# Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations 

Taekyun Kim ${ }^{\text {a,b,* }}$, Dae San Kim ${ }^{\text {c }}$<br>${ }^{2}$ Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China.<br>${ }^{b}$ Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea.<br>${ }^{c}$ Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea.

Communicated by S.-H. Rim


#### Abstract

The purpose of this paper is to construct some new non-linear differential equations and investigate the solutions of these non-linear differential equations. In addition, we give some new identities involving degenerate Euler numbers and polynomials arising from those non-linear differential equations. © 2016 All rights reserved.


Keywords: Degenerate Euler numbers, degenerate Euler polynomials, non-linear differential equation, degenerate Bernoulli numbers, degenerate Bernoulli polynomials.
2010 MSC: 05A19, 11B83, 34A34.

## 1. Introduction

As is well known, the Euler polynomials of order $r(\in \mathbb{N})$ are defined by the generating function

$$
\begin{equation*}
\left(\frac{2}{e^{t}+1}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} E_{n}^{(r)}(x) \frac{t^{n}}{n!}, \quad(\text { see }[1-15]) . \tag{1.1}
\end{equation*}
$$

When $x=0, E_{n}^{(r)}=E_{n}^{(r)}(0)$ are called the higher-order Euler numbers.

[^0]In particular, $r=1, E_{n}(x)=E_{n}^{(1)}(x)$ are called ordinary Euler polynomials.
In [2, 3], L. Carlitz considered the degenerate Euler polynomials which are given by the generating function

$$
\begin{equation*}
\left(\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} \mathcal{E}_{n, \lambda}^{(r)}(x) \frac{t^{n}}{n!} \tag{1.2}
\end{equation*}
$$

When $x=0, \mathcal{E}_{n, \lambda}^{(r)}=\mathcal{E}_{n, \lambda}^{(r)}(0)$ are called the higher-order degenerate Euler numbers.
In particular, for $r=1, \mathcal{E}_{n, \lambda}=\mathcal{E}_{n, \lambda}^{(1)}(0)$ and $\mathcal{E}_{n, \lambda}(x)=\mathcal{E}_{n, \lambda}^{(1)}(x)$ are respectively called the degenerate Euler numbers and the degenerate Euler polynomials.

From (1.2), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, \lambda}^{(r)}(x) \frac{t^{n}}{n!} & =\left(\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}}  \tag{1.3}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l}(x \mid \lambda)_{n-l} \mathcal{E}_{l}^{(r)}\right) \frac{t^{n}}{n!}
\end{align*}
$$

where $(x \mid \lambda)_{n}=x(x-\lambda) \cdots(x-(n-1) \lambda)$.
Thus, by (1.3), we get

$$
\begin{equation*}
\mathcal{E}_{n, \lambda}^{(r)}(x)=\sum_{l=0}^{n}\binom{n}{l}(x \mid \lambda)_{n-l} \mathcal{E}_{l}^{(r)}, \quad(n \geq 0), \quad(\text { see [3, 10, 12] }) \tag{1.4}
\end{equation*}
$$

In [9, 11], Kim and Kim, and Kim developed some new methods for obtaining identities related to Bernoulli numbers of the second kind and Frobenius-Euler polynomials of higher order arising from certain non-linear differential equations.

For example,

$$
\begin{aligned}
(-1)^{N} & \sum_{j=0}^{\min \{n, N-1\}}(N-j)!(N-1)!H_{N-1, N-1-j}(n)_{j} b_{n-j}^{(N+1-j)} \\
& = \begin{cases}(-1)^{N} N!\prod_{l=0}^{n-1}(N-l), & \text { if } 0 \leq n<N \\
\sum_{l=0}^{n-N-1}\binom{n}{l} \frac{b_{n-l}}{n-l} \prod_{l=0}^{l+N}(n-l), & \text { if } n \geq N+1,\end{cases}
\end{aligned}
$$

where $H_{N, 0}=1$, for all $N(\in \mathbb{N})$,

$$
\begin{aligned}
H_{N, 1} & =H_{N}=1+\frac{1}{2}+\cdots+\frac{1}{N} \\
H_{N, j} & =\frac{H_{N-1, j-1}}{N}+\frac{H_{N-2, j-1}}{N-1}+\cdots+\frac{H_{0, j-1}}{1}, \quad H_{0, j-1}=0 \quad(2 \leq j \leq N) \\
b_{n}^{(k)} & =\text { the } n \text {th Bernoulli numbers of the second kind with order } k \quad(\text { see }[9,11]) .
\end{aligned}
$$

The rising factorial sequence is defined as

$$
\begin{equation*}
(x)_{n}=x(x+1) \cdots(x+n-1)=\sum_{l=0}^{n}\left|S_{1}(n, l)\right| x^{l}, \quad(n \geq 0) \tag{1.5}
\end{equation*}
$$

where $\left|S_{1}(n, l)\right|$ are called the unsigned Stirling numbers of the first kind (see [1-9, 11-13]).
The purpose of this paper is to construct some new non-linear differential equations and investigate the solutions of these non-linear differential equations. In addition, we give some new identities involving degenerate Euler numbers and polynomials arising from those non-linear differential equations.

