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Abstract. An equational theory of a very small semigroup may fail to be

finitely presented. A well-known example of such a semigroup was studied in

detail by Peter Perkins some twenty years ago. We prove that the natural rep-

resentation of his semigroup has a finite basis of identical relations and discuss

this fact in a general context of universal algebra.

1. Introduction

Let k be a field and let e,j, 1 < i, j < 2, be the matrix units of the algebra

M2(k) of 2 x 2 matrices over k. These four matrix units together with the

zero matrix O and the identity matrix E form the semigroup n that does not

possess a finite base of identities (see [1]). Nevertheless, in this paper we prove
the following

Theorem 1. The natural representation id: n —► M2(k) of the semigroup n is

finitely based. A particular basis of identities of this representation consists of the
identities (l)-(7).

The semigroup n acts by (left) multiplications on M2(k). The regular repre-

sentation of n in its semigroup algebra splits up into the direct sum of this four-

dimensional representation and two one-dimensional representations. Hence we
have

Corollary 1. Any representation of the semigroup Tl is finitely based.

2. Basic definitions

Identities of representations of semigroups can be naturally defined as follows

(see [2]). Let F = F(X), X = {x,, x2, ... , yx, y2, ... , zx, z2, ...}, be the
free semigroup with the countable set of free generators X, and let kF be

its semigroup algebra. Take a representation of a semigroup S by the linear

transformations of a vector space V. A polynomial P = p(xx, ... , x,) £ kF

is said to be an identity of such r : S -> End V (of the pair (End V, S)) if
p(r(si),..., r(st)) = 0 for all sx, ... , St £ S.
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Example. If an identity f = g holds in a semigroup then the identity f - g

holds in any of its representations (for faithful representations the converse is

also true). More generally, if the universal disjunctive formula (pseudoidentity)

w = fx=gxV---Wfm = gm holds in a semigroup S(f, gt £ F, i=\, ... ,m)

then, clearly, the identities

U(W) = (fx - gx)xv^ ■ ■ ■ X^ZKfm - gm) , Vi,...,Vm_i €{0, 1},

hold in the regular representation (kS, S).

In what follows the word "identity" will mean an identity of a representation.

Let polynomials px, ... , p„ be identities of (End V, S). Then for any endo-

morphisms e,:: F —► F and any <z,, bi £ kF   (i = I, ... , n) the polynomial

(2.1) axex(px)bx + ■ ■ ■ + ane„(pn)bn

is also an identity of (End V, S). Let I c kF be the set of all the identities
of the pair (End V, S). Clearly, / is an ideal in kF . Moreover, it is a verbal

ideal, which means that all the expressions (2.1) with px, ... , pn £ I also

belong to I. A set B c I is called a basis of the identities of (End V, S) (a

basis of /) if any q £ I can be written in the form (2.1) with pi, ... , pn £ B .

The problem is to identify the situations in which such a B can be finite. In

this latter case, a representation (or the verbal ideal of its identities) is called

finitely based.

3. Proof of Theorem 1

Consider a monomial

(3.1) M = px(a\ - ax)p2(a\ - a2) ■ ■ ■ pr(a2 - ar)pr+x £ kF,

where px, ... , pr+i £ F are possibly empty products of the squares of free

variables, ax, ... , ar £ X (r > 0). We will use the following notations:

A(M) := {ai, ... , ar) , Y(M) := {x £ X, x2 occurs in at least one of the

monomials Pi, ... ,pr+i); l(M) := r; o(M) := {x £ X, x equals some of

the a, with i odd}; e(M):— {x £ X, x equals some of the a, with / even}.

For x £ A(M) let nx(M) :— {the number of occurrences of x2 - x in M} .

For an arbitrary h £ kF let X(h) := {x £ X, x occurs in h). Clearly,

X(M) = A(M) u Y(M) and A(M) = o(M) U e(M). The homomorphism
kF —> M2(k) induced by a map ff:I-»Il will be denoted by the same letter.

