversely, suppose that f w
u and f v

u are functionally equivalent over S for all

u ∈ �∗ of length at most n − 1. Noting that for any path ρ of vertex length |u|, the

polynomials f w
u,ρ and f w

u differ only in the labelling of their variables, it is then easy

to see that f w
u,ρ and f v

u,ρ are functionally equivalent for all pairs u, ρ with u ∈ �∗ of

length at most n − 1, and ρ a path of vertex length |u| + 1 through [n].

It suffices to show that the identity w = v is satisfied by every morphism φ : �+ →

U Tn(S), so let φ be such a morphism and define x ∈ S�×[n] by x(s, i) = φ(s)i,i .

123



344 M. Johnson, P. Fenner

Since φ is a morphism to U Tn(S), we know that φ(w)i, j = 0S = φ(v)i, j whenever

i > j . On the other hand, if i ≤ j then Lemma 2.1 gives

φ(w)i, j =
∑

u∈�∗,
|u|≤n−1

∑

ρ∈[n]
|u|
i, j

⎛

⎝

|u|
∏

k=1

φ(uk)ρk−1,ρk

⎞

⎠ · f w
u,ρ(x) = φ(v)i, j .

⊓⊔

Lemma 2.3 Let S be a semiring whose multiplicative monoid contains an element α

generating a free submonoid of rank 1, and let w, v ∈ �+.

(i) The polynomials f w
1 and f v

1 are functionally equivalent if and only if w and v

have the same content.

(ii) Suppose further that the partial sums
∑ j

i=0 αi for j ∈ N0 are pairwise distinct.

If f w
a is functionally equivalent to f v

a for all a ∈ �, then f w
1 is functionally

equivalent to f v
1 .

Proof (i) By definition, f w
1 is the monomial

∏

s∈� x(s, 1)|w|s , and it is clear that

w and v have the same content if and only if the formal polynomials f w
1 and

f v
1 are identical. In particular, if the content of the two words agree, then these

polynomials are functionally equivalent. Suppose then that f w
1 and f v

1 are func-

tionally equivalent. Setting x(s, 1) = α and x(t, 1) = 1S for all t �= s then

yields α|w|s = α|v|s , and hence |w|s = |v|s . Repeating this argument for each

s ∈ � yields that the two words have the same content.

(ii) It suffices to show that if f w
a is functionally equivalent to f v

a for all a ∈ �, then

the content of the two words must be equal. Evaluating the polynomials f w
a and

f v
a at x(a, 1) = α and x(z, i) = 1S for all other choices of z, i yields

∑|w|a−1
i=0 αi

=
∑|v|a−1

i=0 αi , and hence |w|a = |v|a . Repeating this argument for each a ∈ �

gives that the two words have the same content. ⊓⊔

The multiplicative monoid of S clearly embeds into U Tn(S), and so under the

hypothesis of the previous lemma we note that identities satisfied by U Tn(S) must be

balanced (as all identities satisfied by the free monoid of rank 1 are). The polynomial

f w
1 essentially records the content of w. Under the stronger hypotheses of Lemma 2.3

(ii), this information can be deduced from the set of polynomials { f w
a : a ∈ �}, hence

reducing the number of polynomials to be checked by 1.

Corollary 2.4 Let S be a semiring whose multiplicative monoid contains an element

α generating a free submonoid of rank 1, and suppose that the partial sums
∑ j

i=1 αi

for j ∈ N are pairwise distinct. The identity w = v over alphabet � is satisfied in

U Tn(S) if and only if for every u ∈ �+ with 1 ≤ |u| ≤ n − 1 the polynomials f w
u and

f v
u are functionally equivalent.
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3 The identities of unitriangular matrices

Say that the scattered multiplicity of u ∈ �+ in w ∈ �+ is the number of distinct

ways in which u occurs as a scattered subword of w, and denote this by mw
u ∈ N0. For

m ∈ N0 write ⌊m⌋S :=
∑m

j=1 1S .