## 2. Identities of degenerate Euler numbers and polynomials

Now, we construct the non-linear differential equations with the solution $F(t)=\frac{1}{(1+\lambda t)^{\frac{1}{\lambda}}+1}$.
Let

$$
\begin{equation*}
F=F(t)=F(t ; \lambda)=\frac{1}{(1+\lambda t)^{\frac{1}{\lambda}}+1}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{N}=\underbrace{F \times F \times \cdots \times F}_{N \text {-times }}, \quad \text { where } N \in \mathbb{N} \text {. } \tag{2.2}
\end{equation*}
$$

From (2.1), we note that

$$
\begin{align*}
F^{(1)} & =\frac{d F}{d t}=\frac{-(1+\lambda t)^{\frac{1}{\lambda}}}{\left((1+\lambda t)^{\frac{1}{\lambda}}+1\right)^{2}(1+\lambda t)}  \tag{2.3}\\
& =\frac{(-1)}{1+\lambda t}\left(F-F^{2}\right)
\end{align*}
$$

Thus, by (2.3), we get

$$
\begin{equation*}
F^{(1)}=\frac{d F}{d t}(t)=\frac{(-1)}{1+\lambda t}\left(F-F^{2}\right) \tag{2.4}
\end{equation*}
$$

From (2.4), we can derive

$$
\begin{align*}
F^{(2)} & =\frac{d F^{(1)}}{d t} \\
& =\frac{(-1)^{2} \lambda}{(1+\lambda t)^{2}}\left(F-F^{2}\right)+\frac{(-1)}{(1+\lambda t)}\left(F^{(1)}-2 F F^{(1)}\right) \\
& =\frac{(-1)^{2} \lambda}{(1+\lambda t)^{2}}\left(F-F^{2}\right)+\frac{(-1)}{(1+\lambda t)}\left\{\frac{(-1)}{(1+\lambda t)}\left(F-F^{2}\right)-2 F\left(\frac{(-1)}{1+\lambda t}\left(F-F^{2}\right)\right)\right\}  \tag{2.5}\\
& =\frac{(-1)^{2} \lambda}{(1+\lambda t)^{2}}\left(F-F^{2}\right)+\frac{(-1)^{2}}{(1+\lambda t)^{2}}\left(F-F^{2}\right)+\frac{(-1)^{3} 2!}{(1+\lambda t)^{2}}\left(F^{2}-F^{3}\right) \\
& =\frac{(-1)^{2}(\lambda+1)}{(1+\lambda t)^{2}}\left(F-F^{2}\right)+\frac{(-1)^{3} 2!}{(1+\lambda t)^{2}}\left(F^{2}-F^{3}\right)
\end{align*}
$$

and

$$
\begin{align*}
F^{(3)}= & \frac{d F^{(2)}}{d t} \\
= & \frac{\lambda(-1)^{3} 2!(\lambda+1)}{(1+\lambda t)^{3}}\left(F-F^{2}\right)+\frac{(-1)^{2}(\lambda+1)}{(1+\lambda t)^{2}}\left(F^{(1)}-2 F F^{(1)}\right) \\
& +\frac{(-1)^{4} 2!2 \lambda}{(1+\lambda t)^{3}}\left(F^{2}-F^{3}\right)+\frac{(-1)^{3} 2!}{(1+\lambda t)^{2}}\left(2 F F^{(1)}-3 F^{2} F^{(1)}\right) \\
= & \frac{(-1)^{3}(1+\lambda)(2 \lambda+1)}{(1+\lambda t)^{3}}\left(F-F^{2}\right)+\frac{(-1)^{4}(\lambda+1) 2}{(1+\lambda t)^{3}}\left(F^{2}-F^{3}\right)+\frac{(-1)^{4} 2!2 \lambda}{(1+\lambda t)^{3}}\left(F^{2}-F^{3}\right)  \tag{2.6}\\
& +\frac{(-1)^{4} 2!2}{(1+\lambda t)^{3}}\left(F^{2}-F^{3}\right)+\frac{(-1)^{5} 2!3}{(1+\lambda t)^{3}}\left(F^{3}-F^{4}\right) \\
= & \frac{(-1)^{3}(1+\lambda)(2 \lambda+1)}{(1+\lambda t)^{3}} F+\frac{(-1)^{4}(2 \lambda+7)(\lambda+1)}{(1+\lambda t)^{3}} F^{2}+\frac{(-1)^{5} 3!(\lambda+2)}{(1+\lambda t)^{3}} F^{3} \\
& +\frac{(-1)^{6} 3!}{(1+\lambda t)^{3}} F^{4} .
\end{align*}
$$

Thus we are led to set

$$
\begin{equation*}
F^{(N)}=\frac{(-1)^{N}}{(1+\lambda t)^{N}} \sum_{i=1}^{N+1} a_{i}(N, \lambda)(-1)^{i-1} F^{i}, \quad(N \in \mathbb{N}) \tag{2.7}
\end{equation*}
$$

where

$$
F^{(N)}=\frac{d^{N} F}{d t^{N}}(t)=\underbrace{\frac{d}{d t} \times \cdots \times \frac{d}{d t} F(t)}_{N-\text { times }}
$$

To determine the coefficients $a_{i}(N, \lambda)$ in (2.7), we take the derivative of 2.7 with respect to $t$ as follows:

$$
\begin{align*}
F^{(N+1)}= & \frac{d F^{(N)}}{d t}=\frac{(-1)^{N+1} \lambda N}{(1+\lambda t)^{N+1}} \sum_{i=1}^{N+1} a_{i}(N, \lambda)(-1)^{i-1} F^{i} \\
& +\frac{(-1)^{N}}{(1+\lambda t)^{N}} \sum_{i=1}^{N+1} a_{i}(N, \lambda)(-1)^{i-1} i F^{i-1} F^{(1)} \tag{2.8}
\end{align*}
$$

From (2.4) and (2.8), we have

$$
\begin{align*}
F^{(N+1)}= & \frac{(-1)^{N+1} \lambda N}{(1+\lambda t)^{N+1}} \sum_{i=1}^{N+1} a_{i}(N, \lambda)(-1)^{i-1} F^{i} \\
& +\frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}} \sum_{i=1}^{N+1} a_{i}(N, \lambda)(-1)^{i-1} i\left(F^{i}-F^{i+1}\right) \\
= & \frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}}\left\{\sum_{i=1}^{N+1}\left(\lambda N a_{i}(N, \lambda)+i a_{i}(N, \lambda)\right)(-1)^{i-1} F^{i}\right. \\
& \left.+\sum_{i=2}^{N+2} a_{i-1}(N, \lambda)(-1)^{i-1}(i-1) F^{i}\right\}  \tag{2.9}\\
= & \frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}}\left\{\left(\lambda N a_{1}(N, \lambda)+a_{1}(N, \lambda)\right) F\right. \\
& +\sum_{i=2}^{N+1}\left(\lambda N a_{i}(N, \lambda)+i a_{i}(N, \lambda)+(i-1) a_{i-1}(N, \lambda)\right)(-1)^{i-1} F^{i} \\
& \left.+a_{N+1}(N, \lambda)(-1)^{N+1}(N+1) F^{N+2}\right\} .
\end{align*}
$$