Set U :={E, en , e22) , N := {ex2,e2x}, U0 := UU 0, and N0:= NuO.

Lemma 1. A map a: X —* YI such that a(M) ^ 0 exists iff the following condi-

tions are satisfied:
(i) a(A(M)) c N and a(Y(M)) c U;  in particular, A(M) n Y(M) = 0;
(ii) a(o(M)) n a(e(M)) — 0, i.e., there are only two possibilities: either

a(o(M)) = {en}, a(e(M)) = {e2x}, and a(M) £ keX2®kexx or o(o(M)) =

ex2, a(e(M)) = ex2, and a(M) £ ke2x®ke22; in particular, o(M)ne(M) = 0.

Lemma 2. M is an identity of (M2(k), YI) iff A(M) n Y(M) ^ 0 or o(M) n
e(M)^0.

The proofs of these lemmas are straightforward and rely on the following

trivial observation.

Remark 1. If s £ U then either s2 - s = 0   (s £ U0) or s2 = 0   (5 6 N0).
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Lemma 3. The pair (M2(k), YI) satisfies the following identities:

(1) x3-x2;

(2) xV(x2-x),        (x2-x)y2x2;

(3) (x2-x)y2(x2-x);

(4) (x2 - xx)y2v(x\ - x2)(x32 - x3) - (x32 - x3)y2v(x2 - x2)(x2 -xx);

(5) (X,2 - xx)y2»(x2 - x2)z2 - z2(x\ - xx)y2v(x2 - x2);

(6) (x2 - x)z2<V - y)(x2 - x)(y2 - y) = (x2 - x)z2"(y2 - y);

(7) x2y2 = (xyx)2 = y2x2

(here v £ {0, 1} so that each of the expressions (4)-(6) represents a pair of

identities).

All these identities can be easily verified with the use of Lemmas 1,2.

Remark 2. It follows from (7) that the identities (2)-(6) remain valid if one

substitutes any products of squares of free variables instead of y2 and z2.

Remark 3. The identities (x2 - x)m , m > 2, and x' - Xs, i, j > 2, follow

from (1).
Denote by V the verbal ideal generated by the identities (l)-(7).

Remark 4. Let an endomorphism cp: F -> F be such that cp\Y(M)\A(M) =
id, cp(o(M)) = o(M), cp(e(M)) = e(M). Then the identity (4) shows that
cp(M) s M (mod V).

Take an identity / = f(xx, ... , xt) £ kF of (M2(k), YI) and write x, =

xf - (xf - Xi), i = 1,2, ... , t, in order to get

n

(3.2) /=$>jMj,
j=i

where a, £ k and M, are monomials of the form (3.1). Assume that (3.2) is

minimal, i.e., X)je/ a<M is not an identity of (M2(k), YY) for any proper subset

I c {1, ... , n} . To prove the theorem it is sufficient to show that f £ V. If

n = 1 then this follows from Lemma 2 and Remarks 2, 3, and 4. So we assume

that n > 1.

Lemma 4. For any i, j £{1,2, ..., n} the following conditions hold:

(i) X(Mi) = X(Mj);
(ii) A(Mt) n Y(Mj) = 0 , o(Mi) n e(Mt) = 0;

(iii) A(Mi) = A(Mj), Y(M,) = Y(Mj);
(iv) o(Mt) = o(Mj), e(Mi) = e(Mj);
(v) l(Mi) = l(Mj) (mod 2).

Proof. Condition (i) is obvious—it means that / is "blended" in the sense of

[5, p. 15].
Condition (ii) follows from the minimality assumption and Lemma 2.

