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ABSTRACT 

The aim of this thesis is to analyse the treatment 

which the notions of identity, individuality and 

indistinguishability have received from physicists 

in the two domains of classical and quantum physics, 

Thus in Chapter 1 we outline certain of the 

philosophical positions which have been adopted with 

regard to these concepts, emphasising those aspects 

which will be of relevance to our later discussions. 

In Chapter 2 we consider classical physics and 

show that it is consistent with either of two views 

regarding particle individuality, which we call 

'Transcendental Individuality' and 'Space-Time 

Individuality' respectively. 

We begin Chapter 3 with the formal treatment of 

indistinguishable particles in quantum mechanics, 

suitably generalised to accomodate paraparticles 

as well as bosons and fermions. In particular we 

consider the statistical behaviour of paraparticles 

and conclude that it differs significantly from 

that exhibited by a 'paragas' of the kind first 

proposed by Gentile in 1940. These considerations 

are then used to support our conclusion that quantal 

particles can either be regarded as 'non-individuals' 

or as individuals subject to constraints on the set 

of states they can occupy. 



Our final chapter re-examines certain philosophical 

questions in the light of our conclusions. In 

particular we discuss in detail the Principle 

of Identity of Indiscernibles and demonstrate that 

questions regarding its validity within quantum 

physics are dependent both on the form of the 

Principle which is taken and on the status of so- 

called 'mixed states' in the theory. 
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CHAPTER ONE 

IDENTITY, INDIVIDUALITY AND INDISTINGUISHABILITY 

1.1 Introduction 

The notions of identity, individuality and indistin- 

guishability have been extensively discussed and 

analysed in the philosophical literature. The primary 

aim of this thesis is to consider the treatment these 

notions have received from physicists and to discuss 

the consequences of this for the traditional philo- 

sophical arguments about these matters. In their most 

basic form these arguments have centred on the following 

two questions: 

1) What is it that confers individuality upon a 

thing? The desire to find some satisfactory answer 

to this has generated a long and profound search for 

a fundamental individuator or 'Principle of Individua- 

tion'. In this thesis we shall primarily be concerned 

with two candidates for this role: substance and loca- 

tion in space-time. 

2) What is it that re-identifies a thing at one time 

as the 'same' thing at some other time? ', his is 

the problem of change and the various solutions to tt 

have occupied almost every conceivable position between 

the two extremes of 'everything is changing' and 'nothing 

is changing'. 

of course, an answer to the first question may also 

provide an answer to the second. Thus it has been 

argued that substance is both the individuator and also 

that which allows us to re-identify a thing across time. 

This chapter will be concerned with certain of the 

answers which have been given to these questions. 

Before discussing these however, we shall find it useful 

to give a preliminary sketch of how we shall use various 

terms in this thesis. 

Identity is a relation that may exist between items, 

either particulars or universals, in some domain of dis- 

course. The statement that item a is identical with 



9 

item b, written symbolically a=b, means informally 

that there are not in reality two distinct items at all 

but only one which may be referred to indifferently as 

a or b. 

A physical individual, or just individual for short, 

is a particular which exists in the physical world and 

can be distinguished from other sorts of particulars 

such as events or states of affairs which may be said to 

occur or obtain rather than to exist. Individuals which 

have well defined spatial locations are commonly referred 

to in the literature as 'things'. 

We are now confronted with the first of our questions 

above, what confers individuality upon physical 

individuals? If one rejects the view that the concept 

of individuality is metaphysically basic and cannot be 

explicated further, then a suitable 'individuator' 

must be put forward in answer to this question. One 

candidate for this role is the unknowable substantial 

substratum which'supports', or to which is 'attached', 

the attributes of an individual. If an individual ac- 

quires its individuality by something which transcends 

its attributes in this way then we shall say that it 

exhibits 'Transcendental Individuality' or T. I. for 

short. As we shall see this notion has been strongly 

criticised by many philosophers, particularly those 

within the empiricist camp. 

An alternative view is to argue that physical indivi- 

duals are individuated by their location in space and 

time. If this position is adopted then we shall say 

that the individual exhibits 'space-time individuality' 

or S. T. for short. The problem of re-identification 

through time, of supplying the grounds for claiming 

that an individual b at time t2 is the same individual 

a at an earlier time tl, is then solved in terms of 

the spatio-temporal continuity of the trajectory joining 

the location of a at time tl, and the location of b at 

time t2 together with some requirement, such as that the 

two individuals must be impenetrable, to ensure that two 

or more trajectories do not intersect at the same spatial 

point at the same time. A proponent of T. I. might agree 

that spatio-temporal continuity is what allows one to infer a 
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re-identification across time but would claim that it 

is the persistent T. I. which, ontologically speaking, 

confers the re-identifiability, 

In this context it is worth noting the point that 

that which confers individuality upon a 

physical individual may be regarded as distinct from 

that which distinguishes that physical individual from 

other individuals. Thus, if the position involving 

T. I. is adopted, one can argue that although the spatio- 

temporal location of an individual may allow us to 

distinguish that individual from others, it is the sub- 

stance underlying the attributes which confers indiv- 

duality upon it. T. I. may be regarded as intrinsic to 

an individual and unrelated to other physical indiv- 

iduals in a way that location in space-time may not be. 

On the other hand an advocate of S. T., recalling Ockham's 

famous 'razor', may argue that a metaphysical economisa- 

tion is effected if that which distinguishes individuals 

from each other, their location, is also taken to be 

that which confers individuality upon them. 

The S. T. view encounters difficulties also, principally 

with regard to what is meant by spatio-temporal location. 

On a relational view of space and time the locations of 

physical individuals involves their relations with other 

physical individuals. Thus, a circularity develops with 

regard to individuation. The circularity can be avoided 

by adopting an absolute theory of space and time but 

then one is required to give an account of what it is 

that confers individuality on the points of space and 

instants of time themselves. We shall discuss these 

problems in more detail in Chapter Two. 

A third possibility is to argue that an individual is 

individuated by its attributes and that it can be reduced 

to nothing more than a bundle of properties or attributes. 

However, since these properties are universals and can 

be predicted of more than one individual, there is then 

the possibility, at least in principle, that two (non- 

identical) physical individuals can have all the same 

attributes in common. We shall say that such individuals 

are indistinguishable. In order to be able to individuate 

on this view, this possibility must be eliminated. 
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This can be done by invoking Leibniz's famous 

Principle of the Identity of Indiscernibles which states 

that if two individuals are, apparently, indistinguishable 

then they are, in fact, identical in the sense of being 

actually just one individual, and so indistinguishable 

individuals cannot exist. The Principle thus denies 

that the distinction between identity and indisting- 

uishability exists in fact. (Whether this is true or 

not it is important to draw a distinction in principle. 

Many authors, particularly non-philosophers, do not 

and thus create a great deal of confusion). 

An important issue here is whether or not properties 

of spatio-temporal location are included in the collection 

of attributes possessed in common by two indistinguishable 

individuals. We can accordingly distinguish two forms 

of Leibniz's Principle, a strong form which states that 

two individuals cannot possess all properties, including 

spatio-temporal ones, in common and a weak form which says 

that two individuals cannot possess all properties, 

excluding spatio-temporal ones in common. It can 

immediately be seen that if the individuals are regarded 

as impenetrable then the strong form of the Principle is 

automatically satisfied. As we shall see in Chapter Four, 

the question of whether or not the Principle is violated 

by the results of physics, classical or quantum, turns 

precisely on the above distinction. 

The entities we shall be concerned with in this thesis 

are the particles and fields of physics. In view of the 

points mentioned above it can be argued that indisting- 

uishability for elementary particles should be taken to 

mean possessing all non-spatio-temporal properties in 

common. In our discussions we shall always make it clear 

whether we mean indistinguishability in this narrow sense 

or not. The non-spatio temporal properties of an elerr- 

tary particle have also been called its 'intrinsic' 

properties. It is then an interesting question whether 

these 'intrinsic' properties are also the 'essential' 

properties which determine what it is for the particle 

to be a particle of that kind. We shall consider this 

question and some of the problems associated with 

essentialism and natural kinds in Chapter Four. 
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Finally we must briefly consider the notion of relative 
identity which is captured in the expression 'a is the same 

S as b' for some sortal predicate S. This immediately 

invites the question 'can a be the same S as b but not 
the same T? ' 

which has provoked a great deal of discussion 

in the philosophical literature. We shall briefly consider 

some aspects of the controversy in a subsequent section 

of this chapter. 

Instead of saying that 'a at time t1 is the same indiv- 

dual as b at time t2', this notion of relative identity 

allows us to make the claim that 'a at time t1 is the same 

S as b is at the time t2', for some sortal predicate S. 

This is the kind of reidentification that is involved for 

processes rather than things. 

Having indicated what we mean by identity, individuality 

and indistinguishability, we shall now give a brief hist- 

orical account of some of the positions which have been 

adopted with regard to these concepts. 

It is not our intention, in what follows, to analyse 

these positions in any depth. We merely wish to draw 

attention to those aspects which are of relevance to this 

thesis. In particular, we shall emphasise the work of 

Locke, Leibniz, and certain points arising from the more 

recent discussions of these matters. 

1.2 A Brief History of the Philosophy of Individuality etc 

Perhaps the most fundamental problem facing the early 

thinkers was that of accounting for change in the observable 

world. The solutions to this problem have occupied a wide 

variety of positions between the two extremes of Parmenides 

and Heraclitus. The former condemned all change as 

illusory whereas the latter argued that everything was in 

a state of controlled change. In between these two views 

lies the class of solutions which derives from the claim 

that to say that something is changing presupposes something 

A remains the same. In other words change can be accounted 

for in terms of something invariant underlying the change. 

Within this broad approach we can further discern two 

opposing tendencies, which we may call Monism and Pluralism 

respectively. Thü. s the Pre-Socratic Milesian systems 

were dominated by the idea of a single primary material 
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(1) out of which all the others were produced, whose nature 
remained the same but whose qualities changed to produce 
the changing things observed in the world. 

Empedocles and the Atomists however, explained change 
in terms of the rearrangement of a multiple of entities; 
for the former these were the four 'roots', Earth, Air, 

Fire and Water, whereas for the latter these were the 

atoms, distinct particles moving about in the void. The 

Aristotelian system represents a return to N'onism with 

'prime matter', unknowable and unqualified by any 

properties, being regarded not only as the substratum 

underlying change but also as the ultimate subject of 

predication and the principle of individuation for 

material substances. (2) 

This system was subsequently taken up and extended by 

the Scholastics, although it is worth noting that Duns 

Scotus departed from the Aristotelian line by arguing 

that the principle of individuation was a primitive 

'thisness' or haecceieý by which the common nature, common 

to all individuals of the same kind, became the nature of 

this individual. (3) Suarez made the interesting 

distinction between individuality and distinguishability, 

the latter involving a dependence on the existence of 

other things whereas the former does not. Thus he argued 

that individuals are distinguished by their matter but 

that their individuality must be ascribed to their form:. 

The Cartesian system can be regarded as partly a 

continuation of the Scholastic tradition and partly a 

reaction against it based on the new scientific 

discoveries made by Descartes himself and others. These 

led him to take even further Galileo's attempt to geo- 

metrize mechanics and formulate its laws in terms of 

factors involving space and time only. Thus Descartes 

believed that the only essential properties of any 

corporeal substance were geometrical and kinetic (4) 

1. For a discussion of these systems see G. S. Kirk and 
J .E. Raven (1957) or E. Hussey (1972) 

2. Aristotle. in D. Ross (1962), esp. Physics I, De Gen. et 
Corr. I and metaphysics. Also see D. Ross (1945) 

p. 166-177. 
3. Duns Scotus in C. R. S. Harris (1927) Vol. II p. 115 

4. Descartes Principles II 64, in E. S. Haldane and D. 
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i. e. shape , size, position and motion-or-rest. 

Substance itself was regarded as '... that which can 

exist by itself without the aid of any other substance. ' 

(5) and also as that in which the attributes of things 

are embedded and which is known only by inference (6). 

In his famous argument concerning the heating of a piece 

of wax he concluded that the individuality of the wax 
itself, which he took to confer upon it its identity 

through time, must lie in its being some&k extended, 

flexible and changeable (7). This could be interpreted 

as an attempt by Descartes to isolate the substance, as 

a subject, from the properties which it supports. However, 

it is difficult to reconcile this with his final 

characterisation of the wax in terms of the properties 

of being extended flexible and changeable (8). An 

alternative view is that the argument is concerned with 

the essentialist doctrine that that which is essential to 

an individual is that which is necessarily involved in 

its being what it is, and what remains the same, however 

else the thing may change. On this interpretation the 

main point of Descartes' argument is that the essence of 

the wax does not consist in any of its sensible properties 

and that what remains invariant through change is merely 

its being something extended, flexible and changeable. 

The physical consequences of the Cartesian system and 

their conflict with observation are well known. In these 

terms his programme was ultimately unsuccessful and was 

eventually superseded by the Newtonian mechanics which 

added mass as a fundamental concept to the Galilean duo 

of space and time. r"etaphysically, however, it had a 

profound impact, for by regarding matter primarily as 

'that-which-is-opposed-to-spirit' rather than the 

Aristotelian substratum underlying substance, Descartes 

took this concept out of the realm of the ontologically 

5. Descartes Principles II 64, in E. S. Haldane -and D. Ross 

p. 101 (1955) 

6. Ibid p. 53 

7. Ibid p. 154 
8. B. Williams (1978) p. 213-225 
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indeterminate and epistemologically unreachable. Prior 

to Descartes there was no single general term covering the 

sorts of things to which physical science applied. Matter 

was now invoked to fulfill this role and came to be 

regarded as the subject of the new and powerful science 

of mechanics. The idea that it was a Platonic 'co- 

principle' with form was abandoned and explanations 

in terms of Aristotelian substantial forms gradually gave 

way to explanations in terms of metrical properties 

from which their motions could be logically derived. 

Descartes can thus be seen as a major figure in the 

metaphysical movement away from the concepts and modes 

of thought of the Greeks, In particular this movement, 

and the rise of Newtonian mechanics in general, led to 

the adoption of a new way of individuating physical objects 

The notion of state description was central to the new 

physics and for this to work physical objects had to be 

capable of being uniquely specified in terms of certain 

properties which in turn lent themselves to metrical 

specification. Thus geometrically defined space and time 

parameters came to be used to distinguish one physical 

body from another. In other words material bodies came 

to be distinguished and hence individuated by their 

separation in space and time. Spatio-temporal location 

thus came to be regarded as the principle of individuation. 

This view rapidly took hold among the mechanical 

philosophers and has remained one of the fundamental 

me+physical principles subscribed to by physicists ever 

since. The power of the new science was such that all talk 

of individuality virtually ceased among the mechanical 

philosophers, with the exception of Leibniz as we shall 

see. Thu. s the 17th century saw a steady diverging between 

those who were concerned with the new mechanics and its 

related concepts and problems, and those who remained 

concerned with the traditional philosophical puzzles, 

such as those regarding substance, change etc. 

Thus we can discern two metaphysical lines of thought 

regarding the individuality of. physical objects. One 

view holds that individuality is conferred through a 

material substratum underlying the object's properties, 



whereas the other claims that it is location in space 

and time which fulfills the role of individuator. As 

we shall see in subsequent chapters an examination of 
the physics of elementary particles will reveal that 

this fundamental component of physical science is 

consistent with either of the above metaphysical 

positions. 

The former) 'substantivalist' position was restated 

by Locke, although his reappraisal of the notion of 

substance led, according to some, to its destruction 

as a metaphysical category. In order to fully grasp 

the nature of this re-examination it is important to 

distinguish between Locke's conception of particular 

substances and his notion of the general idea of 

substance. Both concepts were discussed in 'An Essay 

Concerning Human Understanding' (9) and nowhere was his 

empiricism more in conflict with his rationalism. He 

believed that we are conversant only with particular 

substances through experience yet his rationalism 

would not permit him to abandon completely the general 

idea of substance. Thus although he initiated the 

empiricist attack he failed to follow it though - some- 

thing which was left to Berkeley and Hume to do. 

Locke began with a consideration of particular sub- 

stances, remarking that the mind often notices that a 

certain number of simple ideas go constantly together. 

Thus, he wrote '... not imagining how these simple ideas 

can subsist by themselves we accustom ourselves to 

suppose some substratum wherein they so subsist, and from 

which they do result, which therefore we call substance' 

(10). It is naive to interpret this passage as 

indicating that it was the notion of substance as the 

substratum necessary for the existence of qualities which 

was the important sense of the word for Locke at this 

point. (11) 

9. J. Locke (1959), 
10. Ibid p. 390-391 
11. D. 08Connor (1967) p. 75 
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Rather it is meant to show that the complex idea of a 

particular substance is produced in the mind by sensory 

phenomena being found to co-exist in aggregates in our 

experience (12). The idea of a particular substance 
is formed by the combination of many simple ideas 

together, a process completely opposite to that 

which produces the general idea of substance. 

This latter idea is formed by the process of abstraction 

from particular substances and was discussed by Locke in 

the next section. Thus he wrote 'So that if anyone will 

examine himself concerning his notion of pure substance 

in general, he will find he has no other idea of it all, 

but only a supposition of he knows not what support of 

such qualities which are capable of producing simple 

ideas in us, which qualities are commonly called accidents! 

(13) Thus, the general idea of substance is a 'suppos- 

ition of, we know not what, support'. In other words 

all that we can know about substance is that it acts as 

a support for the accidents and that is all. We cannot 

know it in any way beyond that it is a mysterious 

'something' to which the qualities attach (14). 

This is clearly a major step along the road towards 

the complete abolition of substance from metaphysics 

altogether. Locke himself did not ýo this far although 

I think that his whole line of thought is clearly leading 

to it. Perhaps he saw that to reduce substance to a 

mere fiction would resolve reality with the sceptics 

into nothing more than a succession of impressions (as 

Hume later showed) and that this was the inevitable 

conclusion of his empiricism (15) -a conclusion from 

which he quickly and firmly recoiled (16). 

Locke's distinction between the two notions of sub- 

stance is closely connected to another he made between 

nominal and real essences. Thus the complex idea of the 

12. See R. Woolhouse (1971) p. 61 ff and R. Aaron (1963) 

p. 173-177 
13. Locke op cit p. 391 
14. Ibid p. 392 
15. This was pointed out to Locke by Stillingfleet who 

accused him of having 'discarded substance'. See 

O'Connor op cit. p. 77 
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common characteristic of a type of thing is the nominal 
essence of that thing (17) which is abstracted by 

leaving out characteristics peculiar to individual 

things as individuals and retaining their common 

characteristics. The real essence of a thing is its 

real, but known, constitution which cannot be abstracted 

and from which comes the qualities of a thing which 

distinguishes it from other things. (18) Locke 

considered this to be no more useful than the analogous 
idea of substance as an unknowable 'something we know 

not what'. Real and nominal essences are related but 

are always different in substances (19). 

The nominal essence is the abstract idea of the observ- 

able common characteristics to which corresponds a 

real essence of inner corpuscular constitution which is 

some configuration of insensible particles and which 

explains the co-instantiation in many particulars of 

the properties taken into account of in the nominal 

essence (20). 

As regards reidentification through time Locke 

believed that this lay in the fact that the object in 

question could be uniquely described and identified in 

terms of space and time coordinates. Thus he wrote that 

when we observe an object in a certain place at a certain 

time we are sure that it is that object and not some 

other, similar or even indistinguishable object in 

another place at another time, ' For we never finding 

nor conceiving it possible that two things of the same 

kind should exist in the same place at the same time, 

we rightly conclude that whatever exists anywhere at 

any time excludes all of the same kind, and is there 

itself alone'. (21) 

Thus Locke's notion of self-identity depends upon what 

we call the Impenetrability Principle, that no two 

things can exist in the same place at the same time. (22) 

18. Locke op cit p. 2728 
19. Ibid p. 29 
20. Ibid p. 61 
21. Ibid p. 439-440 
22. It is interesting to note that Locke restricts 

this principle to things of the 'same kind', thus 

allowing the possibility that things of different 
kinds may occupy the same place at the same time. 
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He then went on to say that it follows from this that 

one thing cannot have two beginnings of existence nor 
two things one beginning. (23) As we shall see this 

implies that a material individual cannot retain its 

identity through a creation and annihilation process. 

Thus a thing's identity is related to the spatio-temporal 

point at which it began its existence. This led on to his 

idea of what constituted the principle of individuation, 

as he wrote, 'From what has been said it is easy to 

discover what is so much inquired after, the principium 
individuationis; and that it is plain is existence 
itself; which determines a being of any sort to a 

particular time and place, incommunicable to two beings 

of the same kind , 
(24) 

. Thus for Locke it is a thing's 

actual existence which confers individuality upon it and, 
by underpinning the Impenetrability Principle, allows 

us to infer its identity at a particular place and time. 

This is clearly very similar to the view we have called 

T. I. 

Locke also gave a compositional account of the re- 

identification of inorganic compound objects. Thus he 

gave the example of a mass of matter formed by the joining 

of two or more atoms. This mass will remain 'the same' 

through time so long as the same atoms are joined together, 

but if one of them is taken away or a new one added then 

the mass is no longer the same mass as before and loses 

its identity. (25) This is obviously an atomist solution 

to the problem of the reidentification of compound 

objects and relies, for its efficacy, on an account of the 

reidentification through time of the atoms themselves - 

an account which Locke has already given as we have 

seen. (26) 

Finally it is interesting to note that whereas Aristotle 

considered matter to be the indeterminate substratum 

and a constituent of substance, Locke inverted this 

relationship and made substance the substratum and 

constituent of matter. 

23. Ibid. p. 440 
24. Ibid. p. 441-442 
25. Ibid. p. 442 
26. Thus Quinton's criticism that Locke's account is 

viciously regressive is incorrect. See A. Quinton 
(1973) P. 65. 
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Of course by his time matter had acquired its new meaning 
as the subject of mechanics. Substance was thus called 
upon to fill the metaphysical role of the substratum 

underlying the properties which matter had left vacant. 
The sceptical consequences of Locke's analysis of 

substance were further unravelled by Berkeley and Hume. 

The former's 'immaterialist hypothesis' (27) urged the 

elimination of material substances that could never be 

directly apprehended to be replaced, as the cause of 

our sensations, by God. Hume went even further, and not 

content to write off substance alone as an unintelligible 

chimaera, applied the sceptical arguments to God and 

even 'the self', rationalising both out of existence in 

a similar way. (28). Causality also was relegated to 

the status of a myth and thus the world of events was 

reduced to nothing more than a series of fleeting percep- 

tions with no external object, no enduring subject to which 

they could belong, and not themselves even bound to one 

another. 

It is not surprising therefore, that Hume also regarded 

identity through time as ultimately a metaphysical 

illusion. Thus he argued that the idea of identity is 

simply the product ofAmistake into which we naturally 

fall when we think about time. It arises, he believed,, 

from a propensity of the mind to attribute invariableness 

or uninterruptedness to an object while tracing it, 

without a break in the attention of time, -a propensity 

which Hume considered to be nothing more than a fiction. 

(29). 

We now turn our attention to the man whose rationalistic 

philosophy laid much of the foundation of the modern 

approaches to identity and whose Principle of the Identity 

of Indiscernibles must be included in any account of 

these matters. 

27. Berkeley (1962) esp. p. 156 ff 
28. D. Hume (1962) 
29. Ibid p. 200-201. 
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1.3 Leibniz 

As we have noted the new mechanics of the 17th century 

encouraged the view that material bodies could be 

individuated by their locations in space and time and 

subsequently all discussions of individuality virtually 

ceased among the more scientifically minded natural 

philosophers. It remained a problem for Leibniz 

however. He rejected Newton's conception of an absolute 

space and thus also the idea that position in this 

space could serve to individuate an object, but had 

difficulty in developing a completely coherent view of 

his own, as we shall see. 

Leibniz's metaphysics can be taken to begin with his 

analysis of subject - predicate propositions in which 

he made the predicate part of the subject concept (30). 

When many predicates can be attributed to one and the 

same subject while this subject cannot be made the predicate 

of any other subject then the former was called an 

individual substance (31). Furthermore, he believed that 

every predicate, necessary or contingent, past present 

or future, is comprised in the notion of the subject. 

This is the concept of the Complete Notion of an Individual 

(32). 

The principle according to which the states of a substance 
developed. 

(was called its activity', regarded as essential to every 

substance. The notion of an individual substance differed 

from a mere collection of general notions by being capable 

of wholly distinguishing its subject and involving 

circumstances of time and place. The nature of an 

individual substance was to possess so complete a notion 

as to suffice for comprehending and deducing all its 

predicates. Hence he concluded that no two substances 

could be exactly alike, which is the Principle of Identity 

of Indiscernibles. From this stage, with the help of 

the premiss that perception gives knowledge of the external 

world, the doctrine of monads easily follows. The 

monads themselves were immaterial, unextended substances. 

30. See B. Russell (1904), t L. Couturat (1903) 

31. G. W. Leibniz in N°ason (1967) p. 51 
32. Broad called it the 'Predicate-in-Notion Principle' 

whereas Rescher terms it 'the program'. C. D. Broad 
(1975) p. 6 ; N. Rescher (1967) p. 14. 
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As they were unrelated to one another and could not 
interact any change had to come fron within each monad 

itself (its activity). As we shall see there are 

problems as to how the monads are individuated. 

Thus an important and fundamental part of Leibniz's 

system is the Complete Notion of an Individual (33) 

which can be thought of as the sum of all that can 

ever be said about an individual, including its 

relations and interactions with other individuals - 

so each individual is a world unto itself - and serves 

to distinguish an individual as that individual. 

In one of his letters (34) Leibniz tries to explain 

what he means by this notion, using Adam as an example. 

Thus he wrote that the Complete Notion of an Individual 

(C. N. I. ) as it. applied to Adam was identical with the 

knowledge God had of Adam when he created him. 'Specific 

notions' such as that of the sphere, were distinguished 

from individual notions, such as that of Adam, on the 

grounds that the former applied to an indefinite 

number of actual or possible individuals and was therefore 

incomplete, in a way which the individual notion was not. 

There is then the problem of alternative possible 

individuals with the same proper name, for example 

several alternative possible Adams. Arnauld remarked 

(35) that he found such phrases obscure and that the 

contention that God could actualize one out of several 

possible individuals and leave the rest as unrealized 

possibilities was meaningless. In his reply (36) 

Leibniz conceded the point that the phrase 'several 

alternative possible Adams' was meaningless if one took 

the word 'Adam' to be the proper name of a certain 

complete individual, but then claimed that when he used 

the phrase he took the word 'Adam' to connote only a 

33. See Russell op cit p. 29; Broad op cit p 6-9; Rescher 

op cit p. 14 ff. 
34. Leibniz in Mason op cit p. 53-66 
35. Arnauld in Mason ibid p. 24-34 
36. Ibid p. 53-66. 
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certain limited collection of properties which are a 

sub-set of the larger group denoting the Complete 

Notion of an Individual. Because the name 'Adam' is 

only a label in this sense, it can also be applied to 

other individuals possessing the same subset of 

properties. These others will not actually be 

indistinguishable because they will differ as regards 

their other properties lying outside this subset which, 

together with the subset, go to make up their CNI. The 

CNI of Adam, the sum of all his predicates, is the 

only description which suffices to distinguish the 

actual Adam from all other individuals, actual or 

possible. 

Elsewhere (37) Leibniz wrote that only God can completely 

and distinctly comprehend an indiv4ual's CNI, so human 

beings have to depend on experience or hearsay for their 

knowledge of many of the facts about individuals. 

As this concept plays such an important role in 

Leibniz's work, it is worth making a few remarks about 

it. 

Firstly, the idea is a profound and original way of 

characterising what it is to be an individual, but the 

CNI is of no practical use as a principle of individuation 

because it must be an infinite set of predicates (38). 

Therefore, as Leibniz himself noted, only God can have a 

full knowledge of any CNI and thus only God is truly 

capable of individuating objects. 

Secondly, it can be seen how easily the Principle of 

Identity of Indiscernibles follows from this idea. If 

every individual has a distinct complete notion then 

two things which are completely indiscernible, and which 

therefore possess all predicates in common and so have the 

same complete notions, must in fact be the same thing. 

According to Leibniz, if we are presented with two things 

which appear indistinguishable then if we look long enough 

and hard enough we will discover a predicate which one 

37. Leibniz 'Discours de Netaphysique' in Parkinson (1973) 

p. 18-19. 
38. An individual persists for a finite time, so the notion 

of an individual involves an infinite number of 
propositions specifying its states at a continuous 
series of moments. See Russell op cit. p. 29. 
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has and the other doesn't and which will serve to 

distinguish them. 

However, it can be argued that Leibniz cannot 

simultaneously hold both this idea of a C. N. I. and a 

relativist theory of space. Adherence to the former 

implies rejection of the latter and the adoption of an 

absolute theory of space, something Leibniz would have 

sought to avoid given his professed belief in the 

relativist position. The argument is essentially 

similar to that put forward by Black (39). 

Imagine a universe totally empty exceptfor two distinct 

individuals. which possess exactly the same set of predicates - 

volume, mass, colour, history etc. The only difference 

in their complete notions which could serve to individuate 

them is provided by their separation in space. But, in 

the absence of any other body, even an observer, the 

spatial relation of one object A, say, to the other B, 

is exactly the same as that of B to A. Therefore, if a 

relativist view of space is adopted, the object's 

spatial separation cannot provide the difference in the 

set of predicates which is necessary to distinguish their 

complete notions. The only way in which the spatial 

separation can do this is if an absolutist view of space 

is taken, so that the position of A in this absolute 

space is different from that of B. Which difference 

then provides the difference in the set of predicates 

distinguishing their complete notions and thus 

individuating the two objects. Thus Leibniz cannot 

simultaneously hold both the idea of a complete notion and 

his relativist view of space. We shall consider this 

form of argument again in Chapter Four. 

A fourth point is that Leibniz has clearly distinguished 

between universals ('specific notions'), proper names 

and individuals. Universal notions are incomplete because 

they apply to more than one individual and so do not 

completely individuate a substance. Proper names also 

do not serve to individuate since they are merely labels 

for a certain subset of properties out of all the 

innumerable properties which comprise a complete notion. 

39, V. Black (1952). 
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Individual notions are complete and completely individuate 

a particular substance. All that will ever happen to that 

substance is inherent in its complete notion. 

Finally, let us consider the individuality of the monads- 
Leibniz's unextended immaterial substantial 'basic' 

building blocks' (to steal a phrase from modern physics). 

A fundamental problem with the doctrine of monads is 

how were they individuated? The C. N. I. implied that each 

and every monad was an individual. If two monads shared 

the same set of properties then it necessarily followed 

from the C. N. I., that they were in fact the same monad. 
This is his Principle of Identity of Indiscernibles, also 
derived, although only contingently, from his Principle of 
Sufficient Reason, as we shall see. However, the Principle 

of Identity of Indiscernibles resolves individuality with 

the predicates ( as does the C. N. I. from which it is 

derived), and thus gives encouragement to those (for 

example Russell later) who would do away with substance 

altogether, as an individuator, and regard objects as 

mere bundles of properties. It is hard to see how Leibniz 

could have stomached this, committed as he was, through 

his subject-predicate distinction, to the notion of 

substance. He regarded substance as that which can only be 

a subject, not a predicate, which has many predicates and 

which, subsequently, persists through change. Eliminate 

substance and you eliminate the subject and hence the 

subject-predicate division upon which Leibniz's whole 

system was based. 

But. then what exactly constituted this substance which 

existed over and above the properties? In answering this 

question Leibniz would have been unable to appeal to 

some kind of Aristotelian prime matter, because he had 

stated that the monads were immaterial and spiritual- The 

only choice, it seems, would have been to individuate the 

monads in terms of spirit somehow. This, with its attendant 

whiff of Scholasticism, is another conclusion Leibniz would 

have rejected. Thus individuality remained a problem for 

him. 

Of course, a completely coherent position could have 

been arrived at if he had used location in a Newtonian 

space as individuator, but given his firm adherence to the 

relativist view, this would have been irrpossible. 
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It is worth examining Leibniz's view of substance in a 
little more detail. We have noted that Descartes defined 

substance in two ways: as that which is the subject of 

various qualities and as that which is capable of 
independent existence. Leibniz believed that the relation 
to subject and predicate was more fundamental than the 

somewhat doubtful inference to independent existence, 

and., therefore, brough&his concept of substance into 

dependence upon the former logical relation. He 

attacked Locke on the grounds that there is good reason 
to assume the existence of substance since we conceive 

several predicates in one and the same subject and this 

is all that is meant by the words 'support' or 'substratum' 

which Locke used as synonymous with 'substance'. (40) 

However Leibniz agreed that the word 'substance' also 

meant the notion of a something persisting through change 

or a subject which preserves its identity whilst its 

qualities alter. He held that this idea is not, therefore, 

independent of subject and predicate, but is subsequent 

to it - it is the notion of subject and predicate applied 

to what is in time (41). 

Furthermore, he wrote that '... the nature of an 

individual substance is to have a notion so complete that 

it suffices to comprehend and to render deducible from it, 

all the predicates of the subject to which this notion is 

attributed'. (42) In other words, an individual substance 

is not only the subject of various predicates and is not 

attributed to any other subject, but also possesses a 

Complete Notion. To say that all the states of a substance 

are involved in its Complete Notion is merely to say that 

the predicate is contained in the subject. It then follows 

that every substance, every monad, is a world apart, 

independent of all else except God. All it will ever do 

or be expressed in its Complete Notion and so nothing 

external to it can every affect it, except God. 

40. Leibniz 'New Essays ... ' in Langley (1916) p. 225 
41 See Russell ap cit p. 42-43 
42. Leibniz, trans in Russell Ibid p. 213-214. It is 

interesting to note that Leibniz equates individual 

notion with haeccity here. 
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How then do the monads change? Leibniz believed that 

there must be, in every state of a substance, sore 

element or quality in virtue of which that state is not 

permanent but tends to pass into the next, and this 

element is what Leibniz meant by 'activity'. (43) 

This view is similar to the Heraclitean doctrine that 

all, things are laws. Indeed Leibniz stated that a 

monad can be redidentified through time '... by the 

persistence of the same law of the series or of 

continuous simple transition, which leads us to the 

opinion that one and the same subject or monad is 

changing. That there should be a persistent law, involving 

the future states of that which we conceive as the same is 

just what I assent to constitute it the same substance 
1 (44). 

However, a substance is not, for Leibniz, merely the sum 

of its states, but on the contrary, those states cannot 

exist without a substance in which to inhere. (45) The 

important point is that the actual basis for assuming 

substance is purely logical. All that we observe are states 

of substance which are the only things given in experience. 

One makes the inference that they are states of substance 

because they are held to be of the logical nature of 

predicates, and thus to demand subjects of which they may 

be predicated. 

Russell has raised the criticism that a consequence of 

this view, particularly as regards the reducibility of 

t. i'me and place to predicates, is that the substance re'rains 

on its own, distinct from its predicates and totally 

destitute of meaning (46). One then has to face the 

Lockean problem of how such a meaningless term can be of 

any use 

One of the most important aspects of Leibniz's philosophy 

from the point of view of this thesis anyway, iS the 

Principle of Identity of Indiscernibles, which was stated 

43. Leibniz in Duncan (1890) p. 117 
44. Leibniz in Russell op cit p. 264 
45. Leibniz in Duncan op cit p. 118 
46. Russell op cit p. 50 
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in different ways in different places. Thus he wrote that 

it asserts'... that there are not in nature two 

indiscernible real absolute beings' (47), or '... that it is 

not possible for there to be two individuals entirely alike 

or differing in number only 
1(48) 

or, again, that '... no 
two substances are completely sirrilar, or differ solo nu-ero' 
(49). It should immediately be noted that this Principle 

applies only to substances; existent attributes may, in 

fact, be indiscernible, as Leibniz explained in discussing 

place. (50) 

This principle occurs frequently in the letters to 

Clarke, where it is used in connection with the controversy 

between the absolute and relational theories of space. 

However, there is some confusion as to which of the 

following two alternatives Leibniz meant to assert : 1) 

That the very supposition that there might be two things 

exactly alike in all their qualities is self-contradictory 

and meaningless; i. e. the principle is necessary.. 2) That 

although the supposition is logically possible we can 

be-sure that God would not create two such things i. e. 

the principle is contingent. As Clarke pointed out, 

Leibniz asserted first one view and then the other Thus 

in the Fourth letter he wrote that the proposition that there 

could exist two indistinguishable things was self-contradic- 

tory and meaningless. (51) On the other hand, in the Fifth 

letter Leibniz took the second alternative and said, 

explicitly, that it was not absolutely impossible for 

there to be two things exactly alike, but that it would 
such 

be contrary to God's wisdom to create twoAbodies and 

therefore we can be certain that there are none (52). 

A plausible explanation for this inconsistency is that 

this discourse shows Leibniz shifting and moderating his 

position in response to criticise exposing its weaknesses. 

(53). It may also not be unconnected with the fact that 

47. Leibniz in Duncan op cit p. 259 
48. Leibniz in Eason op cit p. 45 
49. Leibniz in Russell op cit p. 433 
50. Leibniz in Duncan op cit p. 266 
51. Leibniz in Alexander (1956) p. 37 

52. Ibid P. 61 
53. IC Ma bQ ©SS, ble nr C-I. ýS ý0 ýA CL. 1' cý r n"ac. " 

b be a 
to oiAt- a eas of L. 4 L ;z IS work also. Se 1-I. Cas(aAecta (Ia7+4. ) 
P. `3 8 3. 
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Leibniz deduced the Principle in two ways. One was from 

the C. N I., which makes the principle necessary, and the 

other was from the Principle of Sufficient Reason, which 

causes the Principle to be contingent. (54) 

Leibniz himself said the P. I. I. could be deduced from 

C. N. I. but. never actually gave this deduction in full. 

Thus after outlining the concept of the C. N. I. he wrote 

'From this follow several considerable paradoxes, as, 

amongst others, that it is not true that two substances 

resemble each other completely and differ only 

numerically. 
i 

The argument can easily be reconstructed. 

Each individual substance has a unique Complete Notion 

which is the set of all its predicates and contains all of 

its qualities and relations (as every extrinsic denomination 

every relation, has an intrinsic foundation, a corresponding 

p_rediccate), past, present and future. To say that two, 

apparently distinct, things are completely indiscernible 

means that they must possess the same set of predicates, 

qualities and relations. Therefore they must possess the 

same Complete Notion and therefore, by uniqueness, they 

must in fact be one and the same individual. Thus 

if two things are indiscernible they must in fact be 

identical, in the sense of being the same thing. Indis- 

cernibility implies identity, and C. N I. implies P. I. I. 

It. is impossible for two, 'true-', individuals to be 
res t 

indistinguishable because theyXhave unique Complete Notions 

to be individuals and so there must be a difference in 

predicates somewhere which could serve to distinguish 

them. Thus P. I. I. is a necessary consequence of C. N. I. 

Russell also outlines the deduction and presents the 

following example: suppose A and B were two indiscernible 

substances. A differs from B in the sense that they are 

different substances. But to be thus different is to have 

a relation to B. This relation raust have a corresponding 

predicate of A. But since B does not differ frorr. itself 

B cannot possess the same predicate. Hence A and B will 

differ as to predicates contrary to hypothesis. (55) 

54. Leibniz in Russell p. 433. See also Leibniz in Nasor 

op cit p. 45 
55. Russell op cit p. 58 
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Thus two individuals cannot be indiscernible. If the 

premiss of the C. N. I. is accepted, and if it is agreed 
that every external relation corresponds to some internal 

predicate, then P. I. I. is necessary. (56) 

Elsewhere Leibniz deduced P. I. I. from the Principle of 
Sufficient Reason (57). The argument runs as follows. 

Suppose that there co-existed two material particles a 

and b which were exactly alike as regards all their 

qualities and relations. They would have to be in 

different places at any moment of their co-existence. 
It does not matter whether an absolute or relational view 
of space iS adopted here. If x and y are points of an 

absolute space then there could be no reason for preferring 
to put a at x and b at y rather than vice versa. However, 

a similar consequence follows on the relational account. 
In this case x is defined by certain spatial relations to 

a certain set of material objects taken as a system of 

reference and y is defined by certain other spatial relations 
to the same set of objects. Now if a and b are exactly 

alike in all their qualities and dispositional properties 
then there can be no reason for preferring to put a into 

the former relation and b into the latter rather than the 

other way round. 

If, then, on either view, God were to create two such 

particles he would 1) be bound to put them into different 

places, and yet 2) have no reason for choosing between the 

two alternatives which would arise by imagining the two 

particles being interchanged. Now God never acts without 

a sufficient reason (Principle of Sufficient Reason). So 

we can conclude either that the supposition is meaningless, 

or that, if it is not, God will never create two exactly 

similar particulars and therefore there will never be two 

such particles. Thus when P. I. I. is deduced from P. S. R. 

in this way it is contingent. (58) 

This argument)resting as it-does on the supposition of 

56. The difficulty in fact is to prevent the argument 
from proving that there cannot be two substances at 

all, and degenerating into Spinozism. See Russell 
Ibid p. 58 

57. Leibniz in Alexander op cit p. 36-45 and also p. 62. 

58. This form of the argument gets round Russell's 

criticism of it. 
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some external creative agent (i. e. God) who acts 

according to the Principle of Sufficient Reason, is far less 

cogent and persuasive than the previously necessary 
deduction from C. N. I. Clarke was certainly not satisfied 

with it and argued that by Leibniz's own principle God 

would actualise neither a nor b simply because he cannot 

actualise both, and has no reason to prefer one to the 

other. (59) 

The Identity of Indiscernibles has been discussed by 

several authors (60) of whom we take Quinton to be an example. 