By (2.7) and (2.9), we easily get

$$
\begin{align*}
& \frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}}\left\{\left(\lambda N a_{1}(N, \lambda)+a_{1}(N, \lambda)\right) F+a_{N+1}(N, \lambda)(-1)^{N+1}(N+1) F^{N+2}\right. \\
& \left.\quad+\sum_{i=2}^{N+1}\left(\lambda N a_{i}(N, \lambda)+i a_{i}(N, \lambda)+(i-1) a_{i-1}(N, \lambda)\right)(-1)^{i-1} F^{i}\right\}  \tag{2.10}\\
& =\frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}} \sum_{i=1}^{N+2} a_{i}(N+1, \lambda)(-1)^{i-1} F^{i}
\end{align*}
$$

By comparing the coefficients on both sides of 2.10 , we get

$$
\begin{align*}
a_{1}(N+1, \lambda) & =\lambda N a_{1}(N, \lambda)+a_{1}(N, \lambda) \\
& =(\lambda N+1) a_{1}(N, \lambda) \tag{2.11}
\end{align*}
$$

$$
\begin{equation*}
a_{N+2}(N+1, \lambda)=(N+1) a_{N+1}(N, \lambda) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i}(N+1, \lambda)=(\lambda N+i) a_{i}(N, \lambda)+(i-1) a_{i-1}(N, \lambda) \tag{2.13}
\end{equation*}
$$

where $2 \leq i \leq N+1$.
From (2.4) and (2.7), we have

$$
\begin{equation*}
\frac{(-1)}{1+\lambda t}\left(F-F^{2}\right)=F^{(1)}=\frac{(-1)}{1+\lambda t}\left(a_{1}(1, \lambda) F-a_{2}(1, \lambda) F^{2}\right) \tag{2.14}
\end{equation*}
$$

Thus, by 2.14, we get

$$
\begin{equation*}
a_{1}(1, \lambda)=1, \quad \text { and } \quad a_{2}(1, \lambda)=1 \tag{2.15}
\end{equation*}
$$

From (2.11) and 2.15), we can derive the following identities:

$$
\begin{align*}
a_{1}(N+1, \lambda) & =(\lambda N+1) a_{1}(N, \lambda) \\
& =(\lambda N+1)(\lambda(N-1)+1) a_{1}(N-1, \lambda) \\
& =(\lambda N+1)(\lambda(N-1)+1)(\lambda(N-2)+1) a_{1}(N-2, \lambda) \\
& \vdots  \tag{2.16}\\
& =(\lambda N+1)(\lambda(N-1)+1) \cdots(\lambda+1) a_{1}(1, \lambda) \\
& =(\lambda N+1)(\lambda(N-1)+1) \cdots(\lambda+1) \cdot 1 \\
& =\lambda^{N+1}\left(\frac{1}{\lambda}\right)_{N+1}
\end{align*}
$$

and

$$
\begin{align*}
a_{N+2}(N+1, \lambda) & =(N+1) a_{N+1}(N, \lambda) \\
& =(N+1) N a_{N}(N-1, \lambda) \\
& \vdots  \tag{2.17}\\
& =(N+1) N(N-1) \cdots 2 a_{2}(1, \lambda) \\
& =(N+1)!.
\end{align*}
$$

We observe that

$$
\begin{align*}
& a_{1}(1, \lambda)=1, a_{1}(2, \lambda)=(1+\lambda), \quad a_{1}(3, \lambda)=(1+\lambda)(1+2 \lambda), \quad \cdots \\
& a_{1}(N, \lambda)=(1+\lambda)(1+2 \lambda) \cdots(1+(N-1) \lambda)=\lambda^{N}\left(\frac{1}{\lambda}\right)_{N} \tag{2.18}
\end{align*}
$$

and

$$
\begin{equation*}
a_{2}(1, \lambda)=1, a_{3}(2, \lambda)=2!, a_{4}(3, \lambda)=3!, \ldots, a_{N+1}(N, \lambda)=N!. \tag{2.19}
\end{equation*}
$$

That is, the matrix $\left(a_{i}(j, \lambda)\right)_{1 \leq i \leq N+1,1 \leq j \leq N}$ is given by

$$
N+1\left[\begin{array}{ccccc}
\overbrace{\left(\begin{array}{ccc}
1 & (1+\lambda) & (1+\lambda)(1+2 \lambda) \\
1! & \times & \cdots
\end{array}\right.}^{\lambda^{N}}\left(\begin{array}{l}
\left.\frac{1}{\lambda}\right)_{N} \\
2! \\
2
\end{array}\right. & \times & \cdots & \times \\
& & 3! & \cdots & \times \\
& & & & \ddots
\end{array}\right]
$$