Theorem 3.1 Let S be a commutative semiring. The identity w = v over alphabet �

is satisfied in the unitriangular monoid Un(S) if and only if ⌊mw
u ⌋S = ⌊mv

u⌋S for each

word u ∈ �+ of length at most n − 1.

Proof (In the case where S is trivial, Un(S) is the trivial group, whilst each of the

multiplicities ⌊mw
u ⌋S is equal to 0S . Thus the result holds trivially.)

Let φ : �+ → Un(S) be a morphism. Since every element of the image of φ has

all diagonal entries equal to 1S it follows from Lemma 2.1 and the definition of the

polynomials f w
u,ρ that for all 1 ≤ i < j ≤ n, we have

φ(w)i, j =
∑

u∈�+,
|u|≤n−1

∑

ρ∈[n]
|u|
i, j

⎛

⎝

|u|
∏

k=1

φ(uk)ρk−1,ρk

⎞

⎠ · ⌊mw
u ⌋S,

where mw
u denotes the scattered multiplicity of u in w. Since these multiplicities

account for the only part of the formula which directly depends upon w, it is then

clear that if each of the equalities ⌊mw
u ⌋S = ⌊mv

u⌋S holds, then we must have w = v

in Un(S).

Now suppose w = v is satisfied in Un(S) and let u be a word of length l < n with

scattered multiplicities mw
u and mv

u in w and v respectively. Consider the morphism

φ: :�+ → Un(S) defined by

φ(s)p,p = 1S, for all p ∈ [n] and s ∈ �; and

φ(s)p,q =

{

1S if s = ui , p = i, q = i + 1,

0S otherwise.

Notice that Lemma 2.1 then yields ⌊mw
u ⌋S = φ(w)1,l+1 = φ(v)1,l+1 = ⌊mv

u⌋S . ⊓⊔

Proposition 3.2 Let S and T be commutative semirings. The the unitriangular monoids

Un(S) and Un(T ) generate the same variety of semigroups if and only if 1S and 1T

generate isomorphic semirings.

Proof If 1S and 1T generate isomorphic semirings, then for all j, k ∈ N0 we have

⌊ j⌋S = ⌊k⌋S if and only if ⌊ j⌋T = ⌊k⌋T . It then follows immediately from Theorem

3.1 that Un(S) and Un(T ) satisfy exactly the same semigroup identities.

Conversely, if Un(S) and Un(T ) satisfy the same identities, it follows that for all

words w, v, u ∈ �+ we must have ⌊mw
u ⌋S = ⌊mv

u⌋S if and only if ⌊mw
u ⌋T = ⌊mv

u⌋T .

Consideration of all pairs of words w = a j , v = ak with respect to the fixed word

u = a of length 1 allows us to determine all relations of the form ⌊ j⌋R = ⌊k⌋R for

j, k ∈ N and R = S, T . Since the same set of relations holds for R = S and R = T ,

it follows that 1S and 1T generate isomorphic semirings. ⊓⊔
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Corollary 3.3 Let S be a non-trivial idempotent semiring. The identity w = v over

alphabet � is satisfied in the unitriangular monoid Un(S) if and only if w and v admit

the same set of scattered subwords of length at most n − 1.

Proof If S is idempotent then it is easy to see that

⌊mv
u⌋S =

{

1S if u is a scattered subword of w,

0S otherwise.

⊓⊔

The previous results generalise a result of Volkov [18], who proved that w = v

is a semigroup identity for Un(B) if and only if w and v have the same scattered

subwords of length at most n − 1. Since the results of that paper also show that the

unitriangular Boolean matrices Un(B), the monoid Rn of reflexive binary relations on

a set of cardinality n, and the Catalan monoid Cn all satisfy exactly the same set of

identities, we get the following immediate corollary.

Corollary 3.4 Let S be a non-trivial idempotent semiring. The the unitriangular monoid

Un(S) satisfies exactly the same semigroup identities as the semigroup of reflexive

relations Rn or the Catalan monoid Cn .