He argues (61) that there are two forms of the principle. 

If position is included as one of the properties of a thing 

then the principle is necessarily true; this is the 'wide' 

form of the principle. If the set of properties of a 

thing includes only qualitative properties then the 

principle is only contingently true; this is the narrow 
form. Quinton then writes that Leibniz was compelled 

to take the principle in its narrow qualitative sense 

since by denying that space and time were fully real he 

was committed to the view that positional properties were 

the more or less misleading appearances presented by 

underlying qualities. A symptom of this is the fact that 

he attempted to derive the principle from the law of 

sufficient reason, which he took to rule out the 

possibility that there could be two qualitively indis- 

tinguishable things in distinct places. (62). 

This misses the point that Leibniz did try to reduce 

position, as a relation, to apredicate of the individual 

(63) and more importantly, that he gave a more fundamental 

deduction of P. I. I. from his idea of the C. N. I. 

P. I. I. has been considered in some detail here in order 

to prepare the ground for our later discussions of its 

validity within classical and quantum physics. 

We shall now outline some aspects of the modern 

approaches to these problems. 

59. Clarke in Alexander op cit p. 45-53 
60. See Black (1952) ;P Strawson (1965)) T. Vinci (1974) 

P-195. D. Armstrong (1978)) Also Russell 

Broad and Rescher op cit. 
61. Quinton op cit p. 24 
62. Ibid p. 25 
63. Leibniz in Langley op cit p. 238. 
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1.4 Relative Identity and Proper Names 

Frege can be regarded as one of the principal architects 

of the modern approach to identity and initiated its 

characteristic involvement with the theory of meaning. 

Thus he pointed out that if identity is interpreted 

simply as a relation between an object and itself 

then one is faced with the following paradox. It 

is clear that the sentences 'a = a' and 'a = b' generally 

have different cognitive significance, as can be seen 

by comparing 'The Morning Sa 
e d& 
ar is identical with the 

o,, c ý tke. iMo r. ai4 StoJ- Cs c-ic. a( wcý t4 eE vý. ý:. t¬. Secr; 
IV°orning Stark. Howe fer if a and b are the same object 

and identity is interpreted as above, then it is imposs- 

ible to explain how the two sentences can differ in 

cognitive content. Frege therefore concluded that 

identity should be regarded as a relation holding between 

the names or signs of objects (64). 

Frege's solution to the above problem thus went 

straight to the heart of the theory of meaning. He 

argued that as well as names and the objects they refer 

to one must distinguish a third element, the meaning 

or sense of the name in virtue of which, and only in 

virtue of which, it refers to the object. Thus 

he wrote 'It is natural, now, to think of there being 

connected with a sign (name, combination of words, 

letter) besides that to which the sign refers, which 

may be called the reference of the sign, also what I 

should like to call the sense of the sign, wherein 

the mode of presentation is contained'. (65) 

Thus in the above example the reference of 'the 

Morning Star' would be the same as that of the 'Evening 

Star', i. e. the planet Venus, but not the sense. The 

sense gives the node of presentation of the object and 

the object is illuminated, (partially), by the sense 

of the expression. It is because the two expressions 

'Morning Star' and 'Evening Star' have different 

senses that factual information can be conveyed and 

thus the statement differs in cognitive significance 

from the analytic uninformative sentence 'The Morning 

Star is identical with the morning Star', in which 

64. G. Frege in P. Geach and M. Black (1952) p. 56 ff 

65. Ibid p. 57 
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both of the denoting expressions have not only the 

same referent but has the same sense also. 
This work had two profound consequences which we shall 

consider here - one concerning the status of'Leibniz's 
Law of the Indiscernibility of Identicals' in 'classical' 

identity theory and the other concerning the philosophy 

of proper names. We shall consider the former first. 

The line of research initiated by Frege led, in the 

early part of this century, to widespread agreement among 

philosophers and logicians that the notion of meaning was 

ambiguous and that a distinction should be drawn between 

the meaning of an expression in the intensional and 

extensional senses. Consideration of Frege's problem 

also led to questions concerning synonymity - under what 

circumstances could expressions have the same meaning. 

Consequently, it was shown that Liebniz's law, which 

can be taken as saying that synonymous expressions may be 

interchanged in any context without change of truth 

value, does not hold generally and is true only of 

extensional contexts. (66) 

This law is central to the 'classical' theory of iden- 

tity and can be expressed thus : 'If two things are 

identical then whatever is true of one is true of the 

other'. (67) or in second order predicate calculus 

( V>0 ( V4 )L _Y_ =I --> (V 0) (0 cx-) *--ip qý (-I ýI 
where 'x' and 'y' are syntactical individuated variables 

and '0 ' is a syntactical predicate variable. 

Written thus the Law is broad enough to be the converse 

of the Principle of Identity of Indiscernibles. 

From this can be derived all the valid theorems or 

propositions of the 'classical' theory of identity, 

such as the Identity of Indiscernibles: 

(VZ. L)(Vj)C(V')(Ocx -'$c))_a _1-1 
Reflexivity: ( V'o) Cxc = ýý-) 

Symmetry: CV ate) 

and Transitivity: (\ c)( )CV ý) (ý 7C=j as = 
rý 

66. See L. Linsky (1952), especially the essays by Good- 

man p. 67, Quine p. 77 and mates p. 111 

67. Mates (1965) p. 145 
68. P. T. Geach (1972) p. 239 
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This 'classical' theory is also known as the'absolute 

identity theory (69) because it follows from Leibniz Law 

that if two objects are 'identical' then they are 'identical' 

in all respects - they are 'absolutely identical' (70) 

This theory is a well established branch of logic (71) 

and its principles are employed in many philosophical 

reasonings in which questions of identity arise. However, 

although the theory is both powerful and simple it has been 

attacked on various grounds, particularly recently. 

Thus it is argued that it fails to capture the notion 

of identity as used in ordinary language where the relation 
'x is the same such-and-such as y' is frequently used 

and in ways which are not adequately encompassed by the 

statement 'x is identical with y' or 'x=y'. (72) A possible 

avenue of escape for the absolute identity theorist is 

to say that identity is being loosely or even incorrectly 

used in these situations and that it is actually 'similar- 

ity' that is being referred to. 

There are other difficulties, however, Leibniz's Law 

makes no allowance for an individual changing its 

properties over a period of time, yet remaining 'the same' 

individual. In other words the absolute theory faces 

problems with regard to reidentification through time (73). 

The Law also displays what Quine has called 'referential 

opacity' (74) in leading from true propositions to false 

ones when, for example, non-extensional predicates are 

substituted for ' 06oc)' 
. 

These, and other difficulties, have led to a variety 

of alternative theories being proposed in which the class- 

ical two place identity relation is replaced by a three 

place one, the third place being taken up by a general 

noun which specifies the respect in which identity is 

69. N. Griffin (1977) p. 2 ff 
70. If spatial, positions or relations are included as, or 

reduced to, predicates of the objects then 'numerical 
identity', two objects being 'identical' in all res- 
pects but separate in space, is not true identity in 

this sense. Indeed we would prefer to call it 
indistinguishability rather than identity. 

71. See P. T. Geach (1972) p. 239 
72. Griffin op cit p. 10 
73. Ibid p. 5 
74. W. O. Quine (1961) p. 139 
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intended. These alternatives can broadly be classified as 
'relative identity theories'. 

A central tenet of these approaches is that the x and y 

of an identity statement must be taken to fall under, or 
be instances of, the same substantial concept of a thing 

or natural kind. (75) Thus Geach has written 'When one 

says 'x is identi l with y' this I hold is an incomplete 

expression, it is short for 'x is the same A as y' where 
'A'represents some count noun understood from the context 

of utterance ... ' (76) He also wrote 'On my own view of 
identity I would not object in principle to different 

A's being one and the same B' (77). This position receives 

support from examples of the use of identity' statements 
in ordinary language, such 'that box is the same colour 

as this box' or 'these two boxes have the same colour 
but different volumes', and is therefore regarded as an 
improvement over the absolute theory. 

The above two quotes introduce two important theses. 

The first has been called 'D' by Wiggins (78) and it 

consists of the following : absolute identity statements 

of the form 'a is the same as b' are incomplete and a term 

A must be introduced to give a statement of the form 'a is 

the same A as b'. The completing term A must be a general 

term which is either a noun or noun phrase. There are 

several varieties of general nouns which lead to several 

variants of 'D' each different in scope or restrictiveness 

(79). 

The second of Geach's remarks introduced the 'R' thesis 

which holds that 'a may be the same A as b but not the same 

B'. There are at least as many variations of R as there 

are of 'D' since each variant of 'D' will give-a different 

way of completing 'A is the same such-and-such as B'. 

Setting aside these variations these two theses in 

combination generate three broad positions according to 

whether one or other or both are accepted. Thus some 

philosophers have accepted both 'DI and 'R', others have 

75. P. T. Geach (1968) p. 39 
76. Ibid p. 238 
77. Ibid p. 157 
78. D. Wiggins (1967) p. 1 and (1980) p. 15 

79. See Griffin op cit p. 14-15 
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accepted only 'D', while others have accepted only 'R'. 

Typical of the first position is Geach whose view we 
have already touched upon. Wiggins can be regarded as 

a representative of the second alternative. In his ear- 
lier work he presented 'R' in the form of a question, 
'Can a be the same x as b and not the same y as b? (80) 

and noted that the possibility of this, the 'R' thesis, 

is commonly taken to provide the principal ground for 'D'. 

He then argued that 'R' could not be the rationale of 'D', 

if 'D' had any rationale at all, in fact 'R' cannot be 

a possibility at all, i. e. he rejected it entirely. 

According to Wiggins the only defence of 'D' which is 

correct is the one that states '... to say what a is is 

automatically to provide an f which determines the truth 

grounds of a=b'. (81) The grounds for rejecting 'R' rest 

on. a demonstration that the thesis is incompatible with 

the formal requirements of classical identity theory. 

In particular Wiggins argued that if Leibniz Law were 

true, then 'R' must be false. (82) 

The third of our three positions is advocated by Griffin 

in an attempt to meet the difficulties of both the re- 

lative and absolute identity theories. His aversion to 

'D' rests on the grounds that '... the arguments in its 

favour are very weak and often rely on unacceptable 

postulates... ' (83) Nevertheless, he believes, the 'P' 

relativists have uncovered an important point in that 

'... the notion of an individual item is incoherent 

without reference to a set of individuative principles. 

It is the role of sortals in natural language to provide 

these principles'. (84) This forms the core of his own 

theory in which it is argued that we cannot individuate 

items in a domain without reference to some sortal. Thus 

equating individuation with counting, it is instances 

80. Wiggins (1967) p. l. 
81. Ibid p. 41 
82. Wiggins (1967) & (1980). For criticisms of this view 

see H. W. Noonan (1976) p. 559 & S. Shoemaker in N. 

Munitz (1971) p. 103, Griffin has recently pointed out 
that in order to carry this last argument through 

Wiggins must amend the classical theory, which leaves 

him open to the claim that 'R' can be retained rovided 
this argument is dropped. Griffin op cit p. 19 

J1978) 

83. Griffin (1977) p. 21 p. 576. 

84. Ibid p. 131 



37 

of F's and G'S (where F and G are sortal constants), 

rather than items that are counted and so relative 
identities are regarded as fundamental. It is only after 

this individuation process is complete that one can est- 

ablish whether an individual F and an individual G possess 

all properties in common and thus whether they are 

'absolutely identical'. 

it follows from Griffin's view that a proper name 

cannot be significantly assigned to an individuated item 

except by reference to a sortal because, he argues 

without the latter we have no means of knowing what we 

have named (85). This brings us on to the role of proper 

names in problems of identity and individuality and thus 

the second consequence of Frege's work. 

We have noted how in the name-referent relation, Frege 

introduced a third element, the sense of the name. He 

believed that all names have senses and wrote 'A proper 

name expresses its sense, stands for or designates its 

reference ' (86). Thus he argued that names essentially 

have a sense but only contingently have a reference - 
they refer if and only if there is an object which satis- 

fies their sense. This encapsulates the 'sense theory' 

of proper names which holds that proper names are only 

disguised definite descriptions. Every proper name is 

equivalent in meaning to such a description, namely the 

one which gives an explicit formulation of its sense. 

The opposing view i5 the 'no-sense theory' which argues 

that proper names simply stand for objects and have no 

sense or meaning other than standing for objects. Thus 

a proper name only denotes its bearer and names necessarily 

have a reference but no meaning whatsoever. Proper names 

are regarded as the special connection between words and 

the world. 

One can summarise the difference between these two 

theories thus: on the no-sense theory naming is prior to 

describing, on the sense theory describing is prior to 

naming forZname dnly names by describing the object it 

names. Representatives of the latter view include Frege, 

obviously and Quine who used Russell's theory of singular 

85. Ibid p. 198 
86. Frege op cit p. 61 



38 

descriptions to reduce proper names to descriptions. 

In Quine's view Russell's theory shows clearly how one 

can meaningfully use seeming names without supposing 
that there exist the entities allegedly named, by 

reducing the seeming name to a description. And, 'where 

descriptions are concerned there is no longer any 
difficulty in affirming or denying being' (87). Quine 

believes that when Russell's theory goes to work on 

a statement of being or non-being such a statement '... 

ceases to contain any expression which even purports 

to name the alleged entity whose being is in question 

so that the meaningfulness of the statement no longer 

can be thought to presuppose that there be such an 

entity'(88). Thus by reducing proper names to 

descriptions in this way a statement of existence or non- 

existence does not contain any expression naming the 

entity whose existence is in question so that whether the 

statement means anything or not no longer presupposes that 

such an entity exists. Quine wrote 'We need no longer 

labour under the delusion that the meaningfulness of 

a statement containing a singular term presupposes 

an entity named by the term. A singular term need not 

name to be significant (88). As we have noted such a 

split between meaning and naming had been made previously by 

Frege. Thus Quine holds that proper names can ultimately 

be reduced to descriptions (and then removed 
a la 

Russell). 

Advocates of the no-sense position include Wittgenstein 

and Mill. Wittgenstein believed that the meaning of 

a proper name is simply the object for which it stands and 

wrote 'A name means an object. The object is its meaning. ' 

(90). He also contended that 'Only propositions have 

sense, only in the nexus of a proposition does a name 

have meaning. ' (91) 

87. W. O. Quine (1964) p. 7; see also N. Goodman (1951) 

p. 160 and A. J. Ayer (1954) p. 16 
88. Quine op cit p. 7 
89. Ibid p. 9 
90. L. Wittgenstein (1963) p. 23 
91. Ibid p. 25 
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Mill held the view that proper names have denotation 

but not connotation (92). For him a common noun like 

'horse' had both a connotation and a denotation - 
it connotes those properties which would be specified 
in a definition of the word 'horse' and it denotes all 
horses. A proper name on the other hand only denotes 

its bearer. 

Both views are open to criticism. It would seem 

to be intuitively obvious that proper names as they are 

ordinarily used are not equivalent to definite 

descriptions because to call something by its name is 

not to describe it. Naming prepares the way for 

describing, not vice versa. Not only do we not possess 

definitions of most proper names, it is unclear how 

such definitions could be obtained. If one tried to give 

a complete description of the object as the sense of the 

name a consequence would be that any true statement about 

the object that used the name as subject would be 

analytic and any false one would be self-contradictory. 

The meaning of the name and perhaps the identity of the 

object would change every time there was a change in 

the object, and the same name would have different meanings 

for different uses of the name. 

Frege himself realized that different people may attribute 

a different sense to the same proper name (93). Further- 

more if the Fregean view is being held that a single 

description can be substituted for a name, then it may not 

be clear which description out of a whole set of possible 

descriptions of the object in question should be so 

substituted. In particular care must be taken to ensure 

that a contingent property is not selected for this purpose. 

Thus, for example, it might be decided that the name 

'Planck' means 'the person who first regarded energy as 

quantised'. But then this would imply that the statement 

'Planck was the first person who regarded energy as 

quantised' is a tautology, which is counter-intuitive as 

it expresses something which, with a little historical 

investigation, could be shown to be false. 

92. J. S. Mill (1843) Ch. 2 
93. G. Frege (1949) p. 86 
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Some philosophers have attempted to meet such objections 
by suggesting that a cluster of descriptions, rather than 

any single description, determines the referent of a name. 
(94). The referent of a particular name is then that 

object which satisfies most (in some sense) of the 

descriptions in this set. Strawson appears to believe 

that all the properties in the set should be given equal 

weight in determining the referent (95). This seems 
inherently implausible; surely some properties should 
Count for more' than others? Even if this is accepted 
there are still problems with this view. It is still 
held that it is a necessary truth that an object, or a 

person, has the properties which are usually attributed 

to it or them. Thus Searle wrote '... it is a necessary 

fact that Aristotle has the logical sum inclusive 

disjunction, of properties commonly attributed to him ... 
(96). Again this seems intuitively implausible. Surely 

it is possible for Aristotle not to have been the teacher 

of Alexander? If this question is answered in the 

affirmative then one must provide some justification for 

referring to this person who has not the teacher of 

Alexander as 'Aristotle' . 
Kripke has attempted to do this in terms of his 

notion of a 'rigid designator'. A rigid designator is 

something which designates the same object in every 

possible world, where, as a non-rigid, or accidential 

designator is something for which this is not the 

case (97). Kripke believes that proper names are rigid 

designators because they satisfy this 'intuitive test'. 

Thus he wrote '... although someone other than the U. S. 

President in 1970 might have been the U. S. President in 

1970 (e. g. Humphrey might have) no one other than Nixon 

might have been Nixon'. (98) and also '... although the 

man (Nixon) might not have been the President it is not 

94. J. R. Searle (1958) p. 166-173. 
95. P. F. Strawson (1964) p. 191-192 
96. Searle (I 9 6q) p. 17 3 
97. S. Kripke (1980) p. 48 and also in Munitz op cit p. 135 

98. Ibid p. 49 
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the case that he might not have been Nixon (though he 

might not have been called 'Nixon') '. (99) 

We can fix the reference of a proper name by a property, 

essential or accidental, in this, the actual world. The 

proper name then rigidly designates the object possessing 

that property in the actual world, in all possible 

worlds (100). Even if, in these counterfactual situations, 

the object no longer possesses the property used to fix 

the reference in the actual world, the proper name still 

rigidly designates that object. In other words once 
its reference is fixed in the actual world the designation 

of the proper name is unaffected by possible changes in 

the actual world which we can imagine (101). 

Thus we may pick out the reference of 'Aristotle' in 

this, the actual world as the man who taught Alexander. 

In a possible world in which someone else gained this 

position we would not refer to that someone else as 

'Aristotle' If Aristotle had never become a scholar he 

would not have possessed this property which we use in the 

actual world to fix the reference of his name. This is 

precisely because the proper name 'Aristotle' rigidly 

designates a certain man. Eventhough the property we have 

used to fix the reference of the name is an accidental one 

we still use the name to designate the man in all 

possible worlds. 

Having outlined some of the criticisms of the sense 

theory, we shall now briefly consider some possible 

failings of the no-sense approach. 

Firstly, as Frege demonstrated this view does not account 

for the occurrence of proper names in identity statements 

that convey information. Secondly, Quine showed that the 

theory is unable to give a decent account of the occurrence 

of proper names in existential statements. Thus in 

'Pegasus does not exist' the proper name cannot be said to 

refer because no subject of an existential statement can 

really refer. Existence is not a predicate. An affirmative 

existential statement expresses a concept and states that 

it is instantiated, rather than referring to an object and 

99. Ibid p. 49 
100. We shall not discuss the question of the status of 

possible worlds. See D. K. Lewis (1968) p. 114)C G1 (I fl). 

101. Kripke (1980) p. 75 
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stating that it exists. So if a proper name occurs in an 
existential statement it must have some conceptual or 
descriptive content. But if so, then this lends support 
to the Fregean view because the descriptive, content could 
only be the sense of the proper name. 

The nature of the existence of the referents of proper 

names also raises certain problems. A change such as the 

destruction of an object cannot destroy the meaning of 

words, because any change in the world must still be 

describable by words. Thus if one adopts Wittgenstein's 

position the existence of those objects which are named 
by genuine proper names cannot be an ordinary contingent 
fact. This then forces one into the view that there is a 

class of objects in the world possessing a necessary 

existence - those objects which are the meaning of the 

real proper names. But if this is accepted then it would 

make no sense to assert or deny the existence of the objects 

named by genuine proper names. 

Thus the no-sense view, although supported by our initial 

intuitive feelings as to how proper names work, runs into 

difficulties with the existence of referents and identity 

and existential statements (102). 

Although it seems implausible to claimthat proper names 

are merely a kind of shorthand for definite descriptions, 

the sense theory does at least give an account of the 

latter kinds of statements. 

Strawson adopts a version of the Fregean theory as we have 

said, and discusses proper names with particular regard to 

individuality. (103) He argues that the fundamental 

presupposition underlying the use of names is that in 

our linguistic and conceptual structure we presuppose that 

all particulars., to which we refer are individuals in 

the sense that they are unique. And they are unique 

because there is something about each particular that is 

true of it and nothing else. Particulars which are sensibly 

present can, he believes, be demonstratively identified. 

102. Yagisawa has recently tried to get round these 
difficulties, and also solve Fregean paradoxes without 
using disguised descriptions, by regarding proper 
names as bound variables See T. Yagisawa (1984) p. 195 

103. Strawson op cit p. 20 ff. 
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Particulars which are not sensibly present cannot be 

identified simply by names because '... it is no good 

using a name for particular unless one knows who or what 
is being referred to by the use of the name. ' (104) 

Descriptions in general terms alone are also rejected on 

the grounds that there is no guarantee that such a 

description is unique and the possibility of massive 

reduplication remains open, 

Strawson's solution is that a particular which cannot 

itself be demonstratively identified can be '... 

identified by a description which relates it uniquely 

to another which can be demonstrably identified. 1 

(105). Thus a linguistic chain is set up in which 

particulars which are not sensibly present are uniquely 

related to those which are and which can be pointed 

to (verbally and/or physically) by the speaker. 

It might be asked if there are any basic particulars 

or if they are all on an equal standing in this chain. 

Strawson's answer is that material objects are the basic 

particulars. The general conditions of particular 

identification require a unified system of spatio-temporal 

entities that can be publicly observed. Such a system is 

formed by the material universe and material objects can 

therefore be identified independently of the identification 

of particulars in other categories but the latter 

particulars cannot be identified without reference to 

material objects (106). 

Quinton has put forward a view which is similar to 

Strawson's 4n the respect that things are individuated by 

demonstrably referring them to the 'here and now' (107), 

The basic argument here is that individuals owe their 

unique individuality necessarily to their position in 

space and time (108). Qualitatively indiscernible 

distinct things can always be distinguished by reference 

to their respective spatial positions. The proof of this, 

Quinton believes, lies in the metaphysical truth that 

no two things can be in the same place at the same time. 

104. Ibid p. 20 
105. ibid p. 21 
106. Ibid p. 39 

107. Quinton op cit p. 12-20 

108. Ibid p. 17. Similarly Goodman has proposed that place & 
time be considered as essential individuators. See 
Goodman op cit. 
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(109). In other words individuals are impenetrable-Thus 

Quintons view of individuality is crucially dependent 

upon the Impenetrability Assumption. As we shall see 
in subsequent chapters there are things described by 
the laws of physics to which this assumption does not 
apply, and to this extent Quinton's scheme is fatally 

flawed, (as indeed are all others which try to argue 
that spatio-temporal location is a necessary 
individuating property. There can be no guarantee that 

the points of space-time are either vacant or only 

uniquely occupied and indeed a case can be made for say- 
ing this is precisely what is not true in quantum 

physics). 

Thus, according to Quinton to state the spatio-temporal 

position of a thing is to predicate a conjunction of 

properties of it and is necessarily to individuate 

it (110). This would seem to support the 'bundle 

theorists' claim that a thing is simply the collection 

of its properties sans substance, because one can now 

solve the problem of individuation by including positon 
in this collection. However, it is not quite so 

straight forward as Quinton further believes that 

positional predicates are different fr an other properties 

in the sense that '... to ascribe a position to an 

individual in space or time involves an essential 

and ineliminable reference to another individual or 

position (ill). Thus again a kind of individuating chain 

is set up relating individuals to other individuals and 

thus transforming them into more than mere bundles of 

properties. 

Of course an infinite regress can only be avoided if 

the chain ends with some basic or primary positional pre- 

dicate which specifies an individuals unique position in 

space and time. Such a primary positional predicate is, 

according to Quinton, provided by the 'here and now'. 

Thus he writes 'The position where I am at the present 

moment is, then, the absolute point of origin of all my 

positional characterisations of things. It is the one 

109. Ibid. p. 17 
110. Ibid p. 17 
111. Ibid p. 17-18 
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position I do not have to pick out by its relation to 

something else and by their relation to which in the 

end everything else is individuated. The linguistic 

correlate of this absolute point of origin or absolute 

position is the demonstrative part of language, such 

terms as 'here's 'now'. 'this', and III, which require 

for their understanding in any particular employment a 

knowledge of the context in which they are uttered. 

There is a demonstrative aspect to the understanding of 

every singular term that purports to refer to a unique 

individual. It may be practically sufficient to explain 

a singular term to someone by enumerating the properties 

of its bearer but misidentification can be ruled out 

conclusively only by bringing in the position of the 

thing in question. But any reference to position that 

is sufficient to individuate must connect it to the 

here-and-now. ' (112) 
. 

One can easily criticise this view on the grounds that 

it implies a commitment to a theory of absolute space, 

using 'again our Blackian universe in which there exists 

two things which have all their qualities in common 

and yet which are distinct. The only thing which can 

individuate them, according to Quinton, is their spatial 

positions. However, their spatial relations are only 

to each other and are identical. Thus if spatial position 

is the principle of individuation then the two things 

cannot be individuated on a relational view of space. 

Therefore, if Quinton is to maintain his position he 

must also hold an absolute theory of space. An absolute 

spatial substratum will provide the difference in 

positional predicates necessary to individuate the things. 

We shall consider this problem again in Chaptr Four, 

but now we turn our attention to the problem ofAreident- 

ification of individuals through time. 

1.5 Reidentification Through Time 

This problem arises from the obvious fact that both 

the spatial positions and certain, accidental, 

qualities of individuals change with time. How then is 

112. Ibid p. 20 
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the individual to be reidentified through these changes? 

Whether we adopt the T. I. (113) or S. T. view of 

individuality this problem remains, namely, what grounds 

can be supplied for claiming that an individual b at 

time t2 is the same individual a at an earlier time t1? 

The most obvious solution is in terms of the spatio- 

temporal trajectory joining the location of a at time t1 

with the location of b at time tz. Thus Quinton writes 

'Two things can be identical through time ... only if 

there is a continuous spatial path between the places 

at which they occur. (114) 

Shoemaker has also noted that spatio-temporal continuity 

is a logically necessary condition of 'identity through 

time' (115) and Coburn has given a detailed analysis of 

this criterion in terms of the set theoretic concept 

of the linear continuum (116). 

Although necessary this condition is not sufficient, 

because there are an infinite number of continuous 

spatio-temporal paths between any two points in space-time 

spearated by a non-vanishing interval. This leads to 

the suggestion that a criterion of qualitative continuity 

is required. Thus a necessary condition for a 

particular space-time path to correspond to the career 

of some individual is that any individual-stage on the 

path should be qualitatively similar to a neighbouring, 

or adjacent, individual stage on the path (117). 

This is a very vague condition, the vagueness residing 

principally in the word 'similar', but it is plausible. 

As it stands this condition limits the range of 

admissable qualitative variation of the individual. Thus 

its acceptance implies the rejection of the assumption that 

an individual can retain its identity whatever 

qualitative changes it undergoes. Drastic qualitative 

113. Shoemaker has discussed the connection between the 

substantivalist approach and the analyzability of 
identity statements. S. Shoemaker (1963) p. 57-63 

and p. 254-260. 

114. Quinton op cit p. 66. See also Strawson op cit p. 57 

115. Shoemaker op cit p. 4-5. See also B. Williams (1956-57) 

p. 230 
116. Coburn in Munitz op cit p. 51-103. 
117. Quinton op cit p. 67 Also see E. Hirsch (1982) p. 10-15. 
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changes are effectively forbidden. 

However spatio-temporal and qualitative continuity are 

still not enough. The analysis given so far would not 

prevent us from tracing an individual in such a way that 

we combine stages of the individual with stages of some of 
its parts. (118)Thus a further criterion is needs. This is 

provided by the so called 'Sortal Constraint' which states 

that for a succession of individual stages to correspond 

to a persisting individual there must be some sortal 

term S such that every individual stage in the succession 

comes under, or is an instance of, S. (119) It is not 

our intention to discuss what a sortal, or substantial 

term is. Wiggins has given a very detailed analysis (120) 

as has Hirsch who defines a sortal in terms of the above 

constraint. Thus he gives the following definition : 

'The general term F is a sortal' means: It is a conceptual 

truth (a rule of language) that any spatio-temporally and 

qualitatively continuous succession of F-stages corres- 

ponds to (what counts as ) stages in the career of a 

single persisting F-thing. ' (121). Examples of sortals 

include nouns like car, tree or mountain, but not 

adjectives like green or hard. However, it is difficult 

to establish a clear distinction between what does and 

what does not count as a sortal term, as Hirsch 

demonstrates. 

Underlying the sortal constraint is the less exact but 

conceptually more basic idea that for a succession of thing 

stages to correspond to stages in the career of a single 

persisting thing the succesion must minimize change, 

except of course mere change in location (122). An objects 

career should be traced by following a spatio-temporally 

and qualitatively continuous path which minimises change 

as much as possible. 

Thus we have the following three conditions which are 

neceSSa-+`y for a space-time path to correspond to the 

space-time path or world line, ofAsingle persisting 

individual or for a succession of individual stages to 

correspond to the career of a single persisting individual. 

116. Hirsch Ibid p. 32-33 
119. Quinton op cit p. 67. Hirsch op cit. p. 36 
120. Wiggins (1967) p. 35 ff 
121. Hirsch p. 37-38 
122. Hirsch ibid p. 72-82 
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1) the path or succession must be spatio-temporally 

continuous. 

2) the path or succession must be qualitatively 

continuous in the sense given above, and 
3) there is a sortal term S such that the succession is 

a succession of S-stages, or the path underlies such 

a succession. (123) 

These are still only necessary and not sufficient 

conditions as there are further criteria which may be 

required. For example a compositional criteria might be 

needed to deal with cases such as that of a watch which 
is taken apart, has some parts replaced and is then 

reassembled again. More importantly from the point of 

view of this thesis, two further conditions have been 

suggested, in addition to the three above, as being 

necessary for the identity of a thing. These are 

compositional continuity, which states that the matter 

of which a thing is composed at one moment should be the 

same, or almost the same) as the matter of which it is 

composed at the next moment, and the causality condition 

which holds that there must be a causal relationship 

between the states of a thing at successive moments (124) 

The first of these extra criteria can be rejected on 

the grounds that it assumes the acceptance of a concept 

of matter, a concept which modern physics has to a 

certain extent cast doubt upon (125). The second can 

not be eliminated quite so easily. Hirsch thinks it can 

but his counter examples are at best borderline cases. 

For example he believes that successive stages of a shadow 

are causally independent because each stage is the effect 

of the body which has the shadow and not an effect of 

previous stages. (126) However, while the shadow-stages 

are not directly causally related they are indirectly 

so related through the body casting the shadow. There is 

a direct causal relationship between the body and a shadow 

stage and therefore an indirect relationship between each 

123. Quinton op cit p. 67; Hirsch op cit p. 36. 

124. Shoemaker in French, Uehling and Wettstein (1979) 

p. 326. 

125. Hirsch op cit p. 217 
126. Ibid p. 219 
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stage. In the case of the identity through time of a 
classical elementary particle there is certainly a 

causal link between successive particle-stages as 

expressed by the laws of motion. Indeed these laws 

embody both causal and spatio-temporal continuity. 
The situation is not quite so transparent in the case 

of quantum physics as here there is some doubt about 

whether the fundamental laws describing the motion of 

particles could be described as causal or not. Electron 

transitions within the atom might be candidates for 

events violating this causality requirements, but 

given the Q. F. T. description of such events in terms 

of particle creation and annihilation, they could 
just as easily be regarded as violations of the criterion 

of spatio-temporal continuity also. In this case it 

is not possible to refer to 'the same' electron before 

and after the transition. We shall examine these points 

in greater detail in Chapters Two and Three. 

Thus we conclude that b at time t2 is the same 

individual as a at time tl, if we can trace a spatio- 

temporally and qualitatively continuous succession of 

stages between a and b which all fall under some sortal 

term thus minimizing change. Of course if circularity 

is to be avoided the stages themselves must not be extended 

in time. The S-Stages must be momentary in the sense 

that they themselves do not depend on any criteria 

for reidentification through time. (127) 

This concludes our account of the problems of 

individuality, identity and reidentification. The point 

we wish to emphasise is that historically, as we have 

seen, there were two main candidates proposed for the 

role of individuator. The first is an unknown and 

unknowable 'something', Aristotelian prime matter, or 

Lockean substance, which supports the properties possessed 

by an individual. The other is location in space and time, 

with the individual reidentified through time by its 

continuous spatio-temporal trajectory. Proponents of the 

former view might agree as we have said that 

127. p. 104 
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reidentifiability can be inferred by spatio-temporally 

continuity but that it is conferred, ontologically 

speaking, by the persistent substantial substratum. 

In the following chapter we shall examine the extent 

to which the individuality of elementary particles, 

as described by classical physics, can be analysed in 

terms of the above two positions. 
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CHAPTER TWO 

IDENTITY AND INDIVIDUALITY IN CLASSICAL 
PHYS ICS 

2.1 Particles. v. Fields 

Classical physics can be regarded as comprising two 

kinds of theories : particle theories and field 

theories. The distinction between the two is most 

obvious when one considers the question of matter 

and its interactions. Thus one account holds 

that matter is composed of particles which interact 

via fields of force. Various alternative views have, 

of course, been propounded and vigorously supported, 

such as the Boscovichean 'field' theory of matter 

and the 'action at a distance' view of interactions 

(usually associated with a 'pure' particle theory 

of matter), (1) and we acknowledge that the distinc- 

tion as expressed here is a crude one. 

As it stands it is clearly linked to a difference 

in the underlying ontologies of the theories; in 

particular as regards their fundamental individuals. 

A field theory can be defined as one in which certain 

properties are associated with every point of space- 

time. There are then two possibilities. One is to 

argue that the field is ontologically independent of 

these points, in much the same way as particles can 

be said to be, but with some correspondence existing 

between the points and the field quantities. Fields 

are then granted the status of independent, real 

entities which, furthermore, may be regarded as sub- 

stantial if the term 'substance' is taken to mean that 

which possesses, or is the repository of, energy. Thus 

it can be argued that fields exhibit T. I. 

The alternative view is to say that, on the contrary, 

fields are not independent of the points of space-time 

since they are nothing more than properties of these 

points. On this interpretation it is the space-time points 

1. For a good account of these various theories see 
M. Hesse (1961) 
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which are the primary individuals and which stand in 

the same relation to the fields as a subject doesAits 

predicates. We shall discuss the individuality of 

classical fields in more detail in section 2.4 of this 

chapter. 

A particle theory, on the other hand, is one in which 

various properties, including spatio-temporal ones, 

may be attributed to certain individuals, the particles. 

These characterisations bring out the different role 

which the points of space-time may play in particle 

and field theories respectively. In one interpretation 

of the latter, the second given above, they are the 

individuals possessing certain properties whereas in 

the former they are regarded as the properties poss- 

essed by individuals. 

This distinction between particle and field theories 

does not, however, uniquely and rigidly classify the 

subject matter of classical physics since it can be 

shown that the classical particle mechanics of equal 

point masses can, in fact, be rewritten in terms of 

fields. (2) This underdet . rMi. nation (3) of the particle 

and field interpretations is obviously accompanied by 

a similar ontological 'underdetermination' in the 

sense that one can regard either the particles, 

considered to be substantial, or the points of space- 

time as one's primary individuals. This 'underdeter- 

mination' as regards individuality which, we shall argue, 

occurs in both classical and quantum physics, represents 

our central thesis. 

The realisation that a particle theory could always 

be reformulated in terms of fields occurred very early 

in the history of classical physics in the work of 

Newton. (4) The theory of particle mechanics 

associates with each particle a set of properties, 

2. M. Redhead (1983) Section 2. 
3. See W. O. Quine (1970) p. 179 and, in 

W. Newton-Smith (1980) P. 68-73 and 
a good discussion of this concept. 
it in more detail in section 5.4 of 

4. I. Newton in H. R. Hall and M. B. Hal 
140. 

particular, 
p. 231-242, for 
We shall examine 
Chapter Four. 

1 (1962) p. 138- 
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including their positions and momenta which can be 

represented as the particle's location in a 6-dimen- 

sional phase space. The dynamical state of a system of 

N particles can then be represented in 6N-dimensional 

phase space with qj , pý , i=1, ..., N. as the co- 

ordinates and momenta respectively. Such a theory 

can be rewritten in field theoretic terms in the 

following way. (5) 

A particle can be repýsented by a dichotomic field 

which can possess only two values: 

Yes, No . The value 'Yes' indicates that a 

particle is present at that particular space-time 

location and 'No' indicates that a particle is not 

present. Newton identified 'particle' in this field 

formulation with the property of impenetrability. The 

possession of the value 'Yes' by the field at the 

point (r, t) simply meant that this point had associated 

with it the property of impenetrability, in the sense 

that no other'particle' could occupy this point. 

Thus, if the field has the VakuQ 'Yes' at a point 

(r, t) then this is taken to mean that there is a 

particle disturbance at this point. However, a field 

is only completely specified if the field amplitude 

at all points is specified (unlike the particle case, 

where spatial locations 'other than the one at which 

the particle is observed are not considered). Thus 

if the field has the value 'Yes' at some point then it 

must be specified to have the value 'No' everywhere 

else. A particle will therefore be represented by an 

infinitesimally thin, sharp 'spike' in the field and 

its motion will be translated into motion of this spike 

in the field. 

If we consider for simplicity motion in one dimension 

labelled x, then this can be discussed in terms of 

'blip space' which can be represented graphically by 

taking the x-axis as the real number line and y-axis 

as having only two values, 'Yes' and 'No'. Our 

dichotomic field can now be represented by a mathemat- 

ical function F(x) whose domain is the real numbers 

5. M. Redhead op cit 
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and whose range is the two-element set i Yes., Nol ; 
F. ' (R I /es) IJa 1ý Fcx); ooºvt F= 3, Gr F -j1es No 

In the particle description motion is represented ' in 

terms of the particle at time tl being at location xl 

and moving at time t2 to location x2. In terms of 

the dichomatic field in 'blip space' this can be 

represented as a change in field configuration from 

the spike at x1 to the spike at x2 (see Fig. l. ) 

In other words the movement of particles in space- 

time can be reformulated as the movement of spikes 

or 'blips' in the dichotomic field in 'blip space'. 

In the particle description an individual, the 

particle, has moved from xl at tl to x2 at t2. In 

the dichotomic field representation some property, 

impenetrability say, has been paced from location 

x1 at tl to location x2 at t2. 

I es 
f' rt1. 

No X_ 

This is a typical field description and just 

as Quantum Field Theory (QFT) describes the creation 

and annihilation of particles in a very'natural'way 

so this description allows one to introduce these 

concepts into classical physics also. This is done 

by introducing Fock space into classical mechanics, 

in which the motion of particles is described in 

terms of creation and annihilation operators operating 

on the spikes in the dichotomic field (6) 

We consider a single classical particle, the time 

development of the state of which takes place in a 

6-dimensional phase space S1. The motion of the 

6. See M. Redhead, Ibid, Section 3, for a discussion 

of the use of Fock space in QFT and Section 4, for 

its application to classical particle mechanics. 

x` Z 
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particle from A to B in Sl can be illustrated thus: 

ß Z. 

SI 

Fý- 

Adapting the dichotomic field description above we 

can represent the field as the limiting case of 

a continuous distribution ; C) where 

p,; u vL c, Cj, are the momentum and position 

coordinates of the particle which is strongly peaked 

around the location of the particle in S1. The time 

development of /0 specifies a transformation which 

maps A in S1 onto point B, and is determined by 

Liouville's equation 

C, 2'P` cj, ý1 

where 1.1 C p, c ;) iS the Hamiltonian function. 

An operator Q can be introduced to represent this 

transformation such that Q 19 CA) = (2 C 13, ) 

If we now introduce the Liouville operator, defined by 

we obtain 

c. --ý = Le 3. 

This equation can be integrated to give 

cý) ePc Co) '-. 

showing the value 

as produced by the 

ýCL-) o 

action of the operator 

atLtime 
6.0t 

e 

on the value fC) 
of 10 at time to. Thus we 

have 

Q= 
-c 

LC& &oý 

e- 

(7). 

5. 

7. M. Redhead Ibid p. 25 
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We can illustrate the movement of the particle from 

A to B, or the passing of the value of the distribu- 

tion p rr' Alt C Via) to in 'blip' 

space, thus : A 

yes 

'Ja 
X 

rýG 3 

In the Fock space formulation of second quantisation 

the quantum mechanical operators can be decomposed 

into creation and annihilation operators. Likewise 

we can formally factorize our transformation operator 

e=ý, a 
o+- Q=a6. 

where 0( is an annihilation operator which takes 

us from the initial field 19(6) to the vacuum, defined 

by f=o, and 0 is a creation operator, which 

recreates the particle from the vacuum in the final 

state PCO . In other words p( annihilates the blip 

at A and transforms it from the space S, to the Space 

So, the vacuum state. (3 transforms the blip from So 

back to S, and recreates it at point ß. 
t 0 

Thus the motion of the particle from A atA to B at 

t can be decomposed into two parts: first the particle 

is annihilated at A, second it is re-created at. B. 