From (2.13), we have

$$
\begin{align*}
a_{2}(N+1, \lambda)= & (\lambda N+2) a_{2}(N, \lambda)+a_{1}(N, \lambda) \\
= & (\lambda N+2)\left\{(\lambda(N-1)+2) a_{2}(N-1, \lambda)+a_{1}(N-1, \lambda)\right\}+a_{1}(N, \lambda) \\
= & (\lambda N+2)(\lambda(N-1)+2) a_{2}(N-1, \lambda)+(\lambda N+2) a_{1}(N-1, \lambda)+a_{1}(N, \lambda) \\
= & a_{1}(N, \lambda)+(\lambda N+2) a_{1}(N-1, \lambda)+(\lambda N+2)(\lambda(N-1)+2) a_{1}(N-2, \lambda) \\
& +(\lambda N+2)(\lambda(N-1)+2)(\lambda(N-2)+2) a_{2}(N-2, \lambda) \\
\vdots & \\
= & a_{1}(N, \lambda)+\sum_{m_{1}=1}^{N-1}\left(\prod_{l=0}^{m_{1}-1}(\lambda(N-l)+2)\right) a_{1}\left(N-m_{1}, \lambda\right)  \tag{2.20}\\
& +(\lambda N+2)(\lambda(N-1)+2) \cdots(\lambda+2) \cdot 1 \\
= & \lambda^{N}\left(\frac{1}{\lambda}\right)_{N}+\sum_{m_{1}=1}^{N-1} \lambda^{m_{1}}\left(\frac{2}{\lambda}+N-m_{1}+1\right)_{m_{1}}^{\lambda^{N-m_{1}}\left(\frac{1}{\lambda}\right)_{N-m_{1}}} \\
& +\lambda^{N}\left(\frac{2}{\lambda}+1\right)_{N} \\
= & \sum_{m_{1}=0}^{N} \lambda^{m_{1}}\left(\frac{2}{\lambda}+N-m_{1}+1\right)_{m_{1}} \lambda^{N-m_{1}}\left(\frac{1}{\lambda}\right)_{N-m_{1}} \\
= & \lambda^{N} \sum_{m_{1}=0}^{N}\left(\frac{2}{\lambda}+N-m_{1}+1\right)_{m_{1}}\left(\frac{1}{\lambda}\right)_{N-m_{1}}
\end{align*}
$$

and

$$
\begin{align*}
a_{3}(N+1, \lambda)= & (\lambda N+3) a_{3}(N, \lambda)+2!a_{2}(N, \lambda) \\
= & 2!a_{2}(N, \lambda)+(\lambda N+3)\left\{(\lambda(N-1)+3) a_{3}(N-1, \lambda)+2 a_{2}(N-1, \lambda)\right\} \\
= & 2!a_{2}(N, \lambda)+2!(\lambda N+3) a_{2}(N-1, \lambda) \\
& +(\lambda N+3)(\lambda(N-1)+3) a_{3}(N-1, \lambda) \\
= & 2!a_{2}(N, \lambda)+2!(\lambda N+3) a_{2}(N-1, \lambda) \\
& +2!(\lambda N+3)(\lambda(N-1)+3) a_{2}(N-2, \lambda) \\
& +(\lambda N+3)(\lambda(N-1)+3)(\lambda(N-2)+3) a_{3}(N-2, \lambda) \\
\vdots &  \tag{2.21}\\
= & 2!a_{2}(N, \lambda)+2!\sum_{m_{2}=1}^{N-2}\left(\prod_{l=0}^{m_{2}-1}(\lambda(N-l)+3)\right) a_{2}\left(N-m_{2}, \lambda\right) \\
& +2!(\lambda N+3)(\lambda(N-1)+3) \cdots(3 \lambda+3)(2 \lambda+3) \\
= & 2!a_{2}(N, \lambda)+2!\sum_{m_{2}=1}^{N-2} \lambda^{m_{2}}\left(N-m_{2}+1+\frac{3}{\lambda}\right)_{m_{2}} a_{2}\left(N-m_{2}, \lambda\right) \\
& +2!(\lambda N+3)(\lambda(N-1)+3) \cdots(3 \lambda+3)(2 \lambda+3) \\
= & 2!a_{2}(N, \lambda)+2!\sum_{m_{2}=1}^{N-2} \lambda^{m_{2}}\left(N-m_{2}+1+\frac{3}{\lambda}\right)_{m_{2}} a_{2}\left(N-m_{2}, \lambda\right) \\
& +2!\lambda{ }^{N-1}\left(\frac{3}{\lambda}+2\right)_{N-1}
\end{align*}
$$

$$
\begin{aligned}
= & 2!\sum_{m_{2}=0}^{N-1} \lambda^{m_{2}}\left(N-m_{2}+1+\frac{3}{\lambda}\right)_{m_{2}} a_{2}\left(N-m_{2}, \lambda\right) \\
= & 2!\lambda^{N-1} \sum_{m_{2}=0}^{N-1} \sum_{m_{1}=0}^{N-m_{2}-1}\left(N-m_{2}+1+\frac{3}{\lambda}\right)_{m_{2}} \\
& \times\left(N-m_{2}-m_{1}+\frac{2}{\lambda}\right)_{m_{1}}\left(\frac{1}{\lambda}\right)_{N-m_{2}-m_{1}-1}
\end{aligned}
$$

From (2.13), we note that

$$
\begin{equation*}
a_{4}(N+1, \lambda)=(\lambda N+4) a_{4}(N, \lambda)+3 a_{3}(N, \lambda) \tag{2.22}
\end{equation*}
$$