Ashikhmin et al. [1] have subsequently shown that a certain family of the Hecke–

Kiselman monoids introduced by Ganyushkin and Mazorchuk [10]—including the

Kiselman monoid Kn and the Catalan monoid Cn—all satisfy the same identities. In

Sect. 5 we shall see that another family of J -trivial monoids of combinatorial interest,

the gossip monoids Gn , satisfy the same identities as the Catalan monoids Cn .

The monoid Un(S) can be viewed as an oversemigroup of Un(B) allowing for

entries over the idempotent semiring S, and so it is natural to ask if there are anal-

ogous extensions of Rn and Cn . We note that there is an obvious Boolean matrix

representation of Rn , formed by sending a relation R to the Boolean matrix whose

(i, j)th entry is 1 if and only if i and j are related by R. In the following section

we shall consider a natural analogue of Rn consisting of matrices over a semiring S

with diagonal entries all equal to the multiplicative identity of S. It is clear that, in

general, the set of all such matrices need not form a semigroup (e.g. over the tropical

semiring such matrices are not closed under multiplication). We shall therefore restrict

our attention to a particular class of idempotent semirings.

4 Generalised reflexivemonoids

Lemma 4.1 Let S be an idempotent semiring, and let V be a subsemigroup of Mn(S)

with the property that every element of V has all diagonal entries equal to 1S .

(i) If A = U (1)X(1)U (2) . . . U (L)X(L)U (L +1) and B = X(1) . . . X(L) for some

U (i), X(i) ∈ V , then B � A.

(ii) For all A ∈ V we have

In � A � A2 � A2 � · · · � An � · · ·
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where In denotes the identity matrix of Mn(S).

(In particular, V is J -trivial and so every regular element of V is idempotent.)

Proof (i) Suppose that A = U (1)X(1)U (2) . . . U (L)X(L)U (L + 1) and B =

X(1) . . . X(L). Since every element of V has only ones on its diagonal, for all

i, j ∈ [n] this gives

Ai, j =
∑

U (1)ρ0,ρ1 X(1)ρ1,ρ2U (2)ρ2,ρ3 . . . X(L)ρ2L−1,ρ2L
U (L + 1)ρ2L ,ρ2L+1

where the sum ranges over all choices of ρi ∈ [n], with ρ0 = i and ρ2L+1 = j .

Since a +b ≥ a, b for all a, b ∈ S, it follows that by restricting the choices for the

ρi we will obtain a partial sum that must be less than or equal to Ai, j . In particular,

we have

Ai, j ≥
∑

U (1)ρ0,ρ0 X(1)ρ0,ρ1U (2)ρ1,ρ1 . . . X(L)ρL−1,ρL
U (L + 1)ρL ,ρL

where the sum ranges over all choices of ρi ∈ [n], with ρ0 = i and ρL = j . Since

all diagonal entries of elements of V are equal to 1S , this gives

Ai, j ≥
∑

X(1)ρ0,ρ1 . . . X(L)ρL−1,ρL
,

where the sum ranges over all choices of ρi ∈ [n], with ρ0 = i and ρL = j .

By the definition of matrix multiplication, the latter is equal to Bi, j . Thus for all

i, j ∈ [n] we have Ai, j ≥ Bi, j , and hence B � A.

(ii) It follows immediately from part (i) that the powers are non-decreasing. In par-

ticular, if AJ B in V then there exist P, Q, X , Y ∈ V with A = P B Q and

B = X AY . Now by part (i) this gives A � B and B � A, and hence A = B.

Recalling that an element A ∈ V is regular if and only if it is D-related to an

idempotent, it follows immediately that A is regular if and only if it is idempotent.

⊓⊔

From now on let S be a non-trivial interval semiring (see Sect. 1) and define

Rn(S) = {A ∈ Mn(S) : Ai,i = 1S}.

It is easily verified that Rn(S) is a semigroup satisfying the conditions of Lemma 4.1.

Let Z be the element of Rn(S) given by Zi, j = 1S for all i and j . Then it is easy to see

that In � A � Z for all A ∈ Rn(S), with AZ = Z = Z A. In the case where S = B,

it is clear that Rn(B) is isomorphic to the monoid Rn of reflexive binary relations on

a set of cardinality n.