We can represent the whole process thus: 

Fý 

sl 



57 

This procedure can be generalised to take account 

of more than, particle 
and in general the transformation 

operator Q can be written as a product of many creation 

and annihilation operators. 

Q -- r". .. `06/V s4"(, 

where N is the number of particles. The phase space 
in which this transformation takes place is then 

decomposed into the union of several phase spaces, of 

smaller dimension: 

8=S,, ) 
This is the classical Fock space in which the creation 

and annihilation of 'particles' takes place. 

Returning to our single particle moving from A at time Ea 

to B at time to one can obviously regard the interval 

between to and t as being composed of a denumerable 

infinity of instances tl, t2,... ti,... 

The above description in terms of creation and annili- 

ation operators can then be introduced for each 

successive pair of instants Our 

description therefore consists essentially in the claim 

that the particle is being destroyed at every instant 

tL and recreated at the successive instant 6L+1 

This description is remarkably similar to the view 

of a group of 10th Century Islamic philosophers, called 

the Mutakallimim (8). The fundamental proposition of 

their system was that all things are composed of atoms 

which were indivisible, point like and indistinguishable. 

(9) The number of atoms was not regarded as constant 

as the Mutakallimim believed they could be created 

and that their annihilation was therefore not impossible. 

(10). The motion of these atoms, which gives rise to 

change together with a version of the Impenetrability 

Assumption (11), compelled them to postulate the 

8. M. Maimonides (1904) p. 120-133 
9. Ibid p. 120 
10. However no specific arguments were given for the 

reciprocity of these two processes, see J. Bromberg 
(1977) p. 147-157. 

11. Maimonides op cit p. 121 
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existence of a vacuum, devoid of all substance, in 

which the atoms move about. 
The third proposition of their system was perhaps 

the most unorthodox of all : time. they believed, was 
discrete, composed of indivisible 'time elements'. 

This notion of 'time atoms' was held to be a logical 

consequence of the first proposition, and it was also 
believed that the atomicity of space then necessarily 
followed from that of time. (12 ) 

One can even obtain an estimate of the size of one of 
these time-atoms: An hour is e. g. divided into sixty 

minutes, the minute into sixty seconds, the second 

into sixty parts, and so on; at last after ten or more 

successive divisions by sixty, time elements are 

obtained ... '(13). This gives a maximum size, or 

rather duration, for a time-atom of 11(60) io 
of a second 

or I. 65 XIo$s 

The main conclusion which the Mutakallemim drew from 

these three propositions concerned the nature of motion. 

This, they believed, consisted in the translation of 

each atom of a body from one space element and time 

atom to the next. (14) Motion was thus explained in 

terms of a series of momentary leaps, each atom occupy- 

ing in succession different individual space - and time- 

atoms. Physical motion was thus reduced to a discontin- 

uous process. 

Furthermore, since by the sixth proposition 'Accidents 

do not continue in existence during two time atoms' 

(15) this process is one of creation and annihilation. 

The essential characteristic of an accident was believed 

to be in incapability of enduring over two time atoms. 

Immediately (16) after its creation it is utterly 

destroyed, and another accident of the same kind 

created, this process continuing for as long as God pleases. 

12. Ibid p. 121 
13. Ibid p. 121 
14. Ibid p. 121 
15. Ibid p. 120 and p. 124 
16. It is difficult to reconcile the term 'immediately' 

with the belief in time atoms. It would perhaps be 

more consistent to say that an accident persisted 
during a time atom but was then destroyed about I. 6Sx Iö 
of a second after its creation. 



59 

Thus we see a remarkable parallel between the views of 
the Mutakallemim and those of modern physics. The 
Islamic scholars also believed that atoms were 
indistinguishable 

, variable in number, and could be 

created andannihilated. Space and time were regarded 

as discrete and motion was considered to be a process 

of continuous creation and annihilation. The 

similarities with the fundamental precepts of QFT are 

quite striking! 

It is not our intention here to examine the history 

of creation and annihilation processes, although it is 

worth noting the point that this history did not begin 

with Dirac's theory of electrons. (17) As Bromberg has 

demonstrated (18) the coricepe of the annihilation of 

pairs of oppositely charged elementary particles dates 

from the turn of the 20th century when it was offered 

as an explanation of radioactivity. (19) This process 

subsequently became important in astrophysics where it 

was posited as a possible source of stellar energy (20), 

and was thus regarded as a familiar and acceptable 

concept by quantum theorists. The advent of quantum 

mechanics did change the situation in so far as prior 

to its development a belief in annihilation did not 

entail. a belief in creation whereas afterwards it did. 

The great value of Dirac's work, according to Bromberg, 

was to substitute a mathmatically precise handling of 

these processes for qualitative speculations. We shall 

return to some of these points in section 3.8 of Chap- 

ter Three. 

Thus we conclude that particle mechanics can be re- 

written as a field theory and there is no observable 

difference between these two descriptions in the sense 

that no experiment will ever decide which is correct. 

This conclusion will be used in Section 2.2.2. to show 

that it is not necessary, in classical physics, to 

17. P. A. Dirac (1927) p. 243-265 
18. Bromberg op cit. 
19. J. Jeans (1904) P-101 
20. Eddington (1921) p. 351 
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regard the individuality of particles in terms of 
(Transcendental Individuality'. Before we do this, 
however, we must consider this view as it applies 
to classical particles. 

2.2 Individuality In Classical Statistical Mechanics 

We begin by considering the distribution of two 

indistinguishable (in the sense of possessing the 

same set of intrinsic properties, such as mass, charge 

etc. ) particles over two one particle energy states. 

In classical statistical mechanics the following 

four arrangements would be produced: 

z) 

3, ) 

4) 
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Each of these is assigned equal a priori weights in 

the counting procedure used to calculate the 

probability of a particular distribution. 

Classical, Maxwell-Boltzmann, statistics clearly 

distinguishes between arrangements 1) and 2) and 

counts them as distinct; that is, the arrangement in 

which the two particles have been permuted is regarded 

as distinct in some way, although not observably 

distinguishable from the unpermuted arrangement. 

This implies that the particles are regarded as 

being distinct individuals capable of being identified 

as such through a permutation. 

There are two ways in which individuality can be 

granted to these particles, corresponding to the 
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particle and field approaches in classical physics 

respectively. We shall consider each in turn. 

2.2.1 Transcendental Individuality 

The first way essentially corresponds to a naive 

Lockean substance approach. An individual is regarded 

as a thing composed of an underlying substantial 

substratum bearing certain properties. The bare 

substratum is indicated by a proper name or label, 

which picks out that individual as itself at one 

particular time and reidentifies it as the same 

individual at different times. The labels/proper names 

stand for or designate that which individuates the 

particles i. e. the underlying substance. 

This kind of individuality has been called Trans- 

cendental Individuality (or T. I. for short) by Post, 

because it resides in something, the substratum, which 

transcends the properties of a thing. Thus he writes 

'... we mean by individuality something that transcends 

observable differences - what I will call 'transcend- 

ental individuality'. (21) Arrangements 1) and 2) 

above are observably indistinguishable but are counted 

as distinct. Therefore, that which allows them to be 

so counted, their individuality, must reside in some- 

thing over and above their observable properties. This 

'some-thing' ('we know not what' perhaps, although we 

shall discuss this in Chapter 4) is the substantial 

substratum which remains invariant through a change in 

the properties and allows a thing, a particle in this 

case, to be individuated and reidentified through such 

changes. 

we shall consider the philosophical arguments 

surrounding the nature of this substantial substratum 

in Chapter Four, where we shall argue that the way 

proper names function in classical physics accords with 

the view that we termed the 'no-sense theory' in Chapter 

One. For the moment we merely wish to note that 

21. H. Post (1963) p. 15 See also Reichenbact (1956) p. 225 
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according to the view involving T. I. a particle is 

individuated and reidentified by an underlying 

substance, in which the properties predicated of the 

particle inhere, and which is designated by a label 

or proper name. 

However distasteful this concept may be philosoph- 

ically, it is usually taken to be the way in which 

classical physics treats individuals. Thus it is 

commonly accepted that T. I. is implicit in Boltzmann's 

Combinational Approach, which is the foundation of 

classical equilibrium statistical mechanics. Post, 

for example, has said 'Boltzmann, who founded 

statistical mechanics at the end of the last century, 

extended this notion of transcendental individuality 

implicitly to the atomic realm'. (22) As we shall see 

historical evidence can be adduced in favour of T. I., 

but the support is perhaps not so extensive as is 

usually thought; principally because of the crucial 

role played by Liouville's Theorem, which is essentially 

dynamical in character. It is also open to question 

whether one can in fact 'do' classical statistical 

mechanics solely in terms of T. I., as we shall now 

demonstrate. 

2.2.2. Is T. I. necessary? 

The assignment of weights to the macrostates in 

classical statistical mechanics (the arrangement 

0o for example is given weight two, 

corresponding to the two ways in which it can be realised, 

through a permutation of the particles) can be regarded 

in either one of two ways. One view takes the weighting 

assignments to be part of the axioms of the theory, 

with ., no justification required for these assignments. 

In this case T. I. would be sufficient for classical 

statistical mechanics. Alternatively, it can be argued 

22. Post op cit p. 15 
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that some justification of the weighting assignments 

must be given, by employing some sort of ergodic 

approach together with Liouville's theorem, with its 

inherent reliance on spatio-temporal continuity of 
path, in which case T. I. must be supplemented with 

some notion involving spatio-temporal continuity 

of the particle trajectories. However, even if the 

weighting assignments are taken to be axiomatic and 
T. I. is taken to be-sufficient it can be shown that 
it is not necessary to classical statistical mechanics. 

One can do this by rewriting the whole theory in 

terms of fields and representing the particles as 

dichotomic Yes-No fields as outlined above. A two 

particle system can then be represented as two 'blips' 

in 'blip space' which move around in this space as 

the particles move. Obviously, T. I. cannot be 

introduced into 'blip space' because now there is 

no underlying substance, merely a property (which 

Newton took to be impenetrability) passing from one 

location to another. The problem now is how such a 

'blip' can be reidentified. 

The solution involves the notion of relative 

identity outlined in Chapter One. We recall that a 

and b are described as being identical in the relative 

sense if a at time t1 is the same F as b at time t2 for 

some sortal concept F. In this case the term 'blip' is 

acting as the sortal concept and the grounds for 

referring to the 'same' blip at t1 and t2 rest on the 

continuous well defined spatio-temporal trajectory of 

the blip. 

Similarly, in our two particle case, if the two blips 

are permuted then the change in the situation is 

revealed through the change in the blips trajectories 

in space-time. The permutation can be represented in 

'blip space' thus: 

des 

Q X 

ýs 
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where we go to three dimensions in order that the 

particles may actually move around one another. Thus 
it is their trajectories in space-time which confer 
individuality upon the blips. 

The next problem is how to obtain the correct 

weighting assignments, while working within this field 
description of classical mechanics. 

In the particle approach the configuration "" 
is given the weight two because it can be achieved 
in two ways, obtained by permuting the particles. T. I. 

is then introduced to indicate that the two complexions 

are regarded as distinct. In the field, or 'blip' 

approach, however, the two configurations are the same 

and, in the absence of an underlying substance, there 

is no way of ontologically distinguishing them. How 

then can the correct weights be obtained? 

If one does not ascribe T. I. to the particles then 

the 'natural' description of the system would be in 

what can be called 'occupation number space', in which 

one associates with each energy box the number of 

particles in that box, in the particle approach, or 

associates with a given spike configuration the number 

of particles in it, o or 1, in the blip approach. 

One can represent this occupation number space as a 

multi-dimensional function space (2.3) thus 

o ccpaat-ßa4 

S p&ce 

6 FCC, 

Representation of 
occupation number 
space as a multi- 
dimensional function 
space 

(There are infinitely many axes in this space) The 

system is represented by a point P which moves about 

in this space as the system undergoes change. (By the 

Recurrence Theorem (24) it will eventually return 

arbitrarily close to the point from which it started). 

All the dynamics can be done in this space. 

23. M. (. Zea-kear, (01-15) p. i i- 

24. H. Poincare (1890) p. l. 
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However, one also needs some way of assigning the 

weights to the accessible states in order to perform 
the necessary counting procedure. In occupation number 

space this counting procedure is applied to the 

particles occupying the states and permutations of 

particles can only be counted as distinct if T. I. is 

introduced, since these permutations do not cause any 

change in the position of P. Thus it would appear that 

to attach the correct weights to the states in 

occupation number space one must follow the particle 

approach, introduce T. I. and abandon the field, /blip 

approach. One can, however, discover the required 

weights by transforming to another space in which 

particle permutations can be counted as distinct 

without necessarily resorting to T. I. This other space 

is an r-dimensional phase space, where r is the number 

of degrees of freedom of the system. Thus, considering 

more than just two states, our two blip system can be 

represented by a point in a 2-dimensional phase space: 

1'e t7 i'ý$ BGL c-t, & OE cite 

/s 

( 
SySreM. i. 1 r Z- d. 

<, e. tisL cs 

2 

The axes of this phase space have been labelled in 

this graphical representation. These axis labels 

could be used to ascribe T. I. to the particles/blips but 

the important point is that there is no need to do so 

(unlike the case of occupation number space) because there 

is another method available for individuating the blips 

as we shall now see. 

The point representing the system will move around 

the phase space as the system changes. The line at 450 

through this space represents the set of points where 

the blips pass each %other as they move about. For 

any point i there will be a mirror image point f)the 

reflection of i through the 450 line. The permutation 

of two blips is then described by the movement of i 
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to F thus : 

8 

So in this two dimensional phase space the permutation 

of the blips can be represented and distinguished by 

a continuous trajectory which allows the permuted 

complexions to be counted without requiring T. I. 

Thus the individuality of the blips is now grounded 

in the continuity of a trajectory in this two-dimen- 

sional phase space. 

The system can be represented in occupation number 

space but in order to obain the correct weights one 

must either invoke T. I. or transform to this phase 

space. As regards a permutation of the blips when 

one makes such a transformation, the point in 

occupation number space is 'exploded' into the two points 

i and F thus: (25) 
e 

OCC. LLPI 

n wpb E 
Spo-ce 

(Of course in the case of n particles, the point 

P in occupation number space will 'explode' into n! 

i and F type points in phase space). 

The problem now is how to assign the statistical 

mechanical weights to the state represented by the 

point in occupation number space. If an axiomatic 

approach is adopted then one simply assumes that each 

such point has a factor n! assigned to it. If, 

however, one feel compelled to justify these axioms 

then one can transform to the r-dimensional phase 

ý- 

z 

'- S rc&ce 

25. E Sudarshan and3Mehra have outlined a similar 

programme .CIß -to) p. 246 
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space where this point is 'folded out' into the i 

and Ftype points, thus giving the weighting factor 

without necessarily having to use T. I. In this case 
one must justify the (implicit) assignment of equal 
probabilities to the points in this phase space by 

adopting some sort of ergodic approach. 
If one remains in occupation number space then 

the weight assignment for permutations can only be 

carried out by introducing T. I. If one moves 
to the phase space, however, such a procedure can be 

carried out by counting the 'exploded' points in this 

space and employing some form of ergodic theorem. Thus 
T. I. is not required because the permuted complexion 
is di,., stinguished from the umpermuted one by the 

continuity of the system's trajectory in phase space, 
linking points i and F above, for example. 

This trajectory continuity allows the blips to be 

labelled and thcts individuates them in this phase 

space. 

Our conclusion is, therefore, two fold: 

1) tt. is sufficient but not necessary for classical 

statistical mechanics because the required weighting 

assignments can always be discovered in our multi- 

dimensional phase space, where the single representative 

point in occupation number space is 'exploded' into 

many points, and the individuality is conferred, not 

through T. I., but through distinct, continuous trajectories. 

2) we can obtain the correct weights using the blip/ 

field approach, and thus this obstacle to the adoption 

of a field theoretic description of classical mechanics 

has been removed. As we have noted before, although 

there is an ontological difference between the particle 

and field approaches, there is no observable difference 

between them, in the sense that no experiment would 

ever decide which is correct. This is an example 

of the underdetermination of theories by empirical data 

which we shall discuss in more detail in Chapter Four. 
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2.2.3 Space-Time Individuality 

The above account gives us our second way of 
conferring individuality upon classical particles; 
they can be labelled and hence individuated by their 
space-time trajectories. Clearly one can distinguish 
the two particles, and hence arrangements 1) and 2) 

above, by their different trajectories. These allow 

a particle to be reidentified as the same individual 

at different times and through a permutation. 
Such a re-identification depends on at least the 

following two criteria being satisfied (26): 

1) the two particles must never share any part of their 

space time trajectories, i. e. they must not both 

occupy the same place at the same time. Thus we must 

make an Impenetrability Assumption in order that the 

trajectories be distinct and well defined. 

2) the particles must not 'jump' instantaneously 

across space. The trajectories must be continuous, 

this is guaranteed by the equations of motion. 

These criteria are usually taken to be satisfied 

for classical particles. However, as we shall see in 

Chapter Four, quantum physics presents us with examples 

of entities which fail to satisfy one or both of them. 

We shall now examine these criteria in a little more 

detail. 

Clearly the efficacy of a trajectory in space-time 

as an individuator depends on such a trajectory being 

unique. Two particles can share the spatial components 

of their trajectories, but only at different times. 

Likewise two particles can obviously exist at the same 

time but only if they occupy different spatial 

positions. Two space-time trajectories can never inter- 

sect, because given the indistinguishability of 

particles of the same species, it would then be impossible 

to decide which particle was which after the inter- 

section, and hence the possibility of individuation and 

reidentification would be lost. (As we shall see later 

this is exactly the situation which arises in the case 

of fields). 

26. Recall our discussion at the end of Chapter One. 
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Thus if their space-time trajectories are to be used 
to individuate the particles then it must be 

assumed that they are impenetrable in the sense that 

no two particles can occupy the same spatial position 
at the same time. We have called this the Impene- 

trability assumption and it can be stated in the 

following form, due to Quinton 'A complete, that is 

to say spatial and temporal position is either 

monogamous or virginal, ontologically speaking'(27). 

As well as being distinct the space-time trajectory 

of a particle should also be continuous, in order that 

one could always, at least in principle, follow or 

'keep track'of the trajectory and hence individuate 

and reidentify the particle. At any particular time 

a particle can be individuated by its position in 

space, i. e. by specifying its spatial co-ordinates. 

Likewise at any particular space a particle can be 

individuated through its 'position' in time i. e. by 

specifying its temporal co-ordinates. Thus at any 

initial space and time a particle can be individuated 

by its initial space-time co-ordinates. These set 

down the initial conditions of the situation. 

The particle's subsequent spatial and temporal 

positions are then given by the classical equations 

of motion governing it. These can be written in the 

Hamiltonian or canonical, form as 

where t is the time, H the 'Hamiltonian', q the 

generalised co-ordinate and p the conjugate generalised 

momentum. The uniqueness of the solutions of these, 

equations of motion then guarantees the re-identif- 

iability and individuality of the particle through 

space and time and, in particular, through a particle 

permuation. Thus what we shall call the 'space-time 

individuality' of the particles is conferred through 

the initial conditions together with the equations of 

27. Quinton op cit p. 17 
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motion. 

At the root of this notion lies the assumption that 

even in the absence of an intrinsic difference of 

quality, i. e. even if the particles are indisting- 

uishable, the extrinsic difference of kinematical 

behaviour is a sufficient condition for their 
U .1 41 individuality and identifiab' This difference 

derives its operational meaning from the assumption 

of an unrestricted possibility of establishing 

an unbroken connection between the object at time 

ti with the object at time t2 '... by continuous 

observation (either direct or indirect) through all 

intermediate time' (28). It is this unbroken 

connection which is effected by space time 

individuality. 

Various authors have discussed this, and similar 

notions. Thus Pais has given the following illustration 

of what is meant by it: 'Suppose I show someone two 

identical balls lying on a table. Next I ask him to 

close his eyes and a few moments later'to open them 

again. I then ask him whether or not I have meanwhile 

exchanged the two balls. He cannot tell, since the 

balls are identical. Yet I do know the answer. If 

I have exchanged the balls then I have been able to 

follow the continuous motion which brought the balls 

from the initial to the final configuration. ' (29) 

Pais then makes the historical point that Boltzmann 

himself held this view of space-time individuality 

because in his 1897 'Lectures on Mechanics' -he 

stated that the assumption that indistinguishable 

particles, which cannot come infinitely close to 

each other, can be distinguished by their initial 

conditions and by the continuity of their motion, '... 

gives us the sole possibility of recognising the same 

material point at different times. (30) We shall 

consider this point in more derail later when we 

discuss the history of classical statistical mechanics. 

28. P. W. Bridgman (1927) p. 92 

1 9. A. Pais (1979) . ý93 
0. L. Boltzmann (19p14 Vol. 1. P. 9 
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Pais's example is, of course, light hearted in the 

sense that space-time individuality requires 

continuous obervation in principle only and 
blinking, sleeping, or closing the eyes in general 
are not regarded as forming a serious basis for any 
non-trivial counter argument, (sceptical arguments 

notwithstanding). 

As regards the relation between space-time 
indivudality and particle permutations, Tolman has 

noted that '... our procedure in regarding the inter- 

change of two similar molecules as corresponding to a 

significant change in the mechanical state of a system, 

eventhough not in its condition, evidently implies the 

possibility of keeping a continuous observation on the 

system which would let us know whether two similar 

molecules do change roles or not. This, however, is 

in entire agreement with the point of view of the 

classical mechanics, which would permit such a 

continuous observation, at least in principle,... 

(31). 

The reidentification of particles has been discussed 

by Jammer who remarked that in classical mechanics 

... it was claimed that two particles, once 'told 

apart', can always be 'told apart', for they can always 

be reidentified, thanks to the unique 
v 

ness of the 

solutions of the equations of motion' (32). He 

continued, 'If the motion of each particle is re- 

presented by its four-dimensional world line in space- 

time, a family of non-intersecting lines is obtained 

each of which can be used to characterize or label 

uniquely the particle whose trajectory it is. It 

was therefore thought it is always possible, at least 

in principle, to decide unambiguisly whether or not 

a particle found at a certain time at a certain place 

is the same as a particle found at another time at 

the same or another place'. (33) Thus Jammer's 

interpretation of the classical view is that the world- 

line of a particle can be used to uniquely label and 

hence individuate it. 

31 R. C. Tolman (1962) p. 77 

32. M. Jammer (1966) p. 341-342 

33. Ibid p. 342 
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On this view the space-time trajectory confers 
individuality upon the particles and hence allows 
them to be reidentified. It should be noted, however, 
that space-time individuality does not necessarily 
underpin particle reidentifiability. One may, of course, 
adopt the alternative view in which the particle is 

regarded as exhibiting T. I. with the underlying substance, 

ontologically speaking, conferring reidentifiability upon 
the particle. It is now T. I. which underwrites) as it 

were, the reidentification of the particles. Thus 

ter Haar writes 'In classical mechanics it was regarded 

as permissible to imagine labels attached to each 

of the ... particles, eventhough they are identical. 

in that way each of them could be followed along its 

orbit and localized at every moment'. (34) 
. Particles 

are 'localized' in this sense, that we can label them 

separately and 'keep track' of them. 

Reichenbach effectively subsumed both T. I. and space- 

time individuality under his term 'material genidentity' 

(35). Genidentity is the relation which connects different 

states of the same thing at different times and the 

properties of this relation are, according to 

Reichenbach, what the notion of physical identity is 

essentially based upon. There are two kinds of gen- 

identity: material and functional. The former is 

defined in terms of three characteristics. 'First, 

we associate material genidentity with a certain 

continuity of change' (36). This is clearly equivalent 

to our requirement that the space-time trajectory of a 

particle be continuous. 'Second, it is a character- 

istic of material objects that the space occupied by 

one cannot be occupied by another 
1(36) 

. This is a 

statement of the Impenetrability Assumption. 'Third, 

we find that whenever two material objects exchange 

their spatial positions this fact is noticeable. We 

usually recognise this change of position by the use 

of specific marks on the objects .... These marks 

remain on the object in accordance with the continuity 

34. f). ter Haar (1958) p. 71 
35. H. Reichenbach ((q T4) p. 38 and. p. 255 ff 
36. Ibid p. 225 
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criterion and permit an identification of the objects 
even when no observation during the change of spatial 
positions was made and the continuity criterion 
cannot be applied. In other words an inter-change of 
spatial positions is a verifiable change even though 

no records of the act of interchanging are available: 
(36). It is not clear whether Reichenbach regarded 

these 'marks' as 'dynamically irrelevant unused 

structures' or not. If he did not, then they would 

render the particles distinguishable, and there would 

be no need to talk of T. I. or space-time individuality 

because this difference in their extrinsic properties 

would individuate the particles. If the 'marks' were 

regarded as dynamically irrelevant, like proper names, 

then Reichenbach is essentially advocating T. I. in this 

passage. 

If, however, he is restricting his discussion to an 

outline of what we have called space-time individuality 

then this third'characteristic'is unnecessary. The 

stated justification of this requirement is to allow 

reidentification over periods when no actual ob- 

servation is made. However, a commitment only to 

continuous observation at least in principle is 

sufficient, and if the above, rather than any advocacy 

of T. I. is the only justice fcation then this last 

characteristic is clearly redundant. 

It is easy to give examples to show that these three 

characteristics are necessary but not sufficient. 

Reichenbach himself gives the following: if a house 

is pulled down the resulting heap of rubble is not 

called the same thing as the original house even though 

all three* criteria are satisfied (37). This is clearly 

a problem of relative identity and one needs to 

supplement Reichenbach's three characteristics with 

some view of relative identity, involving the kind 

of sortal concept which, in the above example, would 

37. Ibid p. 225 
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cover both the house and the heap of rubble. 
'Functional genidentity' is associated with processes 

such as water waves. Things possessing this kind of 
genidentity may easily violate the second and third 
characteristics but not, usually the first. We shall 

discuss this in a little more detail when we come to 

consider individuality and fields. 

Reichenbach believed that 'We can define 'genidentity 

to suit our purposes' (38), but that, nevertheless, it 

does make sense to distinguish between different 

kinds of genidentity, such as the material genidentity 

of a billiard ball and the functional genidentity of 
the associated travelling kinetic energy. The problem 

now is how are these two forms of genidentity to be 

distinguished in the case of elementary particles, where 

the macroscopic means of identification are inappli- 

cable. Reichenbach correctly identifies the solution 

(39) as lying in the statistical mechanical view which 

replaces the examination of particles with inferences 

based on the statistical properties of an assemblage 

of such particles. A central notion in this programme 

is that of the arrangement of particles situated in 

different cells (in some parameter space), two such 

arrangements being regarded as distinct when they 

result from one another by an interchange of particles 

between two cells. Reichenbach then writes 'The third 

characteristic of material genidentity, the require- 

ment that exchange of spatial position should lead into 

an observable difference, is thus translated into a 

statistical property; it supplies the definition of 

arrangement. 
' (40) 

The parallel with our notion of T. I. is obvious. 

Reichenbach goes further to argue that experimental 

tests of the physical laws involving entropy constitute 

a test for the assignation of 'material genidentity' to 

the particles because such laws are based, fundamentally 

on the classical Maxwell-Boltzmann distribution formula 

38. Ibid p. 226 
39. Ibid p. 228-229 

40. Ibid p. 229 
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which in turn is based on the above definition of 
arrangement. Such tests, he claims have been 

positive in the realm of classical physics, but 

negative in quantum physics. The conclusion is that 
in the latter material genidentity must be replaced 
by functional 8. enidentity. As we have said, we shall 
discuss this in more detail in a later section, 

It should be noted that, contrary to Reichenbach's 

claims, these 'experimental tests' do not constitute 

a test for material genidentity as a whole but only 
for his 'third characteristic', corresponding to what 

we have called T. I. They are not, therefore, also 

tests of space-time individuality and no inferences 

can be drawn from them as regards the validity of this 

notion. 

We shall conclude this outline of the views of other 

writers by noting that Newton characterised the elements 

of his 'proto' - theory of classical mechanics in terms 

of 1) Impenetrability, 2) mobility, and 3) the 

ability to excite the senses. Again, the parallel 

between our characterisation of space-time 

individuality and Newton's criteria 1) and 2) is clear. 

We must now examine the ontology underlying this 

second kind of individuality for classical particles. 

On this view there is no underlying substance 

carrying' the individuality. There is merely the set 

of properties predicated of the particle moving along 

a well defined, continuous path in space-time. Now it 

is not necessarily true that the entire set of 

properties remains invariant between one space-time point 

and the next. Some of the properties may change during 

the particle's history. However, if the particle is to 

be reidentified as a particle of the same kind then a 

certain subset of properties must remain invariant 

over space and time. This subset may be identified with 

the particle's essential properties, where an 'essential 

property' is taken to be one which a particle must 
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possess at all times if it is to remain a particle of 
that kind. (41) We shall discuss essentialism and 
natural kinds in Section 4.3 of Chapter Four. 

Thus if an electron 'becomes', through some 
peculiar interaction, a proton, say, then we must say 
that at a certain point an electron was destroyed and 
a proton created. As we have noted, the formalism of 
Quantum Field Theory allows us to handle creation and 
annihilation processes. 

On the other hand if an electron merely changes its 

velocity then we refer to the particle before and 

after the change as 'the same' electron. Properties 

such as this have been called 'extrinsic' properties 
by Jauch, (42) since they are dependent upon the state of 
the particle. Properties which are not dependent upon 
the state, such as charge, rest-mass, etc., are 

termed 'intrinsic' properties. Thus our subset of 
invariant properties may be referred to as the 

intrinsic properties of the particle. 

In the last section of Chapter One we noted that 

for an object to be reidentified through time the 

three sufficient conditions of spatio-temporal 

continuity, qualitative continuity and the so-called 

'sortal constraint' must be satisfied. In terms of 

these conditions we can discuss the reidentification of 

elementary particles through changes in their extrinsic 

properties as follows : - 
First of all, as we have emphasised in the discussion 

at the beginning of this section, classical 

elementary particles satisfy the requirement that 

their trajectories be spatio-temporally continuous. 

Secondly, the extrinsic properties of the particles 

change in a continuous manner and 'drastic', or 

discrete, changes do not occur. Thus the condition of 

qualitative continuity is also satisfied, and can be 

formulated for the specific case of classical 

particles thus: for any succession of particle stages 

to correspond to the career of a particle any particle 

stage inAsuccession must be qualitatively similar as 

regards the particle's extrinsic properties, to any 

neighbouring particle stage in the succession. 

41. E. Hirsch 44 M" K" 0"1t&stkz (101 11) P-31 
42 . J. M. Jauch (1966 ) CG, IS, 
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Of course, this requirement may not be fulfilled in 

quantum physics where discontinuous phenomena, of the 

sort prohibited by the corO ition of qualitative 
continuity, do occur. However, in these cases 
particle reidentification is precluded by the failure 

of the requirement of spatio-temporal continuity 
anyway, and it is precisely in these situations (such 

as electron transitions within atoms for example) 
that creation and annihilation processes are 
introduced. 

Finally, we note that, whereas the requirement of 

qualitative continuity is concerned with the 

extrinsic properties of the particle, the Sortal 

Constraint is concerned with its intrinsic properties. 
Thus the relatively small set of intrinsic properties 

which may be taken to define what it is to be that 

kind of particle, also define the sortal term covering 

a particle. The sortal 'electron', for example, is 

explicaed.. in terms of a certain rest mass, certain 

charge, etc. which are precisely those properties 

used, together with spatio-temporal continuity to 

reidentify an electron through time. (43). Thus the 

distinction between intrinsic and extrinsic properties 

reveals how much closer the relationship is between 

sortal terms and natural kinds for elementary particles 

compared with macroscopic objects. 

So, if classical particles are taken to exhibit 

'Space-Time' Individuality then, on this view, there 

is simply an underlying trajectory of space-time 

points alongwhich the set of properties predicated of 

the particle is moving. There is nothing more than 

a set of properties and an underlying sequence of 

space-time points at which this set is instantiated. 

There is nothing extra, nothing attributed to the part- 

icle, over and above its set of properties. So by 

grounding the individuality of the particle in 

space-time in this way, 
. 
this view has, in effect, 

transferred this individuality from the particle to a 

43. See P. E. Hodgson (1980) for a discussion of the 

particle identification criteria actually 
used by praticising high energy physicists. 
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point, or set of points, in space-time. This point, 
or set of points, then form the primary individuals to 
which the particles are related and in terms of which 
the particles are individuated. 

Clearly a description of classical particles in 
these terms is)recalling our definitions in Section I 
of this chapter, equivalent to the field description. 

The particles are now regarded as nothing more than 

properties of the points of space-time, with their 
individuality residing at the most fundamental level, 
in these points. The question, now of course, is how 
is individuality to be attributed to the space-time 

points themselves? We shall return to a brief 

consideration of possible answers to this question in 

Chapter Four. 

Thus we conclude that the individuality of classical 

particles can be described in terms of either of the 

two positions outlined in the introduction to Chapter 

One, namely T. I. and S. T. Individuality. These two 

views correspond to, in the sense of ontologically 

underpinning, the two interpretations of classical 

mechanics in terms of particles or fields respectively. 

There is no way of experimentally distinguishing 

between these two interpretations, although they are 

clearly metaphysically quite distinct. 

In the next section we shall examine the 

relationship between our second view of particle 

individuality above and the nature of space-time 

itself. 

2.2.4 Space-Time Individuality and Space-Time 

Broadly speaking considerations of the nature of space 

and time fall into two opposing camps, the relation- 

alist and the absolutist, or substantivalist. We shall 

briefly consider each of these in turn. 

If a relational account of space-time is adopted 

then it is difficult to see how one can simultaneously 

hold the view that it is out notion of space-time 

individuality which supplies the Principle of 
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Individuation for material patricles. The naive 

relationist position claims that space-time is given 

simply by the relations between things no more and no 
less, and that ultimately reality rests solely with the 
latter. In particular it is argued that there is 

no underlying substratum of space-time in which the 

individuality of a material object can be embedded. A 

relationist cannot therefore ground the individuality 

of an object on the continuity of its spatio- 

temporal trajectory and must look elsewhere for a 
principle of Individuation'. (44) 

It is equally clear that if the alternative, absolutist, 

position is taken up then space-time individuality can 
be consistently invoked, although it is not necessary 

that it should be since one could say that T. I. could 

be attributed both to the material objects and the 

points of space-time with perhaps some sort of 'matching' 

between them. The naive absolutist view holds that 

space-time is a fixed substratum or some sort of 

'aether', in which material objects are somehow 

embedded. Both the latter and space-time itself are 

granted the status of real entities, existing, to a 

certain extent which will be made clear shortly, 

independently of one another. This is the common 

element of all such absolutist views, whether of space 

alone or time, or space-time, namely '... the claim 

that the structure in question can be said to exist and 

to have specified features independently of the existence 

of any ordinary material objects... '(45) Space-time 

is thus regarded as a substratum underlying material 

objects and is the 'arena' in which events take place. 

Clearly an absolutist can ground the individuality 

of an object in this underlying space-time via its 

spatio-temporal location and can reidentify it through 

time by the set of points which compose the object's 

trajectory. One could even go further and regard 

44. One possibility is to attribute T. I. to the objects, 

another is to invoke the Principle of Identity of 
Indiscernibles and individuate them by the set of 

properties which they possess. Leibniz's Complete 

Notion of an Individual represents a particularly 

extreme version of this alternative, illustrating 

perhaps the lengths whi, Arelationists may be forced 

to go ' to . 
At; _ r. _sklar 

(1977) p. 161 
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space-time as the primary particular in the sense that 
all others are derived from it. This would be a 
version of the view in which material objects are 
regarded as mere manifestations of the underlying 
spatio-temporal plenum, (c. f. certain interpretations 

of the field equations of General Relativity). If 

material objects are regarded as properties of the 

points of a substantial space-time in this way then 

the view involving space-time individuality must be 

adopted, if any such position is to be sought for. 

The notion of 'support' is used here in the same 

way as in the substantivalist account of material 

particulars and is thus open to the same philosophical 

objections which we shall rehearse in Chapter 4. 

Indeed the absolutist account of space-time in general 
falls into the substantivalist camp and arguments for 

and against the former bear a close resemblance to 

those produced in discussions of the latter. (46) 

It is important to note that we are considering here 

space-time, not space or time alone. Special 

Relativity compels one to reject an absolute theory 

of space, in which it is taken to be separate from 

time. Thus observers in relative motion to one another 

will take their space and time axes at different angles 

to one another. 'slicing' space-time at different 

angles. However, S. R. is quite consistent with either 

an absolute or a relational account of space-time 

since the fact that it can be sliced at different angles 

does not prevent it from being regarded as some thing 

existing independently of material objects. 

The situation is somewhat more complicated when we 

come to the space time of General Relativity since 

there now exists a lawlike connection between keS 

structure and the distribution of non- gravit- 

ational mass-energy 'contained' in it. This connection 

is established through the field equations. 
J_ 10, R &k -, ýzj, (Z = -rl. 1ýlz 

. 
where &k. is the g-function, R the scaler curvature, 

the Ricci tensor, Fý is a coAsea. & and Tý is the 

'stress-energy' tensor. The terms on the left hand 

46. Ibid Ch. III 
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side give the structure of the gravitational field 

regarded as the intrinsic geometry of space time, and 
the term on the right gives the distribution of mass- 
energy over this space-time. 

The extent to which G. R. can be used to attack the 

absolutist position then depends on whether or not 
these equations are regarded as completely ruling out 
the term 'independently' in the characterisation of 
this view. If they do, if, for example, they are 
interpreted as implying that the curvature of any 

portion of space-time is 'produced' by the matter in 

it, then it is difficult to see how the absolutist 

account can be retained and some alternative must be 

adopted. However, it is not at all clear that they 

do imply this. 

First of all the equations can equally well be read 

from the left or the right. Thus it could just as well 

be said that the structure of space-time 'produces' 

the mass-energy distribution, as the reverse that the 

latter 'causes' the former. Indeed the interpretation 

that matter consists simply in regions of special 

curvature of space-time lies at the heart of the 

geometrodynamics programme in Ne. (ai-(, 
vL S& -. - 

cosmology (47), which can be regarded as the ultimate 

in substantivalist programmes. 

Secondly, there exist solutions of these equations 

which predict that there would be a curvature and 

hence a structure of space-time even if there were a 

total absence of matter. The following historical 

point: is worth noting. In the years immediately 

following the publication of the field equations 

Einstein believed that in their correct form they 

should have no solutions at all in the absence of 

matter (48). However, in 1917 de Sitter found a solution 

47. J. Wheeler (1962) p. 361; A. Grunbaum (1957) p. 525 

see also the discussions by Reichenbach and 
Robertson in P. A. Schilpp (1951) 

48. A. Pais (1982) p. 287. 
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in which the mass density is equal to zero (49) and 
although Einstein looked for ways in which this solution 
could be eliminated, he quickly came to realise that 
it could not. 

In general G. R. is compatible with a number of 
different possible space-times, of varying metric 

structure, each of which could be the space-time of a 

universe devoid of non-gravitational mass-energy. 

These solutions weigh heavily in favour of the 

absolutist position since a relationist clearly 

encounters severei. difficulties in talking about or 

even conceiving of, totally empty space (50), 

counterfactually or otherwise. 

Finally the relationship between the mass-energy 
distribution and space-time structure as expressed 

by these equations is not a simple causal one, in 

either direction. The stress energy tensor takes into 

account not just the amount of mass distributed over 

space-time but also how it is distributed and thus 

this tensor itself expresses metric features of the 

mass-energy distribution. It is therefore somewhat 

naive to argue that the latter causes the structure 

of space-time in a way in which the relationist would 

like it to do. 

These brief points suggest that G. R. provides 

little evidence to support the relationist position. 

As regards the independence of space time from matter, 

presupposed by the absolutist view, all that one can 

deduce from the field equations is that the structure 

of space-time is not causally independent from the 

mass energy distribution. However, it may be 

ontologically independent and, indeed the points outlined 

above indicate that this may be so. Whether this is 

enough to save the latter view is a matter for further, 

49. W. de Sitter (1917a) p. 1217 and (1917b) p. 229 

50. As we have seen the relationist account also has 

difficulty in discussing a universe containing 

only two indistinguishable objects. ror c- WL-ore- i'ece, ý, t 

, 
(. iSCU_SSco�. oG L' vti, . Q. ýKG2S 6Z&W ee L (-ke O SOLA. k sC- 

0., 1 ýla. `z, sý- dos lJ als see- M. FrieIm-aL. 1 C lt ö 3) (zvý 

Qsr x.. 21 &H 
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more detailed, consideration. 
Fi/ºa. lly, it is worth noting that it may be possible 

to adopt a view of space-time which falls into neither 
the relationist nor the absolutist camp. Thus although 
Newton is most commonly identified as belonging to 
the latter, in a manuscript published after his death 
he argued'that space and time may be neither substantial 
nor mere relations between objects but may belong to 

a different ontological category of their own. This 

argument was based on the claim that '... it is only 
by their mutual order and positions that the parts of 
time and space are understood to be the very same 

which in truth they are, and they do not possess any 

principle of individuation apart from that order and 
those positions. '(51) In other words the points of 

space-time can only be individuated up to an automor- 

phism of the space-time structure. We shall return to 

a consideration of this last point in Chapter 4. For 

the moment it is sufficient to note that neither S. R. 

nor G. R. conclusively rule out the absolutist view 

of space-time, nor, consequently, space-time 

individuality. 