To prove (iii) suppose that x e A(Mt)\A(Mj) and let

f=    ^    a,Mt    and   f"=    £    atMt.
xCzA(M,) x£A(M,)
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By Lemma 1, er(x) £ N for any a: X —» n such that cr(f') / 0, and

a(x) £ U for any a: X -» n such that a(f") # 0. Hence o(f') = 0 or
a(f") = 0 for every a: X —► n. This contradicts the minimality assumption

(note that f = f + f"). Further, if o(Mt) ^ o(Mj) then again write

/=/'+/"=   E   a'M'+   E   a'M'
o(A/,)=o(A/,-) o(JI/,)/o(A/f)

and suppose that a(f') ^ 0 for some a: X —► n. Using (iii) and Lemma 1,

one easily verifies that either a(o(Af,)) = ex2, ct(/') g kexx ® kex2, a(f") £

ke2x®ke22 or o(o(Mj)) = e*2i, o(f') £ ke2x ®ke22 , o(f") £ ken ®kei2. Both
cases contradict o(f) = 0. This proves (iv). The proof of (v) is similar.

In view of Lemma 4 we can use the notation X(f), A(f), etc.

Lemma 5. There exists a polynomial f - £"=i a,-Af/ such that f'- f £ V, f

satisfies all the conditions of Lemma 4, and, in addition, nx(M[) = nx(M'f) for

all x£A(f), i,j£{\,2,...,n).

Proof. Let my = maxi<,<„{«y(Af,)}, y £ e(F). Fix a variable x £ o(f). Set

„ _ f Mi Uvee(f)[(x2 - x)(v2 - v)r«-"»W   if /(/) is even,

'      1 Mi Uvee(f)[(v2 - v)(x2 - x]m»-"»W     otherwise.

If y £ e(f)  then, clearly,  ny(M") = my,  i =  1,2,..., n.   Let m" =
maxi<i<n{nv(M")}, v £ o(f). Fix a variable y £ e(f) and again set

1W     f Uveo{f^y2-y)(v2-v^m'':~n"(Mi)   if/(/)isodd,

'      1 Xlveo(f)^2 ~v)(y2 -y)]<-"'Wn      if 1(f) is even.

If x € o(/) then nx(M'i) = mx , i = 1,...,«, as above. On the other hand,

if x e e(f)\y then nx(M/) = n^(M/') = mx , i = 1, 2,..., n. Finally,

«,(*?) = iny + e «-«,«),
«€0(/)

but
E »««)= E »««) + ̂ = E w» + z/'

«€o(T) «6e(/) «6e(/)

where v — 0 if /(/) is even and z/ = 1 otherwise. So we have nx(M\) =

nx(M'j) for all i, j - 1, 2, ... , n . Moreover, it follows from (6) and Remark

4 that M't = Mi (mod V). Note also that X(M't) = JT(/), ^(M/) = ^(/),
etc.

Lemma 6. Modulo the ideal V, the identity f equals

E otijMij = E auPi(a2 - ai )qj(aj - a2) ■ ■ ■ (a2 - a,),
•J i,j

where a,-7 £ k, pt, qj are the products of squares of the variables belonging to

Y(f), ar £ o(f) if r is odd, and ar £ e(f) otherwise.

Proof. Apply (4), (5), and Remark 4 to an identity /' that satisfies the condi-

tions of Lemma 5.

Obviously X(p,) U X(qj) - Y(f) for all i, j. We may suppose also that
(X(pi), X(q})) = (X(p\), X(q'j)) iff i = V , j = j'. To conclude the proof of
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the theorem, we will show by induction on Card(X(pi)nX(qj)) that all ay in

(4.3) are zeros. Let

(   \ _ / en   if r ~ l   (mod 2)'
aiAar)-\e2i    ifr^O   (mod 2);

IE     ify£X(pi)nX(qj),

Oij(y) = \ en    if y £ X(Pi)\X(qj),

[e22   if y£X(qj)\X (pi).

Note that this definition is correct because of Lemmas 4 and 5.