Let ρ:=(ρ0, . . . , ρL) be an L + 1-tuple of elements from [n]. We shall say that ρ

is a block chain of length L + 1 if ρ has the form:

ρ:=(i0, . . . , i0, i1, . . . , i1, . . . , ik . . . , ik),

where i0, . . . , ik are distinct elements of [n] and thus, k ≤ n − 1.
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Lemma 4.2 Let S be an interval semiring.

(i) If A = X(1) . . . X(L) in Rn(S), then for all i, j ∈ [n] we have

Ai, j =
∑

X(1)ρ0,ρ1 X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL
,

where the sum ranges over all block chains ρ:=(ρ0, . . . , ρL) with ρ0 = i and

ρL = j .

(ii) For all A ∈ Rn(S) and all N ≥ n − 1 we have AN = An−1.

(In particular, An−1 is idempotent and Rn(S) is aperiodic.)

Proof (i) Let A = X(1) . . . X(L) in Rn(S). Then, by the definition of matrix multi-

plication,

Ai, j =
∑

X(1)ρ0,ρ1 X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL
,

where the sum ranges over all L + 1-tuples ρ:=(ρ0, . . . , ρL), with ρk ∈ [n] and

ρ0 = i, ρL = j . Let ρ be such a tuple, and suppose that ρ is not a block chain.

Then for some s, t with s + 1 < t we must have ρs �= ρs+1 and ρs = ρt . Consider

the tuple ρ′:=(ρ′
0, . . . , ρ

′
L) obtained from ρ by replacing each ρk with s < k < t

by ρs . Since each diagonal entry is equal to 1S and 1S ≥ a for all a ∈ S, it is easy

to see that:

X(1)ρ′
0,ρ′

1
X(2)ρ′

1,ρ
′
2
. . . X(L)ρ′

L−1,ρ
′
L

≥ X(1)ρ0,ρ1 X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL
.

By repeated application of the above argument, it is clear that

X(1)σ0,σ1 X(2)σ1,σ2 . . . X(L)σL−1,σL
≥ X(1)ρ0,ρ1 X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL

,

for some block chain σ . Since a ≤ b in S if and only if a + b = b, it follows from

the previous observation that taking the sum over all block chains must give the

same result as taking the sum over all tuples. Thus

Ai, j =
∑

X(1)ρ0,ρ1 X(2)ρ1,ρ2 . . . X(L)ρL−1,ρL
,

where the sum ranges over all block chains ρ:=(ρ0, . . . , ρL) with ρ0 = i and

ρL = j .

(ii) Let A ∈ Rn(S) and N ∈ N. Then by part (i)

(AN )i, j =
∑

Aρ0,ρ1 Aρ1,ρ2 . . . AρN−1,ρN
,

where the sum ranges over all N + 1-tuples of the form

ρ:=(i, . . . , i, i1, . . . , i1, . . . , ik . . . , ik, j . . . , j),
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where i, i1, . . . , ik, j are distinct elements of [n]. Moreover, for such an N + 1-

tuple ρ, the fact that the diagonal entries of A are all equal to 1S means that the

corresponding term of the summation is equal to

Ai,i1 Ai1,i2 . . . Aik−1,ik
Aik , j .

Thus for each N ≥ n − 1 we see that every term occurring in the summation

above also occurs as a term in the corresponding summation for An−1, and hence

AN � An−1. On the other hand, by Lemma 4.1, we know that An−1 � AN for

all N ≥ n − 1. Thus we may conclude that An−1 = AN for all N ≥ n − 1. In

particular,

An−1 An−1 = A2n−2 = An−1.

(Recall that a semigroup V is aperiodic if for every a ∈ V there exists a positive

integer m such that am+1 = am .) ⊓⊔

We note that in the case where Rn(S) is finite, the fact that Rn(S) is aperiodic follows

directly from Lemma 4.1, since every finite H-trivial semigroup is aperiodic. For

infinite semigroups, J -triviality is not sufficient to deduce aperiodicity (for example,

the semigroup of natural numbers under addition is an infinite J -trivial semigroup

which is clearly not aperiodic).