2.3 The History of Classical Statistical mechanics 

Our intention in this section is to show that our 

philosophical conclusion is supported by an historical 

analysis of the development of statistical 

mehcanics in the 19th century. In particular we shall 

consider Boltzmann's two approaches to this subject 

: 1. The H-Theorem Approach, based on a consideration 

of collisions between molecules traversing well defined 

continuous spatio-temporal trajectories, and 2. The 

Combinatorial Approach, based on a consideration of the 

distribution of individual molecules over cells in 

phase space, or energy states and free, to an extent 

which will be made clear, from 'dynamical' under- 

pinning. These approaches implicitly attributed space 

-time and transcendental individuality, respectively, 

51. Newton in A. R. Hall and M. B. Hall (1978) p. 100. It 

was a review article by Torretti which drew my 

attention to this paper. R. Torretti (1984) p. 280. 
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to the atoms whose behaviour they described. 

2.3.1. The Introduction of Statistical Considerations 

into the Kinetic Theory of Matter 

The kinetic theory of matter can be described as 

the attempt to explain the empirical regularities occur- 

ring in the macroscopic properties of material 

'things' in terms of the microscopic behaviour of their 

atomic and molecular constituents which obeyed 

Newtonian mechanical laws. The early studies in the 

revival of kinetic theory which occurred in the second 

half of the 19th century(52), assumed that all the atoms 

travelled at the same velocity and that the influence 

of intermolecular impacts and forces were negligible 

and were therefore limited in explanatory and predictive 

power. The development of the subject took a major 

step forward when Maxwell allowed intermolecular 

collisions to play a role and demonstrated that their 

effect was to produce a statistical distribution of 

molecular velocities in which all velocities would 

occur with a known probability. (53) The nature of 

this distribution was given by Maxwell's distribution 
Z/ L 

- ýz a. law: 
._ e_ ( c4-) ýt. 

where a is some constant and x in the component of 

velocity in the x direction. The original proof of 

this law was widely regarded as unsatisfactory and sub- 

sequent attempts to derive it more rigourously can be 

divided into four types: 1). If a Maxwellian 

distribution is already established then conservation 

of energy implies that further collisions will leave it 

unchanged and hence this distribution is the only one 

which is stable. This was the line taken by Maxwell 

52. This revival was dependent upon a conceptual change 

from the idea of heat as substance to that of heat 

as motion of atoms and also the development of 

mathematically tractable models of the motion of 

particles. See Brush (1970) 

53. J. C. Maxwell (1860) 

5'4. -S-C- tAO-X weI1 c1 8qo) P-380. 
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himself in 1867. (55). 2). One may define a 
quantity, H, which depends on the velocity distribu- 
tion and then show that the effect of molecular 
collisions is always to decrease H, unless the 
distribution is Maxwellian in which case H remains 
constant. This constitutes the essence of Boltzmann's 
'H-Theorem approach'. 3). The molecular velocities 

may be regarded as random quantities and the best 

possible estimate of their distribution, given fixed 
total energy, mass and momentum, obtained using 
probability theory. Maxwell's derivation may be 

improved by simply calculating all possible ways of 
dividing the energy amongst the molecules, given 
finite total energy and number of molecules. This 

was the approach suggested by Boltzmann in 1872 and 
Maxwell in 1879, and which subsequently developed into 

the 'Combinatorial Approach'. 
, 
4). The Maxwellian 

distribution may simply be treated as a primitive 

postulate of the theory and justified on the basis 

of its predictive power (56). In what follows we 

shall be almost exclusively concerned with the second 

and third approaches. 

Using this law Maxwell was able to demonstrate that 

the fundamental linear transport processes in a gas - 

vCscosity, heat conduction and diffusion - could all 

be conceptualized as special cases of a generalised 

transport process in which a physical quantity is 

carried by molecular motion and transferred from one 

molecule to another by collisions. (57) Maxwell 

distinguished this theory, based on the statistical 

method of explanation, fran one concerned with the 

motions of individual molecules and, therefore based 

on the 'dynamical' method, arguing that such motions 

were unobservable and impossible to compute in practical 

55. J. C. Maxwell Ibid Vol LL p. 26 
56. See J. P. Andrews (1928) p. 118 
57. J. C. Maxwell (1890) Vol. II p. 33/374. See also 

P. M. Heimann (1970) p. 201 
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terms. This formed the basis for his later 

argument that the Second Law of Thermodynamics was 
a statistical, rather than a dynamical, law. 

Nevertheless his transport theory was explicitly 
grounded on a detailed study of intermolecular 

collisions and at the base level the molecules were 

still, of course, regarded as traversing distinct, 

continuous space-time trajectories, obeying 

Newtonian mechanics in a strictly deterministic manner 

The statistical anaylsis was introduced purely as a 

matter of convenience, to overcome the practical 

problems in handling enormously large numbers of 

molecules. (58) 

This work had a great influence on Boltzmann and 

completely changed the direction of his attempts to 

arrive at an explanation of the irreversibility of natu- 

ral processes as expressed by the Second Law of Thermo- 

dynamics. 

2.3.2. Boltzmann's Initial Attempts 

In 1865 Clausius restated the Second Law in terms of 

his newly introduced entropy function. <59). The task of 

kinetic theory was then two fold: first, to demonstrate 

the existence of an entropy function satisfying 

Clausius's definition and secondly to show that this 

function can only increase in an irreversible 

adiabatic process. 

Boltzmann's first attempt at providing a kinetic 

explanation of the Second Law began with the stated 

intention of deriving Clausius's results as purely 

mechanical theorems. (60) Although he claimed to 

have done just this, in fact he only managed to construct 

a mechanical counterpart of the entropy for systems which 

were strictly periodic, and his later studies compelled 

him to renounce his assertion that the irreversible 

aspect could be identified with the least action 

principle. 

58. A belief in determinism was not. held quite so strong- 

ly by the classic al physicists as is usually thought. 

Thus Maxwell himself repudiated this doctrine on 

several occasions. See Brush (1983) p. 83 and K. 

Popper (1950) p. 117 and p. 173. 

59. R. Clausius (1865) p. 
60. L. Boltzmann (1968) Vol. i p. 9 
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After reading Maxwell's 1867 paper Boltzmann 

realised that the key to a successful reduction of the 

Second Law lay in the molecular distribution function 

rather than the complete set of molecular variables. 
In a series of papers in 1968 and 1871 he derived 

and extended Maxwell's results and also, in 1868, sketched 

an alternative derivation which was free from any 

assumptions regarding inter-molecular collisions. (61) 

Thus he simply assumed that there was a fixed 

total amount of energy to be distributed over a finite 

number of molecules in such a way that all combin- 

ations of energies were equally probable. By regarding 

the total energy as being divided into small but 

finite packets, Boltzmann could treat this as a problem 

in combinatorial analysis and thus he obtained a 

complicated expression which reduced to the Maxwell 

distribution law in the limit of an infinite number 

of molecules a nd infinitesimal energy elements. This 

is the first indication of what was to develop into 

his Combinatorial Approach of 1877. (62) 

However he did not imme&Lately pursue this line of 

thought but went on to lay the foundations of his 

IH-Theorem Approach'. It is interesting to note 

that in two papers published in 1871 Boltzmann 

introduced what was later called the lergodic hypothesis' 

in order to establish the equivalence of two meanings 

which could be given to the distribution function: 

1) that it determines the fraction of any suitably long 

time interval during which the velocity of any parti- 

cular molecule has values within precribed limits; 

2) that it determines the fraction of the total number 

of molecules in the case which has velocities within 

the precribed limits at any given moment. Initially 

Boltzmann thought that no analysis of this equivalence 

61. Ibid p. 49 
62. Boltzmann subsequently realised that dividing up the 

energy continuum, as he did in 1868, leads to the 

Maxwell distribution in two dimensions only. To 

treat the three dimensional case a division of the 

three-dimensional velocity space must be considered. 
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was necessary but he subsequently realised that some 
hypothesis was called for, to the effect that in 
the course of time, the molecular coordinates and 
momenta take on all values consistent with the fixed 
total energy. (63) As we shall see this hypothesis 

plays an absolutely crucial role in the justification 

of the weighting assignments in the Combinatorial 

Approach and in establishing a connection between this 
and the H-Theorem Approach. 

In the same year, 1871, Boltzmann began a new assault 
on the Second Law. (64) By using the general 
distribution law to distinguish the heat added to the 

system from the work done on it in any process, 

something which was not possible when the system 

was described directly in terms of its atomic variables, 
he was able to write down an expression for the entropy 

of a system in purely mechanical terms. Furthermore 

this specified a definite procedure for calculv, ating 
the entropy of a system in thermodynamic equilibrium. 

Thus Boltzmann not only demonstrated that an entropy 
function exists, he also established a procedure for 

finding it. (65) The second half of the reduction of 
the Second Law-giving a mechanical explanation of 
irreversibility- was to be completed the following 

year. 

2.3.3. The H-Theorem Approach 

In 1872 Boltzmann discussed the behaviour of the entropy 

function in irreversible processes by considering the way 

in which the velocity distribution changed with time 

due to intermolecular collisions (66). This work can 

be regarded either as an attempt to complete the 

reduction of the Second Law, or as an alternative approach 

to the problem of thermal equilibrium, by assuming 

that the gas was not in equilibrium and then attemp- 

ting to show that the effect of collisions would 

63. Ibid p. 50, P284. 
64. Ibid p. 288 
65. For a detailed discussion of this work see E. E. 

Daub (1969) p. 326. 

66. L. Boltzmann (1872) p. 275, (1968) Vol. I p. 316. 
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be to bring equilibrium about. Viewed in this way 

two fundamental aspects of this work can be linked 

together: 1) the attempt to demonstrate the unique- 

ness of the Maxwell velocity distribution, i. e. that 

the distribution law is both a necessary and sufficient 

condition for equilibrium; 2) the derivation of an 

integro-differential equation for the non-equilibrium 

velocity distribution function, now known as 'the 

Boltzmann transport equation'. From this it 

immedULately follows that the Maxwellian distribution 

represents the equilibri state, in the sense that 

one obtains a zero valueI4, ly direct substitution. 

Thus Boltzmann began his 1872 study with a detailed 

analysis of the collision processes by means of 

which the molecules in a gas can change their energies. 

(67), restricting himself to the case of a spatially 

homogenous gas, with no external forces and of 

sufficiently low density that only binary collisions 

need to be considered. On the basis of '... an exact 

consideration of the collision process'; (68) he 

determined the rate at which the energy distribution 

changes due to such collisions# by deriving an 

expression for the rate of change of the number of 

molecules having a given energy xe due. to these 
L'S 

encounters. This equation for in fact a special 
e L"rLtkoe6e9). If the case of the Boltzmann transpit 
0 

distribution is Maxwellian then the right hand side of 

the equation vanishes identically for all values of 

the variables and -ý&, = 0. Thus in this sense the 

Maxwellian distribution is indeed stationary. Once it 

is achieved no further change in the distribution 

function can occur and the system will remain in the 

equilibrium state. 

This is little more than an elaboration of previous 

work, but now, with an explicit formula for C)P 
.4 bbr 

67. Boltzmann chose energy rather than velocity as the 

basic variable. This merely introduces square root 

terms in the resulting equation which do not appear 

in its modern form. 

68. L. Boltzmann op cit p. 329 

69. Ibid p. 334 
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Boltzmann was able to show that ýC7L,, O alway 
tends towards the Maxwellian form, (the emphasis on 
the word 'always' is important as we shall see). Thus 

to demonstrate the uniqueness of this distribution he in- 

-troduced (70) an auxiliary quantity E. (later called 

H), defined by 
Oc 

I C_ C, 
jZ. 

By considering the symmetrical character of the collision 

and the possibility of inverse collisions, and assuming 

as Maxwell had before him, that the velocities of 
the two molecules before they collide are 

statistically independent, (this is the randomness 

assumption known as the Stosszahlansatz). Boltzmann 

demonstrated (72) that E could only decrease with 

time i. e. 
1,5 

<0 13. 

E cannot decrease to infinity and so the distribution 

function must approach a form for which E has a minimum 

value and its derivative vanishes. At this value the 

function haso and can only have, the Maxwellian form. 

The equation encapsulates the essence of 

the H-Theorem. Thus the Hti function I always decreases 

under the effect of collisionso unless the distribution 

is Maxwelliano in which case it remains constant. 

Since E, or H. decreases in a strictly monotonic 

fashion with timee -E clearly increases in the irrevers- 

ible approach to equilibrium and therefore behaves 

like the entropy function in the form given by 

Boltzmann the previous year. Furthermore he was able to 

produce an explicit form for the minimum value for E 

which differed by only a multiplicative and additive 

constant from the expression for the equilibrium entropy 

obtained in the 1871 study. Thus -E not only 

behaved like the entropyl it was actually proportional 

to it in the equilibrium state. This implied, as 

70. probably through a combination of educated guesswork 

and trial and error. See S. G. Brush (1976) Vol. II 

p. 351 & 449. 

71. L. Boltzmann op cit p. 335 

72. The proof is quite straightforward and relies on 

the fact that the quantity (a-b) log (b/a) is always 

negative 3if -3a 4and 
b are real positive numbers. 

I p. 
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Boltzmann wrote (73), an entirely new approach to 

proving the Second Lawl one that could deal with 
the increase in entropy in irreversible processes as 
well as With its existence as an equilibrium state 
function. Thus the H-Theorem effectively extended 
the definition of entropy to non-equilibrium 
situations (74) and thus completed the kinetic proof 
of the Second Law. 

However, thisderivation contains a major flaw, as 
was subsequently realised. In the form as given here 
the H-Theorem is strictly deterministic. The 
distribution function, however, is coarse grained in 
he sense that an infinite number of different possible 
arrangements of the molecules within each cell of 
phase space are compatible with the same form for 

This combination of a statistically based distribu- 

tion function and an apparently fully deterministic 

kheory gave rise to a tension within Boltzmann's work 
in which statements describing the statistical nature 

of the H-Theorem are juxtaposed with more frequent 

passages describing its results in purely deterministic 

terms. 

To carry his derivation through Boltzmann wrote 

in a form explicitly dependent upon timey developed 

a differential equation for its time dependence 

and then treated its form at t0 as an initial 

condition which the appropriate solution of the 

equation must satisfy. However this treatment, although 

adequate for a non-statistical function of the system's 

coordinateso is inappropriate for the problem 

Boltzmann was considering. Although the form 

of 
P describes the actual distribution of 

molecular energies at t0, its coarse grained nature 

prevents it -,, from functioning as an initial condition 

in the strict classical sense. Each of the possible 

73. Ibid p. 345-346. 

74. See Brush op cit p. 443; Klein (1970) p. 102 

For a note of dissent see Kuhn op cit p. 42 
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molecular arrangements which it allows corresponds 
to a different initial condition for completely 

specified mechanical system and each results in a 
different trajectory for that system over time. The 
The actual form given to F 

at to does not 
therefore determine its form at later times. (75) 

Boltzmann's equations for F 
and H actually 

determine only average or most probable values 
and many other rates of change are compatible both 

with the given initial distribution and mechanics. 
Although Boltzmann eventually recognised, through 

outside criticism, many of the problems which resulted 
from his initial misconceptions, he never actually 

revised his proof to eliminate the explicit dependence 

of f 
upon t. or to permit a family of F 

curves 
to be generated from a given initial form for F- 

His notable failure to consider fluctuations is due, 

in large part, to the deterministic way of regarding 

the time dependence of F and HI which obscured the 

realisation that physical conditions could exist 

underAthe theory would break down, such as very high and 

low gas densities for example. 

The alternative approach, first hinted at in 1868, 

also briefly appears in this 

1872 work and Boltzmann considered it 

to be ... much clearer and much more intuitive'. 76) 

Again the energy was treated as a discrete variable 

so that the possible energy values of the system were 

restricted to the set 0, E> ZE., -, &, pE where p 

is an integer and 6 is a small energy unit. The 

Boltzmann Equation was then replaced by a set of 

ordinary differential equations in time (77), and the 

forms of 
r 

and 
C) & 

derived. This is 

clearly another precursor of the Combinatorial Appraoche 

although the technique, as it stood, was not so general 

as to be used to obtain an expression for the entropy. 

75. Except of course for times so close to t that 

few, if any, intermolecular collisions have taken 

place. 
76. Boltzmann op cit p. 346 

77. i. e. non-linear coupled stochastic equations. 
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With the exception of this digression this 1872 

analysis was based upon considerations of binary colli- 
sions between Molecules traversing distinct continuous 
trajectories which, implicitly at least, individuated 
them. The introduction of the coarse grained 
distribution function prevents an exact calculation 

of the separate trajectories but insofar as it is still 
grounded on a consideration of such trajectories, this 

only makes the space-time individuality implicit 

rather than explicit. 

2.3.4. Loschmidt's Criticisms 

Boltzmann's conclusion, that the H function always 
decreased, was recognised by Maxwello Tait and Thompson, 

as a result that could not, in fact, hold with 

universal validity, (78) Unaware of these discussions, 

Loschmidt presented a theorem intended to demonstrate 

the impossibility of deriving the Second Law from 

mechanics. He began by noting that in any system 

the entire course of events will be retraced if 

at some instant the velocities of all its parts are 

reversed. ' (79) If entropy is a specifiable 

function of the positions and velocities of the particles 

of a system, and if that function increases during 

some particular motion of the system, then reversing the 

direction of time in the equations of motion will 

specify a trajectory through with the entropy must 

decrease. For every possible motion that leads towards 

equilibrium there is another, equally possible, that 

leads away and is therefore incompatible with the 

Second Law. Loschmidt concluded that if kinetic 

theory were true then the Second Law could not be 

universally valid and therefore Boltzmann's proof of 

the H-Theorem could not be correct. 

78. See the discussions in M. J. Klein (1970) p. 84 

and E .E. Daub (1970) p. 213 

79. J. Loschmidt (1876) p. 139 
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Boltzmann himself was quick to realise this last 
point and replied to this suggestion of a 
Ireversibility paradox' the following year. (80) 
In print he conceded littleo arguing that the criticism 
could easily be accomodated within his H-Theorem Approach. 
In fact, however, he conceded a great deal, and from 
that moment on was forced to explicitly confront the 
following problem : how can the manifest irreversibility 

and uniform entropy increase observed in all natural 
processes and codified in the Second Law, be reconciled 
with the view that all thermodynamic systems consist 
of small particles obeying the time-reversible laws 

of mechanics? 

Thus he admitted that one could not, in fact, prove 
that entropy increased 'with absolute necessity' and 
that, according to probability theory, even the most 
improbable non-uniform distribution is still not 

absolutely impossible. (81) However, he then argued 
that the existence of improbable entropy decreasing 

situations did not contradict the fact that for the 

overwhelming majorit of initial states the entropy 

could be counted on to increase and that the improb- 

abilities associated with the former case were for all 

pra ical purposes impossibilities. 

The force of Loschmidt's argument was therefore 

neutralised through the claim that it actually 

illuminated the fundamentally probabilistic aspect of 

the H-Theorem. Boltzmann argued in fact that it followed 

from this theorem that the number of states leading 

to a uniform distribution after a certain time 

interval, must be much larger than the number leading 

to a non-uniform distribution, since there are 

infinitely many more uniform than non-uniform states 

(82). No justification was given for this argument 

although Boltzmann intimated where such justification 

could be found: 'One could even calculate the 

probabilities of the various states from the ratios 

of the number of ways in which their distributions 

80. L. Boltzmann (1877a) p. 62, in (1968) Vol. II p. 112 

81. Ibid p. 122 

82. ibid p. 120 
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could be achieved, which could perhaps lead to an 
interesting method of calculating thermal 

equilibrium' (83). This 'interesting method' 
was subsequently elaborated later that same year. 

Thus Boltzmann accepted Loshmidt's deterministic 

assumption but evaded the criticism with his 

probabilistic reasoning, providing a further example 
of the tension noted above. A second, related, 
point is that the impression given that the paradox 
has not forced him to introduce any new concepts 
into his work is very misleading. There is absolutely 

no indication in the 1872 study that any exceptions 
to the H-Theorem could be conceived of and indeed 

Boltzmann had claimed that he had given a rigourous 

proof that whatever the initial state of the system 

the entropy must necessarily increase (84). The reply 

to Loschmidt is therefore deceptive in containing no 

acknowledgement of this or that a conceptual change 

has been introduced, expressed, in part by the 

difference between the H-Theorem and Combinatorial 

Approaches. 

Boltzmann's shift in position regarding his use of 

probability can be characterised as a move from 

microprobabilistic considerations, of the probability 

of the velocity of a single molecule lying within a 

certain range, for example, to macroprobabilistic ones 

involving collections of particles. This change was 

necessary for the further development of the 

Combinatorial Approach, as we shall see. 

Finally, similar conclusions were reached by Tait, 

Thompson, Maxwell and Gibbs, the latter writing that 

I ... the impossibility of an uncompensated decrease 

of entropy seems to be reduced to improbability' (85). 

83. Ibid p. 120 
84. Boltzmann (1968) Vol. I p. 345 

85. J. W. Gibbs (1961) Vol. I p. 167 
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2.3.5. Boltzmann's Combinatorial Approach 

In 1877 Boltzmann presented a new and radical 
alternative to this 1872 Approach, (86) the goal of 
which was I ... not to limit ourselves to thermal 
equilibrium but to investigate the relations between 
these probability theorems and the second law of 
the mechanical theory of heat (87). This Combina- 
torial Approach was elaborated in a slow and 
labourious fashion by taking the reader through a 
series of computations of increasing complexity 

and closer approximation to the real physical situation. 
His first model was the oversimplified and 

explicitly fictional discrete energy model previously 
introduced in 1868 and 1872. Thus he considered 

a collection of n molecules whose individual energies 

were restricted to the finite set 0., C, ZE. 
ý, --- PE - 

The total energy of the gas was taken to be fixed and 

equal to AE where 
A, 

and p. are integers. 

if L,. Dk is the number of molecules in the collection 

with energy kE then the set of numbers . &>LOP 
is sufficient to define a particular macro-state 

(Zustandverteilung) of the gas. (88) Boltzmann 

noted that such a macro-state could be achieved in 

many different ways, each of which he called a 

complexion (89), depending on which molecules possess 

which energy values. In general if a complexion was 

specified by a set of numbers each fixing the energy 

kLE of the i1th molecule, then, he wrote, a second 

complexion belonging to the same macro-state would be 

achieved by any permutation of two molecules i and j 

which have different energies. Thus a permutation of 

particles between energy states was regarded as giving 

rise to a different macro-state of the system as a 

whole. 

86. L. Boltzmann 
We cannot ag. 
was merely a 

work. Klein 
87. Boltzmann op 
88. Ibid p. 168 

89. Ibid p. 169 

(18776) p. 373, in (1968) Vol. II p. 164. 

ree with Klein's claim that this study 

continuation of Boltzmann's previous 
in Cohen and Thirring (1973) p. 77 

cit p. 166 
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The number of such complexions for a given dist- 
ribution can be found using well known combinatorial 
techniques, and was written thus: 

(90) 

where -JP is the 'permutabilityl of the macro-state, b. 
not the probaility. The most probable macrostate was A- 

-1 then found by maximising subject to the constraints 
fv' 

on the total number of particles and total energy, in 

the well known way. 

So, with this discrete model the new method is very 

straightforward. A complete specification of a micro- 

state, or complexion, would require a listing of the 

energy of each molecule. A macro-state, specified 

only by the occupation numbers Wo. (J, )--- L4-9p is 

generally compatible with a number of different, 

complexions, which number was called the permutability 

measure and is given by the above expression. 

As far as this thesis is concerned, the most import- 

ant point to note about this derivation is that by 

counting as distinct those complexions obtained by 

permuting any two indistinguishable particles, Boltz- 

mann clearly, although only implicitly, attributed 

some form of individuality to the particles. The usual 

interpretation (91) is that this must be T. I. because, 

it is claimed, the Combinatorial Approach is free 

from dynamical considerations. However, as we shall 

see, this is not strictly correct because in order to 

justify the assignment of equal apriori probabilities 

to the complexions, a form of Liouville's Theorem was 

used. 

As for Boltzmann himself, in his later 'Theory of 

Mechanics' he advocated a version of what we have called 

90. Ibid p. 176 
91 H. R. Post (1963), for example 
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1 space-time I individuality, as we noted in section 
2.2-3. 

To illustrate what was meant by 'complexion' and 
Ipermutability measure'., Boltzmann invoked the image 
of a large urn filled with numbered sl-ips, the number 
on each slip determining the number of energy elements 
to be assigne4ý to a particle. A drawing of all the 
slips from the urn determined a complexion and the 
most probable state will be that for which is 
largest. 

What Boltzmann was doing here was taking the 

permutability measure as proportional to the probab- 
ility of a distribution (92) 

0j Wo, LO,., -, - _> 
LOp ý 

To be exact, he set the probability W equal to the 

ratio of -1P for a given distribution to the sum 

of all values for all allowed distributions. (93) 

When he. took the number of complexions compatible 

with a given distribution as a measure of the probability 

of that distribution Boltzmann emphasised that any 

particular complexion was as likely to occur as any 

other i. e. all complexions are equally probable. 

Returning to the general problem Boltzmann noted 

that finding the most probable state by maximizing 

T\j was equivalent to minimizing the denominator 

of 
(i ! 

since n, the total number of C 00 0 (WI). 1 --- 
molecules, is fixed, or, for the sake of computational 

ease, to minimizing its logarithm. Stirling's 

approximation and standard variational techniques 

lead directly to the conclusion that, for p>>n, 

will be a maximum if the occupation numbers are 
A46 Se//t 

given by (, Dlt = ýý (94) 
. where 1A 

is the average energy of a molecule and s is 

'Boltzmann's constant'. This specifies the most 

probable distribution which is what Boltzmann was after. 

Giving a realistic interpretation to the finite energy 

elements, i. e. not going to the limit of infinitesimal 

92. In fact, as we shall see, he took -P to be 

proportional to the logarithm of the probability. 

93. Boltzmann op cit p. 169 

94. Ibid p. 186 
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E- cA-S Planck, at least implicitly, did in 1900) 
takes this model from the realm of fiction to 
that of reality. Thus the above concepts and techniques 
are, virtually all that is needed to establish quantum 
statistical mechanics - 

Boltzmann however, could only regard the E's as a 
convenient device and was required to move towards 

a classically more realistic model by allowing the 

molecules to possess continuous values of energy. 
Thus he bega 

-, 
n by again dividing up the energy 

continuum into finite intervals kF, to k( E +1) and 

wrote the occupation numbers as 45 
fC kE) (95) 

where F_ F(kF, ) is the number of particles with 
energies in the range KF to (k+l)E 

, and ý- is the 

molecular distribution function. Thereafter he 

proceeded much as before except that he took the 
limit and wrote the sums as integrals. Stan- 

dard manipulations then give for the most probable 
distribution: F co d6 =_ C_ e- 

kE 
Cý 6 (96) 

Boltzmann immeidately pointed out tho-t this 

corresponds to the Maxwellian distribution in &Loo 

rather than three dimensions. In order to treat the 

latter one must divide up the three dimensional 

velocity space rather than the energy continuum, and 

thus Boltzmann commenced to elaborate the third of 

his models. 
The permissible velocity components Lk,,, %rý L--T 

were specified to lie in the ranges a_E_ 60 (44") E 
>6 ýý ec) 

C6'j_j) ý' CT. The 
_& 

(C-4-I)t where aj, b., c, and integers 

occupation numbers then become 

C06- 6c =- 6S 'l- f- ( CL E., 
ý 

and the permutability measure is given by 

95. ibid p. 187 
96. Ibid p. 190. See also Kuhn op cit p. 50 

97. Ibid p. 191 
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(98) 17. 

rT !I IT co-6. 

=: - P, 6-- -1, - ý: -r 

Boltzmann then changed the interpretation of 
so that it now became the relative frequency of 
occurrence of the corresponding distribution in 
velocity space. fS was then maximised as before, 
by minimizing the product in the denominator and 
introducing logarithms for convenience. The problem 
was thus reduced to that of maximizing the expression 

-t-00 

F ("r) Ot U- C1 L. -r 
subject to the usual constraints. Expressed in 

this form the problem had. already been solved because 
JI 

, the 'permutability measure' (Permutabilitatmass) 

(99) is just the negative of the H function introduced 

five years previously. At that time Boltzmann had 

proved that H reaches a minimum when 
F 

corresponds to 

the Maxwellian distribution and he felt that he did 

not need to repeat this in 1877. Reference to this 

demonstration then completed his proof that the case 

of thermal equilibrium, corresponding to a minimum 

for HI also corresponded to the most probable state 

of the gas. 

However, as Boltzmann himself realised, in going 

over from the discrete to the continuous case, the 

previous basis for the assignment of apriori 

probabilities, or statistical weights, haJ been lost 

(100) -A new procedure is then required and Boltzmann 

introduced the assumption that equal weights were 

now to be assigned to equal volumes of molecular phase 

space, using a form of Liouville's Theorem as a 

guiding principle for selecting the correct weight 

function. However, as we shall see, not only did 

Boltzmann use this theorem incorrectly, the mere fact 

that it was introduced erodes the claim that this 

98. Ibid p. 191 

99. Ibid p. 192 

100. Ibid p. 195 
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approach is entirely free of dynamical considerations. 
Thus after progressing through three models of a gas, (101) 

Boltzmann had arrived at the conclusion that the most 
probable distribution was the Maxwellian one, already 
familiar as the description of the equilibrium state. 
The equilibrium distribution was not only the unique 
stationary distribution, as had been shown in 1872, 
it was now revealed as the one most likely to occur, in 
the sense that it could be achieved in the largest 

number of ways. The state of thermal equilibrium thus 

corresponds both to a minimum of the H function and 

also to the most probable state of the gas. 
It has been pointed out (102) that Boltzmann has not 

fulfilled his promise given in reply to Loschmidt, 

of justifying the claim that there are infin-Lely more 

uniform than non-uniform states. The initial states 

from which H must increase are not even referred to 

in this paperr much less shown to be highly improbable. 

It may be that no theorem like the one he promised to 

justify could follow from the notion of probability 

he had used, and indeed that Boltzmann was aware of this. 

Boltzmann then took the first of a series of steps 

leading to the conjecture that the entropy was 

proportional to the probability of achieving a given 

macro-state. Referring to his formula for JQ 
Boltzmann wrote 'We shall call the magnitude _Q the 

permutability measure. It differs from the logarithm 

of the permutability only by an additive constant and 

it has a special importance for the material to follow. 

I also note an advantage of suppressing the constant : 

the total permutability measure of the union of a pait 

of bodies is then equal to the sum of their individual 

permutabilitY measures -1 
(103) 

The final part of this quote is important, not only as 

regards the relationship between permutability measure, 

and hence probability, and entropy, but also as regards 

101. This is consistent with Boltzmann's general philo- 

sophical attitude towards physical theories. See 

L. Boltzmann (1905) 

102. By Kuhn op cit p. 52 

103. L. Boltzmann (1968) Vol. 11. p. 192 
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the difference between Boltzmann's and Planck's 
conception of this relationship, as we shall see. 
It is worth noting that the permutability. measure is 
not identical to the probability - for one thing, 

Planck's probability is multiplicative whereas the 
permutability measure, like the entropy, is additive. 

Thus we can already see from the statement above, 
howJ1 is to be related to the entropy, and Boltzmann 

made this relationship explicit in the closing section 
of his study entitled 'The Relation of the Entropy to 
the Quantity I have Called the Probability of Dist- 

ribution'. (104) 

He began by substituting an explicit form for 

written in terms of molecular velocity coordinates, in 

the expression for J"I 
_'/z Integrating then gave -1 -A]iA) 00, ý) '9. 

Using the standard expressions 
ja=, Ajj-r+ av 

&A. 
1 

i9v ? =, A)-r 
Boltzmann wrote down the entropy of the gas as 

C106) 20 cla Al V 
T_ -3 

Ignoring the additive constant C (usually considered to 

be of no physical significance since thermodynamic 

arguments determine entropy differences only) 

he then equ cL ted this with the expression for and 

obtained, -_ 
CIO (107) 

T 
Thus the entropy of the gas is equal to two-thirds of 

the permutability measure. 

it should be noted that Boltzmann does not, in this 

work, equate entropy and probability via S= klogW, 

as is commonly believed. Rather he equated the entropy 

with J1 
, which was proportional to the log of the 

permutabilityp which in turn was related to the 

probability of a particular distribution, i. e. 
S=CI 

-a 
+ Cz 

12. =; Io1 -72 -4- 
C: 3 

0S=C, ý 10, 
-e,, n + C3ý +- CZ : u. C) C 

where C1=2/3, C2 is the thermodynamic difference, and 

C3 is the constant difference mentioned above. It is 

104. Ibid p. 215 

105. Ibid p. 216 

106. Ibid p. 216 

107. Ibid p. 216 
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interesting to note that Planck proceeded by the 

Opposite route in 1900, arguing that the entropy is 

proportional to the log of the probability, which is 

proportional to the number of complexions, i. e. the 

permutability. Thus we have: 

Boltzmann: CC AOL 0( 10 

i Planck: VC 6a- ý 'LL- FrDýO_LL' X 0ý tv r13 

Thus it seems that Boltzmann had achieved a successful 
ScLL-Con 

characteri of the thermodynamic concept of 

equilibrium entropy in terms of statistical mechanical 

principles, obtained through combinatorial 

techniques. For the first time the entropy associated 

with a molecular di-,,, ýtribution had been explicitly 

equated with the probability of obtaining that 

distribution. 

The next step was to extend the Combinatorial 

Approach to non-equilibrium situations and explain 

irreversible behaviour using the same principles. 

ThUs Boltzmann emphasised that and hence log-'Y' 

was well defined whether or not the system was in 

equilibrium so this function could serve as a suitable 

generalisation of the entropy (108). In equilibrium 

situations its behaviour must match that of the 

entropy as given by the Second Lawo i. e. it must A Loir-i-4p-a-s e- 

,, 
or, for reversible processes, remain constant. This 

characteristic was then extended to transitions between 

non-equilibrium states, which do not obey the 

Maxwellian distribution, and for which the entropy 

had not previously been well defined. He pointed out 

that J*"L was well defined for both classes of states 

and that it '... can always be computed; and its 

value surely will be necessarily greater after the 

change that before. '(109). 

Boltzmann then asserted, as a general theoremo thate 

for an arbitrary change between states that need not 

be characterised by equilibrium, '... the total 

108. Ibid p. 218 

109. Ibid p. 217 
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permutability measure of all the bodies will increase 

continuously during the change of 8tate and it can 
at most rPYT)ain constant if all the bodies throughout 
the transformation approximate thermal equilibrium 
infinitely closely (a reversible change of state. ) 

(110). This was Boltzmann's reformulation of the 
Second Law as the statement that systems go from 
less to more probable states (111)r thus extending 
the meaning of the entropy concept into contexts where 
it was thermodynamically ill-defined. 

However, it has been argued (112)., correctly, that 

this extension is essentially ill-founded, because of 

a circularity in Boltzmann's arguments. After demon- 

strating that the state of thermal equilibrium is 

the most probable state of the gas, and establishing the 

relationship between the equilibrium entropy and J"I 

he then argued that for systems in equilibriumAmust 

increase or remain constant because it was known from 

the Second Law that the entropy function does so. As 

an argument to establish the behaviour of a mechanical 

concept from thermodynamical considerations this is 

perfectly valid, but not if it is taken in reverse 

and used to justify the claim that a mechanical 

explanation of the Second Law has been provided. 

For transitions between non-equilibrium states the 

extension was based upon two claims : 1) that _fI 
is 

always well defined; and 2) that its value will 

necessarily be greater after the change of state than 

before. The first is certainly true, but the second 

stands in need of some supporting argument, which is 

not given - Boltzmann merely asserts its truth, without 

reason. it may be that the relationship between the 

permutabilitY measure and the probability of a 

distribution convinced him that his arguments were 

stronger than they actually were. Certain statements 

110. ibid p. 218 

111. See Klein op cit p. 82 

112. By Planck and later Kuhn, op cit p. 53 
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in this paper and in the later 'Gas Theory' (113), 

suggest that he had in mind the plausible assertion 
that all natural changes proceed from states of low 

probability to those of higher probability. 
There are one or two other points worth noting. 

First, as we said above, Boltzmann's relationship 
was between the entropy and the permutability 

measure, the latter being related to the probability 
of a distribution. Planck rewrote this as S=klog W, 

referring to W as the 'thermodynamic probability' 
(114) 

.. This is an unfortunate choice of terminology 

since W cannot be summed or integrated over any 

conceivable set or space of values to give unity and 
is thus inconsistent with one of the fundamentAl 

axioms of probability theory. The problem arises from 

the imposition of discrete counting procedures over 

the continuous range of positions and velocities 

permitted by classical mechanics. Classical attempts 

at a resolution required the abandonment of absolute 

entropies in favour of relative ones. (115) However, 

quantum theory produced a more satisfactory solution 

and provided a justification of absolute entropies 

through the introduction of a unit volume of phase 

space. Given these difficulties it would perhaps have 

been more appropriate to call W the permuta,,., bility 

measure as Boltzmann did, and reserve the term 

probability for the quantity relating to molecular 

distributions. 

Howevere Boltzmann himself created confusion among 

his contemporaries by switching frcm micro- to 

macro- probabilities without drawing attention to the 

change. (116) Clarification was subsequently provided 

by the Ehrenfests who characterised the shift in terms 

of a move from a theory using the 6-dimensional phase 

space of a single molecule, ('/, t - space'), to one 

113. L. Boltzmann (1910) p. 38-47. It is significant that 

here the step involving the permutability measure 
is ommitted. 

114. M. Planck (1913) English trans. (1959) p. 120 

115. J. W. Gibbs (1902) Ch. XV. Also see R. H. Fowler (1936) 

p, 203,230 

116. See Brush op cit Ch-10 and Klein (1972) p. 108-112. 
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involving the 6N-dimensional phase space ((-space) of 
the whole gas of N molecules. (117) They noted that 
this was essentially a shift from a theory emphasising 
dynamics and based on the special assumptions about 
collisions underlying the Boltzmann equation (118) . to 
one emphasising combinatorial methods and independent 
from collision analyses. The move from micro- to 
macro-probabilities thus characterises the change from 
the H-Theorem to the Combinatorial Approach. 

A further problem, involving the above distinctione 
has been identified concerning Boltzmann's use of a 
weighting function in this 1877 work. (119) We have 

already noted the importance Boltzmann attached to 

selecting the correct weight function, in his discussion 

of the urn model, and his use of a form of Liouville's 
Theorem (120) to do this. Thus he argued that if the 

molecules are contained within a cell of a certain 

volume in velocity space at time t=O then., if arbitrary 
forces act on them, they will remain in a cell of the 

same volume as the gas evolves in time. (121) 

However, this argument is incorrect for two reasons. 
Firstly, the molecules of the gas will not remain within 

the same volume of velocity space as time goes on, but 

will in fact disperse throughout this space. It is only 

by going to a higher dimensional space in which the 

entire gas is represented by a single point-a move 

corresponding to the shift from /a - space to P -space 
that Liouville's Theorem can be taken to apply and one 

can say that this point will remain within a phase 

space volume of the same size at all times, thus 

supplying the necessary justification of the weighting 

procedure. Secondly, the theorem does not hold in 

a phase space constructed to represent the generalized 

117. P. & T. Ehrenfest (1912) p. 17-39 

118. Such as the 'Stosszahlansatz'. 

119. See Kuhn op cit p. 54-57 

120. Introduced by Boltzmann hilsemf in 1868 (1968) 

Vol. 1. p. 49 

121. Ibid Vol. II p. 193 
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coordinates and velocities, (122) so Boltzmann would 
also have had to replace his space constructed in 
terms of the latter by one involving generalised 
coordinates and momenta. Further discussion should 
make these points clear - 

The mechanical state of a system of N indistinguishable 

molecules can be represented by an assembly of N phase 

points in a 6-dimensional (123) 1 /. t -space', the cartesian 

coordinates of a point in which is given by components 

of the molecular position and linear momentum vectors. 
The distribution of these phase points over Ix -space at 

equilibrium is determined by the Maxwell-Boltzmann 

distribution law and the distribution functionAgives 

the density of molecules in this space, in the 

sense that the number of molecules which at time t are 

located in the volume element C1 
3 t- Ct 

3P constructed 

about each point C t.;, 4? ) in this space, is equal 

to F cr) '0, 
o CkIt- C11 P It is important to 

realise that this function changes with time because 

molecules constantly enter or leave a given volume 

element, or cell, in 
, tx - space (124) 

. 
The state* or phaseo of the systemo as a whole can be 

represented by a representative point P in a 6N- 

dimensional space, the [I - space I, spanned by the 

vectors ( ji) - .. $. v 4, pl) fri) . 
(125) Given some 

arbitrary position 
) 

of P at some given time t01 it's 

position at any other time is determined by Hamilton's 

equations of motion and thus, as time goes on, P 

described a trajectory in fl-space, lying 

entirely on the energy hypersurface. (126) 

122. This is one reason why Hamilton's equations of 

motion are used. Yourgrau van der Nerve and Raw 

(1966) p. 62 

123. If the molecules have s degrees of freedom, rather 
than just 3, then this space has 2s dimensions. 

124. One can show that the cell volume remains invariant 

in time only if certain conditions are met. See 

K. Huang (1963) p. 57-58. 

125. Again if the molecules have s degrees of freedom the 

space is 2sN dimensional. 