Suppose that ars = 0 if Card(X(pr)r\X(qs)) < Card(X (pi)C\X(qj)) • Clearly
Oij(Mij) = ei2 if t is odd and a,;(Af(J) = en otherwise. On the other hand, if

Oij(Mrs) ± 0 then X(pr) C X(Pi), X(qs) c X(qj). Therefore X(pr) n X(qs) C
X(pi) n X(qj) and by induction X(pr) n X(<&) = X(pi) n A"(?y-). All this means
that X(pr) = X(Pi), X(qs) = *(«;), and (r,s) = (i, j). But au(f) = 0, and
hence a,y = 0.   □

4. Concluding remarks

4.1. Theorem 1 implies in particular that the infinite set of identities of the

semigroup n that was described in [1] can be derived from the identities (l)-(7)

(in the sense of §2). It is not very difficult to show this directly.

4.2. Consider the semigroup YI' = Y1\E. The natural representation of this

semigroup satisfies the identity

(8) y2(x2-x)y2.

Minor changes in the above proof of Theorem 1 (note that X(Pi)nX(qj) = 0

because of (8)) yield

Corollary 2. The identities (l)-(8) constitute a basis of identities of the natural

representation of W.

Corollary 3. All representations of YI' are finitely based. A finite basis of identi-

ties of the semigroup YI' was written down in [6].

4.3. Theorem 1 provides an illustration for a more general situation that we

will briefly discuss. Let A be an algebraic system of signature f2 (Q-algebra).

A representation of A is a map r: A —> B into a Z-algebra B such that for

any w £ X

(4.1) r(w(ax, ... ,a,)) = aw(r(ax), ... , r(a,)),

where ow £ I and ax, ... , at £ A . Identities of representations can be defined

in this general setting (cf. [3]).

Conjecture. Any algebraic system possesses a faithful finitely based representa-

tion into an algebra of (reasonably) extended signature.

Example. Let K be an algebraically closed field. Call a I-algebra polynomial

if there exists an injective map cp: A —* K" such that for any w £ Q

(4.2) ks(cp(w(ax, ... ,at))) = P?'(Xi(cpa\), ... ,kn(cpai), ... ,Xn(cpat)),
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where Pf is a polynomial in nt variables, Xs: K" —* K is the 5th coordinate

function, 5 = 1,2,..., n, and ai,..., a, £ A. Fix a basis ex, ... , e„ e Kn

and consider the two-carrier algebra (K" , K), which apart from the usual vector
space operations, includes the following:

ei, ... , e„ £ ATn-nullary operations;

pw. (Kn)1 —> K" , w £ fi—the operations defined by the right-hand sides of

the relation (4.2) (i.e., the 5th coordinate of Pw(x) equals /'/"(coordinates of
x));

As: K" -+ K, 5=1,2,..., n—the coordinate functions.

The map cp: A —» K" satisfies the conditions (4.1) with ow = pw . Hence

one has the representation (triple) (A, K" , K).

Theorem 2. The triple (A, K" , K) is finitely based.

We mention also some of the natural open questions that arise in connection
with Theorem 2.

(a) What is the 'minimal' extension of a signature that ensures a finite basis
of identities?

(b) What remains of Theorem 2 when K" is replaced by an infinite-dimen-
sional space?

(c) Does every semigroup (group) possess a finitely based linear representa-
tion?

4.4. It is possible that any linear representation of a finite semigroup is finitely

based. We will state here without proof one partial result in this vein. The

result shows that the example from §2 is a rather general one.

Theorem 3. Let B be a basis ofpseudoidentities of the semigroup S. Then some

power of any identity of the representation (kS, S) belongs to the verbal ideal
generated by the set {u(b), b £ B} .

Corollary. Let S be a finite semigroup. Then the verbal ideal I of identities

of its regular representation contains a finitely based (verbal) ideal Iq such that

I/Io is a nil-algebra.

Proof. It is well known (see, e.g., [4]) that the positive universal theory of a
finite algebraic system is finitely based.

The question of whether the regular representation of the semigroup n is

finitely based was asked by Plotkin in the late seventies. A connection between

positive universal formulas and identities of group representations was studied

in a joint paper of Plotkin and Kushkuley (unpublished).
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