Theorem 4.3 Let S be a non-trivial interval semiring. The identity w = v over alpha-

bet � is satisfied in Rn(S) if and only if w and v have the same scattered subwords of

length at most n − 1.

Proof Noting that Un(S) ⊆ Rn(S), it suffices to show that if w and v have the same

scattered subwords of length at most n − 1, then w = v holds in Rn(S).

Let φ : �+ → Rn(S) be a morphism and let w = w1 . . . wq ∈ �+. By Lemma 4.2

for each i, j ∈ [n] we have

φ(w)i, j = (φ(w1) . . . φ(wq))i, j

=
∑

φ(w1)ρ0,ρ1 . . . φ(wq)ρq−1,ρq ,

where the sum ranges over all block chains ρ of total length q + 1, with first entry i

and last entry j . To each choice of t = (t0, t1, . . . , tp, tp+1) with 0 = t0 < t1 < · · · <

tp < tp+1 = q + 1 and p ≤ n − 1 we may associate the set B
i, j
t of all block chains

of the form:

(i0, . . . , i0
︸ ︷︷ ︸

t1−t0

, i1, . . . , i1
︸ ︷︷ ︸

t2−t1

, i2, . . . , i2
︸ ︷︷ ︸

t3−t2

. . . , i p−1, . . . , i p−1
︸ ︷︷ ︸

tp−tp−1

i p, . . . , i p
︸ ︷︷ ︸

tp+1−tp

)

with i0 = i , i p = j . It is easy to see that the set of all block chains of total length

q + 1 with first entry i and last entry j is the disjoint union of the sets B
i, j
t . Thus
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the summation above can be viewed as summing over all block chains in B
i, j
t for all

choices 0 = t0 < t1 < · · · < tp < tp+1 = q + 1.

Fix t and consider the term of the summation corresponding to the block chain

(i0, . . . , i0
︸ ︷︷ ︸

t1−t0

, i1, . . . , i1
︸ ︷︷ ︸

t2−t1

, i2, . . . , i2
︸ ︷︷ ︸

t3−t2

. . . , i p−1, . . . , i p−1
︸ ︷︷ ︸

tp−tp−1

i p, . . . , i p
︸ ︷︷ ︸

tp+1−tp

).

The fact that all diagonal entries are equal to 1S means that the corresponding term is

equal to

φ(wt1)i0,i1φ(wt2)i1,i2 . . . φ(wtp )i p−1,i p .

It is then clear that the above expression depends only upon the choice of scattered

subword u = wt1 . . . wtp of w of length p ≤ n − 1, and the intermediate vertices

i1, . . . , i p−1. Since addition in S is idempotent, we may therefore conclude that

φ(w)i, j =
∑

φ(u1)i0,i1φ(u2)i1,i2 . . . φ(u p)i p−1,i p ,

where the sum ranges over all scattered subwords u of w of length at most n − 1, and

over all choices of distinct i0, . . . , i p ∈ [n] with i0 = i and i p = j . It then follows

that if w and v contain the same scattered subwords of length at most n − 1 then

φ(w) = φ(v). ⊓⊔

5 Catalanmonoids and gossip

The Catalan monoid Cn [16] is the monoid given by the presentation with generators

e1, . . . , en−1 and relations

ei ei = ei , ei e j = e j ei ei ei+1ei = ei+1ei ei+1 = ei ei+1 (2)

for all appropriate i, j with |i − j | > 1. The name comes from the fact that |Cn| =
1

n+1

(
2n
n

)

is the nth Catalan number.

Say that a matrix A ∈ Mn(B) is convex if:

(1) Ai,l = Ai,r = 1 with l ≤ r implies Ai,k = 1 for all l ≤ k ≤ r ,

(2) Au, j = Ad, j = 1 with u ≤ d implies Ak, j = 1 for all u ≤ k ≤ d, and

(3) Ai,i = 1 for all i .