126. P. and T. Ehrenfest (1912) p. 18 
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In order to calculate average values of phase 
functions it is useful to introduce a large ensemble 
of virtual copies of the real system and to consider 
their distribution over this space. (127) This is 
given by the density function where 
is an abbreviation of (pi. 

)--. r/u,. ý$i)--, )(ým)defined so 
that C p., 1, t) 

Ip Jcý (128) gives the number of 
representative points which at time t are contained 
in the volume element cLPJcv of (I 

-space 
centred about the point Cp., $). ThL*. s function completely 
specifies an ensemble (129) and given some initial 

value its subsequent values are determined by the 
dynamics of molecular motion. 

Now it can be shown that Liouville's Theorem implies 

that the rate of change of /9 at a point moving along 

a trajectory in f" 
-space - the 'convected' rate 

of change- is given by CLP 0 X3. 
CUe 

Thus, /0 , the density in phase, remains constant in the 

neighbourhood of a representative point as it moves along 
its trajectory. (130) Furthermore it then follows that 

the volume element ctpcbý called by Gibbs the 

'extension in phase', occupied by a collection of 

representative points, remains constant in time. (131) 

Thus Liouville's Theorem can be taken as stating that 

if the representative point of some system is contained 

within a 6N-dimensional volume 
JpJ$ 

of -space at 

time t, then it will be contained in a phase space volume 

of the same size at all future times. To,., gether with 

the ergodic hypothesis this theorem can be used to 

prove that equal volumes of phase space are equiprobable. 

Some such justification of the 'correct' - in the sense 

that it leads to a theory accounting for the observable 

phenomena - weighting assignment is necessary if a 

representative ensemble is to be constructed and the 

127. This approach is due mainly to Gibbs although elements 
of it also appear in works by Maxwell and Boltzmann. 

Each system differs in phase and so the ensemble 

spreads out in a cloud over a region of fl -space. 
128. Yourgrau et al op cit p. 60 

129. Huang op cit p. 76 

130. Thus the distribution of P points moves in P 
-space 

like an incompressible fluid. 

131. p. and T. Ehrenfest up cit p. 20 & p. 87. TerHaar op 

cit p. 102 
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average values of phase functions, corresponding to 
measurable properties of the system, are to be 

calculated. (132) 

An analysis of the possible weight functions which 
were allowed, and of this' justification procedure in 

general, was given by the Ehrenfests in their 1912 

article (133). They considered two ensembles in 
fl- space and supposed that the representative points 

of the first occupy, at successive times, the regions 
A1j, A 2' A 3' ... in this space and that those of the 

second ensemble occupy, at the same times, the 

regions Bl. B2* B3 *"0 The measures of the relative 

probabilities Ai and Bit i. e. the measures for 

the relative frequency of occurrence of a distribution 

were then written as M (A 
i) and M(B i) respectively. 

Clearly only those measures which give the same value for 

these relative probabilities for all times are 

acceptable and this requirement should also hold for 

any arbitrary choice of the two initials regions 

AI and B 10 The possible choices of M must therefore 

satisfy the requirement (134) 
MCAJ M CAO 

-M 
CAJ (T) 

M 054 M 034 MC (3-) 
Boltzmann s choice- For this measure of relative 

probability was the volume of the corresponding 

region of fl- space; thus McAz) -= VcAz) ; MCIL) -- W-6c) 
where 

VC&)and \1c&) are respectively, the volumes 

of the regions and i. e. 13 z, 
V (-A - 

C. 

d-F J 
c' P ct$ VC-13Z) S13' 

Now Liouville's Theorem implies that 

VCA) VcAtJ 11 oo and condition 
VCG V c1sx) V C-Go 

(I) fMows immediately by substitutiono Thus if 

Liouville's Theorem is true then Boltzmann's assignment 

of equal probabilities to equal volumes of phase 

space satisfies the invariance requirement M. 

. it 
is also interesting to note that if the 

132. ibid p. 129-130 

133. P. and T. Ehrenfest op cit p. 95-97 

134. Ibid p. 96. Ter Haar op cit p. 100 and p. 380 
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generalized velocities are used in the construction 
of r 

-space, rather than the momenta, then 
requirement (I) would not, in general, be satisfied. 
Thus one must use not only C rather than , ýU-space, 
but p rather than 

, and Boltzmann's justification 
fails on both counts. 

Liouville's Theorem is not all that is required 
however. One could take for the probability measure 

MFC 'f -1ý 
(135) 

.ý 
37 TZ&V-1) JPJ (ý (Y) 

which also satisfied (I) for any arbitrary F functiont 

or phase function, dependent on the energy E and ZSA)-2 
integrals of motion f6 

, provided that the F is 

chosen once and for all. It can then be shown 
that this expression gives the most general way of 

selecting M. (136). Thus Liouville's Theorem and 
(I) taken together exclude all possible probability 

measures except those in the class defined by 

(II). This still leaves a range of possible choices 

and to narrow this down further to Boltzmann's 

measure other restrictions must be introduced. 

Thus the ergodic hypothesis, which states that 

there exists systems which are ergodic in the sense 

that the trajectory of the representative point of 

such a system in r 
-space, taken from t= - 00 to 

t= +0o , passes through all points on the energy 

hypersurface, ( as we shall see a proof of the 

impossibility of such systems was given in 1913 and 

attention then shifted to the quasi-ergodic hypothesis 

in which the trajectory on the energy hypersurface comees 

arbitrarily close to all points on this surface), 

restricts the choice of density functions to those 

dependent on the energy only and therefore the class 

of possible measures is restricted to those for which 

M -= SF 00 JP d- ck 
if the further requirement is added that the systems 

are isolated so that the ensembles possess the same 

135. Ibid p. 96 Ter Haar op cit p. 100 and p. 380 

136. Ehrenfest p. 21 and ter Haar p. 103 
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energy EO then results identical to those obtained 
using the general ergodic measure F=F(E) can be 
obtained by taking P=l. (137) In this case 
M= SOL(4$ 

and Boltzmann's weighting assignment 
is finally arrived at. 

The complete justification for this assignment 
of equal probabilities to equal volumes of phase 
space is therefore as follows: Liouville's Theorem 

and the plausible requirement (I) exclude all 
probability measures except those in the class given 
by (II), of which Boltzmann's measure is the simplest 
case. The ergodic hypothesis then further restricts the 

set of possible measures to those given by el= SFc4)drd$ 

Finally, if it is assumed that the systems are isolated 

then this reduces to MC&) -= VCAL) 
and M VOSJ 

as required. (138) 

Boltzmann's justification for his particular c-, oice 

of probability measure rested on the claim that if 

there were initially N molecules in a cell in,, At-space 

then they would all move together with the passage 

of time and be contained within a cell of the same 

volume always. This is only true, however, if the 

molecules are restricted to interactions with fixed 

scattering centres and intermolecular forces are zero, 

which is completely unrealistic. (139). Liouville's 

Theorem then applies, not to the cell in/(x-space but 

to the cell containing the representative point 

specifying the state of the entire system inP-space. 

it is the volume of this cell which remains invariant 

with time, whereas molecules in-tially in the same 

cell in 
, At-space will be widely dispersed over this 

space as the system evolves. This is the whole crux of 

the matter. 

137. Ehrenfest p. 96 
138. Since ergodic systems cannot actually exist 

some alternative justification must be sought. 

Thus one could use the observable consequences 

of Boltzmann's assignment to justify it, or 

simply include this assignment as part of the 

axioms of the theory. 

139. In a real gas all molecules can interact and none 

may be treated as fixed during a collision. 



110 

As it stands, thereforel Boltzmann's argument permits 
no conclusions to be drawn concerning the relative 
probability of the different possible space locations 

of the molecules. This is a serious deficiency in his 
theory as a whole which was not noticed by his 

contemporaries nor corrected in the 'Gas Theory' (140). 

Indeed Kuhn has suggested thatBoltzmann's attribution 
to the cells of phase space of the non-statistical 
behaviour which could not be attributed to the molecules 
is somehow symptomatic of his reluctance to completely 

relinquish deterministic dynamical considerations in 

general (141). 

Boltzmann's switch in attention from the molecules 
to the phase space cells surrounding them, which allowed 
him partially to circumvent Loschmidt's criticism and 

preserve Something akin to his original deterministically 

phrased version of the H-Theorem, is an expression of 

a general cOnflation of three different notions concerning 

the distribution of molecules. The first, which can 

be termed 'molecular; consists of those concepts 

determined by the precise specification of the position 

and velocity of each particle within a cell. The 

second notion applies to the distribution of molecules 

within cells and considers collectives of trajectories 

rather than the individual molecular trajectories 

themselves. Such concepts include, for example, the 

f-function oq& are 'concerned with micro-probabilities. 

The third group applies to the distribution of molecules 

over cells, again with nothing specificed about molecular 

positions within cells and includes macro-probabilistic 

concepts like the permutability measure. (142) 

Clearly the first and second sets are underpinned, 

1 
043) 

by the notion of space strongly and weakly respective y 

140. L. Boltzmann (1910) p. 40 

141. Kuhn op cit p. 57 

142. In 1896 Boltzmann subsumed both of our second 

and third sets under the general term of 'molar' 

concepts. 
143. Concepts in the second set involve groups of 

trajectories taken together, and in this sense 

are weakly underpinned by s-t individu a. (4 e0 
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time individuality whereas the third is not necessarily, 
and thus opens itself to an alternative, such as T. I. 
It was only by moving back and forth between these 
three sets of concepts that Boltzmann was able to 
preserve forso long a predominantly deterministic way 
of discussing his H-Theorem in conjunction with a micro- 
probabilistic way of considering it, together with the 

macro-probabilistic Combinatorial Approach. There 

was thus a three-way tension in his work, (144) which 
is manifested in both his replies to Loschmidt and 
the strict failure of the mechanical reduction of the 

Second Law. 

It is also worth noting that by elimZAating time as 

a variable in the description of a system the Combin- 

atorial Approach replaces a consideration of the 

deterministic dynamics of a system by a process 
involving random choice. Thus in carrying out the 

calculation of sta-, -e probabilities Boltzmann assumed 

that the kinetic energy of each individual 

molecule is determined, as it were, by a lottery which 

is selected completely impartially from a collection 

of lotteries which contains all the kinetic energies 

than can occur in equal numbers' (145) 
. This is where 

the power of this approach lies; it is not restricted 

to particular molecular models for which collis,., ion 

mechanics must be worked out in detail, but can be used 

for any system for which the spectrum of possible energies 

is known. To a large extent this explains why this 

Approach was almost exclusively (146) used in the 

development of quantum statistical mechanics. The above 

difference between the two approaches as regards time 

is ref lected in that between a timeless I T. I. and 

space-time individuality. 

144 
COM_PCLW_ OLtý 

I<tA-" Of C'ýt CLILk" 
[0, 

- CL &&J0 
- OCL 

P-e-eLS0404. 
145. L. Boltzmann (1968) Vol. II p. 172 

146. We say 'almost exclusively' because, as we shall 

see in the next chaptere attempts were made to 

base quantum statistics on the alternative H- 

Theorem Approach, although with less than total 

success 
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In conclusion we note that by stating that a 
distribution is compatible with a number of different 
complexions and by counting as distinct those obtained 
through a permutation of the indistinguishable 

molecules, Boltzmann, at least implicitly, attributed 
some form of individuality to these particles. We 
have noted that in his later work on mechanics he 

argued in favour of some form of space-time 
individuality as he believed that the assumption 
that indistinguishable particles which cannot come 
infinitely close to one another can be distinguished 

by their initial conditions and by the continuity of 
their space-time trajectories'... gives us the sole 

possibility of recognising the same material point 

at dif f erent times -' 
(147) However, on the basis 

of the 1877 paper one can perhaps conjecture that, 

at this time, he actually had something more like 

T. I. in mind. For example he wrote that the Combin- 

atorial Approach enabled one to determine the 

probability of a distribution in a way 1 ... completely 

independent of whether or how that distribution has 

come about' (148). In other words the history of a 

distribution does not determine the probability with 

which it can be realised. 

T. I. would have been sufficient if Boltzmann had 

accepted the weight assignments as simply part of 

the axioms of the theory. However, he did not and 

by appealing to Liuoville's Theorem (albeit 

incorrectly! ), he introduced a dynamical component 

based on considerations of continuity of path. Thus 

the Combinatorial Approach required some consideration 

of the history of the assembly as a whole, but not of 

the individual molecules in determining the probability 

of a distribution. 

Thus we conclude that the principle of space-time 

individuality receives clear historical support from 

147. L. Boltzmann (1974) Vol. II p-9- 

148. L. Boltzmann (1968) Vol. II p. 168 
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the H-Theorem Approach but that the situation 
regarding T. I. and the Combinatorial Approach is rather 
more ambiguous. If the assignment of weights was 
included in the axioms of the theory then T. I. would be 

required by this Approach as a Principle of 
Individuation. If, on the other hand, it is felt that 

some justification of these weights must be sought 
for, then an historical component must be introduced, 
but only for the whole system not the molecules 
themselves. Thus space-time individuality is again 

required, but now as a principle of individuation for 

the entire assmebly. It is in this sense then 
) 

that 

both of the classical views of individuality receive 
historical support. 

2.3.6. The Decline and Fall of the Combinatorial 

Approach 

After the publication of the 1877 paper it seems that 

Boltzmann again felt that he had settled the problem 

of the foundations of the Second Law and had done so 

by introducing a new approach to the subject which 

he then proceeded to apply to a number of interesting 

problems. 

Thus In two papers in 1878, Boltzmann used this 

approach to give a direct and rigo rous method for 

deriving the Maxwellian distribution, (149), and also 

to obtain, for the first time, an expression for the 

entropy of diffusion in gases which led to agreement 

with thermodynamic calculations (150). It is precisely 

because it led to novel theoretical predictions not 

contained in the laws It sought to explain that the 

work based on the Combinatorial Approach was a much 

more successful reduction of the Second Law than that 

149. L. Boltzmann Ibid p. 250 

150. Ibid p. 289 
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produced in 1871 (151) - 
However despite the obvious power and success of this 

approach Boltzmann did not develop it further. When 
he returned to statistical mechanics in the 1890's, 

amidst the furore generated by the 'English School' S 

and the criticisms of Zermelo, (who argued 
that, left to itself, any mechanical system must 

eventually return to a configuration arbitrarily 

close to the one from which it began, and therefore it 

was not, possible to give a mechanical proof of the 

Second Law) (152), it was the H-Theorem which he 

turned to and further developed in an effect to 

counter his critics (153). Thus the Combinatorial 

method was essentially just a response to Loschmidt's 

criticism and although it found some applications in 

1878, it was not thereafter significantly used or 

developed any further. 

Indeed it was not until the importance of Planck's 

derivation of the black body law came to be acknowledged, 

with its explicit use of combinatorics and references 

to Boltzmann's 1877 paper, that the Combinatorial 

Approach really began to attract attention. BY 1911, 

however, the Ehrenfests were able to report that 

the last few years have seen a sudden and wide 

dissemination of Boltzmann's ideas. '(154) W ith the 

realisation of its great computational power and 

independence from specific molecular models, this 

approach was called upon to play a predominant role in 

the development of quantum statistical mechanics, 

as we shall shortly see. What still requir, ý, es explanation 

however, is why it received so little attention at 

the end of the 19th century, particularly from the very 

151. Daub has given an excellent account of both 

reductions, and of the development of Boltzmann's 

ideas in general. E. E. Daub (1969) 

152. E. Zermelo (1896) p. 485 

153. Kuhn op cit p. 70 Klein (1970) p. 125 

154. p. T. Ehrenfest op cit p. 67. Ehrenfest must also 

take a lot of the credit for this sudden surge 

of interest. 
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man who created it. (155) 

2.3.7" Ergodic Theory -A Possible Bridge Between the 
Approaches 

One can distinguish the Combinatorial and H-Theorem 
Approaches by the meanings which Boltzmann gave to the 
term 'probability' within each. In the former he meant 
a quantity measured by phase volume, whereas in the 
latter, at least by the time of the IH-curve' 

discussions of the 1890's, he meant something 

measured by frequency in time. If it could be shown 

that these two meanings were in fact equivalent then 

the conceptual gap between the two approaches could be 

closed. It is just such an equivalence which is 

established by the ergodic hypothesiso which states, 

as we have noted, that in the course of time a system 

will pass through every point on the energy hypersurface 

in rl -space - It then follows that the fraction of 

time spent by the system in some region of this space 

will be proportional to the volume of that region 

and the average over an ensemble of systems all 

with the same energy will be equal to the time average 

taken over a suitably long interval. 

Thus, if the existence of ergodic systems could be 

demonstrated then the two meanings of 'probability' 

above would be interchangeable and the combinatorial 

arguments of 1877 could then be reinterpreted in a 

kinetic sense to explain the evolution of a system in 

time. one would then be justified in claiming that 

the Maxwellian distribution will predominate 

overwhelmingly in time over all other appreciably 

different state distributions. 

155. Boltzmann mentioned it briefly in only four 

papers after 1878: (1879) p. 653, (1880) p. 529. 

(1881) of which two are brief replies to r Ayer, 

one is a short elaboration. of some aspects of 

probability theory and only one contains a 

physical application. 
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A programme for constructing just such a bridge 
between the two approaches was laid by the 
Ehrenfest's in 1911. Essentially one must relate 
the H-function written in the form 

H co =ýaTý C'ýr_, e) LVL r( \J_-, Z4. 
where C ýP, e) OL "r is the number of molecules per 
unit volume which at time t possess velocities 
in the range V- &o k)-+dT to the volume Ea3 
in IP-space given by 

AJ Ij 
A) [7, Z. 3= 

CL 11 
CLýL! . '. 0-k I 

". 
where to is the volume" of the cells in , a-space, each 
cell containing at any time t cLk of the N points 
representing the phases of the molecules. Thus the 

set of occupation numbers i O_hJ determines the 

distribution Z at time t and is equivalent to the 

molecular distribution function F- 

Clearly although Z is uniquely determined when the 

representative point in P 
-space is specified#. 

the converse is not true. Each Z corresponds to a 
domain in r 

-space because the molecular 

phase points are only placed in finite cells when Z 

is given and also because Z specifies only the numbers 

of molecules in each cell and not which molecules are 

in which cello Given this the volume L: -a3 

corresponding to the distribution Z can be obtained from 

the equation above. 

i then taken to be a measure of the s 

probability of the distribution Z, as Boltzmann did 

in 1877, with the equilibrium distribution possessing 

a larger r 
volume [a 3 than any other for the same 

value of energy. This is the sense in which the 

equilibrium distribution can be regarded as the most 

probable one. Boltzmann had also argued but had not 

proved that the value of EZ I corresponding to 

any distribution other than this would be very much 

less and thus that the equilibrium distribution was 

overwhelmingly the most probable. These results 

were then appealed to in order to justify his arguments 

concerning the behaviour of a system over time thus 
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shifting the meaning of probability from the first to the 
second sense above. 

Thus Boltzmann himself crossed from one approach 
to the other (156) and indeed used a form of ergodic 
hypothesis in several of his works.., (157) 

although he never actually built the kind of bridge 
envisaged by Ehrenfest. 

If this hypothesis is accepted, so that the two 

meanings of probability could be regarded as inter- 

changeable, then H could be expressed in terms of Z. 

as given by the ýCLk_j thus, 
Hc? 

') 
:: r>, CLj'4LCLjZ 2-6. 

The change in time of this function as effected by 

changes in the akis then no longer continuous but 

given in terms of discrete steps -A plot of H against 
time is now a step function and Boltzmann's H-curve 

can be interpreted as a discrete set of points chosen 
from this function at regular intervals At, taken to 

be short compared with any experimental scale but long 

comapred with the mean time between collisions (158). 

On this interpretation Boltzmann's macroprobabilistic 

version of the H-Theorem, as expressed in his later 

works, is really a series of assertions about the 

properties of the bundle of H-curves corresponding 

to a given initial distribution which radiate from a 

point t= tAs the initial time in the (t,. H)plane. 

Thus a proof of the ergodic hypothesis would allow 

H to be related to Z through the equation above, which 

constitutes the basic structure of the bridge between 

the Combinatorial and H-Theorem Approaches. 

However, such a proof cannot be given, as is well 

known. 

Although versions of this hypothesis had been 

introduced by both Boltzmann and Maxwell, (159) and 

had been extensively discussed towards the end of the 

156. This may have been a factor contributing towards 

his neglect of the Combinatorial Approach. 

157. L. Boltzmann (1968) Vol II p. 582 and Vol. III p. 122 

158. C. f. the Ehrenfests discussion of the urn model in 

1906. 
159. Boltzmann op cit ; J. C. Maxwell (1879) p. 547 
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19th century, it was the Ehrenfests who sharply 
formulated the existence problem for ergodic systems 
and who posed the question: can any deterministic 
mechanical system be ergodic as distinct from quasi- 
ergodic? (160) 

In 1913 this was answered in the negative by 
Plancheral and Rosenthal who independently produced 
proofs of the impossibility of ergodic systems. 
(161) Both proofs hinged on the fact that the ergodic 
hypothesis implies that a multi-dimensional region 
of the energy hypersurface must be mapped onto a line 

of finite length, continuously and one to one. 
Rosenthal showed that this is impossible according 
to Brouwer's proof of the invariance of dimensionality 

under continuous one to one mappings, whereas 
Plancheral argued that Lebesgue's theory of measure 

also forbids such a mapping since a line is a set of 

measure zero with respect to a region of two or more 
dimensions. 

Thus it was shown to be impossible for the represent- 

ative point of a mechanical system to pass through 

every point on the energy hypersurface in -space 
and so such a system cannot be ergodic. 

Quasi-ergodicity and the question whether, or what, 

actual systems could be described as quasi-ergodic, 

then became the subject of interest, but we shall not 

discuss these developments here. (162) 

our conclusion then is that Boltzmann's two meanings 

of probability cannot be formally equated and thus, 

strictly speaking the Combinatorial and H-Theorem 

160. The Iquasi'ergodic' hypothesis states that the 

phase point of the system passes arbitrarily near 
each point of the energy hyper-surface in 

P -space - 
161. Yi. PlanAral (1913) p. 1061 Eng. trans in Brush 

(1971) p. 287. 
A. Rosenthal (1913) p. 796 Eng. trans in Brush 
(Ibid) IE 

162. See ter Haar (1955) p. 302 ff and A Farquhar C 1964). 
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Approaches remain separated, conceptually and 
formally. 

2.4 The Individuality of Fields 

Althoughp as we have noted in the sections above, 
classical particle mechanics can be given a field 
theoretic formulation, one would expect there to 
be profound differences between a principle of 
individuation for fields and one for particles. It 
is our intention in this section to examine these 
differences and to briefly discuss the 
individuality of fields in general. 

In particle mechanics corresponding to a discrete 

physics, the physical quantities, such as positions 
and momentunj, are functions of time only. In a 
field theory, however, corresponding to continuum 

physics, the physical quantities in the field, such 

as energy, are functions of both time and space. As 

we noted at the beginning of this chapter, any point 
in the field is associated at a given time with 

certain quantities which may be scalars or vectors, 
depending on the type of field considered. It can 

then be argued either that the fields are no more 

than properties of the points of space-time, and 

therefore can only be regarded as individuals if the 

latter can be so regarded, or that they are substantial 

in a sers e to be made clear shortly and can thus be 

taken to exhibit T. I. In the material to follow we 

shall consider both positions in more detail and 

in particular we shall present a series cf arguments 

against the latter view. 

The argument that fields are individuals derives from 

the idea, noted in the Introduction to Chapter One, 

that the concept of an individual captures what we mean 

by a particular. Fields are particulars - we speak 

of the electro -magnetic field, for example, and hence 

should be regarded as individuals. The fact that they 

are 'global' ps--. Lrticulars, in the sense of not being 
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localised in space is not an argument against this 
view since the size, or spatial extent of a thing 
is merely a property of that thing and thus 
cannot preclude a thing being regarded as an indiv- 
idual. It is not necessary for a particular to 
have a definite spatial position at a given time 
(163). 

Thus according to this view a field is an individual 
and can be assigned a label, or proper name, which 
designates the substance underlying the properties. 
Fields can be regarded as substantial and thus can be 
taken to possess T. I. However, an objection now arises 
because one of the most stidking developments in late 
19th and early 20th century physics was the emancipationn 

of the field concept from the notion of a material 
substance (164). Arguments based on this historical 

observation tend to be of an essentialist nature 
because they utilise a possible answer to the question 
'what is the essence of substance? ' to justify the 

exclusion of fields from the category of substance. 

Thus, for -example, one possible answer would be to say 

that an essential characteristic of substances is that 

they areo at their most fundamental levelo impenetrable. 

Fields are not impenetrable therefore they cannot 

be regarded as substantial. 

Howevero although the premise is certainly true, one 

can avoid the conclusion by rejecting this essentialist 

line and consider instead the role which the concept 

of substance has played in physics- 

Thus, whereas Descartes regarded spatial extension as 

the essential attribute of mattero Newton extended the 

set of universal properties to include extensiono hard- 

ness, impenetrability, mobility and inertia (165). 

samples of 
163. According to this argument the che,., mical elements 

can also be regarded as iiýýividuals with the dis- 
tinction between elements and atoms being one of 
continuity and discontinuity rather than non-indiv- 
iduality and individuality. 

164. Regarded as the elastic fluid aether, in various 
forms. P. M. Harman (1982) p. 72, gives a good 

account of these developments. 

165.1. Newton in A. R. Hall and ý,. Boas Hall eds. 
(1962) p. 132-144. 



121 

The last, in particularo was given an elevated status 
and was considered to be both an essential and a 
universal property. Leibniz argued that both active 
and passive forces, such as impenetrability, were 
phenomenal manifestations of primitive forces which 
characterised the nature of substances. (166) 

This emphasis on the status of force as a defining 

characteristic wa-S then taken up by Kant (167) who 
argued that forces were essential properties of sub- 
stances. Gradually this rather vague notion came to 
be split in two, with one aspect developing into 

the dynamic concept of force as used today and the 

other evolving into the concept of energy. Thus 

during the 19th century energy took over impenetrab- 

ility's role as the essential characteristic of 

substance. 

Faraday rejected Newtonian atomism and argued that 

the forces between bodies were mediated by an ambient 

field between them -a concept which was explicitly 

based on a metaphysics of substance in which force 

was regarded as the defining property of matter (168). 

This idea was then further elaborated by Maxwell who 

produced a highly mathematised and coherent field 

theory, with a correspondingly complicated metaphysics. 

As far as this gloss is concerned it is suffic,, 
_., 

ient to 

note the following points. Maxwell distinguished the 

substantial concept of matter as the material sub- 

stratum constituting physical realityo from the 

functional concept as defined by the symbolism of 

mechanical principles. Thus his analytical formalism 

of the latter did not give a representation of the 

structure of the hidden mechanism constituting the 

electromagnetic field, nor did it consider the forces 

between the particles of this mechanism. (169) 

166. G. W. Leibniz in C. I. Gerhardt ed. (1849-63) 

Vol. 6 p. 236-8, p. 241 

167. I. Kant (1902) Vol. I p. 139 

168. m. Faraday (1843) 

169. J. C. Maxwell (1896) p. 527 
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Maxwell also emphasiSO-d that the field was a 

repository of energy, maintaining that energy could 
only exist in connection with material substances 
and concluding that the aether was the repository of 
the energy of the electromagnetic field. Clearly 
Maxwell regarded this field as a material substance 
of some kind; unlike the other mechanical analogues 
of electromagnetic quantities the energy of the 
field was to be taken literally. (170) It is 
interesting to note that in his work on gas theory 
he had rejected I ... the doctrines that all matter is 
extended and that no two portions of matter can 
coincide in the same place ---' (171) 

-- If the 
Impenetrability Assumption is rejected for material 
substance in the form of atoms then it is obviously 
just a small step to go even further and declare 

that fields, which also violate I. A., are also 

substantial. 

Maxwell carefull distinguished the substantial 3 

concept of matter from the dynamicalp and believed that 

although the former was unknowable, the latter, 

regarded as the recipient of momentum and energy, 
formed the basis of physics. (172) In his view 

energy could not be conceived of as independent of 

the substance in which it existed and therefore as 

field theory is concerned with the distribution of 

energy in the field, this field must be substantial. 

Thus the role of substance witl-lp physics slowly 

changed from that which is impenetrable to that which 

is the recipient and carrier of energy. Subsequent 

developments dfter Maxwell continue to support this 

view. Thus the monistic theories of Thomson and 

Larmor reduced matter to a particular state of the 

aether, (173) a programme which led to the electro- 

170. Maxwell Ibid Vo. I p. 529, and p. 564 

171. Ibid p. 33 and p. 448 

172. Maxwell (1873) Vol. II p. 181 

173. See, for example, B. G. Doran (1975) p. 133 
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magnetic theories of matter of Abraham, Wien, vie 
et al, in which matter was regarded as simply a local 
concentration of the electromagnetic field. The 
opposing dualistic tendency resulted in theories such 
as Lorentz's (174) involving both charged particles 
of matter and a non-mechanical aether. The latter was 
just the Maxwell fields of electric and magnetic force 

and was also regarded as substantial because it 

carried energy. 

Although Einstein's Special Theory of Relativity 
demonstrated the redundancy of the aether for electro- 
magnetic field theory it also gave support to the 

substantial nature of energy by associating it with 
2 inertial mass via E= mc The Equivalence Principle 

of General Relativity then took this association one 

step further by relating energy to gravitational mass. 

G. R. initiated a monistic programme to construct a 

unified field theory in which the electro magnetic 

field, as well as the gravitational) would be given 

geometrical significance, and matter would again be 

identified with local concentrations of this unified 

field. 

Thus if substance is regarded as that which carries 

energy, then# since fields carry energy they must be 

substantial. Fields then become amenable to a 

Lockean description in which they have T. I. attributed 

to them. Against this conclusion, however, one can 

argue that closer examination of the nature of energy 

reveals serious deficiencies in the view that it 

should be regarded as substantial. This can then be 

used to support the alternative view that fields are 

no more than the properties of the points of space-time 

and one could no more give a field an individuating 

label than one could so label the colour red, for 

example . 
With a view to rescuing fields from this conclusion, 

it may be asked whether properties are, or can be, 

individuals. The answer is no. To say otherwise 

174. See R. McCormach (1970) p. 459 
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kept distinct. Properties are not perceived on their 
own., disembodied; they are merely general predicates 
instantiated in certain cases by individuals. This 
distinction is reflected linguistically in the 
separation of subject from predicate which suggests 
that the individual is related to 'its' properties 
as an owner is to his/her possessions. 

The correctness of this suggestion is confirmed by 
the inability of a thingt propertiest which are 
general and applicable to many things, to individuate 
it, i. e. to pick that thing out as the unique 
individual that it is (175). 

Properties cannot even serve to individuate# for 
the reason already given. They are predicable of 
many individuals and so cannot serve to individuate 

any one of them (176) 
.A possible exception is position 

in space-time, but this involves an ineliminable 

reference to another individual, such as the 'here-and- 

now', which grants this property a special status - 
This if fields are regarded as properties of space- 

time points then they cannot be individuals, nor can 

they serve to individuate these points. As regards the 

argument that fields are substantial because they are 

characterised by the presence of energy, the following 

points should be, noted. 

Firstly, it has been argued that the energy of a 

system can be used to reidentify that system (177) 

and that energy therefore provides the fixed point 

of reference which is invariant, through change and 

which is necessary for the world to be comprehended. 

175. If things are regarded as bundles of properties 
instantiated at points in space-time then either 
these points must be taken as the individuator 
in which case our conclusion stands,. or the 
Principle of Identity of Indiscernibles must be 
invoked* in which case it is the collection of 
all properties which individuates, not the separate 
properties themselves. 

176. See Quinton op cit p. 12 ff or K. Popper (1959) 

p. 66 R 
177.19. Theobald (1966) p. 151 andAFowler (1926) 
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(. 4 

(178). It is then argued that sincetvariance through 

change is a fundamental characteristic of the 

substantial substratum, energy should be regarded as 
re 

substantial and as serving toAidentify. 

However relativity theory implies that energy is 
OA( 

a conserved scalar quantityA ithin a given frame of 

reference and is not itself universally conserved 

under general coordinate transformations. As far as 

Lorentz covariant physics is concerned the true scalar 

invariant is a function of momentum and energy (179), 

Although the energy of a system may not vary with time 

with respect to any chosen frame of reference it will 

vary if the reference frame is changed. In particular 

energy is not an invariant of the field; the invariant 

quantities associated with the electro-magnetic 

field are in fact scalar quantities such as E. H and 

E2_H2, where E and H are the electric and magnetic 

vectors respectively, obtained from the six component 

antisymetric field tensor. 

This argues against regarding the energyXsubstantial, 
6a- seAse&A 

at least in,, which it is taken above (180). In 

particular the energy of a system cannot always serve 

to reidentify that system because a change of reference 

frame will produce a change in the observed energy 

value of a system, which cannot therefore be used to 

'tag' and hence reidentify that system. 

A second argument is that energy is at least like 

the substantial substratum in being a primitive concept 

which cannot be represented by a model or said to possess 

any structure. However, this does not necessarily 

imply that energy must be regarded as substantial, since 

it could be viewed as merely a property of systems. 

Thus we speak of particular system possessing so much 

energy and being possessed by something may be taken to 

178. E. Mach (1942) p. 607 
179. In the case of a free particle this function is 

E2-CZpZwhere E is the energy and p the momentum. 
180. See P. W. Bridgman (1961) Ch. l. 



126 

imply being a property of that thing. Substance is not 
possessed in this way and so energy should not be 
regarded as substantial. 

Thermodynamical considerations of a 'flow of energy' 
may also suggest that energy is substantial (181) and 
in this case problems associated with a change in 

reference frames do not arise since heat is random 
kinetic energy and is unaffected by such changes. But 
then statements concerning the 

e 
ocity of heat'flowl V 

and energy 'flow' in general make no sense. Assignments 

of absolute values to energy would also support the 

substantivalist position but in thermodynamics these 

depend on the assumption that substances can be 

obtained in their lowest energy forms at an absolute 

zero of temperature, and it is possible that these 

substances may possess other forms of lower energy 

at this temperature - 
Electromagnetic field theory appears to provide 

firmer support for absolute energy values since the 

field energy apparently has a natural zero when 

E=H=0. However, this also is not conclusive 

since only those processes in the field involving energy 

differences are of physical interest and therefore no 

physical consequences result from the addition of an 

arbitrary constant to the expression for the energy 

density. obviously the energy will be zero in the above 

situation since then there is no field anyway! (This 

conclusion is true in classical field theory but not 

in QFT where the energy eigenvalue contains a constant 

term giving the so called 'zero point energy' of the 

field, which is present even when the excitation numbers 

of the field modes are zero). 

One can also cast doubt upon the supposed acquisition 

by energy of a substantial nature through Einstein's 

mass-energy relation. (182) This does not, in fact, 

181. This suggestion was embodied in the caloric 
theory of heat. 

182. See Ruddick's discussion in Munitz op cit p. 241 
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explicitly assert the identity 
, 

of mass and energy, since 

such an identification is patently false. All that 

Special Relativity requires is that a change in energy 

corresponds to a change in mass and vice versa. It does 

not demand that they possess the same set of properties 

and clearly they do not. (183) Energy is a measure of 

matter's ability to do work and undergo change, whereas 

mass, being a measure of the inertia of matter, can do 

no work by itself and is thus a measure of matter's 

ability to resist change. The two concepts are thus 

concerned with contrary aspects of reality and the fact 

that high concentrations of energy display inertial 

properties and that mass can be transformed into energy 

does not justify the statement that they are identical, 

at least not in the sense of being predicatively equiva- 

lent. 

Although the electromagnetic field is characterised by 

the presence of4energy it is not clear whether one can 

say the same for the gravitational field. Thus it 

has not yet been conclusively established whether matter 

in motion propogates energy as charges in motion do and 

whether this energy is radiated in the form of waves. 

However, the gravitational fieldmay acquire a substantial 

status in another way. General Relativity identifes this 

field with the structure of space- time itself, and as 

we have seen, there are good grounds for adopting the 

substantivalist position with regard to the latter. This 

identification then presents an obstruction to any 

putative unification of the gravitational and electro- 

magnetic fields since this would require the unification 

of the two forms of waves involved, the electromagnetic 

waves in space and the gravitational waves of space. It 

woulO have to be decided whether the space-time metric 

depends totally upon the matter present or not. If it 

does then it would not be possible to distinguish between 

183. We are denying here the unification of mass and 
energy, both in the sense of identification and as 
being different manifestations of something else. 
For a brief discussion of the different meanings 
of'unification'see M. Redhead (1984) p. 274 
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matter as the source of the field and matter as depen- 
dent upon the field, and the energy field would then 
become the most fundamental 'ultimate 1 (184) of reality. 

We conclude then that strong arguments can be given 
against the view that energy, and hence, also the 
electro--ýmagnetic f ield, (185) can be regarded as 
having, in some sense, a substantial nature. This 
leaves open the possibility of adopting the alternative 
namely that fields are simply properties of the points 
of space-time and it is the latter which should be 

regarded as substantial, Thus space-time and the 

electro-magnetic field stand in the same relation to 

one another as oto substance and property in the 
traditional accounts of these notions. 

Just as f ielcls cannot be said to possess T. I neither 

can waves in the field, nor can they have space-time 
individuality attributed to them, at least not in the 

same form with which it can be attributed to particles. 

Waves in the el! ctro magnetic field, for examplee clearly 

satisfy the first requirement of space-time individualityo 

that of continuity. Maxwell's equations can be regarded 

as the equations of motion of the electromagnetic field 

and thus characterise the fact that as the wave 

propagates it traverses a continuous space-time 

trajectory. (186) The field equations ensure continuity, 

just as the equations of motion do for classical 

particles - (187) 

However it is equally clear that such waves do not 

satisfy the Impenetrability requirement, since in general 

any particular point of space-time can support more 

than one field. For fields a complete* spatial and tem- 

poral* position can be polygamous* to use Quinton's 

terminology. This failure thus destroys the efficacy 

of position as individuator since to state the spatio- 

temporal location of a field will not uniquely 

distinguish it and will not therefore necessarily 

184. Quinton devotes a whole chapter to this idea of 
lultimates' which is good philQsophically but rather 
thin on the physics. op cit p. 81. 

185. Presumably the same conclusions apply to the weak 

nuclear field also. 
186. J. Jackson (1975) 

187. A. Einstein (1961) p. 146 
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individuate it. obviously the form of space-time 
individuality attributable to particles cannot be 
attributed to f ields or to waves in f ields 

A The latter also encouter severe problems with regard 
to their reidentification through time, principally 
because of this failure to satisfy I. A. For example, 
if two indistinguishable waves meet, pass through 

one another and then separate then simple observation 
cannot supply an answer to the question which wave is 

which after this interaction. The criterion of spatio 
temporal continuity although satisfied, cannot help 
because it is consistent with either of the two answers. 
In other words in situations where two, or more world 
lines intersect because I. A. is not satisfiedo 

continuity alone cannot ensure reidentification. 
This is because at the actual point of superposition 

the two waves cannot be distinguished and this it is no 
longer possible to uniquely trace the career of each one 

as a succession of wave stages under some sortal term. 

Thus, at the actual point of crossing there is no way 

of telling which wave is which and one cannot individuate 

two waves which sharel for some period of time, their 

trajectories, as in the following situation (188): 

.-L, 
4 (o 

, 
>t 

t, 
This behaviour of waves and fields compelled Reichenbach 

to develop the notion of functional genidentity' (189) 
- 

This applies to processes or chains of events where the 

impenetrability and labelling characteristics of 'material 

genidentityl are violated 
I 
and only the continuity 

requirements is satisfied. Thus he put forward water 

waves and energy as examples of things which possess 

functional genidentity. As regards the relationship 

between the two forms of genidentity Reichenbach believed 

188. Strawson considered similar arguments with regard 

to the reidentification of sounds. He concluded 

that sounds could not be reidentified at different 

times and used this to support his view that material 

objects embedded in space-time form the primary 

individuators. 
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that 'We can define genidentity to suit our purposes' 
(190), in the sense that we can move from one level of 
description to another as we wish. 

Redhead has captured much the same idea in the sugges- 
tion that waves belong to a new category of entities 
called lephemerals, (191). These can be distinguished 

from one another at the same time but cannot be 

reidentified through time via T. I. as 'continuants' 

can, such reidentifications only being possible if the 

continuity criterion is satisfied. As we have indicated 

however, continuity alone may not be enough, given 

ephemerals' violation of I. A. Redhead particularly 

emphasises the ease with which creation and annihilation 

processes can be envisaged in terms of ephemerals as 

compared to continuants and therefore this is a category 

which is most readily applied to the entities of Quantum 

Field Theory. 

Our conclusion then is that there are good reasons for 

rejecting the view. that fields are substantial, and 

can therefore have T. I. attributed to them, and the 

form of space-time individuality that applies to the 

waves in this fields is metaphysically weaker than 

that which can be attributed to particles, justifying 

the inclusion of, waves in a different category of 

entities. 

2.5 Conclusion 

We have argued, in this chapter, that there are two 

metaphysical positions which can be adopted with regard 

to the individuality of classical particles. The 

first, corresponding to a naive Lockean approach, casts 

an underlying substance into the role of individuator 

and. this form of individuality has been called 

'Transcendental Individuality' as the individuator 

transcends the properties predicated of the particles. 