Thus, by 2.21) and 2.22, we get

$$
\begin{align*}
& a_{4}(N+1, \lambda)=3 a_{3}(N, \lambda)+(\lambda N+4)\left\{(\lambda(N-1)+4) a_{4}(N-1, \lambda)+3 a_{3}(N-1, \lambda)\right\} \\
& =3 a_{3}(N, \lambda)+3(\lambda N+4) a_{3}(N-1, \lambda) \\
& +(\lambda N+4)(\lambda(N-1)+4) a_{4}(N-1, \lambda) \\
& =3 a_{3}(N, \lambda)+3(\lambda N+4) a_{3}(N-1, \lambda) \\
& +3(\lambda N+4)(\lambda(N-1)+4) a_{3}(N-2, \lambda) \\
& +(\lambda N+4)(\lambda(N-1)+4)(\lambda(N-2)+4) a_{4}(N-2, \lambda) \\
& \vdots \\
& =3 a_{3}(N, \lambda)+3 \sum_{m_{3}=1}^{N-3}\left(\prod_{l=0}^{m_{3}-1}(\lambda(N-l)+4)\right) a_{3}\left(N-m_{3}, \lambda\right) \\
& +3!(\lambda N+4)(\lambda(N-1)+4) \cdots(3 \lambda+4) \\
& =3 a_{3}(N, \lambda)+3 \sum_{m_{3}=1}^{N-3} \lambda^{m_{3}}\left(\frac{4}{\lambda}+N-m_{3}+1\right)_{m_{3}} a_{3}\left(N-m_{3}, \lambda\right)  \tag{2.23}\\
& +3!\lambda^{N-2}\left(\frac{4}{\lambda}+3\right)_{N-2} \\
& =3 \sum_{m_{3}=0}^{N-2} \lambda^{m_{3}}\left(\frac{4}{\lambda}+N-m_{3}+1\right)_{m_{3}} a_{3}\left(N-m_{3}, \lambda\right) \\
& =3!\sum_{m_{3}=0}^{N-2} \lambda^{m_{3}}\left(\frac{4}{\lambda}+N-m_{3}+1\right)_{m_{3}} \lambda^{N-m_{3}-2} \\
& \times \sum_{m_{2}=0}^{N-m_{3}-2} \sum_{m_{1}=0}^{N-m_{3}-m_{2}-2}\left(N-m_{3}-m_{2}+\frac{3}{\lambda}\right)_{m_{2}} \\
& \times\left(N-m_{3}-m_{2}-m_{1}-1+\frac{2}{\lambda}\right)_{m_{1}}\left(\frac{1}{\lambda}\right)_{N-m_{3}-m_{2}-m_{1}-2} .
\end{align*}
$$

By (2.23), we see that

$$
\begin{align*}
a_{4}(N+1, \lambda)= & 3!\lambda^{N-2} \sum_{m_{3}=0}^{N-2} \sum_{m_{2}=0}^{N-m_{3}-2} \sum_{m_{1}=0}^{N-m_{3}-m_{2}-2}\left(\frac{4}{\lambda}+N-m_{3}+1\right)_{m_{3}} \\
& \times\left(N-m_{3}-m_{2}+\frac{3}{\lambda}\right)_{m_{2}}  \tag{2.24}\\
& \times\left(N-m_{3}-m_{2}-m_{1}-1+\frac{2}{\lambda}\right)_{m_{1}}\left(\frac{1}{\lambda}\right)_{N-m_{3}-m_{2}-m_{1}-2}
\end{align*}
$$

Continuing this process, we get

$$
\begin{align*}
a_{i}(N+1, \lambda)= & (i-1)!\lambda^{N-i+2} \sum_{m_{i-1}=0}^{N-i+2} \sum_{m_{i-2}=0}^{N-m_{i-1}-i+2} \cdots \sum_{m_{1}=0}^{N-m_{i-1}-\cdots-m_{2}-i+2}\left(\frac{i}{\lambda}+N-m_{i-1}+1\right)_{m_{i-1}} \\
& \times\left(N-m_{i-1}-m_{i-2}+\frac{i-1}{\lambda}\right)_{m_{i-2}} \cdots\left(N-m_{i-1}-\cdots-m_{1}-i+3+\frac{2}{\lambda}\right)_{m_{1}}  \tag{2.25}\\
& \times\left(\frac{1}{\lambda}\right)_{N-m_{i-1}-m_{i-2}-\cdots-m_{1}-i+2}
\end{align*}
$$

Therefore, by 2.7 and 2.25 , we obtain the following theorem.
Theorem 2.1. For $N \in \mathbb{N}$, let us consider the following non-linear differential equation with respect to $t$ :

$$
\begin{equation*}
F^{(N)}=\frac{(-1)^{N}}{(1+\lambda t)^{N}} \sum_{i=1}^{N+1} a_{i}(N, \lambda)(-1)^{i-1} F^{i} \tag{2.26}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{i}(N, \lambda)= & (i-1)!\lambda^{N-i+1} \sum_{m_{i-1}=0}^{N-i+1} \sum_{m_{i-2}=0}^{N-m_{i-1}-i+1} \cdots \sum_{m_{1}=0}^{N-m_{i-1}-\cdots-m_{2}-i+1}\left(N-m_{i-1}+\frac{i}{\lambda}\right)_{m_{i-1}} \\
& \times\left(N-m_{i-1}-m_{i-2}-1+\frac{i-1}{\lambda}\right)_{m_{i-2}} \cdots\left(N-m_{i-1}-\cdots-m_{1}-i+2+\frac{2}{\lambda}\right)_{m_{1}} \\
& \times\left(\frac{1}{\lambda}\right)_{N-m_{i-1}-m_{i-2}-\cdots-m_{1}-i+1} .
\end{aligned}
$$

Then $F=F(t)=\frac{1}{(1+\lambda t)^{\frac{1}{\lambda}}+1}$ is a solution of 2.26 .
Now, we observe that

$$
\begin{align*}
F^{(N)} & =\frac{1}{2} \frac{d^{N}}{d t^{N}}\left(\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right) \\
& =\frac{1}{2} \frac{d^{N}}{d t^{N}} \sum_{m=0}^{\infty} \mathcal{E}_{m, \lambda} \frac{t^{m}}{m!}  \tag{2.27}\\
& =\frac{1}{2} \sum_{m=N}^{\infty} \mathcal{E}_{m, \lambda} \frac{m(m-1) \cdots(m-N+1)}{m!} t^{m-N} \\
& =\frac{1}{2} \sum_{m=0}^{\infty} \mathcal{E}_{m+N, \lambda} \frac{t^{m}}{m!}
\end{align*}
$$

Thus, by (2.27), we get

$$
\begin{align*}
(1+\lambda t)^{N} F^{(N)} & =\left(\sum_{l=0}^{\infty}\binom{N}{l} \lambda^{l} t^{l}\right)\left(\frac{1}{2} \sum_{m=0}^{\infty} \mathcal{E}_{m+N, \lambda} \frac{t^{m}}{m!}\right)  \tag{2.28}\\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{N}{l}(n)_{\underline{l}} \lambda^{l} \mathcal{E}_{n-l+N, \lambda}\right) \frac{t^{n}}{n!}
\end{align*}
$$

where $(x)_{\underline{n}}=x(x-1) \cdots(x-n+1),(n \geq 0)$.