By [11, Proposition 3] the set Convn of all convex Boolean matrices is a submonoid

of Rn . Let CU
n = Convn ∩ Un denote the monoid of all convex upper unitriangular

matrices, and for 1 ≤ i ≤ n − 1 let D(i) ∈ CU
n be the matrix with 1’s on the diagonal

and a single off-diagonal 1 in position (i, i + 1).

Lemma 5.1 The matrices D(1), . . . , D(n − 1) generate the monoid CU
n of all convex

upper unitriangular Boolean matrices. Moreover, CU
n

∼= Cn .
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Proof Since each D(i) is a convex upper unitriangular matrix, these matrices clearly

generate a submonoid of CU
n . Suppose then that A ∈ CU

n . Let mi = max{ j : Ai, j = 1}.

Since Ai,i = 1 we note that mi ≥ i . Convexity of A yields that mi ≤ m j whenever

i ≤ j . Define

F(i) =

{

In if mi = i,

D(i) . . . D(mi − 1) if mi > i .

It is straightforward to verify that if F(i)i, j = 1 if and only if i ≤ j ≤ mi , and

similarly for all k > i , we have F(k)i, j = 1 if and only if i = j . Thus the (i, j)th

coordinate of B:=F(n − 1) . . . F(i) is non-zero if and only if i ≤ j ≤ mi . Let

M = B F(i − 1) . . . F(1). We claim A = M . Since M � B, it is clear from the

observations above that Mi, j ≥ Bi, j = 1 for all i ≤ j ≤ mi . Since M is clearly

upper triangular, it remains to show that Mi, j = 0 for all j > mi . To see this, notice

that the right action of D(k) on any Boolean matrix X results in the matrix obtained

from X by taking the Boolean sum of columns k and k + 1. By definition, all factors

D(k) occurring in F( j) satisfy j ≤ k ≤ m j − 1. For j < i the only factors D(k)

occurring in F( j) therefore satisfy j ≤ k ≤ m j − 1 ≤ mi − 1. This means that M

is obtained from the matrix B by the right action of some collection of matrices D(k)

with k ≤ mi − 1, and hence columns j > mi of M and B agree.

It is straightforward to verify that the matrices D(i) satisfy the relations (2). Since

the elements of CU
n are in one to one correspondence with the Dyck paths from (0, 0)

to (n, n), we see that |CU
n | = |Cn|, and so these two monoids must be isomorphic.

⊓⊔

Let E(i) denote the product D(i)D(i)T ∈ Convn . The double Catalan monoid

DCn of Mazorchuk and Steinberg [11] is the submonoid of Convn generated by the

matrices E1, . . . , En−1. Define U : DCn → CU
n to be the map sending a matrix to its

upper profile, namely U(A)i, j = Ai, j if i ≤ j and U(A)i, j = 0 otherwise.

Lemma 5.2 The map U : DCn → CU
n is a surjective monoid homomorphism.

Proof Let A, B ∈ DCn . By definition U(AB)i, j = (AB)i, j if i ≤ j and 0 otherwise.

Thus the non-zero entries occur in positions i ≤ j for which there exists k with

Ai,k = Bk, j = 1. Note that if there exists such a k with k < i , then by the convexity

of B we must have Ai,i = Bi, j = 1, whilst if there exists such a k with k > j ,

then by the convexity of A we must have Ai, j = B j, j = 1. The non-zero entries of

U(AB) therefore occur in positions (i, j) for which there exists k with i ≤ k ≤ j and

Ai,k = Bk, j = 1, and it is easy to see that these coincide with the non-zero entries of

U(A)U(B).