190. Ibid p. 226 
191. M. Redhead (1983) p. 39 



131 

By considering the way in which classical particle 
theory can be rewritten in field theoretic terms we 

were then led to the view that particles could be 
individuated in terms of their location in space- 
time. This view can be most eatily accommodated within 
an absolutist, or substantivalist, approach to space- 
time as the relativist alternative induces circularities. 

These results were then supported by an historical 

account of the development of Boltzmann's statistical 

mechanics which examined in detail the differences 

between his Combinatorial and H-Theorem approaches. 
In particular we showed that just as T. I. is not 

necessary to classical physics, so the former approach 

may not be entirely free from spatio-temporal 

considerations, as they must be invoked if some 
justification of the weighting assignments is sought. 

Finally we discussed the individuality of fieldso arguing 

that they should properly be regarded as properties of 

the space-time points and that waves in these fields can 

have only a weak form of individuality attributed to 

them. 

Thus just as there is an underdetermination for the 

particle and field descriptions, so classical physics 

is essentially agnostic with regard to our two views 

of particle individuality. It is philosophical rather 

than physical, arguments which must be called upon if 

we want to choose one position over the other. 

In the next chapter we shall consider quantum physics 

and we shall see that a similar situation arises there 

also, although rather more analysis is required to draw 

out those metaphysical positions regarding particle 

individuality with *-hich the theory is consistent. 
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CHAPTER THREE 

IDENTITY AND INDIVIDUALITY IN QUANTUM 
PHYSICS 

3.1 Introduction 

In the previous chapter it was shown that classical 

physics can be taken to support either of two views 

regarding particle individualitye which we called 
'Transcendental' and 'Space-Time' - Individuality 

respectively. It is our intention in this chapter 

to demonstrate that a similar situation exists in 

quantum physics also. The two positions which we 

shall arrive at, namely individual particles plus 

accessibility restrictions imposed upon the individuated 

states and 'Non-individual' particles plus individual 

states, are related to, though obviously not identical 

with, the two views above. 

There are two points worth noting here. The first 

is that the situation as regards particle individuality 

is somewhat more complicated in quantum mechanics 

(Q. M. ) than in classical mechanics (C. M. ). This is 

because in the latter there is only one form of 

particle statisticso Maxwell-Boltzmann statistics, where- 

as in the former theory there are three: Fermi-Dirac, 

Bose-Einstein and para-statistics. The type of 

statistics obeyed in Q. M. is embodied in the 

symmetry restrictions imposed upon the particle 

wave-functions. As we shall see it is through a 

consideration of these underlying symmetry principles 

that we are led to our two views above concerning 

particle individuality. 

Our second point is that the majority of discussions 

of particle individuality in Q. m. have tended to 

emphasize only one viewo namely that quantum mechanical 

particles should be regarded as'non-individuals' in 

some sense. The ancestry of this position can be 

traced back to Ehrenfest, who realised very early in 

the development of Q-M- that the 'new physics' implied a 
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conception of particle individuality which was very 
different from the classical view. However, we shall 
try to show there is an alternative view which can equally 
well be held. 

In 3.2 we shall lay down the basic theoretical 
structure in the context of which particle individuality 

will be discussed. In particular we shall emphasise the 
crucial role played by the 'Indistinguishability 

Postulate in the, se discussions. 

In the next section we consider the implications of 
this postulate and its various interpretations. This 
leads to the explication of our two views of particle 
individuality, supported by theoretical considerations 
from the previous sections. Thus we establish the second 
half of our central thesis. 

We then present a historical outline of the conception 
and development of the three forms of quantum statistics, 
drawing attention to those points which support our 

philosophical position above. We also note that, with 

only one exception, the early work in this area 

used a suitably adapted form of Boltzmann's Combinatorial 

Approach. 

In the final two sections we briefly consider quantum 
field theory and the Gibbs Paradox in the light of our 

previous arguments. 

3.2 The Theoretical Context 

We begin by considering a system of N indistinguishable 

(in the sense given in the introduction) particles, taking 

them all, for simplicity, to be of the same kind and wih 

zero spin (1) - Using Dirac Is notation (2) we can 

distinguish the states which one particle of the system 

can be in by writing the kets thus: I CL'> ý10,7-> )--- 

Here we have labelled the states with the superscripts 

1. These restrictions will not affect the argument. The 

problems which arise when particle production is 

. 
allowed will be touched upon later and are discussed 
in 0. Greenberg and A. Messiah (1964). p. 253 

2. P. A. M. Dirac (1978) 
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1., 2,,... and. clearly they are being regarded as 
individuated. They can be distinguished and assigned 
labels in this way because different states are 
characterised by different wave-functions. These labels 

will be called state, or place, labels. 

A second set of labels can be introduced which specify 

which particles are in which states. Thus the particles 

can be distinguished by writing the kets thus: 
I Cý I>) 

I CC" :;;, 
-> - -, - Here the particles have 

been labelled with the subscripts 1.2, ... and can thus 

be regarded as individuals. As we shall see it is 

the permutation of these labels in the Schrodinger form- 

ulation which leads to the claim that the particles 
have somehow lost their individuality and must therefore 

be regarded as 'non-individuals'. 

Thus the two essential ingredients of both views, the 

individuated states and the individuality of particles, 

are present in our initial theoretical structure. (3) 

Let a-II x) I cLýL I 
>"ý ... be the kets for the 

first particle considered as a dynamical system by itself. 

There will be corresponding kets 

for the second particle by itself and so on. A 

representation of the complete system can then be built 

up and a ket for the whole assembly obtained by taking 

the tensor product, (8).., of kets for each particle by 

itself: CLII >>0 a'j > (4) 1 
Ilu 

Kets of this form shall be denoted quite generally by 

These product functions 
do a q!, 'v'; > =I a', 7 2. 

atJ SCLL't_&ý Pei-^ickte 
span a Hilbert space which can be constructed as 

follows, (5) 

Considering only one species of spinless particle and 

supposing for the moment that the number of particles is 

fixed, we first of all assume that the one-particle 

states are in one-to-one correspondence with the rays 

of the space 
"'R* 

I 
made up of all L2 wave functions 

of one ccý, ordinate. The states of a system of N 

3. cf J. Hartle and J. Taylor (1969) p. 2044 

4. Dirac op cit p. 207 

5. Hartle and Taylor op cit p. 2044 
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indistinguishable individual particles, assigned labels 

ri = l,..., N corresponding to the subscripts in the 
ket 1, would correspond to the vectors of the 

space which is the tensor product of N single 
particle spaces. 

This is the space of all L2 functions of N coordinates 
which can be spanned by our product functions mvd (--ýR 

pem&,. teel vo-akAtS. It should be noted that the space 
is defined in such a way that the order of the particle 
labels in a product vector is relevant. Thus the 

vectors I UL kr> and I V- (, k-,;; p are quite distinct unless 
u=V. 

This construction can be generalised to allow for 

systems with an arbitrary number of particles of 
different species in the following manner. 

In this case state vectors and observables are defined 

in the Fock space which is the direct sum of 

spaces 
J-ý A) 

, each of which is spanned by vectors 

representing states with af ixed number N,, of particles 
in each species s ; ýE 'Y tj CA) = (A),. 

) AJz_) A)s 4 
N OV) 

is a direct product of spaces which are themselves 

direct (or tensor) products of single particle spaces 

for each species. Thus, denoting the space associated 

with a single particle of species s by S 
we have "'ý 

I 
5 ý4 

WA 4 

A)L 
S 14. S S, 

A) 
.-I 

(R) 
L-CJA 

4e- S) 

Clearly the 
14A) 

Of 3 correspondSý to the A), S 

of 5 and 6. (6) 

In most of what follows we shall restrict our attention 

to only one of the subspaces 
1-ýA) defined above 

and consider for simplicity only systems containing one 

species of particle whose number is fixed. However, 

we shall have occasion to move to the more general 

Fock space description, in particular when we come to 

discuss Quantum Field Theory. 

6. Greenberg and messiah op cit p. 250 
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The basic elements in any quantum mechanical des- 
cription of a system of particles are the Hilbert 
space-of-state vectors and the operators corresponding 
to observables whose expectation values are the 
measurable numbers. Having outlined the structure of 
the first of these, we shall, in what follows, 

consider the nature of the second. 
The ket 'given by 1 corresponds to a particular kind 

of state for the assembly which can be described by 

saying that each particle is in 'its own state' (the 

values of the subscripts and superecripts within each 
ket are the same). The general ket for the assembly 
is of the form of a weighted sum or integral of kets 

such as that given in 1 If the kets CL11>1 I CL I >) 

are a set of basic kets for the first particle by 

itself, then the kets 0- CL z 
7- > will be 

a set of basic kets for the second particle by itself, 

and so on, and. the kets of the form given in 1 

will be a set of -basic kets for the assembly. The 

representation provided by such kets for the assembly 

treats all the particles on an equal footing. (7) 

Another ket for the assembly may be obtained by simply 

interchanging the kets for the first two particles in 

1, giving 

I a'2-> 01 aý > (8) 1 aý > (3) 
vv- (g) I CLt >7 

This process of interchanging the first two particles 

is a linear operator which can beapplied to any kets 

for the assembly. In fact the process of interchanging 

any two particles is a linear operator and by repeated 

application of such interchanges one can obtain any 

permutation of the particles appearing as a linear 

operator which can be applied to kets for the assembly. 

In general if the particle labels are permuted than 

another ket of the form 1 in the tensor product 

^4 1 is obtained. Thus inside each space r-L,, ) 
4 

-C "i 

one can define unitary operators describing the permutation 

7. Dirac op cit p. 208 
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of particles belonging to the same species. These 
permutation operator form a group usually denoted by 

SA) 
and can be def ined by 

P. 7, -S 

%, r2ý r38 

where Pi is the particle permutation operator. 
Let us consider the application of such a permutation 

to a ket for the assembly of particles. We shall 
apply. the operator Pi to a ket of the type given in 

1 noting that Pi operates on the particle labels, 

corresponding to the subscripts in the kets. Thus, 

9 
(omitting the tensor product signs for convenience) 

In general one will obtain N! such states, 

corresponding to the number of permutations of N 

particle labels among themselves. 

A particle permutation is essentially just a re- 

shuffling of the particle labels and so, because the 

particles of the assembly are all indistinguishable, 

such 4) permutation cannot lead to any observable 

effects. Thus we now introduce 
P e- 

tv'4L&L-cA_&Lýo/k 

The Indistinguishability Postulate : If a particle X 

PI is applied to any ket for the assembly then there 

is no way of distinguishing the resultant permuted ket 

from the original unpermuted one by any means of 

observation at any time. (9) 

This assumption lies at the heartof the theory of 

indistinguishable particles and characterises the 

basic requirement that indistinguishable particles, 

possessing all intrinsic properties in common, cannot 

be observably distinguished. Thus the observables for 

such particles are those for labelled, individuated, 

particles which do not distinguish the labels. (10) 

A more formal expression of this postulate can be given 

as follows 

8. H. Margenau and G. M. Murphy (1956) p. 558; 

Y. Hammermesh (1962) 

9. Greenberg and Messiah op cit p. 250 

10. Hartle and Taylor op cit p. 2044 
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The observables which do not distinguish the particle 
se lables are those who4expectation value for any vector 

in '" " 
ej is the same as that for P,; > TL 

Thtks the requirement that dynamical states represented 
by vectors I C, -> and Fj[> cannot be distinguished in 

any measurement can be expressed by the relation 

P,; :. s c, 4; ý, ov'-, (-ej P,: f> 
10 

S(_ý, C., _ 
P,: C: s Lc"LLOC& 

< [IQ 
I PC-( a (2ý 

*V. 3 where Q is some suitable defined Hermitian operator. (11) 

This is the formal statement of the Indistinguishability 

Postulate (IP) 
- 

It is sorretimes said that this postulate necessarily 
implies what is known as the 'Symmetrization Postulate' 
(S. P. ),, which says that states containing several 
indistinguishable particles are, according to the species, 

either symmetric (bosons) or antisymmetric (fermions), 

(12). Now if it is supposed that a particle permutation 

applied to the ket I f> gives only symmetric or 

antisymmetric states then clearly this implies equation 

(10) i. e. 11 
So a sufficient condition for I. P. is that a particle 

permutation gives only symmetric or antisymmetric states, 

for all observables Q. 

Howevero this is not a necessarv condition,, as Messiah 

and Greenberg made clear. S. P. absolutely forbids those 

states which cannot be represented by either symmetric 

or anti-symmetric wave functionso and is thus a very 

strong selection rule. As Messiah and Greenberg remarked 

'This is an extremely strong condition, very much stronger 

that what is implied by the indistinguishability of 

identical particles'. (13) They then went on to 

demonstrate that the arguments usually employed to 

insert S. P. into the Q. M. formalism are ad- hoc in nature 

and do not proceed unavoidably from first principles as is 

11. Hartle and Taylor op cit p. 2044; Greenberg and 
messiah op cit p. 251 

12. Greenberg and Messiah Ibid p. 248 

13. Ibid p. 248 
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sometimes thought. They also showed that many experi- 
mental facts which are apparently tests of the S. P. 
selection rule are in fact merely tests of I. P. 

The difference between the two postulates can be 
expressed thus: 

S. P. is a restriction on the states for all observables 
Q. whereas I. P. is a restriction on the observables Q 
for all states. The latter claim can be demonstrated as 
follows. Equation 10 must hold for any vector 
and so will hold with )ý; >replaced by any linear 

combination of vectors. Applying this relation to the 
two superpositions > and V> 

gives 
< C? ><>E V-(w 12 

or equivalently E P4;.;, 0 := 13 

This must hold for all the possible particle permut- 
ations of the N indistinguishable particles. Thus all 
physical observables, in the sense of all observables 
associated with an actual measurement, must be particle 
permutation invariant. (14) 

What we are doing here is identifying or 'picking 

out' the observables of a system of N indistinguishable 

particles. Since 10 holds with IC> replaced 
by any linear combination of vectors it also holds for 

off diagonal matrix elements and so is an operator 
(0 f'P- identity. ThereAthe observables for N indistinguishable 

particles are that subset of observables for N, labelled 

particles which commute with the particle permutation 

operators. I. P. thus restricts the possible observables 

to this subset. 

Having thus identified the observables of the system 

the next step is to establish a correspondence between 

the states and vectors. of We shall consider this 

14. It can further be shown that the condition imposed 

on the evolution operator U (t) by the requirement 
that dynamical states represented by If, > and 

should not exhibit any observable 
dif f erence at any time t., EP, ý ,U 

fee) a U(, t)j =0 
is in fact automatically fulfilled. See Greenberg 

and Messiah Ibid p. 251 
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later,, where the concept of paraparticles will be 
developed, but for the moment we wish to discuss some 
further points of interest. 

First of all the permutation invariance expressed in 
13 is a rigourous invariance property holding for 

all physical observables and the evolution operator. 
Contrary to what is often assumed the state vector 
space 

J-ý, 
j is not irreducible with respect to the algebra 

of physical observables and it is through consideration 
of the manner in which 

AJ /' 

can be decomposed into I-CA) 

irreducible subspace that one is lead to paraparticles. 
It is also important to realise that 10 implies that 

the operators denoted by Q must be symmetric functions 

of the particle labels, as can easily be shown thus 
<>q jý: > f2 

a eL (2ý Q 

Thus Q is unchanged by the application of any 

particle permutatione acting on the particle labels and 

must therefore be a symmetric function of these labels. 

This result is the basis of the claim that I. P. should 

be interpreted as a restriction on the observables, 

to the effect that they must be symmetric functions as 

just stated. 

The most significant observable of a Q. N. system is 

of course, the Hamiltonian and the indistinguishability 

of particles is usually taken to require that this 

Hamiltonian be a symmetrical function of the dynamical 

variables (15). The importanceof Greenberg and Messiah's 

work lies not so much instating the above restriction 

but in placing it within the context of what is meant 

by 'indistinguishability', as given by I. P. and in 

clearly separating it from S. P. 

Having defined the particle permutation operators 

Pip which permute the particle labels in our general ket, 

it is now necessary to introduce a place permutation 

operator Ti which permutes the state labels (i. e. it 

operates on the superscripts). These operators are 

defined by 'J 14 
r"U 

15. Dirac op cit p. 207 
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Consider the application of such a place permutation 
to a ket for the assembly of particles. Let us apply 
the operator Pi to a ket of the type given in 1 

noting that Pi operates on the state labels. Thus 

we obtain: 15 

-1 W 0, 
The difference between the particle and place 

permutation operators has been expressed by Dirac thus 

: 'Let us consider a permutation in the general sense, 

say that consisting of the interchange of 2 and 3. 

This may be interpreted either as the interchange of 
the objects 2 and 3 or as the inter change of the objects 
in the places 2 and 3. these two operations producing 
in general quite different results. The first of these 

interpretations is the one that gives the operators 

P [the particle permutation operators] the objects 

concerned being the similar particles. A permutation P 

can be applied to an arbitrary ket for the assembly. 

A permutation with the second interpretation [i-e-a 

place permutation] has a meaning, however, only when 

applied to a ket of the form 

EP +ý -= I CCIkr, > I t)es;;;, -0&I CLPZ>3 
for which each of the particles is in a place specified 

by an 0C or to a sum of kets of the form E PIP> = etc] 06) 

The place permutation, unlike the particle permutation, 

operators depend upon the basis with respect to which 

they are defined. 

The exact nature of the relationship between these two 

kinds of operator can be elicited as follows: 

Let us consider a state function iFý; - given by 

IC ;>-: - 
I CL I CL's 0 ý- - 0- N> 16 

1 1%) 

and let us operate on this function with the particle 

permutation operator Pi as defined above: 

17 

16. Dirac op cit p. 217 
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If we now apply a place permutation TI again as 
defined above, to this new state function we obtain 

'I, PL P'ý I CL > 

a rt Ck POJ > 
> i CL 

, 0. '. .a IV 

Thus 

P 

Pý 1?, ;> 

This gives 18 
In other words, the place permutation operators are 
simply the inverses of the particle permutation 
operators, when acting on a ket of the form given by 
Iý ý> 

. 
A plausibility argument can be given for this res, ult 

using a 'ball- and-box model in which there are a number 
of boxes, representing the states and a number of balls 

representing the particles. The P, s will permute 
the balls among the boxes and the Pi Is will permute 
the boxes among, or rather, around the balls. Suppose 
initially there is ball a in box 1 and ball b in box 2. 

A particle permutation is then applied and a and b are 
interchanged, giving b in box 1 and a in box 2. Now 

a place permutation is applied and boxes 1 and 2 inter- 

changed, giving the original arrangement. Thus the 

result of first applying aPi followed by applying a 

PI is simply identity* the initial arrangement. 
1 

Hence PI. 

Since the P's are linear operators which can be applied 

to any ket for an assembly of N particles, they can be 

regarded as dynamical var3-ables in the N particle system. 

However, as Dirac has pointed outo they are not, in 

general, real dynamical variables because their Hermitean 

conjugates are equal to their reciprocals. (17) 

The T's can be considered as dynamical vars'ableso again 

only with states obtainable by superposition of the 

states given by 14 - 

it must now be asked whether these two kinds of permut- 

ation operator can be regarded as observables. The 

17. Dirac op cit. p. 212 
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condition for an operator'Q to be an observable is 
that it must commute with the particle permutation 
operators i. e. Pz 

, "ý' 
(5? 1= C) for all 

observables Q. 
Taking the Pi Is first, it can be shown that these 
do not in general commute with one another i. e. 

0 This is because the 
Symmetric group SM is non-Abelian i. e.. the 

elements do not in general commute. Therefore given 
the above condition, the particle permutation 
operators cannot be regarded as observables. 

An entirely different situation holds for the 

P. 1s. It can be shown that these do commute with the 

particle permutation operators i. e. 
PZý 0 

The PI Is act without regard to place and the Is 

act without regard to the identities of the particles. 

Another plausibility argument can be given for this 

commutability in terms of the ball and box model. 
Suppose initially ball a is in box 1, ball b in box 2, 

ball c in box 3 and ball d in box 4. A particle 

permutation is then applied interchanging balls c and 

d. This gives a in 1b in 2c in 4d in 3. A place 

permutation is then applied, interchanging boxes 1 and 

2. This gives the final arrangement a in 2, b in 1, 

c in 4, and d in 3. 

Returning to the initial arrangement, suppose a place 

permutation, interchanging boxes I and 2 was applied 

first, followed by the particle permutation inter- 

changing'balls c and d. This gives a in box 2. b in 1'. 

c in 4 and d in 3. which is the same as the final 

arrangement obtained above. Thus applying aP followed 

by ap gives exactly the same result as first applying 

a then a P. In other words the order in which 

these two operations are performed does not matter. 

It therefore follows that a_4_j sR_j[ al I C) CA C-' 

CL (, c cL o & 

0 CS 0_/L 
C,, L S_p cC_ýuvk, 'S ý 

3, -3). Further arguments based on physical 

grounds can be given to support this conclusion, CLAJ 

18. Dirac op cit p. 218 
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it has been suggested that a general definition of 
indistinguishable particles should be that there are 
no other observables, apart from those which are 
functions of the T's, that distinguish between 
states differing only in the ordering of the indis- 
tinguishable particle variables. (19) This result, that 

any self-adjoint function of elte- 
ýjsshould 

be considered observable, following as it does from 

the above commutation relation, means that I. P. is all 
that is needed to make the formalism of distinct 

particles suitable for the description of indistinguish- 

able particles. (20) 

These results have important implications for the 

individuality of particles in Q. M. The first, that the 

P's are not observables, is what lies behind the non- 

classical counting of states in quantum statistics 

which has led some authors to say that quantal particles 

cannot be regarded as individuals in a classical sense. 

The second conclusion, thatAthe P's are observables, 

suggests that there is more to it than this, and that 

individuality resides in the states, in a sense. The 

distinction between the P's and the ýils, although of 

quite general validity, manifests itself only in the 

case of para-statistics of order greater than 2 i. e. 

not in the case of Fermi-Dirac or Bose-Einstein statistics, 

as we shall see. 

it can also be shown that any symmetric function of 

the observables Q, can be expanded in terms of the 's 

(21) and thus that the place permutation operators are 

canonical observables of the system, in a sense which 

will become apparent shortly. This result follows 

directly from theorem (3.4 A) of Weylls book 'The 

elassical Groups', Dirac has sketched a proof for the 

particular case of the observable being some perturbing 

energy v, defined by ,:: ý ýIVP1ý> (23) 

19. P. V. Landshoff and H. P. Stapp (1967) p. 73 p. 77-81 

20. R. H. Stolt and J. R. Taylor (1970) p. 6. 

21. C. F. Landshoff and Stapp p. 90 

22. H. Weyl (1946) ch. IV. 

23. Dirac op cit p. 218 
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A more general proof can be given as follows: (24) 

Theorem: < 19 

where and are kets for the assembly 
of the form given on p-1-7)4 
Proof: We note first of all that 

< 
e-IX "-, 0t This is because 
( (2ý 

, Otý&k P 

and < and are orthogonal. so <f I p, p, p -ij [> 
has to equal unity but can only do so if 

P P P., 4"tf; -, i 
Thus this expression <FI Pi 7ý P. 

-, 
IF> reduces 

to a kind of Kronecker delta function: 

ýO )-e- g:: ý FI PIZ rz, rt- I (, > =- 
S 

P, 
_, 

pizz 
ThereX using this and substituting for PI we have 

Ti P4-lf> Q Pi P, I lrý i. 

= <-, < F ,I P- a P4 1 F> 
CI (a's a 6O,, A,.. L&, kaS P, 

< P. > 

Thus we have s hown tha t< C2 P., IP Jt><f1fj > 

which following Dirac, we can write as 
C MV 20 

where the C_ < V1 GPC > and the 

sign means an equation in the restricted sense, the 

operators on the two sides being equal so long as they 

are used only with kets of the form P and their 

conjugate imaginary bras. 

This result, that the observable Q is equal, in the 

restricted sense,, to a linear function of the TI Is with 

coefficients Ci given as above# will play an important 

role in our [ater discussions of paraparticle theory 

in particular with regard to two-body transitions between 

'triangular' paraparticle states, 

Having identified the observables for N indistinguishable 

particles as being that subset of observables for N 

labelled particles which commute with Pi Is, this result 

24. See also Landshoff and Stapp op cit. 
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following frcm the I. P., the next step is to estaDlish 
the correspondence between the states of the system and 
the vectors of the Hilbert space 

The first point to note is that two vectors which give 
the same expectation values for all observables must 
represent the same state. Thus the I. P. implies that 
whenever a vector I ý. > in corresponds to some physical 
state then the vector P,. I for anii must correspond 
to the same state - 

It is usually assumed that every physically distinct 

state of N indistinguishable particles must correspond 
to some unique ray in J-ýtv. 

If represents some state then (> and P 
,ý 

I[> must 
lie in the same ray and hence must be proportional. 
This immediately leads to the Symmetrization Postulate. 

However, as Hartle and Taylor emphasise: 'There is 

... no a priori reason to insist that every state of N 
identical particles correspond to a unique ray in 49 tj 

The possibility that a single state of identical 

particles could correspond to some larger collection 

of vectors in ý-ý A; must be considered, and it is this 

possibility which leads to the notion of paraparticles'o 
(25) 

The problem then is to decide what collection of 

vectors in J-ý, 
j can correspond to physical states and 

the solution lies in the fact that any state can be 

completely characterised by specifying the expectation 

values of all observables. Thus these sets of vectors 

must possess the following properties: 

1) Two vectors If> and IF'> representing the same state 

must give the same expectation value for all observables 

i. e. 
/> 

(CLU 0,44L-Lý4 

< p) 01f CQ. ý P': a= 0) 
2) Two vectors 1[> and I C";;;, representing different states 

must give different expectation values for some 

observable i. e. (50.4A#- Q,; 4-, L-4 

The apparatus of group theory can then be used to determine 

25. Hartle and Taylor op cit p. 2045. Also see Stolt 

and Taylor op cit p. l. 



147 

the sets of vectors possessing these qualities (26) 
We begin by considering an arbitrary vector ý:; P in 

V 
and the N! dimensional subspace spanned L tO 

by the vectors for all permutations i in the group 
SM 

* This subspace can be decomposed into irreducible 

subspaces invariant under the P. 's. Each subspace 1 
14 carries an irreducible representationP oý S.,, 

) and the 

number of subspaces carrying ani irreducible 

representation 0'4 is equal to the dimension 

N., of D144 . The problem now is to construct basis 

functions for the various irreducible representations 

of S- 
ej - 

The following procedure for obtaining these functions 

is given by Hammermesh. (27) 

We note first of all that in general any function 

is expressible as the sum of functions which can act as 

base functions in the various irreducible representations: 
A 

C-0 
z 21 d-, 

Ii;: ý, 

The base functions for the -V th irreducible (unitary) 

representation satisfy the equations 
N) 

- ::! ý (V) C-9) 
Z) 

where is any operator of the group considered. 

The necessary and sufficient condition which a given 

function must satisfy in order that it may belong to 

the i1th row of a given representation is 
004 

9: 
CP) 

.kIr. >(- -0) 
23 :E PLý('Pz) QK II>--" 

K 
Thus given a function jf, ->ý")which satisfies the above 

requirement, one can associate with it 'partners' 

given by 

CV) )C4 
ý) Oe > Z4. >=-C 

K 

so that the set of functions satisfies equation Z3. 

Returning toAthe question now is, given the function 
C-0 - how does one f ind the fe> in the f irst place? 

In other words, how does one resolve the given function 

into a sum of functions, each of which belongs to a 

26. Hartle and Taylor op cit. -,, A ppe-A, 
4N 

p, 3ý8 

27. Hammermesh op cit P- 85 and p. 111 ; c: fApp e- 
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particular row of some irreducible representation? 
Hammermesh shows that the operator 

CA) A j91T1k(K) 001Z 
(A GA) 

is a projection operator i. e. 25 

Thus if this is applied to equationzX'one obtains the 

desired functions. 

26 
K 

Constructing the basis functions is therk, 
18- 

two stage 

process. First the projection operator T iu) 
is 1 L'6 

applied to the given function I f7' to obtain the 

functions Then the operator C 

is applied to find the (Av-1) partners of this 

function, such that the whole set satisfies equation 

Z'3 thus giving the functions Ip kv) 

which form a basis for the -V'th irreducible 

representation. 

Applying this procedure to the arbitrary state 

vector If> we note first of all that the operators 
Q will be the particle permutation operators PZ 

The projection operator can then be written 
VIAA P IT C (z) 4 Od -h 27 

whilst the second operator given above, which we shall 

the transfer operator* will be given by 

4 
c 28 

Applying. these each in turn one then obtains the 

base functions ýZ>: 

-Trz 29 

These satisfy the equation PL 11ýc: ý> 30 

as we shall demonstrate. 

At first sight this seems rather a complicated 

procedure but we can simplify it by eliminating one of 

the stages. We can in fact dispense with the projection 

operators altogether since z, T 
ut which Hartle and a result which we shall now provc, 

Taylor clearly already knew. 
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To Prove 

DV (. S) F(. S) j2 PCA) 
57 

c PC 
:, 
5- 

s (S) 11C S) 
c tv (s) PC 

IV 
p(s) 

PCtý) PCSý PC-r) 

--, 

-S 
(2, 

g C(z) 
CT) CK C)'k 

Phi c rt) L, s uvLc: t-, n 

P C--o 
r) 

T c-r) Por) 

f, ý- z iz PcT-) 
r 

kd 
C7ý 

c -F) 

" 

-TT! - 3I 

Thus to obtain the basis functions one simply 

I--, applies the transfer operator 11., to the state 

function I (; ý- :I[C, 
> = -rr, 

I-I 
ý> 

), 
32 I> 0ýý4, c, PCK) > 

Before we actually use this method to obtain a set 

of basLs functions there are two more results which 

must be established. We must show that these functions 

support representation of the P's and the T's. 
11 

To Show that f! LýJ(,? ýSupports a Representation of the Pcs) Is 
v 

RA Ok 
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Put Oof 7ý'- PCK) 
where P (R) is a particle permutation 

operator. Then, 
ýA)-k 

-fii 
jI[>-: -- ': 

ý PC 
iC r7, ) > k 

ra, 

Fix j, allow i to be a variable (the significance of 
this will be revealed shortly). Apply a particle 

permutation operator P (S) to the function 

formed by applying I/-(,, to If> : 

C P(S) PCS) 0 0 
C (Z) t CIZ) IT. (6) PC 

S) 
kie. ) 

k tz 
Write P (S) P (R) =P (T) 

. 
S) 

PCs) 
>z4. '! & 

k -4 (s-1-r) PcT) 
AAA 

tj "T) PT 

It: 
X Rd) 

p(_r 
0> 

> IIAA. 5 Oj', 
), 

CS) )I 

-F 
Ak) AM 

C-00 

-0 
0 

'Aa 
h) 

0 (S> 
C S) 

Therefore the functions 0-support a representation 

of the P (S)'s i. e. they satisfy the equation 
CWA) 

Pes) I C4 > 
-; 
ýE IP6C R) 
L1 14-4 

To Show that I ý> Supports a Representation of the TP (S) Is 

Again we have 
Crz) PCP, ) 

JXA) 4 

and cr, ) Pce') > 

Now fix i. allow j to be variable and apply a place 

permutation operator T(S) to 1'1ý 

P(S> A( 
S> Z) PC tz) 

6"A 1E crz) PC ýc Z) PCO iý>(S ZA ce- r PC tz), TC 
03 z C? ) 

ý, 
tt 11AA 

" ::, 9 &, 71 Cg) P(- r) PP 

, 
ý, > R 

-= .rS Rewri te P (R) 
0 

S) =P (T) PC K) P (T) PC. S) 

ý 
ýt) 

Pi 
v'(s) 

Pc -r) i> 



C V(Li -. S > S) 11 
L: A ýe 

L) 

PCs) 
I [J >> PI-r)c S 

Therefore the base functions -fTc; jIP> support a 
representation of the T(S)'s i. e. they satisfy the 
equation P(S) :: E4 1 ýd > "(S) 34 

Thus we have shown that the base functions rjýiIF> 

support representations of both the particle and 
place permutation operators. 

Under the P(R)'s the base functions transform as 

->> C 
as we have just shown. This means that for fixed j 

and for i 
, )these 

functions span an 
irreducible subspace invariant under the P(R). Within 

this subspace - or generalized ray as it has been 

called (28) - the function I transforms as the 

i1th basis function of the irreducible representation Dý") 

The fact that the P(R) leave any function in the same 

subspace, or generalized rayt reflects the fact that 

two state functions which differ by a permutation of 

the particle labels must represent the same state, o-S 

we have noted. 

We have also shown that under the T(R)'s the base 

functions satisfy 

>> 

That is, for fixed i and j 1,1 ..., N the functions 

span a subspace invariant under the (R) and within 

this space IFC> transforms as the jIth basis 

function of the irreducible representation 
A). 

Clearly in general the place permutation operators carry 

a function from one subspace, or generalized ray to another, 

which is consistent with the fact that place permutations 

can change the physical state. 

The complementary role of the particle and place 

permutations, in the case of a two dimensional 

representation D/4# can be illustrated thus: 

28. Greenberg and Messiah op cit p. 251 
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(29) 

ýý zZ ý-- gercemýýzeý +rýy 

In this case i, j=1,2. The P(R) map the vectors 

of any row (fixed j) among themselves, whereas the 
'T(R) map the vectors of any column (fixed i) among 

themselves. The subspace spanned by the two vectors, 

or basis functions, in any row is a generalized ray 

and all the vectors in this subspace represent the same 

physical state - 
obviously in the case of an n-dimensional 

representation one would have 

with j fixed and i variable the row number is fixed 

and one is ranging across the columns, which gives the 

particle permutations. With i fixed and j variable the 

column number is fixed and one is ranging up and down 

the rows, giving the place permutations, 

Before continuing it is worth noting that in the 

case of the one dimensional symmetric and anti-symmetric 

representations D=1 or + 1. Thus P(R) and _T(R) 

are the same for the symmetric and. anti-symmetric 

vectors, and so the distinction between particle and 

place permutation is not manifested in the case of 

ordinary bosons and fermions. 

Thus we are now able to generate a set of basis 

functions for any representation. (30) Furthermore 

we have shown that this procedure can be reduced from 

a two-stage to a one-stage process and also that the 

basis functions so formed support representations of 

both the particle and place permutation operators. 

Using I. P. and Schur's lemma (31) it can easily be 

shown that these basis functions, do indeed 

satisfy the two requirements for vectors to represent 

29. Stolt and. Taylor op cit p. 9 
19 

30. M. Tinkham (1964) p. 39-43 
, o-Iso see- Atyetcux P. '347. 

31. See Appendix P-342.. 
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states (32) Thus having shown, following Greenberg and 
Messiah and Hartle and Taylor, that every state of a 
system of N indistinguishable particles corresponds 
to Some multi-dimensional subspace, or generalized ray, 
the next step is to discuss which irreducible represen- 
tations correspond to states. In the case of ordinary 
bosons and fermions, for example, this is quite 

straightforward as only the rays of the totally symmetric 

of totally anti-symmetric representation actually 

represent states. 

If is defined to be the subspace spanned by 

the basis functions +>, (with U fixed) then the 

Hilbert space can be decomposed into a number 

of subspaces thus: 35 

Although F, 
., a is defined with respect to a definite 

basis it can be seen that it is actually basis 

independent. contains all functions associated with 

the irreducible representation D. *'" and since every 

pure state must be associated with a definite 

irreducible representationo each such state 

is represented by a generalized ray of vectors contained 

in some 

Although every pure state is associated with a 

definite irreducible representation, not every one of 

the latter is associated with an attainable state, as 

the example of ordinary bosons and fermions makes clear. 

In general the statistical type of a paraparticle is 

identified by specifying the set of all irreducible 

representations in each SM which corresponds to 

attainable states of the particle. 

At this point it is perhaps worth making clear the 

difference between 'ordinary' particles and paraparticles. 

For the former the states correspond to one-dimensional 

sub-spaces, or rays, in the usual way because they 

correspond to the one-dimensional completely anti- 
t^r 

symmetric and symmetric A reducible representations. 

However, in general the irreducible representations of 

32. Hartle and Taylor op cit p. 2045 
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the permutation group are multi-dimensional and thus 
the states of a parapaticle correspond to multi-dimension- 
al subspaces, or generalized rays. 

Hartle and Taylor demonstrated that not every family 
of irreducible representations corresponds to a possible 
statistical type. (33) These results were then extended 
by Stolt and Taylor who showed that all possible types 

of first quantized paraparticles can be divided into 
two kinds: those of finite order and those of infinite 

order (34), The former can be classified further into 

parabosons and parafermions of order p=1,. 2,3,.... 

Parabosons of order p have states corresponding to those 
irreducible representations whose Young diagrams have 

no more than p rows, whereas for parafermions the same 
holds for the columns. There are infinitely many para- 

particles of infinite order, all of which have states 

corresponding to Young diagrams of arbitrarily many 

rows and columns3Csee Aplý, eikaLx p340, 

The space appropriate to a paraparticle of a given 

statistical type T will be the subspo-ce- of 
J-tA) 

containing just those vectors which correspond to 

allowed irreducible representations. If the set of all 

irreducible representations associated with the 

attainable N-particle states of a particle of type T is 

denoted by T,, then the appropriate space is simply 

the direct sum 05) 

Ir 6) 4! 
ýa 36 

, 
AA-. e'fýj 

In particular for a paraboson or parafermion of order 
state_$ 

p this sum runsoverall4whose Young diagrams have no more 

than p rows or columns respectively. 

The next step is to eliminate the 'generalized ray' 

and restore the usual connection between states and rays 

in Q. M. (36) 

33. Hartle and Taylor op cit p. 2050 

34. Stolt and Taylor (1970b) p. 2226 and (1970c) p-1759 
35. Stolt and Taylor (1970a) p. 10 
36. Hartle and Taylor op cit p. 2046-2047; Stolt and 

Taylor op cit 10-11 
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A particle of type T will have N-particle states 
corresponding to the generalized rays in each EA4 

such that 61r. v- Any state associated with the 
irreducible representation D*v corresponds to a 
n. 4 -dimensional subspace of any vector 
of which can equally well be taken to represent 
that state. Each subspace E can be further 
decomposed thus 

(D 
;, =1 37 

where j is the space spanned by the for 
f ixed t. ý and 4- Since all observables commute 

with the P's each subspace E 
Xý,, Z is invariant under 

all observables. In particular since this applies 
to the Hamiltonian all representative vectors will 

remain in E,, 
uz for all times if they are chosen there 

initially. Since each generalized ray 6 has a 

unique one-dimensional intersection with each 

one could agree always to label states of symmetry 
by vectors from one specific EIA, ý 

-, 
ýý I say, 

and then each state is labelled by a unique ray. (37) 

The FAA,, z t4aý--ýý-Ican be ignored because of the invariance 

of FZ&, I under all observables. 

Thus the formalism in which states of symmetry D-1" 

are represented by generalized rays in E., 
44 can be 

replaced by one in which the same states are represented 

by rays in E, 
4A)j . For a particle of type T the 

new smaller space is 
_r_ 

- 3S 
AJý 

The essential point behind this elimination is that 

any state represented by a multi-dimensional subspace 

(S with basis ýI Cý >j can be represented 

arbitrarily by the number one basis vector I fl> 
- 

Every state can then be labelled by a unique ray in E, 
(A, l 

rather than a generalized ray in E, 
4A, ý 

') 
thus restoring 

the normal connection between states and rays. 

This restoration is achieved however at the expense 

of symmetry under the particle permutation operators 

37. Ibid, 
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since these carry the space E, 
ýKj onto the other 

spaces E, 
4A., j (38) (i variable for the P(R)'s, 

ranging across the Columns). In other words, with 
attention restricted to E (39) 

. IA, i the P's are undefined 
This is to be expected however, as the redundancy of the 
generalized ray is caused by the complete symmetry under 
the P's and to remove this redundancy we have moved to 
a smaller subspace on which the P's are not defined. 

The P's on the other hand, are well defined on 
alone since they map each , onto itself (i fixed, 
j variable). Again this is to be expected since the 

self adjoint functions of the P's are 
OýS4CI-Va_ýie-g 

. 

With this restoration of the 1-1 correspondence between 

states and rays the first quantized formalism can be 

compared directly with that of the second quantized 
theory. Stolt and Taylor have shown that for every 

particle of type T of finite order there is a natural 
r 

isomorphism between 'J-ýAý, 
Auand the N-particle space 

for the corresponding parafield (40). Thus they 

established that every type of second quantized 

parafield is equivalent to a unique first quantised 

parapaýticle of finite order and vice versa. 

Having outlined the general theory of indistinguishable 

particles, embracing parapaiticles as well as ordinary 
bosons and fermionswe shall now discuss its 

consequences through a consideration of three particle 

states. 