From 1.2 , we have

$$
\begin{align*}
F^{i} & =\frac{1}{2^{i}} \underbrace{\left(\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right) \times \cdots \times\left(\frac{2}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right)}_{i-\text { times }}  \tag{2.29}\\
& =\frac{1}{2^{i}} \sum_{n=0}^{\infty} \mathcal{E}_{n, \lambda}^{(i)} \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, by Theorem 2.1, (2.28), and 2.29), we obtain the following theorem.
Theorem 2.2. For $n \geq 0, N \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{l=0}^{n}\binom{N}{l}(n)_{\underline{l}} \lambda^{l} \mathcal{E}_{n-l+N, \lambda} \\
&=\sum_{i=1}^{N+1}(i-1)!\lambda^{N-i+1} \sum_{m_{i-1}=0}^{N-i+1} \sum_{m_{i-2}=0}^{N-m_{i-1}-i+1} \cdots \sum_{m_{1}=0}^{N-m_{i-1}-\cdots-m_{2}-i+1}\left(N-m_{i-1}+\frac{i}{\lambda}\right)_{m_{i-1}} \\
& \times\left(N-m_{i-1}-m_{i-2}-1+\frac{i-1}{\lambda}\right)_{m_{i-1}} \ldots \\
& \times\left(N-m_{i-1}-m_{i-2}-\cdots-m_{1}-i+2+\frac{2}{\lambda}\right)_{m_{1}}\left(\frac{1}{\lambda}\right)_{N-m_{i-1}-\cdots-m_{1}-i+1} \\
& \quad \times(-1)^{N+i-1} \frac{1}{2^{i-1}} \mathcal{E}_{n, \lambda}^{(i)}
\end{aligned}
$$

where $(x)_{\underline{n}}=x(x-1) \cdots(x-n+1)$.
Let

$$
\begin{equation*}
F(t)=\frac{1}{(1+\lambda t)^{\frac{1}{\lambda}}-1} \tag{2.30}
\end{equation*}
$$

Then, by 2.30), we get

$$
\begin{gather*}
F^{(1)}=\frac{d F}{d t}=\frac{(-1)}{(1+\lambda t)}\left\{\frac{(1+\lambda t)^{\frac{1}{\lambda}}}{\left((1+\lambda t)^{\frac{1}{\lambda}}-1\right)^{2}}\right\}  \tag{2.31}\\
=\frac{(-1)}{1+\lambda t}\left(F+F^{2}\right), \\
F^{(2)}=\frac{d F^{(1)}}{d t}=\frac{(-1)^{2} \lambda}{(1+\lambda t)^{2}}\left(F+F^{2}\right)+\frac{(-1)}{1+\lambda t}\left(F^{(1)}+2 F F^{(1)}\right)  \tag{2.32}\\
=\frac{(-1)^{2}(\lambda+1)}{(1+\lambda t)^{2}} F+\frac{(-1)^{2}(\lambda+3)}{(1+\lambda t)^{2}} F^{2}+\frac{(-1)^{2} 2}{(1+\lambda t)^{2}} F^{3}
\end{gather*}
$$

and

$$
\begin{align*}
F^{(3)}= & \frac{d F^{(2)}}{d t} \\
= & \frac{(-1)^{3}(\lambda+1)(2 \lambda+1)}{(1+\lambda t)^{3}} F+\frac{(-1)^{3}(2 \lambda+7)(\lambda+1)}{(1+\lambda t)^{3}} F^{2}  \tag{2.33}\\
& +\frac{(-1)^{3} 3!(\lambda+2)}{(1+\lambda t)^{3}} F^{3}+\frac{(-1)^{3} 3!}{(1+\lambda t)^{3}} F^{4}
\end{align*}
$$

So we are led to put

$$
\begin{equation*}
F^{(N)}=\frac{(-1)^{N}}{(1+\lambda t)^{N}} \sum_{i=1}^{N+1} a_{i}(N, \lambda) F^{i} \tag{2.34}
\end{equation*}
$$

Thus, by (2.34), we get

$$
\begin{align*}
F^{(N+1)}= & \frac{d F^{(N)}}{d t} \\
= & \frac{(-1)^{N+1} \lambda N}{(1+\lambda t)^{N+1}} \sum_{i=1}^{N+1} a_{i}(N, \lambda) F^{i} \\
& +\frac{(-1)^{N}}{(1+\lambda t)^{N}} \sum_{i=1}^{N+1} a_{i}(N, \lambda) i F^{i-1} F^{(1)}  \tag{2.35}\\
= & \frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}} \sum_{i=1}^{N+1}(\lambda N+i) a_{i}(N, \lambda) F^{i} \\
& +\frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}} \sum_{i=2}^{N+2} a_{i-1}(N, \lambda)(i-1) F^{i}
\end{align*}
$$

From (2.34) and 2.35, we note that

$$
\begin{align*}
F^{(N+1)}= & \frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}}\left\{(\lambda N+1) a_{1}(N, \lambda) F+a_{N+1}(N, \lambda)(N+1) F^{N+2}\right. \\
& \left.+\sum_{i=2}^{N+1}\left((\lambda N+i) a_{i}(N, \lambda)+(i-1) a_{i-1}(N, \lambda)\right) F^{i}\right\}  \tag{2.36}\\
= & \frac{(-1)^{N+1}}{(1+\lambda t)^{N+1}} \sum_{i=1}^{N+2} a_{i}(N+1, \lambda) F^{i}
\end{align*}
$$