Now let A ∈ DCn . By definition we may write A = Ei1 . . . Eim for some 1 ≤

i1, . . . , im ≤ n. Applying the morphism U then yields

U(A) = U(Ei1) . . . U(Eim ) = Di1 . . . Dim ,

and the result follows from Lemma 5.1. ⊓⊔
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Now let D(i, j) denote the n×n Boolean matrix with 1’s on the diagonal and a single

off-diagonal 1 in position (i, j), and let E(i, j) = D(i, j)D( j, i). The gossip monoid

[5,9] is the submonoid of Mn(B) generated by the set {E(i, j) : 1 ≤ i < j ≤ n}. The

one directional gossip monoid Gn is the submonoid of Mn(B) generated by the set

{D(i, j) : 1 ≤ i �= j ≤ n}. It is clear from the definition that Gn is a submonoid of

Gn . Moreover, since E(i) = E(i, i + 1) we see that the double Catalan monoid is a

submonoid of Gn . The names ‘one-directional gossip monoid’ and ‘gossip monoid’

come from the following interpretation of the matrices D(i, j) and E(i, j). Consider

a group of n people, each with a unique piece of information or ‘gossip’ they would

like to spread. It is clear that we can record the state of knowledge amongst the n

people at any given time by means of a Boolean matrix, putting a 1 in the (i, j)th

position if and only if person j has learned the piece of gossip originally known only

to person i . The right action of the matrix D(i, j) on Mn(B) then corresponds to a

one-way communication from person i to person j , in which person i recounts to

person j all of the gossip that they know. The right action of the matrix E(i, j) on

Mn(B) corresponds to a two-way communication between person i and person j , at

the end of which both parties have learned the sum total of gossip known to either i

or j . The double Catalan monoid can therefore be thought of as an algebraic model of

gossip in a network in which person i can communicate only with the person’s nearest

neighbours, i − 1 and i + 1.

Proposition 5.3 Let n ∈ N. The gossip monoid Gn , the one-directional gossip monoid

Ḡn , and the double Catalan monoid DCn , all satisfy the same set of identities as the

reflexive monoid Rn .

Proof It is clear from the above definitions that DCn ⊆ Gn ⊆ Gn ⊆ Rn . Thus

Id(DCn) ⊇ Id(Gn) ⊇ Id(Gn) ⊇ Id(Rn). By Lemma 5.2, there is a surjective monoid

homomorphism from U : DCn → CU
n , from which it follows that Id(CU

n ) ⊇ Id(DCn).

The result then follows from the fact that Rn and Cn satisfy the same identities [18].

⊓⊔

Now let S be a non-trivial interval semiring and for each s ∈ S define: D(i, j; s)

to be the matrix with 1’s on the diagonal and a single off-diagonal entry s in position

(i, j); and E(i, j; s) = D(i, j; s)D( j, i; s). Then we may define monoids:

CU
n (S) := 〈D(i, i + 1; s) : 1 ≤ i ≤ n − 1, s ∈ S〉

DCn(S) := 〈E(i, i + 1; s) : 1 ≤ i ≤ n − 1, s ∈ S〉

Gn(S) := 〈E(i, j; s) : 1 ≤ i, j ≤ n − 1, s ∈ S〉

Gn(S) := 〈D(i, j; s) : 1 ≤ i, j ≤ n − 1, s ∈ S〉

Since S is an interval semiring, we note that each is a submonoid of Rn(S).

Proposition 5.4 Let S be a (non-trivial) interval semiring. The monoids CU
n (S),

DCn(S), Gn(S) and Gn(S) satisfy the same identities as the monoid Rn(S).

Proof It is clear from the definitions that

DCn ⊆ DCn(S) ⊆ Gn(S) ⊆ Gn(S) ⊆ Rn(S)
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and

CU
n ⊆ CU

n (S) ⊆ Rn(S).

Thus by Proposition 5.3 and Theorem 4.3 we deduce that each of these monoids

satisfies the same set of identities. ⊓⊔

In the case where S is the subsemiring [0,+∞] of the (min-plus) tropical semiring,

it is straightforward to verify that the monoid Gn(S) is precisely the lossy gossip

monoid Gn of [5].

Corollary 5.5 The lossy gossip monoid is finitely based for n ≤ 4 and non-finitely

based otherwise.
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