3.2.1 The Generation of Basis Functions for Three 

Particle States 

We begin by recalling that to obtain the basis functions 

one simply applies the transfer operator 

to the state function ;> thus, 

> 

obviously the first step is to write down the real 

orthogonal matrices of the irreducible representations 

38. Ibid p. 2047 and p-11 
39. Unless of couse D-44 is one-dimensional in which 

case is the same as and the P's 
'9A) 

are defined. 
40. stolt and Taylor Ibid. 
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of the permutation group S3i. e. the 2x2 matrix 
representat s of R in the irreducible representation 

i JVO 

e4L 1,4U k( 
t) 

(- 4), 
g) 

W*- (A) 
denoted 

Aby j9, 'ý 
I 

is real sot?, 9)=P, 

These are given by Hammermesh with their corresponding 
permutations, written in cyclic notation (e. g. (123) or 
(13) indicating that we permute the first and third 
'objects') : 

Matrix Corresponding Permutation 

I 

©i 

It oC z) 

o -1) 
(73) 

2 

ý` lZ l3) 
-ý13 

2 
Z 

Z 

ý, Z 

i 

Z C2 13) z 

Remembering our previous notation, and the fact that 

the P's permute the particles regardless of the state 

they are in, and the P's permute the states regardless 

of which particles are occupying these states, the effect 

of these permutation operators on our basis functions can 

be expressed as follows : 



158 

Particle Permutations Pi (Permuting the subscripLs) 

al CLS > o, a- a>c 12 
e2 

- -, 

a" 
ý 

O2) O> 

Pj 
a', 

1 
air a3> 

a z) 

s a QZ, Q 33> 

P6 i a',, a z, a3 > 

Cizi(: l Gý37 

_I 
ýL3 aZ, O> 

.=l 
a3 Q GIz> 

ý ý, 

C(a)C3) 

(k3) c2) 

(z3) c1) 

(1z 3) 

C 2(3) 

Place Permutations Ti (Permuting the superscri ts) 

CL CLI, co, > CJ2- Q, c 

s 

Cýl cil z 

C(! 
7- 

1 al 
I 

Ct-t, cO, > 

C(I. CC> 

,zI 

Cý3 
I 

CLIZ 

Ccý 

CýL 

CCL 

C(ý> 

Clý > 

> 

Cý> 

CLý3, e`l 

C. 3) 

CZ) 

C2,1 3 

The equation above, rewritten in fhe form. 

I CL 1, Ccý OLý Pcfe) a', C tz) 

cc II CLýz CL-51 > -I -- -Ia 0' CO, > 39 
LI f- 3# Z- 

says that to obtain each basis function each particle 

permutation should be multiplied by the (ij) Ith element 

of the matrix to which that permutation corresponds, 

the sum of these products is then taken and multiplied 

by some normalisation factor. Thus to obtain the first 
?_- AA 

basis function Ct 11 oI OC3"- we multiply P by the 
L1 

element in the first row, the first column of the first 

matrix above* mult'Ply P2 by the element in the first 

row first column of the second matrix and so on. We 

then add all these products and multiply the sum 

by To obtain the second basis function 

we multiply the Pi Is by the elements in the first 

row second column of the matrices, and so on. 

Thenapplying this projection operator method, our four 
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basis functions, chosen to be eigenvectors of P. are: I 
a-', el. cO > -"4 - 71-, 11a1a 

1- o-, 
T, ' > ljý (a, az. 0, W, a 3 ;> 33 

Ol Cl- 

aý2 at' 6-51 ci- 
;L_S 

ý. 
z 

all CF-I at- aý, cL' a7i cA-3 2 
z- 

oL I, a', > a, cL-1, 

CL 

cL, ja' a Z- 3 

Z- 
S1 

= j, 
a1za-I Gý cä -1 cý> 't (cý ää> 

3ý 1t3zZ3i 3ý 2 

I 

o. -' a 1- C4- -3 -; > 44 
=t '2- -3 IT > --Lýo I- o -t a CýCL 43- 

1 OL f 
4 

Cý 3 CJz> -f -rl CA. 
Z T 

z 3a, 
C, Z 

-�aZ3ti33 I a: - c4- 0-a>f Icyc a>(c, 
a> z2Z3lii 

a; C 
3> 

Z TZ 
L Z1cßcý 

(ý3> 
3 

ctý -1 Ci 

ý2 (cL c(1c 't 

-ý 1 cicý3ä>-z 

L3 

( al 0- 

., -ýZ (' Z C4 > -, Z1'Z cý >f1äZ c3 > 
LZ3L11Z 

1- c& c eZ> -- 1 ctZ CLi> -- ! cZ 3c1c:,, > i 

Following Hartle and Taylor we shall refer to these 

as 
C1 // respectively. ?_ 30 

C 
12- 

These are the 'mixed symmetry' basis functions 

spanning the 'triangular' subspaces. To obtain the 

symmetric and anti-symmetric functions we follow the 

same procedure. The matrix representatives are simple. 

In the symmetric case it is just (1) for all 

permutations, and in the anti-symmetric case it is 

(1)for the permutation (1) (2) (3) and (-l) for 

permutations given by (ij). Thus the symmetric basis 
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0 C ZI 
L3kZI function is 

Z" 13+ 
Z' I CýQýC'L cLa;; - CL 0, 

_ý' t- 
Iý 7410M. 0_,, -ý 

and the antisymmetric function is 

ilaý -1 
IZT 7-1 z -2 0- aa 
,, 
8La7- i aý%alý> -i cý oa_ý +Iaa a>. f Ic& a 2.3 1 :g 

.7z Operating on these functions with the P's or _P's 

can give the eigenvalue for the operator concerned. 
Thus the eigenvalues of the particle permutation 

operator P2 for our basis functions can be obtained as 
follows. Consider for example, the function 

'; W2 XfXId2 
RI= 

ýLiý f, 2 -3 1 ?_3, &a;;. 
-I ixý 

" 
-; > -I, 

'3> fit 
d(' d? 4- 7,1 C( 0, CL C'C 

( 1- 2- 1 
.33aII 

rz 2- 31 TIZ 

Z Z_ _S tT 
C(, a 4- XI Ckýt OOL;; - 

7- S-(S3 2_1 a 
2-3 2-: 1 

o, o, o, 0, CX_ 0,0,0-? o, a pp,, -(aa 

ýI 
31 I 

4- 11 
Similarly the eigenvalue of P2 for 

el rr 

'; ' 
[2 "" 

;'P. 

(t 
()f 12- 2 

are -1, +1, -1, +1 and -1 respectively 

Thus we have obtained a set of basis functions, chosen 
to be eigen-vertors of P2* spanning a six-dimensional 

subspace which can be decomposed into ýE of 
'X 3 

irreducible subspaces invariant under S3 thus 

E -: - 
Zs (p 40 

and are the one-dimensional subspaces def ined, 

respectively, by the symmetric and anti-symmetric functions 
CS and FIq 

- The remaining four-dimensional space 

splits into two irreducible subspaces transforming 

under the same two-dimensional representation of S3, i. e, 

that of the triangular Young diagram (41). our choice 

for these two subspaces is given by I and 

spanning and and z 
(01 

spanning 

(42). 

As runs overIH-3 it can be decomposed in this 

way into three sectors 
41 

1-( 3 
Wý -(So 

'1 -(11 ý__ (4; ) ý, 
The irreducible subspaces of *1-(, and are one- 

dimensional whereas those of are two-dimensional. 

41. See Appendix P-34-6 
42. Compare with Hartle and Taylor's basis functions. 



161 

Pure states may be represented by any irreducible 

subspace in any of these sectors. Two states re- 
presented by subspaces of different representations 

are physically distinct as are the states represented by 
different subspaces of the same representation. These 

points will play an important role in our determination 

of the statistics of paraparticles. 
Given the relation 1: Pcrz), 

ý 
Q2 -= 0,,, Schur's Lemma 

implies that all matrix elements of the observable 
Q connecting different representations are zero. It 

then follows (43) that if there exist states corresponding 
to subspaces of different represeirtions of S/v then they 

must be separated by a super-selection rule. In other 

words, transitions between such states, for example 

those corresponding to the symmetric and anti-symmetric 

representations, or the symmetric and triangular 

representations and absolutely forbidden. Thus a boson 

cannot, by some peculiar mechanism become a fermion 

nor a fermion a paraparticleo for example. 

However, states corresponding to subspaces of the same 

irreducible representation, such as the two triangular 

subspaces and where there is the same 

irreducible represenation repeated twice, can be connected. 
A 

Transitions can therefore occur between such states. (44) 

The situation in the general N-particle case is quite 

analogous. The Hilbert space then decomposes into a 

number of subspaces and transitions between states 

corresponding to certain of these subspaces i. e. those 

of different representations are not allowed. Thus 

restrictions have been imposed such that certain states 

are rendered inaccessible to particles of the same 

species. If we consider the time evolution of the system, 

as effected by some Hamiltonian, then we can conclude 

that what the I. P. as expressed by CP(_r, *>Qj =0 

effectively says is that if the system starts in one 

irreducible representation then it will always stay 

inihat representation. Bosons will always be bosons, 

fermions, fermions etc. 

43. Greenberg an#+vIVsiah op cit p. 251 
44. Although wit A wo body collisions these transitions 

will also be forbidden as we shall see. 



162 

The I. P. can thus be thought of as an extra 
postulate of QY,, or an initial condition in the 

specification of a situation. We shall return to these 

accessibility restrictions in section 3.6 where its 

consequences will be considered in more detail. 

3.2-2. The Cluster Principle 

In order to obtain the eigenvalue for various permut- 

ations it is convenient to rewrite the basis functions 

in terms of the P's given above. Thus as 

x1 C4 
-z- 11 (2 z 

CL-L Qý-; > Q- C( Cý Ck3; 7 0-2- Cý';; p 1 A. 
9'1 

- 
etc, we haveomitting the 'ax- 33 for CLk 

convenience: 
IS 

lj6- 
( Po 4 19; Z + P3 

-f 
t*-9 

'ý 
PS 4 PC ); (A P, - 

rz, 
- 

es 
- 

P4o, 
-f Ps- 4- PC, ) 

Z' --L (Z ei 
-f Z P2 

- 
PS 

- 
P<C 

- tot- -lp' Z-P, g. - (2r 
-f 

Pr. ) rif 
ZAG 

ý 
17, 

Z -L (- e3 
4- 

e4- 4 e5- 
- 

F6 ) .- -L (Z Pi 
--2 

e'. 
' -, 

e, 
-f 

e, 
- 

e, 
- 

e, ) 

The result of applying two permutations consecutively 

can be evaluated very straightforwardly and expressed 

in the following two tables, where the columns give the 

permutation applied first and the rows the permutation 

applied second: 

P PZ P P P 
p, (i PZ Pý Pý Ps P6 
PZ P ; P 

P3 P1 PS S PC, 1P P 
P P P PS P, P PZ 
es- es- e3 % 

t 
Pb 

r 

Pý n- p3 e 
--rA ßi-t-1 

e_ e--3 i 

' 

4,1 1 

: 

pi 
- 

ý 

PL 1 

-PC 

- 

P-13 
-pu, 

-P2-- 

r4. P401 l>A ýu- Al 

iy, 

ýrr 

e ýa P4- 1 -PZ- 

. 

_e6 

1GXI. 
P.: 's 

Thus the result of operating on the basis functions 

with P 2' 
for example, can be discovered very quickly 

and simply. The same eigenvalues are obtained as in 

the longer method above. 
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It is of some interest to discover the eigenvalues of 
P2 for our basis functions. These can be rewritten 
in terms of the T's thus 

6 
76) 

Alý 

j- 

ým 
-- -, (- , 2z 7( es- e6 )% 

Ft ýý * PS t() 

E =(z-2--? ) 

The eigenvalues of TP 
2 

for these basis functions can 
now be found. using Table 2) and they are as follows: 

+I (A 
+I 

ZI 

We can summarise these results and those for p2 in 

the following table: 

IA GLE 3 

B a- s, ý s C- cý tol ve, (I, - t C, 0( kAm, CeCOA S 
P; X. 

An immediate consequence of these results is that 

eigenvalues of the place permutation P2 serve to 

distinguish the symmetry types for 'clusters' of 

paraparticles whereas the eigenvalues of the particle 

permutation operator do not. (45) 

Hartle and Taylor believed that it is possible to 

have basis vectors for a triangular representation 

of S3 which are eigenvectors of P2 with the same 

eigenvalues. (46) However this is not true, as our 

45. It can be shown that the basis functions chosen 
by Hartle and Taylor are not eigenvectors Of P2' 
it is possible that their basis vectors were 
misprinted. This does not affect the substance of 
their arguments. 

46. Hartle and Taylor op cit p. 2048 
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results above demonstrate, and as one can prove in 

the following way. 

It is well known that any group can be separated into 

classes of elements which are conjugate to one another. 
(47) Thus the permutation group S3 separates into three 

classes, 1<1= JPJ 
) 

f<, = Jr,, r,, (, I 
, 

K: s F4> 
having the cycle structure (1 3 ).. (12) and (3) 

respectively. 

It is also well known that the traces of the matrices (1A) 

are invariant under a change of basis (i. e. 

a transformation of the co-ordinate axes). With regard 

to group representations the trace PCý6R) is called 

the character of R in the representation D and is 

denoted by C C)e,: c rz) It can also 

be shown that conjugate elements in the group always have 

the same character (48). Hence when the group is 

des6ribed by listing the characters of its elements in 

a given representation, the same number is assigned to 

all the elements in a given class Thus the re- 

presentation will be described by a set of characters 

where V is the number of 

classes in the group. Thus S3 will be described by 

three characters, 3 for the 

symmetric, triangular and anti-symmetric representations 

respectively. 

The characters of a group can be deduced using 

Frobenius's theorem (49) or by applying graphical 

methods involving Young tableaux (50). For S3 the values 

of the characters for the three classes K, 
, 

r-2.. K3, are 

given in the following character table : (51) 

-r A 13 t-iýF 41 X1, 
I 

K, Iz 

KZ Io `" 

Ks i-iI 

47. Hammermesh op cit p. 23-25-, Arrettd, ýx p-3zs. 
48. Ibid p. 79; A pFe#tcL-x p, 340 
49. Hammermesh op cit p. 182-197, 

50. Ibid p. 201-208 ; Appe-, 44. x p, -3426 

51. Ibid p. 186; Also Yjargenau and Murphy op cit p. 100 



165 

Let us suppose that , and 
(-ý 

are basis functions 
supporting an irreducible representation of S3 which 
transformsunder the triangular representation. We 
assume that f, and rz are eigenvectors of P2 with 
the same eigenvalue, +1 say. Thus =ýj and F CZ 

'i- So the matrix representing P is 10):: P(P 2 
(0 

The trace of this matrix is equal to 2 i. e. Tr-1)09, 
.)=7 

42 

But by our assumptions D(P 
2) 

is related to the 

triangular representation by a similarity transform- 

ation which does not alter its trace. Thus, since 
P belongs to the class K we have 22 

43 
A I-0(Q -_ ; I('r 

Clearly 42 and 43 contradict one another and thus 

it can be concluded that r-I and cannot be eigenvectors 

of P2 with the same eigenvalue. 

Since D (P2) can always be diagonalized and the 

eigenvalues must be different and since P2=1. the 2 
eigenvalues of P must be + 1. Hence cpý' 

.X) 
can 

which has the always be brought to the form ( 
C? 

correct trace of zero. Then Fx (I and (9; 
x 

rz 

Hence F, is symmetric under exchange of particles 

1 and 2 and 
CA is antisymmetric under this inter- 

change. This is indeed the case for our basis functions 

as we have seen. 

Paraparticle theory came under attack by Steinmann (52), 

following a result suggested by Paulif (53) on the 

grounds that it was inconsistertwith the Cluster 

Principle. This states that systems sufficiently 

separated in space may be treated as isolated systems 

or, in other wordsf that the presence of particles on 

Mars, sayf should not affect the results of experiments 

performed on Earth. 

The argument runs as follows* Steinmann considered 

a three particle system consisting of a two particle 

cluster on Earth and the other particle a long way away, 

on the Moon. He stated correctly, that the general 

triangular state made up from one-particle wave functions 

will appear to an Earth bound observer as a statistical 

52. o. Steinmann (1966) p. 755 
53. W. Pauli (1958) p. 110 
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mixture of boson and fermion two-particle states (54). 

However, he then went on to argue that the observer 
can make a measurement on the two particle system to 
determine its symmetry type and that such a measurement 
changes the observed two-particle state to either 

pure symmetric or pure antisymmetric. Thus, he claimed 
if the history of the whole three particle system is 

considered then the measurement has introduced a 
distinction between basis functions which are supposed 

to be indistinguishable. Hence the inconsistency. 

In other words the argument is that if the symmetry 

type of particles 1 and 2 on Earth, when 3 is on 

the Moon, is measured then [I and 
(z 

can be 

distinguished, yet they are supposed to be indistinguih- 

able since they support the same irreducible represent- 

ation of S 3* The logical structure of this reasoning 

can be illustrated thus 

CP _ý; ) 
C (_*V Aj 

13 L&C- c P. 
(IV P -; ý> ( AJ AýS 

p 

A) 
L 

where CP denotes the Cluster Principle, 4 the triangular 

symmetry of the functions and IP denotes the 

Indistinguishability Postulate. 

The basic fallacy inihis argument is the supposition 

that the symmetry type of a two-particle cluster is det- 

ermined by the eigenvalue of P 2* It is assumed that 

because P2 has opposite eigenvalues for tit and 
F,, 

_) 
for example, that the symmetry types of two-particle 

clusters are differpt for and However, this e- 

is not true. It can be shown that both Fit 
and zi 

give sYmmetric type functions for two-particle clusters 

and. furthermore that and both give anti- 

symmetric types although they also possess opposite 

eigenvalues for P2' 

54. It can be shown that a particle which has three part- 

icle states corresponding to the triangular Young 

diagram must have both boson and fermion-type two 

particle states. See Hartle and Taylor op cit p. 2048 



167 

The three particle wave function can be written 
I CL 

I 
az Cks > where a, and 

OL, are functions localized on Earth, say, and CL 
localized on the Moon. With Subscripts 1 and 2 as 

C0 - the Earth coordinates we have ,- 
CLI 0 

Operating on this wave function with P's gives: 

Cýj ajýks> a- o- CL. 3> 
CL C)'I> 0, Ck t Z- 7- A- 13 

Cl- a CL 3 

CJ C(s> (D 

Considering now a state + 
where 

OL 4- Xz 19Z 4- #t X6 PG Cý clý- C, 
7'ý7 

then the probability distribution for finding one 

particle localized at I, one at Z and one at 3 

_IP 
Ppj7- 

4 -4 _r 
P1 7- is co C- Z 

-) 
3) 

+ is now set equal to our four basis functions in 

turn and the probability distribution for the case 1 

is considered in each case. 

Thus setting 4-Y equal to using the expression 

for this function in terms of the P's and Table 1) 

A 
(2 1', -t 

2- 197 
we obtain ; -tL 

P, 

ýp -7L, 3 ( ; Z- P, -t. 2 e- - (, q - e, - P, - e, ) 
JI (2& 

e3 -f Z e��i- - pl - p(7 - Cz - e4 ) 
pi 

4Z 
e(, 

- 

Z-AT3 

2- 7 
ýs- 

) 

For the case 1 we obtain 

C, NP = -L z -a 
( 2, 

_ 
I' +ZP, ) 

f 
3 

( 
. 
2, r, +. 7, pz ) 

PS ý= 4IJ-3- (-P, - P7- ) 

C6 

is 
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The probability distribution is therefore 

12- 0,3 i Z- 16(1 Ctl ý- a( 
a7 

.> 

Integrating over co-ordinate 2, ( as our Earth bound 

observer does not take into consideration the 

particle on the Moon) then gives the two-particle 

probability distribution 

(ýJ c i) A-) CL Z+ 6L ,L1 1 CL 1 Z- Z 

which is clearly symmetric. 
I 

Repeating the whole procedure for CZ-( 

one obtains the probability distribution for case 1 

c, %. ) c(7, ) =1 al, a 
'- +- az 

2 Z- 7- 1 

which again is symmetric. 
ý, P 

=: 
(0 tl 

With M and 
ýLzý 

one gets 

coo, k) = jala' - a' a'lz- o_^j woz) zI al, e, -al az(, z 
Z_ zIz( 

which are both antisymmetric distributions. 

We conclude that for two-particle clusters 

and give symmetric distributions 

whereas and both give anti- 

symmetric distributions. Thus measurements of the 

symmetry type of two-particle clusters distinguishes 

not between rill, and 
fzj 

as Steinmann 

claimed, and which must be indistinguishable as they 

belong to the same irreducible subspacee but between 

and which is perfectly consistent 

since these functions belong to different irreducible 

subspaces. 

As Hartle and Taylor said 'The essential point is 

that the measurement carries the three particle 

vector from one irreducible subspace to another. There 

is no question of its distinguishing between vectors in 

the irreducible subspace ... 
Esuch as and 

(, 
ZI 

which are certainly indistinguishable'. (55) 

0 

55. Hartle and Taylor op cit p. 2048 
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Similar results can be obtained using the T's as well. 
These commute with the P's i. e. ERý 

, 
23 =0 

which means that if we consider a state where where 
Z3 P, + C4,2- c4c ? 

the nF j 4.1 - 
Thus if * is an eigenstate of 

P2 then P, is also an eigenstate with the same eigen- 
value. Taking 11 for example then this implies 
that as is an eigenfunction of P2 with eigenvalue 

) 
(2 +1 then F, ýjj PZ (11) 

6 
C11 II* 

61 . will also be eigen- 
functions oXwith eigenvalue +1, i. e. 

IAf (06 (v / =+ .1 

-7 rX r, A. 

FII 

ý) 

(9; 
7- 

(6, (11 

With our choice of 

wave functions CX(I L 
.) 

OL 
_) 

OL suc that a and OL Tz 

are localized on the Earth and a3, is on the Moon, 

the only terms in PZ etc - which need to 
I be considered are those involving P, ck. 

IZI 
an(9 CC, C'___ý_C1_3> Furthermore the4results 

above mean that etc. must Pi FIIP 
P, I Cý 

7- 3 ?_T 
involve 

I Cýt Ck., ý; o and (p, Cý, OL, Ck, -; -, ' in 

the symmetric combination C P, -I- acL "z-_ cc _', > 

Hence the two-particle probability distribution 

must be a symmetric one, as we have already shown. 

Similar results are obtained for the other three 

functions the symmetry Ftl ;, FIL 
) I-Z. 

of is determined by the eigenvalue of 

P2 if P2 has eigenvalue +lj as it does for and 

then 4jCj,; _) is a symmetric distribution. If P2 has 

eigenvalue -1 as it does for 1. and then cO C F 
ZZ 

is an antisymmetric distribution. 

These results support our previous conclusion and 

reiterate the point that the eigenvalues of P2 serve 

to distinguish the symmetry type for clusters whereas 

the eigenvalues of P2 do not. 

one can generalize these conclusion and show that if 

paraparticle theory is to be consistent with the Cluster 

Principle then the particles must possess states 

associated with whole families of different permutation 

symmetries, according to the following rule : If a given 

particle has N-particle states associated with a given 
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Young Oiagram then it must have (N-1)-, (N-2)0 
... 1 2- 

particle states associated with all Young diagrams 

which can be obtained from the first by successively 

removing squares. (56) This implies that all the 
infinitely many possible types of paraparticle would 
have both symmetric and antisymmetric two-particle 

states. In other words they would behave in pairs 
like bosons and fermions, as we have shown. 

3.2-3. The Statistics of Paraparticles 

Although the statistical behaviour of paraparticles 
has been the subject of some research in the past it 

has obviously not received the same degree of attention 

as the conventional Bose-Einstein and Fermi- Dirac 

Statistics (and with good reason as no paraparticle has 

ever been found to exist in nature). It is our 

intention here to examine a certain aspect of this behav- 

iour and to consider some of its consequences. 

We have already noted the fact that transitions 

between states corresponding to subspaces of different 

representations are not allowed, (there is a superselection 

rule existing between such states), whereas transitions 

between states corresponding to subspaces of the 

same irreducible representation are possible. We shall 

now demonstrate that although there is no superselection 

rule imposed on these states the latter transitions 

cannot in fact occur for 
-some 

two- 

body collisions. 

Such transitions may occur 
("04) 

for three-body collisions4however, since the basis 

vectors we have chosen are noteigenvalues of T30 

These results have important consequences for both the 

statistics of paraparticles and the question whether a 

particle of one statistical type could be transformed 

intp one of another type. 

56. Hartle and Taylor op cit p. 2050 
6a. tk. ýe 

ii- ý L. C, 'LS 0-&4AO. j e- 
ýoJ co e-SCOAS L-)e Me-CLA C-OU'L'-s' 

eVtýe-e- 6okes_ 
641 Ae-c-e!; SO-0-I!, 5 ý, 41ck 

I L-o-vteoL&s 
v 
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It is assumed al fZ t/ 3? / 
that all states a', > 

.) 
at) CL 

z-) Ck 3. ) 
0 are 

JL/ orthogonal and that ? CL OL ýz', CL are wave 
functions localized on the Earth, whereas CL- CL 3/ 

3 are 
localized on the Moon. I and 2- are then the 
Earth coordinates and the Moon coordinate. 
According to the Cluster Principle terms of the form 

CL I 0ý1 0 t- CL, 1 0... 1 are then identically zero, i-e. 

there is no overlap between the wave functions localized 
on the Earth and Moon respectively. 

The first step in our demonstration has already 
been dealt with on p. 14ý', where we showed that any 
symmetric function of the observables, Q, can be expanded 
in terms of the T; 's- Thus, 

< 
(2 

; 55' 
i. e. 

where CC: <F") opcýj and the sign means 
an equation in the restricted sense. 

This if Q is taken to be some interaction energy V we 
have 

V P, 

or 44 C Pý 

Thus the interaction energy V is equal, in the restricted 

sense of course, to a linear function of the T's, with 

coef f icients C4ý given by <V Pý 1 

We now assume that there is only a t- wo - ýo C, force 

acting between the particles (57) which means that the 

interaction energy V will ccnsist of s sum of parts each 

referring to only two particles. This will result in all 

the matrix elements Vi vanishing, except those for which 

Pi is either the identical permutation or simply an inter- 

change of two places, i. e. P1=P1 or P 2* 
Thus for two body forces V can be written as 

Vj 
z -4- 

Vz 
, 4- Vi 

-S 

where the subscripts refer to place interchanges. Our 

expression 44 will then reduce to V4 -Vlrs Pl_s 45 

57. Such as the Cotomb force between electrons for 

example. 
A 



172 

where v 
rs 

is the matrix element referring to the inter- 
change of places r and s occupied by the particles. (58) 

It should be noted that this assumption implies that 
we are only considering first order perturbation terms 
anO thus the eigenvalues of 45 will give only the 
first order corrections to the energy levels. 

Given this assumption we can now write 
our expansion of V as 

/, a V 

V C, P, 4- Cz- (, 2; 
L 3ýC 4- C-s- 

where Pl, P 2' 'Of P6 are the place permutation operators 
defined above. We have to show that certain terms in 

this expansion are zero. To do this means looking at 
the coefficients Cz i. e. o-L- the first term in the product 

V Cý >< 19: > 

as it is this that will in general be zero for ce, -eaAý, i 

In the second term, for any value of T1 that might 

give us zero we can always find values of Pý and Pt 

that give 1. In other words , there is no generality 

to be had from the second term because of the particular 

nature of PI- and 

We suppose that V is some suitable short range inter- 

action such that Zt cannot reach to the Moon and thus 

cannot induce transitions between the eigenstates a3 

and a3' of the Moon bound particle and eigenstates 
II/Z -L/ 

4X o, ý, 6( 
,a of the two particles located on the Earýh- 

Thus all interaction terms containing either a3 or a3C tk, 9- 

3 CýJlvj I 4aý, WV, cý, are zero. The only terms to survive 
'S 

0 
-N3 1 

are those for which both (aý and a-" are 

outside the interaction term, which means that the only 

58. We are essentially following Dirac at this.. point, 

although out demonstration will be more general since 
he ronsidered. only the same state funrtion 

See Dirac op cit p. 218 and p. 224. 
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terms in 46 which are not zero are those containing 
interaction terms of the form V12 between 6L' aý a',, ar- 
only. Thus the only coefficients in our expansion 
which are not equal to zero are c1 and c2 associated 
with P1 and P 2* these being the only ones with inter- 

action terms V 12 of the form just described. 

As an example we shall consider the coefficient 
C3 in 46 associated with P3 

v 193 1 
IIVV 

P3 

olZ 
d3 

Expanding V, I and we have 

CL33 + VZ 
3 

(21 cl 1, a2 0-ý d) Sý 

S CLI CL 

1 7- -1 dI z4(V, a Ol Ck 
SS 

ot; a 

Sýal, 
a. I "'t V, , 0"- Cý ) CA Id 7- d3 

--t- 
a t-a-3, (o,, '-" a., "' V, , a, QL dI cA Z- 

d 
'3 3 

/"4- Z. (c 
. tl/'* 

'S (0- VI-S cL' Ct3l Z- 
J3 S 

Oý CL7- 
/ 

CL3 3-- 

S CCL I/ -t 3V OL'2 *aý 
CL I 

dz d3 

S Otl t# 3 z1f 7- /* 
, 6L , a. az- Z- a3 0- 3 Ct I Cj Z- 

J 
-3 -f 

SS3 Vl_s CLZ- 33-- 

Nowconsider each of these terms in turn. In the first 

one has 

I/ -k 's viz it 2- 
CL Lz 1 7, 

C- 

but V is short range and cannot connect c0, anct eJ. -_ 
. 

Thus V cannot reach between CLS and. CL Z 
2- so this 

12 1 
term is zero. In the second term we have 

/* 
, Z. s a 

Again the short range nature of V means that V-23 

cannot induce transitions between CL4 and GO so 
A3 

this term is zero. Finally in the third term we have 

6L3 CL 4; L V1 
3 

a3 
3 3/ 

which again is zero as V, -, cannot connect OL, with aj. 
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Thus all three terms involving V,, #Vz_5 , Vj-S are zero 
and so 

similarly it can 

and C6 are 

However C1 and. 

fall outside the 

finite non-zero 

for example, the 

be shown that the coefficients C4. Cf 

all also zero. 

C2 contain terms for which both aýcLvl 0-3 

interaction term, thus giving 

values to these terms. Let us consider 

coefficient C2: 

c/i r'4- di jýý jý 
Expanding gives 3 YSýa, a ai C V, + V, 

cý o, VP a 2 

1 

mf ?-/ rf a-d Z- ZZ, a, a. c 
V, 

2 4V 
,? -, 

ý, Vr) o, ý '-, cj, 3 

Cov *a, (a , "'fa z /, f V, , CL Ia -z 
IIIC, 

Z- J- -f- 

IVýaýj* (021* 3? I J- 

X3-- _4 
M Cý 

,za. 
VZ-3 Ctl aD 01 %ý ?-j 

-3 
7- 11- 1 1/ aL CL2 V,: s a cL' )diJz. d3 

cO, (a I /-*-az- V, -, a' a" id -z- d3 4- ýS CL I Z- z- 

t* 
,4 Cj, - 

j3 -4- V, 3a5, "* a') - cc,, CL CL 2- 

aý. qaz_ 
z- CL4'- 

V7 
aý31*, CL37 I C, Z- 3 

The first of these three expressions contains the 

interaction term 

az 7- Z- 

It can immediately be seen that t is is non-zero, as 

the short range nature of V does allow V 12 
to induce 

I tý- ZI -if ZI transitions between Ct, and az or CL I and a, 
_ 

However, the expression as a whole can only be finite 

if St - 60 This follows from the orthogonality of Ct - 
these functions, i. e. 

3 /* 
CL CO 

CIC CJ 
J3 

3/ 
31 aý 

Thus a and cL3 must not only overlap in order f or 

C2 to be non-zero, they must in fact be equal. 

The second term contains d, a' V, ' 
3q 

Ck I which is zero Z C-IL-3 :S 

as V 23 cannot connect a. 
- 

with CL, or a z_ with a,, 
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In the third expression we have 

OL 
114- Z \4-3 
1 0-1 33 

but again the short range nature of V prevents V13 
from inducing transitions between ctf, 

/*and 
or 0, 

and a3 , so this term is also zero. 
We thus obtain 

C CL 
S/ 

= CO 

It can be shown similarly that the only term in C, 

which is finite is that containing V 
12 

and then only 

if Cý, = aý - 
Thus we have shown that C, and C2 are both non-zero 

13CC and f initeo but only if d =a , and C3. C4' 5' 6 
are all zero. The expansion given by 46 is therefore 

cut-off above C2* We therefore have 

F' 
,z 47 

48 Thus V commutes with T2" written as LV>P; L 
eke- 

and therefore, for the particular case ofýtwo-body 
Lot I ei-CLS C4., - S szo A -7 collisions, between the particles, there can be no 

transitions between states which possess opposite 

eigenvalues of the place permutation operator P 2* 
Since the two subspaces of the same triangular 

representation are spanned by two sets of eigenVectors, 

and respectively, which FI& 
zz_ 

- 
possess opposite eigenvalues of P2,1 we conclude that 

transitions are forbidden betweEn states corresponding 

to these subspaces. In other words, given our 

conditions there can be no transitions between states 

corresponding to equivalent irreducible representations. 

Thus our demonstration is complete. 

We shall now consider the bearing this result has on 

the possibility of a particle changing its statistical 

type. This was first suggested by Pauli in 1927 (59). 

He considered the collision between an electron and 

some N. -particle system and concluded that such a 

collision could induce transitions between states of the 

system corresponding to different irreducible represent- 

ations of SIV . Thus, for example, a system of bosons 

59. W. Pauli op cit p. 112-113 
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could be transformed into a system of fermions via some 

mixed symmetry state. 

We note, first of all, that the existence of the 

superselection rule, separating states corresponding to 

subspaces of different representations of S. 4 , means that 

transitions induced by interactions between the N-particles 

cannot occur between states corresponding to the 

symmetric and anti-symmetric representations (60), for 

example, nor between the symmetric and triangular 

representations. No such rule exists for states 

corresponding to equivalent representations. As we shall 

see directly transitions between these states can, in 

general, occur. 

The relevance of this circumstance to the Paull 

problem is as follows. If the third particle interacts 

with the two-particle s. ubsystem, transitions between 

bosonic and fermionic states can occur, as Pauli 

suspected. Haoevz_r 
5 

if the third particle is located 

on the Moon our discussion of the Cluster Principle 

above confirms that its mere existence cannot produce 

such transitions for two-particle systems on the Earth. 

We now proceed to show how the general three-body 

collision can produce transitions between equivalent 

representations. 

60. E Wigner (1927) p. 883 and W. Heisenberg (1930) 

p. 156 
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The demonstration proceeds as before but now 
II/33/ CL a, 

) CL, 3 and 6L, are taken to be the wave- 

functions localized on the Earth with GLý,, a, ' on the 

Moon. The Cluster Principle then dictates that terms of 

the form CA I CL Z. or 3 OL Z are identically zero. I1 0-1 1 
our result from p. 14-S- is obviously still applicable 

and so the interaction energy can still be written as 

where the equation is taken in the restricted sense. 

If V is again short range then all interaction terns 

containing either a or a Z-f i. e. of the form 

or CL2/ 
V, 

2_ a' are zero. Thus the V1 
2 CLI-2-- CL 1 7- 1 

only terms of the expansion to survive are those 

containing interaction terms of the form V13 

between OL' al/ 6L3 0- 3/ only. The only coefficients 
11) ý> > 

not equal to zero are therefore and C3 

associated with P and P., 

ConsiOer for example the coefficient c2 associated with 

p2 

CA. CL IV rx 
ýfscz 

,I 6lLlA-6L31-'-(Vi7-4 V IV di dz 
z1 'Z3 

Expanding as before we obtain 
I Z- 3 

a Viz + 
V2 

s4 
Vc, ) oLýo, 

- 

A, 

10-3 

Ll (a I/,, aa 
d2. J3 

a3, " a. I- 
I /t- 2 az- /* Ik 

.. 
) dI dZ d3 a, a, az, 

a! 7 

z I* / -i-CA VI 
3 a3 I -*-Cl 33 )d, C) 

-Z 
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Considering each term in turn the short range nature of 
V implies that 

.aIi 
a' 

V, 

.a1 2- a Z/ f=0z (* (/*- v 3+ 3 
C) IIzaz CL -z Z: 3 a, a, = 

and (/#- U3 CIL CLZ 1*3 CL CL I133 

and c3 however contain terms for which both 

aL and atý fall outside the interaction term, 
giving finite non-zero values. 
Expanding c3 gives 

Iq- Z I* t 
OL CL' C V12 4 VL3 

ý Vtj) CL 0, 
J. 

3 Ck, 
21 2aZI 

CL CL az (4 did 
2- 

J3 
-4- 

ýS ý 
(ý01"* 

'3 (OL"CLI 

3 (CA a kZ_ 
/* 

CL 
I 

a, aý \12 3 

-s a, 3)di z- 
d 

LI 
tjý 3 CL'3 a"") J3 

CL I 

and now 14 3 \/. ' "* is non zero. Proceeding as CL 1 13 CL 3 6L) 

before we therefore obtain 

C- (. ý'3 48 

Since we chose our wavefunctions to be eigenfunctions of 

P2 we could conclude from our previous result 47 that 

transitions could. not take place between states 

possessing opposite eigenvalues of 92 No such 

conclusion can be drawn from our result 48 above 

because our wavefunctions are not eigenfunctions of 

P 

This can be seen by referring back to Table 2 on p. 162- 

As we have noted 
ý11 

can be written in the form 

F6 

AJS 

Using Table 2 we have 

P3Il, 

+z-? - --1) 
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Al so 

anO 

Similarly and 
f/ 

are not eigenfunctions of 
P,, either. 

Thus our two particle- cluster on the Earth is in 
this case not bosonic or fermionic. Of course, we 
could make it so, as it was before, through a unitary 
transformation which would make the wavefunctions 

eigenfunctions of P,, However, they then could not 
simultaneously be eigenfunctions of P2 since P and P2 
do not commute. 

We therefore conclude that, with three-body collisions, 
transitions can occur between states corresponding 
to subspaces spanned by the vectors and z, and -Z 
anO through the collision of particle 1 with 

particle 3. A In this case states corresponding to 
et 0' and E, /" 

can be connected. Thus in a three- 

body collision involving particle 3 colliding with 

particle 1 followed byZ,, the first collision can take 

the particles from a state supported by one subspace 

to a state supported by another whereas the second 

can induce transformations between states supported by 

the same latter subspace. 

These results obviously have important consequences 

for the weighting assignments in the statistics of 

paraparticles. The statistical weight of an arrangement 

of particles arises from the number of ways in which 

that arrangement can be realised. Thus the arrangement 

represented by 10101 is given weight 2 in Faxwell- 

Boltzmann statistics, as it co responds to the two 

possible microstates 
6L 1 16 1 

40 
Z_ 

6 
and 

Ck 
k CP 

I 
0)_ 

6 

but only weight 1 in Bose-Einstein and Fermi-Dirac 

statistics since in both the latter there is only 

one possible microstate as particle permutations are 

not observable. The sum of the weights for a 

particular kind of statistics gives the total number 

of possible arrangements of the particles for that 

kind of statistics. 

cc., le- i o4c a ot LO L 
0ýtý L-kg_ sto-te- cL' &AJ_ (9, j. 
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For two particles distributed among two states the 
statistics are no different from ordinary quantum 
statistics, (parabosons and parafermions of order 
2 exhibit the same statistical behaviour as bosons 
ancl fermions respectively). Thus to bring out the 

extraordinary nature of parastatistics we shall 
consider three particles distributed over three states. 

Our procedure is as follows. The central question is 

whether or not transitions are possible between our 
initial arrangement and some final 

arrangement. The statistical weight given to this 
final arrangement will then depend upon which of these 
transitions are allowed. Although any given 

arrangement corresponds to two possible states repre- 

sented by different subspaces of the same representation 
(e. g. EL. ' and it is not necessary to consider 
transitions from both initial states since we would 

obviously obtain the same results whether the initial 

states are represented by subspares spanned by ri( 

an(9 or by and Also we need only 

consider one vector out of either of the above two 

pairs since there are no transitions within a subspace. 

Thus we shall represent our initial state by 

and the final state will be represented by the vector 

obtained from this by setting certain wavefunctions equal 

to one another depending on the final arrangement 

considered. (of course the subspace representing 

the final state is actually spanned by two vectors 

obtained from and 
Fxj We recall that pit is 

given by 
1 2- 'S I -z- -S 3 

cýýt -IcLaa-;; ý icL_cLd*, > CL CL -Ia ?_ CQ; ' 2, Z I (I- Ct_ ct; > +, Z I o- a, a ý> -I, _ý "S 2- 1 Z3 1311 

III 

/'AS I Z_ 3 ;LI :S1 2- 

The first states to be considered are those 
a 

corresponding to the arrangement aý 
i. e. one 

on 
ionsa (aý ano aý particle in each state. The wavefunct 

are then all different and the derived function is 

simply the same as ril 
- In this case, with three- 

body collisions as we have seen, there is the possibility 

of transitions occurring between states corresponding 

to subspaces of equivalent representations, i. e. 

between states represented by and giving a 
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doubling of the allowed states and hence also the 

weight. Thus in this case a weight of 2, rather 
than 1, is assigned to the arrangement. 

With the arrangement given by 
M. 

i. e. all 

three particles in state a'. the three wave-functions 
are all equal to one another, thus a' -_ CLz-= CL 

I 

The derived function is then 

41 Lit C" Cý 0- 
'W -Iý afiý 11 4 Mid ,I CýCýai> -i Cý - _16ý 

= (9 Transitions to the final state represented by this 
function are therefore not allowed and weight 0 is 

assigned in this case. It can easily be shown that 

a similar result holds for the arrangements given by 
Fj 

and 

I. 