By comparing the coefficients on the both sides of (2.36), we get

$$
\begin{equation*}
a_{1}(N+1, \lambda)=(\lambda N+1) a_{1}(N, \lambda), \quad a_{N+2}(N+1, \lambda)=(N+1) a_{N+1}(N, \lambda) \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
(\lambda N+i) a_{i}(N, \lambda)+(i-1) a_{i-1}(N, \lambda)=a_{i}(N+1, \lambda), \quad(2 \leq i \leq N+1) \tag{2.38}
\end{equation*}
$$

Also, we observe that

$$
\begin{align*}
F^{(1)} & =\frac{(-1)}{1+\lambda t}\left\{a_{1}(1, \lambda) F+a_{2}(1, \lambda) F^{2}\right\} \\
& =\frac{(-1)}{1+\lambda t}\left(F+F^{2}\right) \tag{2.39}
\end{align*}
$$

Thus, from 2.39, we get

$$
\begin{equation*}
a_{1}(1, \lambda)=1, \quad \text { and } \quad a_{2}(1, \lambda)=1 \tag{2.40}
\end{equation*}
$$

Therefore the relations in (2.37), (2.38), and (2.40) are the same as the ones in (2.11), (2.12), 2.13), and (2.15). Hence, from 2.25, we obtain the following theorem.

Theorem 2.3. For $N \in \mathbb{N}$, the following non-linear differential equation

$$
\begin{equation*}
F^{(N)}=\frac{(-1)^{N}}{(1+\lambda t)^{N}} \sum_{i=1}^{N+1} a_{i}(N, \lambda) F^{i} \tag{2.41}
\end{equation*}
$$

has the solution $F=F(t)=\frac{1}{(1+\lambda t)^{\frac{1}{\lambda}}-1}$, where

$$
\begin{aligned}
a_{i}(N, \lambda)= & (i-1)!\lambda^{N-i+1} \sum_{m_{i-1}=0}^{N-i+1} \sum_{m_{i-2}=0}^{N-m_{i-1}-i+1} \cdots \sum_{m_{1}=0}^{N-m_{i-1}-\cdots-m_{2}-i+1}\left(N-m_{i-1}+\frac{i}{\lambda}\right)_{m_{i-1}} \\
& \times\left(N-m_{i-1}-m_{i-2}-1+\frac{i-1}{\lambda}\right)_{m_{i-2}} \cdots\left(N-m_{i-1}-\cdots-m_{1}-i+2+\frac{2}{\lambda}\right)_{m_{1}} \\
& \times\left(\frac{1}{\lambda}\right)_{N-m_{i-1}-m_{i-2}-\cdots-m_{1}-i+1} .
\end{aligned}
$$

For $r \in \mathbb{N}$, the degenerate Bernoulli polynomials of order $r$ are defined by Carlitz as

$$
\begin{equation*}
\left(\frac{t}{(1+\lambda t)^{\frac{1}{\lambda}}-1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} \beta_{n, \lambda}^{(r)}(x) \frac{t^{n}}{n!}, \quad(\text { see [3] }) \tag{2.42}
\end{equation*}
$$

When $x=0, \beta_{n, \lambda}^{(r)}=\beta_{n, \lambda}^{(r)}(0)$ are called the degenerate higher-order Bernoulli numbers. In particular, $r=1$, $\beta_{n, \lambda}=\beta_{n, \lambda}^{(1)}$ are called the degenerate Bernoulli numbers. Note that $\beta_{0, \lambda}=1$.

We observe that

$$
\begin{align*}
F & =F(t)=\frac{1}{(1+\lambda t)^{\frac{1}{\lambda}}-1} \\
& =\frac{1}{t} \sum_{n=0}^{\infty} \beta_{n, \lambda} \frac{t^{n}}{n!}=\sum_{n=1}^{\infty} \beta_{n, \lambda} \frac{t^{n-1}}{n!}+\frac{1}{t}  \tag{2.43}\\
& =\sum_{n=0}^{\infty} \frac{\beta_{n+1, \lambda}}{n+1} \frac{t^{n}}{n!}+\frac{1}{t}
\end{align*}
$$

Thus, by (2.43), we get

$$
\begin{align*}
F^{(N-1)} & =\frac{d^{N-1}}{d t^{N-1}}\left(\frac{1}{(1+\lambda t)^{\frac{1}{\lambda}}-1}\right) \\
& =\sum_{n=N-1}^{\infty} \frac{\beta_{n+1, \lambda}}{n+1} \frac{t^{n-N+1}}{(n-N+1)!}+\frac{(-1)^{N-1}}{t^{N}}(N-1)!  \tag{2.44}\\
& =\sum_{n=0}^{\infty} \frac{\beta_{n+N, \lambda}}{n+N} \frac{t^{n}}{n!}+\frac{1}{t^{N}}(-1)^{N-1}(N-1)!
\end{align*}
$$

From (2.44), we have

$$
\begin{align*}
t^{N} F^{(N-1)} & =\sum_{n=N-1}^{\infty} \frac{\beta_{n+1, \lambda}}{n+1} \frac{t^{n+1}}{(n-N+1)!}+(-1)^{N-1}(N-1)!  \tag{2.45}\\
& =\sum_{n=N}^{\infty} \frac{\beta_{n, \lambda}}{n} \frac{t^{n}}{(n-N)!}+(-1)^{N-1}(N-1)!
\end{align*}
$$

Replacing $N$ by $N+1$, we get

$$
\begin{align*}
(1+\lambda t)^{N} t^{N+1} F^{(N)}= & (1+\lambda t)^{N} \sum_{n=N+1}^{\infty} \frac{\beta_{n, \lambda}}{n} \frac{t^{n}}{(n-N-1)!}+(-1)^{N} N!(1+\lambda t)^{N} \\
= & \sum_{n=N+1}^{\infty}\left(\sum_{l=0}^{n-N-1} \lambda^{l}\binom{N}{l} \frac{\beta_{n-l, \lambda}}{n-l} n(n-1) \cdots(n-l-N)\right) \frac{t^{n}}{n!}  \tag{2.46}\\
& +(-1)^{N} N!\sum_{n=0}^{N}(N)_{\underline{n}} \lambda^{n} \frac{t^{n}}{n!}
\end{align*}
$$

where $(x)_{\underline{n}}=x(x-1) \cdots(x-n+1)$.
From $\overline{\text { Th}}$ heorem 2.3, we have

$$
\begin{align*}
(1+\lambda t)^{N} t^{N+1} F^{(N)} & =(-1)^{N} \sum_{j=1}^{N+1} a_{j}(N, \lambda) F^{j} t^{N+1} \\
& =(-1)^{N} \sum_{j=1}^{N+1} a_{j}(N, \lambda)\left(\frac{t}{(1+\lambda t)^{\frac{1}{\lambda}}-1}\right)^{j} t^{N+1-j} \\
& =(-1)^{N} \sum_{j=0}^{N} a_{N+1-j}(N, \lambda) t^{j} \sum_{m=0}^{\infty} \beta_{m, \lambda}^{(N+1-j)} \frac{t^{m}}{m!}  \tag{2.47}\\
& =(-1)^{N} \sum_{n=0}^{\infty}\left\{\sum_{j=0}^{\min \{n, N\}} a_{N+1-j}(N, \lambda) \frac{n!}{(n-j)!} \beta_{n-j, \lambda}^{(N+1-j)}\right\} \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left\{(-1)^{N} \sum_{j=0}^{\min \{n, N\}} a_{N+1-j}(N, \lambda) n(n-1) \cdots(n-j+1) \beta_{n-j, \lambda}^{(N+1-j)}\right\} \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, by (2.46) and (2.47), we obtain the following theorem.
Theorem 2.4. For $n \geq 0$, we have

$$
\begin{aligned}
(-1)^{N} & \sum_{j=0}^{\min \{n, N\}} a_{N+1-j}(N, \lambda) n(n-1) \cdots(n-j+1) \beta_{n-j, \lambda}^{(N+1-j)}
\end{aligned} \quad \begin{array}{ll}
(-1)^{N} N!(N)_{n} \lambda^{n} & \text { if } 0 \leq n \leq N, \\
\sum_{l=0}^{n-N-1} \lambda^{l}\binom{N}{l} \frac{\beta_{n-l, \lambda}}{n-l} n(n-1) \cdots(n-l-N) & \text { if } n \geq N+1,
\end{array}
$$

where

$$
\begin{aligned}
a_{i}(N, \lambda)= & (i-1)!\lambda^{N-i+1} \sum_{m_{i-1}=0}^{N-i+1} \sum_{m_{i-2}=0}^{N-m_{i-1}-i+1} \cdots \sum_{m_{1}=0}^{N-m_{i-1}-\cdots-m_{2}-i+1}\left(N-m_{i-1}+\frac{i}{\lambda}\right)_{m_{i-1}} \\
& \times\left(N-m_{i-1}-m_{i-2}-1+\frac{i-1}{\lambda}\right)_{m_{i-2}} \cdots\left(N-m_{i-1}-\cdots-m_{1}-i+2+\frac{2}{\lambda}\right)_{m_{1}} \\
& \times\left(\frac{1}{\lambda}\right)_{N-m_{i-1}-m_{i-2}-\cdots-m_{1}-i+1} .
\end{aligned}
$$

## Acknowledgements

The first author is appointed as a chair professor at Tian- jin Polytechnic University by Tianjin City in China from August 2015 to August 2019.

## References

[1] A. Bayad, T. Kim, Identities involving values of Bernstein, $q$-Bernoulli, and $q$-Euler polynomials, Russ. J. Math. Phys., 18 (2011), 133-143.1.1. 1
[2] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel), 7 (1956), 28-33. 1
[3] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51-88. 101.4 .2 .42
[4] D. Ding, J. Yang, Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 20 (2010), 7-21.
[5] S. Gaboury, R. Tremblay, B.-J. Fugère, Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc., 17 (2014), 115-123.
[6] L.-C. Jang, B. M. Kim, On identities between sums of Euler numbers and Genocchi numbers of higher order, J. Comput. anal. appl., 20 (2016), 1240-1247.
[7] D. Kang, J. Jeong, S.-J. Lee, S.-H. Rim, A note on the Bernoulli polynomials arising from a non-linear differential equation, Proc. Jangjeon Math. Soc., 16 (2013), 37-43.
[8] T. Kim, Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on $\mathbb{Z}_{p}$, Russ. J. Math. Phys., 16 (2009), 93-96.
[9] T. Kim, Corrigendum to "Identities involving Frobenius-Euler polynomials arising from non-linear differential equations" [J. Number Theory, 132 (12) (2012), 2854-2865], J. Number Theory, 133 (2013), 822-824.1. 1
[10] T. Kim, Degenerate Euler zeta function, Russ. J. Math. Phys., 22 (2015), 469-472.1.4
[11] D. S. Kim, T. Kim, Some identities for Bernoulli numbers of the second kind arising from a non-linear differential equation, Bull. Korean Math. Soc., 52 (2015), 2001-2010. 1. 1
[12] D. S. Kim, T. Kim, Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on $\mathbb{Z}_{p}$, Integral Transforms Spec. Funct., 26 (2015), 295-302. 1.4
[13] G. Kim, B. Kim, J. Choi, The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers, Adv. Stud. Contemp. Math. (Kyungshang), 17 (2008), 137-145. 1
[14] C. S. Ryoo, Some relations between twisted $q$-Euler numbers and Bernstein polynomials, Adv. Stud. Contemp. Math. (Kyungshang), 21 (2011), 217-223.
[15] E. Şen, Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. (Kyungshang), 23 (2013), 337-345.1.1


[^0]:    *Corresponding author
    Email addresses: tkkim@kw.ac.kr (Taekyun Kim), dskim@sogang.ac.kr (Dae San Kim)