With the arrangement we have aa and 

the state function for the final state is given by 

CX2ýý Cx - 
'4';; 

X. z 11 

2- :S313 2- 

ý 

S 6A&IL f i CL 

Z_ 4 
Cýj C 

2- 
CL CL CL LcL. 

L; > d- c, - cL, -;;,. 4zI 1- 3 Z. 

0 
F 

In this case there is no doubling of s atesAand 
Qs 

there is only one set of transitions from the initial 

to the final state. Accordingly weight 1 is 

assigned to this arrangement for three-body collisions. 

By continuing in this manner with the other possible 

arrangements of three particles over three states we 

obtain the table of weights shown in Table 5. We 

have included for comparison the weights for particles 

obeying Gentile's 'paragas' statistics (61) In this 

theory the average number of particles in a group 

of states is dependent upon a parameter d giving the 

maximum number of particles which can occupy any 

given state. There is therefore simply a form of 

generalised quantum statistics with F-D and B-E 

statistics as special cases, obtained when d=1 and 

d= oo respectively. In particular there is no 

r1oubling of weights due to transitions between 

61. G. Gentile (1941) p. 10 
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subspaces supporting equivalent representations as in 
our case above. Thus when d=2 the arrangement 

Ej 

is given weight 1 along with all the others, except 
those with all three particles in one state which are 
assigned weight 0, and so we obtain the set of weights 
shown. 

Thus we can see immediately that the statistical 
behaviour of paraparticles is not the same as that 

exhibited by a 'paragas'. Table 5 demonstrates that 

the total number of allowed states for the former 

is greater than for the latter. From this table we 

obtain Table 6 which gives the weights for the various 
distribution numbers Aal 

, 
Aa' 

, 
/Ia3 

, giving the number 

of particles in the states a'j ctý and qý Again 

we see that for one particle in state al a and cO 

respectively the paraparticle weight is different from 

that of the paragas. This table can in turn be used 

to give the probability of finding a certain number 

of particles in a given state by simply dividing the 

above weights by the total i. e. by the total number 

of accessible states. 

This gives the set of figures displayed in Tables 

7 and 8, which clearly illustrate the differences between 

both paraparticle and paragas statistics and 'ordinary' 

quantum statistics and between paraparticle and 

paragas statistics themselves. Thus comparing paragas 

ane 'ordinary' quantum statistics we clearly see the 

so-called 'intermediate' nature of the former. For 

example for paragas statistics the probability of finding 

one particle in any state is greater than for B-E 

statistics but less, of course, than the corresponding 

probability for F-D statistics, (and also less than 

the probability for classical lvý'-B statistics). To 

give another illustrative example the probability of 

finding two particles in any state is greater for 

paragas statistics than for any of the others, including 

paraparticle statistics. Thus in this limited sense 

particles obeying the former show a greater tendency to 
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to cluster together than bosons do, although this is 
not true of course for three particles in any state. 

If we compare our paraparticle statistics with 
classical and ordinary quantum statistics we arrive 
at similar conclusions, not surprisingly. Thus the 
probability of finding one particle in any state is 
greater for the former than for both B-E and Y-B 
statistics, but less of course than the corresponding 
probability in F-D statistics. Again, the tendency 
for there to be two particles in any state rather 
than one particle in each state is greater for para- 
particle statistics than for M-B or B-E statistics. 

The most interesting comparison, however, is 
between paraparticle and paragas statistics themselves. 

We notice, first of all, that the probability of 
finding two particles in any state is greater for 

the latter than fcr the former. On the othbr hand 

the probability of finding one particle in any of 

CX k) CLZ- or CO and also the probability of finding 

one particle in each state, is greater for para- 

particles than for paragas particles. Furthermore 

the probability of finding at least one particle 

in any of the three states is thus also greater 

for the former than for the latter. We conclude from 

these results, which arise as a conse ence of the 

doubling of the weight assigned to 
I- 

noted above, 

tlýat paragas particles exhibit a greater tendency to 

cluster together than paraparticles do, or, conversel 

that the latter exhibit a statistical repulsion as 

compared to the former. Thus as we have said, the 

statistics of paraparticles is not the same as that 

for a paragas. 

Finally, to complete this section, we shall turn our 

attention to the question of whether a theory of para- 

particles can be embedded ino-theory of fermions or 

bosons. 

A trivial answer can be given by taking the Kronecker, 

or inner product of a representation with its conjugate 
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an(ý using the Clebsch-Go on coefficients to give 
fermionic and bosonir represent tions. For our purposes a 

4 this can be done entirely in terms of the characters 
of the represen- 

The Kronecker 

D 
CY) 

is given by 
tt-lu< >9 RIk., 

4t CR) 

tations involved. 

product of the representations D CAk) 
and 

eW", 

-( PCAk) 
XL 

(", k) 
-V) 7-7_ 9(y? o 

C 

( (Z) )ýýz 
ýt= 

12 Pý. z c P, ) 
4 CO 

The reduction of this product representation is then 

performed by 

(Ak x V) CAA) 

using,. first of all Zc(z, ) = 
(, ")d 

(where the XIs are the group characters), to compute 

the character of each element in the product represen- 

tation and then using 

Ck, 
o 

(63) 
51 

to find the number of times each irreducible represent- 

ation is contained in the product representation. These 

two steps provide the coefficients in the Clebsch- 

Gordon series 

(64) 

19 

Alternatively the two steps can be combined and 

> 
c rIZ) 

C-Y) Zc :; - 
,/ 

(cr) 
(Z) (65) C4- 

CL 

used. 

Let us now apply the procedure as outlined above to 

the symmetric group S3* The character table for this 

group has already been given on p-164t - Using 50 

62. Hammermesh op cit P. 128 
63. Ibid p. 105 , ApfeAci&, x 64. Ibid p. 148 
65. Ibid p. 147 

52 
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we obtain the following characters of all the product 
representations 

A 0"), ( 13 )X CA (2) 1), COX (3) 
, 

(3 )x Czj 1), C; Z, i) xý, 1) 

13) Q-) 1) 1 4 

TA lSk, 6 41 
- 

Most of the results can be obtained by inspection. It 

should be noted that the product of two one-dimensional 

representations is a one-dimensional representation and 

must be irreducible, and also that the product of the 

representations (2,1) with any other gives (2,1) 

again. 

Weare interested in the inner product of two triangular 

representations i. e. (2,1) x (2,1), which is the only 

reducible product in the table. This is a four- 

dimensional representation and the sum of the absolute 

squares of its characters is (4) 2+ 
2(l) 

2= 
18. From 

AA 

we obtain ý_; 2- 
W- 

C(AA 

.1 
5_ý a, 

This has the unique solution 

so 
CX(J-5) = C; L(j) GL(Z)1) 

53 
(2 

? 1) X C21 1) C1 3) 4- (3) + CZ 0 

Alternatively using 51 we have 
J- (I) + C-2 Cj) (0) Cýl S) 

CL cs) ra 
[-( 1) (4-> C 1) -1- CZ )CO C 1) -t 0Q )I 

CL _L EC C 4) C ? -) 4- 1C 1) C- (3) COP '(0) 6 

which gives the number of times each irreducible 



188 

representation is contained in the pr, 
This gives the same result as before, 

Cz" 1) XCz"I)=CI 'I) f (V 

of Young tableaux: 

[FX FzH+ 
This result arises from the fact that 

conjugate, i. e. 

duct representation. 

namely 

or, in terms 

+ I-T-1 
FF 

(2,1) is self 

+C 3) + 54 

Thus we conclude that the inner product of the triangul- 

ar representation with itself gives both symmetric, (3) 

anO the anti-symmetric (1 3) 
representations. 

Although this method is straightforward, it does not 
lead to general formulae. It is known that the Clebsch- 

Gordon series gives a completely general result for the 

rotation group (66), and it is interesting to see 

whether there exist similar general formulae for the 

symmetric group. These will be more complicated because 

of this grou]ýs more complex structure. A straight- 

forward procedure for the general reduction of inner 

products has been given by Murnaghan and Gamba (67) and 

the formulae useful for our purposes is 

CA- 1) XC /L 1) : ý: ý C "'0 4- CA-ý 1) 4- C "L-7-), 2-) 4- C/L -7,? 155 

For n= :3 thi s give s (Z) QX( z-) 1) -= 
(Z2 lý -f- 

ýI 
3 Z) -f 

(13) 

Again it can be seen that we obtain the symmetric and 

anti symmetric representations (68). 

Now we have shown that the inner product of the triang- 

ular representation with itself contains both symmetric 

and anti-symmetric representations. Applying Murnaghan 

and Gambab method leads to the general result that if 

ýAt) and C-ýP) denote representations then the product 

jC4k)xC-9) contains the identity representation once if and 

only if (1A) -= and (1A) X C->>) contains the 

alternating representation 
(I') once if and only if 

66.1 6jct p. 361 ff 

67. Hammermesh op cit P. 253-256 

68. These results can also be obtained using graphical 

methods. See Hammermesh Ibid p. 257-259. 
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IV 
(69) where (V) is the conjugate of (Y) 

In other words, the inner product of any representation 
( OA, > n) say with itself always contains the 

symmetric representation and the inner product of any 
Cm,, vt) with its conjugate always contains the anti- 

symmetric representation. 

We conclude that symmetric (bosonic) representations 

and anti symmetric (fermionic) representations may be 

obtained from the inner product of representations 

(corresponding to paraparticle states with themselves 

or with their conjugates respectively. In this sense 

a paraparticle theory can be embedded in a bosonic or 

fermionic theory. The conversee however, is not true. 
4eý eAeral 

We cannoýIA gene iate paraparticle states within a bosonic 

or fermionic theory which incorporates extra degrees of 

freedom, such as spin, because of the consequent 

restriction to symmetric and anti-symmetric representations 

respectively. 

Thus, let us consider, as an example, an assembly of 

N electronso neglecting, for the moment, their spins. 

(70) At first sight it would seem that the statistical 

behaviour of such an assembly is identical to that of 

an assembly of paraparticles of order 2. However, in 

the former case one obtains certain representations, 

for example those corresponding to the situation where 

all spins are parallel, which do not occur in the latter, 

owing to the restriction that the wave-function for the 

assembly must be symmetric on interchange of 2 

particles and4symmetric on interchange of more than 2. 

Thus the statistics of parafermions of or(ýer 2 corresponds 

to the case in ordinary Fermi statistics where the 

existence of the spin parallel state obtained by neglecting 

the extra degrees of freedom represented by the spin, 

is forbidden. 

69. Ibid p. 256 
70. T. Okayama (1952) p. 523 
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Essentially the same point was also made by Wigner, 
who, noting that the number of different eigenvalues for 
the assembly corresponds to the number of different 
irreducible representations but that only certain of 
these correspond to allowed energy states, wrote 
'Eigenvalues of other representations do not correspond 
to actually existing stationary states but are forbidden 
by a principle independent of the eigenvalue equation, 
the Pauli exclusion principle' (71) 

- Thus he chose 

a set of basis functions narrowly defined as linear 

combinations of 2 linearly independent functions of N 

variables each of which can have two values. He then 
demonstrated that with such a set one can only 

generate all the representations of the symmetric 

group of degree Nf or N<4.. but that f or N>4 an ever 
increasing number cannot be produced. (72) However, 

these latter are precisely the ones whose eigen values 
eke 

do not obeyXexclusion principle and so those representa- 

tions which can be generated using these basis functions 

are the only ones necessary for a treatment of electrons 

taking into account the spin. 

This result, that one can generate all the represent- 

ations from a consideration of the spin part of the 

wave-function only up to N=4 finds its analogue in 

the theory of quarks. These can be regarded either as 

particles obeying 'ordinary' statistics but possessing 

an extra degree of freedom known as Icolour' or as para- 

Fermions of order 3. (73) By considering the problem 

of forming bound states from a para-Fermi field of 

order p Ohnuki and Kamefuchi demonstrated that only 

forp,, -, -"3 could all bound statesbe described by parafield 

theory (74). Furthermore for p=2 no fermion bound 

states are possible and so para-fields of order 1 and 3 

are accorded privileged status in the theory. The ýrs&er 

corresponds to the three triplet Icolour' model and the 

latter to the paraquark model. As regards the formal 

relationship between these two models, the state 

71. A. P. Wigner (1959) p. 128 
72. Ibid P- 139-140 
73. We shall consider this paraquark model in the 

context of the history of quantum statistics 
in section 3.4. 
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vector space of the latter is a subspace of the space 
corresponding to the general space of the former. The 
introduction of the colour index then allows a corres- 
pondence to be established between the states of the 
space of the paraquark model and certain states of 
the space appropriate to the Fermion description. These 

states are those which form singlets with respect to 
the SU (3) colour group in the latter, which restriction 
implies that the colour index is unobservable. In 

general every bound state in the latter theory corres- 

ponds to one bound state in the former, but the converse 

correspondence does not hold; certain bound states in 

the paraquark model have counterparts in the colour 

theory which are degeherate. 

Thus we conclude that any type of parastatistics 

together with some sort of 'hidden variable machinery', 

such as SU (3) will give any representations desired, 

but that the converse is not true. In particular the 

statistics of any given paraparticle theory can be 

reproduced by an ordinary bosonic or fermionic theory 

in which hidden variables are introduced (75). 

Ho, ving given the most general quantum mechnical theory 

of indistinguishable particles we shall now explicate 

its consequences regarding the individuality of these 

particles. 

3.3 Identity and Individuali: ýy in Quantum Physics 

Perhaps the most striking and fundamental difference be- 

tween classical and quantum statistics is that in the 

former a permutation of indistinguishable (in the sense 

74. Y. Ohnuki and S. Kamefuchi (1968) p. 1290. See 

also A. N. Fitra and. S. A. D/, oszkowski (1968) 

p. 1474-1475. 
75. Y. Ohnuki and S. Kamefuchi (1982) p. 353-355. 

LanOshoff and Stapp make a similar suggestion and 

give an example in which a particular para-Fermi 

model is reduced to a theory containing only 

'ordinary' fermions. P. N. Landshoff and H. P. Stapp 

(1967) P. 74-77- 
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Of possessing all intrinsic, non-spatio-temporal 

properties in common) particles leads to a new 
state whereas in the latter it does not. Particle 

permutations are not regarded as ol? servable in Q. M. C- 0 Lk 't k: k CLS 0 

as we have seen. Since eXpermut1d and unpermuted 
arrangements in classical physics is what led to the 

attribution of individuality to the particles, it 

can obviously be expected that the quantal counting 

will have serious consequences as regards a similar 

attribution in quantum physics. 

Thus the arrangement 
IoI* le I 

is given weight 
6 in Maxwell-Boltzmann statistics, corresponding to 

the 6 possible permutations of 3 particles, between 

3 states, where it is only given weight 1 in Fermi- 

Dirac, Bose-Einstein and Gentild? s paragas statistics, 

and weight 2 in paraparticle statistics as we have 

seen. Similarly if we consider the possible states 

available to two indistinguishable particles 

distributed over two distinct one-T) rticle states, then 

the arrangement represented by 
I 

a- is given weight 

2 in classical statistics but only weight 1 in the 

quantum form.. In Q. M. the two classical arrangements 
6 01 

Ze 16 
obtained through 

a permutation of the particles, are regarded as one and 

the same state of the two-particle system and counted 

as such. In quantum statistics, as we have said, a 

particle permutation does not lead to an observably 

different, separately countable arrangement. 

Historically, there we-re two responses to this 

peculiar statistical behaviour. One was to argue 

that the loss of the particles' statistical independence 

implied that they were subject to rather strange 

acausal forces. The alternative rejected such abnormal 

forces and discussed this behaviour in terms of the 

particles having lost# in some way, their classical 

individuality. We shall discuss both of these responses 

before presenting our own view which argues that there 

are two positions, one of which is the second response 

above, which can equally well be adopted, at least 
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if we keep within the domain of first-quantized theory. 
However, as we shall see, the implications of Quantum 
Field Theory (Q. F. T. ) and also metaphysical prejudice, 
may lend support to one position over the other. 

3.3.1 Individual particles + acausal forces 

This view was first suggested by Ehrenfest early in the 
history of quantum statistics (76) 

- He argued that 

Planck's quantum theory involved a choice of those 

states assigned equal apriori probabilities which was 
different from that made in classi cal statistical 

mechanics. Ehrenfest returned to this argument several 

times, notably in 1911 when he constructed a generaliza- 

tion of the apriori probability, or weight function, 

as part of an attempt to rationalize Planck's work. He 

had also long been puzzled by Planck's combinatorial 

formula for the distribution of quanta over oscillators. 

In 1914 he and Kamerlingh Onnes published their famous 

intuitive proof of this formula (as we shall see in the 

next section) t and Ehrenfest noted that if it were 

correct then the quanta could not be statistically 

indpPendent but must exhibit some kind of non-classical 

correlation. 

Some years later this point was taken cLr by Reichenbach. 

(77) As we discussed in Ch. 2 Reichenbach held that 

classical particles possess 'material genidentity' 

whereas quantal particles do not and are said to possess 

functional genidentity. He noted that this latter 

interpretation assumes a weighting assignment (78) which 

gives equal apriori probabilities to all distinguishable 

arrangements. He then asked if this was the only possible 

assignment which could be given and answered that it 

was not (79). Reichenbach's conclusion was that there 

76. P. Ehrenfest, (1905) p. 1301 and (1911) p-91 
77. H. Reichenbach (1956) p. 224-249 
78. He called it an 'extension rule'. 
79. c. f. Ehrenfest's work. 
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two ways of looking at quantum statistics, neither of 
which is any more correct than the other. Roughly equat- 
ing material genidentity with indiviýluality ancý 
functional genidentity with non-individuality (of 
a sort to be discussed shortly), this choice is as 
follows. 

The particles can either be regarded as non-individuals 
with an associated weighting assignment of equal 
apriori probabilities, or they can be taken to be ineiv- 
iduals, in which case the apriori probabilities 

are not equal. This second case implies that the 

statistics are not independent and hence that there 

exists causal anomalies in the behaviour of the particles. 
For bosons these anomalies consist in a mutual dependence 

in the motions of the particles (the famous Bose-Einstein 

condensation), which could effectively be characterized 

as action at a distance since the particles could be 

far apart (80). For ferrions, on the other hand, the 

causal anomaly expresses itself in the Exclusion 

Principle, if this is interpreted in terms of a force 

acting between the individual particles (81). 

The choice is therefore between regarding the particles 

as non-individuals which behave 'normally' or as 

individuals whose behaviour displays causal anomalies. 

Both are equivalent descriptions. However, as only 

the first of these descriptions supplies a 'normal' 

system, in the sense of one free from-causal anomalies, 

Reichenbach rejected the second on the grounds that 

acausal interactions are inadmissable (82). 

Thus the Ehrenfest-4Reichenbach claim is that if the 

particles are regarded as individuals then there must 

exist acausal interactions between them. This is 

perfectly valid as one could always'mimic' the statistics 

by postulating some peculiar ad hoc non-local (action 

at a (ýistanre) acausal forces acting between the 

80. Ibic9 p. 234 
81. Ibid p. 235- This force has been accorded a quasi- 

realistic status in some discussions of the so 

called 'exchange interaction' 

82. Ibid p. 235-236. Elsewhere he suggested that acausal 

anomalies might be suppressed through the adoption 

of a three-valued logic in quantum theory. See 

H. Reichenbach (1965 reprint) p. 160-166. 
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particles. However this view can be discarded, as 
Reichenbach himself indicated, on the grounds that 
its implication of acausality simply ýIoes too much 
violence to our view of reality. This is therefore 
another good example of the underdetermination of 
theories by experimental data, and the way in which, 
given such underdetermination, other factors come 
into Play. Thus one description is rejected on 
the metaphysical grounds that its implications of 
non-locality bring it into conflict with Special 

Relativity, regarded in this context as a set of 
regulative maxims. By metaphysics we mean here some 

sort of justification of the conceptual rationale 

of a theory and we shall discuss the way such 

considerations can be used to decide between two 

theories, or interpretations, in more detail in the 

next chapter. 

We shall now consider the alternative response to 

the statistical behaviour of quantal particles. 

3.3.2 Non-individual particles 

The non-observability of particle permutations in Q. M. 

anO the consequent assignment of weight 1 to the 

arrangement Eip I has been taken to imply that the 

particles cannot, as in C. Y., be labelled or at least 

that such labels are meaningless, because they are all 

'mixed up' by the particle permutations. Therefore, it 

is argued, the particles cannot be regarded as individuals 

but must be, in some sense 'non-individuals'. This 'non- 

individuality' isnot, as Post has pointed out (83), 

mere indistinguishability taken to the limit. In both 

classical and quantum statistics particles of the 

same species, or natural kind, are indistinguishable, as 

we have argued. Non-individuality obviously means 

more than this. Something which could be attributed to 

the particles in classical statistics cannot now be 

attributed to them in the quantum theory. Different 

opinions have been held as to what this 'something' is. 

83. H. Post (1963) p. 16 
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Some authors have argue(9 that the non-inOividuality 
arises through a denial of the existence of well- 
defined distinct spatio-temporal trajectories for 
quantal particles. Thus Landau and Lifshitz stated 
that the difference between classical and quantum statis- 
tics '... follows at once from the uncertainty principle'. 
(84) They argued that I ... by virtue of the uncertainty 
principle, the concept of the path of an electron ( for 
example) ceases to have any meaning. If the position of 
an electron is exactly known at a given instantr its 

coor(: Iinates have no definite value even at an infinitely 

close subsequent instant. Hence by localising anO 
numbering the electrons at some instant, we make no 
progress towards identifying them at subsequent instants; 
if we localise one of the electrons, at some other 
instant, we cannot say which of the electrons has arriveO 
at this point. 

Thus, in quantum mechanics, there is in principle no 

possibility of seperately. - following each of a number of 

similar particles and thereby distinguishing them. 

We may say that, in Q. M. identical particles entirely 

lose their 'individuality'. The identity of the 

particles with respect. to their properties is here 

very far reaching: it results in the complete 

inOistinguishability of the particles. 
1 (85). 

This form of argument can be given the following gloss: 

1). A necessary condition for an object, such as an 

elementary particle to be an individual is that it must 

possess a well defined continuous trajectory in space- 

time. (This, we recall, is the second criterion of 

classical space-time individuality). 

2). If the distance between two particles of the same 

species becomes so small that there is an appreciable 

overlap in their ranges of possible positions then it 

cannot be said that the particles possess well 

defined trajectories, and hence an unambiguous assign- 

ment of individuality can no loner be made. (Re-identi- 

fication after such a close encounter also becomes 

84. Landau and Lifshitz (1965) p. 209 

85. Ibi(; p. 209; Also D. ter Haar (1958) p. 72 anO J-F. 

Jauch (1966) p. 276 



197 

problematic. ) 

3) Heisenberg's Uncertainty Principle implies that 
particles in Q-Yý- are not in general localized 
an(ý that their wave functions and hence ranges of 
possible location, do overlap. Therefore such 
particles cannot be said to be individuals but must 
be regarded as 'non-individuals'. 

According to this argument then, particles in Q. V. 
are non-individuals because their space-time 
trajectories are not well defined and thus the second 
criterion of classical space-time individuality is 

violated. 

Post has criticised this argument on the grounds 
that the Uncertainty Principle does not abolish 
loralizabilityp it only limits it (86). The spread 
in position can be reduced in many ways, by taking a 

a more massive body for example. or one could imagine 

two indistinguishable particles far enough apart to 

make any overlap of their wavefunctions negligible. 

Space-time individuality could thus be attributed 

to these particles and they could be identified and 
individuated through a permutation, as long as the 

distance between them always remains large. This 

woule result in the particles changing positions and 

since they are regarded as individuals the final 

configuration can be said to be different from the 

initial one. Yet particle permutations are not 

observable in Q. Y_Iý- and the final configuration would 

not, in fact, be counted as distinct from the 

initial one. This apparent paradox leads to the 

conclusion that non-individuality must be due to some- 

thing else other than the supposed loss of well defined 

trajectories through the Uncertainty Principle. 

As post has indicated then the no-well-defined- 

trajectories argument turns on the interpretation of kka 

Uncertainty Principle. 1ý, ryullin has argued that the 

principle has been interpreted in at least four 

different ways. (87) 

86. H. POst (1963) p-19 
87. E. ycyullin (1954) 
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1). It is impossible to measure simultaneously 
conjugate variables; 
2). It represents a limitation on the precision of 
measurements in the sense that the accuracy of 
knowledge of one variable decreases by measuring 
its conjugate, 

3). It is a statistical principle which relates the 

scatter of one sequence of measurements with that 

of another. 

4). It is a mathematical expression of the funýlamental 

complementarity of phenomena in Q. M. 

In terms of this classification Landau and Lifshitz 
have adopted interpretation 1 whereas Post appears 
to hold interpretation 2; thus they are arguing from 

different ideological viewpoints. An even more 

extreme position is to adopt interpretation 3. 

Proponents of the 'statistical' (or more properly 
'stochastic') approach to Q. M. (88) regard particles 

as classical individuals possessing simultaneous 

position and momentum and traversing a classical spatio- 

temporal trajectory. The state vector is regarded as 

a description not of an individual system but of an 

ensemble of similarly prepared systems and thus 

quantum phenomena is considered to be the manifestation 

of the statistical behaviour of a collection of basically 

classical individuals. The difficulties associated 

with this approach are well known and we shall not 

consider them here (89). However, we will remark that 

classical space-time individuality is only partially 

reinstated in this. interpretation, 
o-iit is still not 

possible to predict uniquely the particular trajectory 

which would result from a particular causal Oisturbance. 

(90) 

If one accepts the inherent indeterminism of Q. Y., 

embodied in the Uncertainty Principle, then it is 

clearly not possible to ascribe classical space-time 

88. K. popper (1967) p-7.; H. Yargenau (1963), p. 469 

A. Lande (1973) 

89. See M. Jammer (1974) p. 440-469 

90. Y,. Audi (1973). 
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individuality to the particles, even granted Postýs 
argument If the particle is localized at one instant 

then it is not possible to predict its position at 
subsequent future instants. Thus if one were an 
advocate of space-time individuality for classical 

particles one would. have to relinquish this view 
for quantal particles and adopt some alternative. 

As we have tried to indicate these arguments are 
heavily influenced- by ideological prejudice and to 

the extent that each interpretation possesses certain 
difficulties the question of which one should be 

adopted over the others is not one which can be decided 

by purely rational argument alone. 

Another possible reason for rejecting classical space- 

time individuality in Q. F. is that the superposition 

Principle implies the inapplicability of the Impenetrab- 

ility Assumption for quantal particles. Thus the 

general ket for an assembly of particles corresponds 

to a state for the assembly for which one cannot say 

that each particle is in its own state, but only that 

each particle is partly in several states, in a way 

which is correlated (91) with the other particles being 

partly in several states (92) 
. In other words, each 

particle partakes of all the states of all the other 

particles. There is a sense, then, in which one could 

say that two, or more, such particles can be in the 

same place at the same time - in fact they can be in 

several places at the same time. 

The oft-quoted example of two -bosons 
both in the same 

one-particle state is therefore unnecessarily restrictive. 

n-, To fermions distributed among two distinct one-particle 

states will also partake with equal probabilistic 

weight of each state in the superposition demanded by anti- 

symmetrization (93). So in this sense, two particles, 

whether bosons or fermions, are always in the same state. 

91. Compare with Ehrenfest's position. 
92. Dirac op cit p. 207-208. 

93. This is not true of the higher paraparticles but then 

there is no way of telling which particle is in which 

state because of the restriction to symmetric 

observables. 
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As Post says 'Any one labelled particle occurs 
simultaneously in all positions occupied by like 

particles'. (94) and '... the location of an electron 
at a given moment is as numerous as the number of 
electrons in the universe 1. (95) 

This is a well known and fundamental feature of 
Q. M. embodied in the Superposition Principle which 
requires the existence of strange (i. e. non-classical) 
relationships between the states of a dynamical 

systemsuch that whenever the system is definitely 

in one state it can be considered to be partly in 

each of two or more other states. The nQn-classical 

nature of this principle is further revealed through 

the probability of a certain result for an observation 
being intermediate between the corresponding 

probabilities for the original states, rather than 

the result itself being intermediate between the 

results for the original states, as it woule be 

classicaTly. Thus when an observation is made on any 

system in a given state the result will not in general 

be determinate. The Superposition Principle therefore 

demands indeterminacy in the results of observations 

and philosophical arguments based upon it are obviously 

closely related to those using considerations of 

indeterminacy, as above. 

In this, non-classical, sense then, particles in 

Q. Yi. do not obey the Impenetrability Assumption, 

which, we recall, is the first criterion of classical 

space-time individuality. Thus, if two, or more, 

particles can occupy the same state at the sarre tirr, e. 

albeit in this nonclassical and perhaps restrictive sense 

this form of individuality cannot be attributed to them. 

Such particles must therefore be regarded as non- 

inOividua-Ts. 

94. Post op cit P-19 
95. Post Ibid p. 20 
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However, it may be objected that this argument derives 
its conclusion from an aspect of Q. ý, . which is by no 
means unproblematic, namely the status of so-called 
'entangled states' within the theory. These lie at 
the root of many of the fundamental conceptual problems 
in Q. M., such as the EPR argument and the 'Schrodinger's 

Cat Para("oxl (96) for example, and represent what 
Schrodinger has called the characteristic trait of 
Q. Mý (97) 

Thus let us consider the situation mentioned above, 

that of two fermions distributed over two one-particle 

states. The anti-symmetrised wave function for the 

assembly is then given by 

c , ki, C, a a' IY> r-- 'r, Z_ 1 21 
Now the statistical operator (98), or density matrix,,,,, 01, 

) 

of particle 1 can be written in terms of projection 

operators thus: 
A 

oc I-;;, 'E 1a', ><o, 1, ) + '' ' tPI ý_-! -1 

or - 'L I PI- 
2- 

Pa 
2- 

rIL 

Similarly, for particle 2 we have 

I+ 
Ck aZ 

or ri LC 
,IJ Z_ a ctý 

Thus the two particles have the same statistical operators. 

Furthermore, it can easily be shown that they possess 

the same one-particle probability distribution. Thus 

the two-particle probability distribution k_? cO 

for finding one particle in state al and the other in 

s ta te cL 
7- is given by 

e. 
ýe 

I> 2- ) 
:: --- < 4,1 ý1, / 'k > 

where 

Thus one oor-ains 
CLI V- 4- 1 a' CL' ke. a, a, ex', Cq 8cL) CL 

wkepe cLI =, <I(O-1%'7 e-6-C. 
The one"particle probability distribution giving the 

q6. -SýLO&wý Or Cýt C-klo 
97. E. Schrodinger (1935) p. 557 
98. See B. J)'Espagnat (1976) Ch. 6 for the definition 

of this operatqr ada discussion of its properties. 
qsc,. -Tke- ýýCtvt- '17- kA CES ýAUCLld_ 

) 
O's (, O'oKrJO, -,, 

d 
C-01-tk 

0A CLte_ C4764or-O'xeý 4e_. Ae_ OLrk e-4e- 
e 

ie 5 6ý1 5 &_aý cre- Si CLK 
IZ 
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probability that particle 1 occupy state cký regardless 
of, the state of particle 2 is then obtained by 
integrating the above over the space of particle 2. 
Thus we have 

al W L() (I 
Zil I- ý_ ( O-Z 

Similarly the one- particle distribution for particle 
2 is given by 

CJ CZ0,1x Iz 4- Q 

Hence we conclude that the individual particles have 

the same statistical operator and the same one-particle 

probability distribution. It is this which underlies 

our earlier argument that the two fermions partake 

with equal probabilistic weight of each state in the 

superposition and thus can be regarded as being 'in' the 

same state. They are in the same state precisely insofar 

as they have the same oni-particle probability 

distribution and thus cannot be distinguished by any 

one particle position measurement. 

However, expressed in these terms one can easily discern 

how the argument threatens to come undone. First of all 

the following well-known counter argument can be 

given. (99) Referring again to the two-particle 

distribution one can easily show that the probability 

of f inding both C_ei-mýoAs in the same one-particle state 

is zero, i. e. 
LJ CT_ý, C j 

), I) -- 0 

This, of course, is what lies behind the Pauli Exclusion 

Principle which can be naively expressed in the form 

that no two fermions can exist in the same one-particle 

state, or that a quantum state in which two fermions 

possess identical sets of one-particle quantum numbers 

cannot exist. (100) Thus it can be argued that in this 

sense two fermions cannot be in the same state and the 

I. A. is satisfied. Indeed the Exclusion Principle 

may be regarded as a generalisation of the I. A. in the 

99. See y Shadmi (1978) p. 844; and H. Fargenau (1950) 

Ch. 20, (1944) p. 187. 

100. Shadmi op cit p. 847 
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sense that it applies not simply to the spatio-temporal 
coordinates of the particles as in the classical case, 
but to the one-particle quantum numbers (101). 

Thus on the one hand, regarding the one-particle 
distributions, it can be argued that the particles can 
be in the sametstate, whereas on the other, a 
consideration of the two-particle distribution leads to 

the conclusion that they cannot. A resolution of 
this apparent conflict can be effected through a 

consideration of the nature of theselentangled states' 
in general and of the statistical operators in- 

particular. t9l and ý4 are not in fact state 

ascriptions since they describe improper mixtures (102) 

rather than pure states. As these operators effectively 

'encode' all the measurements that can be obtained by 

operating on the particle concerned these measurements 

will not be maximall in the sense of giving the maximum 

amount of information about the system. In other words 

since the state function of the system is no longer the 

product of the separate state functions of the particles, 

one cannot, from a knowledge of 1 +-ý; - ascribe to each 

of the particles an individual state function. This is 

a manifestation of the peculiar, non-classical 'holism' 

inherent in Q. M. in which complete knowledge of the 

whole does not generally entail complete knowledge of 

the parts. 

Thus one cannot attribute pure states to each particle 

and so the question of whether the particles can be 

(9escribed as being somehow in the 'same' state simply 

Ooes not arise. This consideration of the formalism of 

the theory therefore leads to the conclusion that the 

question of whether the I. A. is violated or not is in 

fact obviated in Q. Y. This is an important point and 

as it has an obvious bearing on the sta-bASof Leibniz's 

Principle of Identity of Indiscernibles in quantum 

101. This is effectively what Shadmi argues. Ibid 

p. 847 
102. The terminology is due to d'Espagnat op cit pp. 

pp. 58-62. 
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physics we shall return to it in our discussion of 
this Principle in Chapter 4. 

Finally it should be noted that we are assuming 
here that Q. M. is complete. If the positions of 
particles are introduced as hidden parameters then 
the above conclusions no longer follow and a form. 

of space-time individuality could be reinstated. 
However, as the question of the viability of the hidden 

variables programme is still the subject of much 
discussion and has been extensively dealt with elsewhere 
(103), we shall not consider the possible consequences 

of these theories here. 

It has also been argued that particles in Q. M. should 
be regarded as non-individuals because T. I. cannot be 

attributed to them. Thus Post argues that individuality 

or non-in(ýividuality must be assigned at the very 
beginning (104). Quantum Field Theory does this 

hutomaticallyl and does not refer to individual 

particles at all, treating all particles as field 

excitations and hence as 'non-individuals'., only the 

first quantised theory, he claims, and in particular 

Schrodinger's formulation starts off 'heavily on the 

wrong foot' (105) by initially assigning a label and 

hence T. I. to each particle. The individuality is then 

immediately 'wiped out' by systematically permuting 

these labels and constructing a wave-function for the 

assembly out of all the wave functions obtained by 

permuting the particles, subject to certain symmetry 

restr&'ctions. 

This position therefore asserts the denial of 

classical T-I_ which, in first quantised Q. M. is lost 

in the particle permutations and in Q. F. T. is not 

exhibited to begin with. Thus it is claimed quantal 

particles are hon-individuals'. 

103. See Jammer op cit 
discussions and r, 
Swinburne (I cl 3 71 
d'Espagnat op cit 

104. Post op cit P-19 
105. Ibid p. 19 

p. 252-339. For more recent 
eferences see N, Redhead in R. 

p4and (1981) p. l., and 
Ch-11. 
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'Non-individuality'is, for Post, a primary concept 
which cannot be explicated in terms of other, more 
fundamental, notions (106). Non-individual 

particles are not only indistinguishable they are 
also devoid of T. I. and thus are regarded as lieentical' 
in a strong sense. They can differ only as regards 
location, or, more generally, the state they are in. 

He concludes that one should not refer to individual 

particles in Q. N-',. at all but shoule speak instead of 

a state being occupied by 0,1,2,..., etc. particles. 
Material particles are thus regarded as merely states 

of disturbance in an unidentifiable, substanceless 

medium. They are without secondary qualities, without 
individuality, without substance; 'There is no sub- 

stance left in physics, only form'. (107) 

However Post's argument cannot be conclusive because 

it is perfectly possible to give a consistent account. 

of quantum statistics in which labels or proper names 

are ascribed to the particles, as we shall demonstrate. 

Thus the apparent loss of particle individuality evident 

in the Q-M. contraction in the number of states has been 

accounted for in three different ways, each involving 

the negation of some aspect of the two forms of 

classical individuality. We shall now argue that 

there are in fact two alternative positions which can 

be consistently adopted, although metaphysical consid- 

erations may lead to one being preferred over the other. 

3.3.3. Non-Individual Particles + Individuated States 

or Individual Particles + State Accessibility 

Restrictions 

Our view is that there are two ways of looking at particle 

individuality in Q. M. One considers particles to be 

106. Schrodinger held a similar view. See E. Schrodinger 

(1957) p. 194. 
107. Post Ibid p. 20. 
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non-in(-Iividuals, but regards the states as indiv- 
i('uated. Alternatively the particles can be regarded 
as possessing T. I. but then restrictions must be imposed 
upon the set of possible states, Still regarded as 
individuated, such that certain of them are no longer 
accessible to the particles. The first position can 
also be arrived at through a consideration of Q. F. T. 
The second is obviously open to the philosophical 
criticism which has been directed at the notion of T. I. 
As we shall discuss later this can be taken to 

mitigate against the particle approach in favour of the 
field-theoretic description. 

We recall that in the ket for an assembly of 
indistinguishable particles both the states and the 

particles were labelled. The most general ket for the 

assembly is then constructed out of those kets obtained 
by permuting the particle labels and such a particle 

permutation has been regarded as rendering these labels 

meaningless. Thus it has been concluded, as we have 

seen, that quantal particles are 'non-individuals'. 

However.. particle permutations are, as we have seen, 

only one of two kinds of permutation which can be defined 

in Q. M. The other kind are the place permutation 

operators, which permute the place labels in the ket. 

When applied to the purely symmetric or anti-symmetric 

state vectors these operators produce the same results, 

and so the practical distinction between them, although 

not of course the conceptual oneo disappears for 

$ordinary' fermions and bosons. it is only when we move 

to, the multi-dimensional subspaces of paraparticle 

theory that this difference becomes apparent. By 

restricting its analysis to ordinary quantum statistics 

only the account of particle 'non-individuality' 

Oiscussed in the previous section fails to take into 

consideration the effect and possible implications of 

the T's. 

We recall that the effect of the P's when operating on 

a ket is to produce another, indistinguishable from the 

first one. This is enshrined in the Indistinguishability 

Postulate expressed, as the commutation relation, EO, 
) 

PIý: 
-_ 0 
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which can be interpreted as stating that it is not 
possible to (listinguish states differing only in a 
permutation of the particle labels. It is this which 
actually underlies the arguments to the effect that 
particles cannot be regarded as individuals in Q. M. 

In other words, since the P's do not commute with 
one another the I. P. implies that they are not 
observables of the system. Any vector on which they 

operate is left in the same subspace, which reflects 
the fact that two state vectors differing only by a 
permutation of the particles must represent the same 

state. 

The T's, on the other hand, can take a state vector 
from one subspace to another as a place permutation 

ran change the physical state of a system. Since they 

commute with the P's the P's do satisfy I. P. and there- 

fore any self-adjoint function of them can be regarded 

as an observable. Indeed, I. P. implies that any 

observable Q must be a symmetric function of the 

particle labels and we then demonstrated that any such 

function can be expanded in terms of the P's thus 
CZ 

where the equality is taken in the limited sense as 

explained on p. 

It is worth noting however that, contrary to what is 

often written (108) the T's themselves are not self- 

adjoint and therefore are not real dynamical variables 

(109). Thus the 'T's themselves should not be regarded 

as observables, although combinations, or rather 

(self-adjoint) functions of them are. 

As we have emphasised in classical physics a 

particle permutation is regarded as observable and giving 

rise to a new micro-statep This is taken as justific- 

ation for the particles being regarded as labelled and 

for these labels to have meaning in the sense that 

they designate that which confers individuality 

upon the particles. In quantum physics, as we now see, 

108. Landshoff and. Stapp op cit. Y. Ohnuki and S. 

Kamefuchi (1971) p. 20 and p. 27-31 

109. See the discussion in Dirac op cit p. 212 
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the P's are not observable and do not produce new, 
distinct complexions. Thus the particle labels uay be 
regarded as meaningless and quantal particles as 'non- 
individuals However the place permutations do give d 
rise to new, countably distinct micro-states as they 
project the state vector from one irreducible subspace 
to another. Thus the state, or place, labels are not 
meaningless and the states themselves can be regarded 
as individuated. Underlying this view, and hence also 
of the requirement that all observables that distinguish 
between states differing only in the order of the particle 
labels,, are functions of the PIs, is the f act that the 

wave-functions are completely distinct entities and 
the particles are experimentally identified by these, 

as given by the state labels, and not through the 

positions of the particle labels. 

Thus the P's are not observable since the particles 

are indistinguishable, whereas functions of the T's 

are observable because the states can be distinguished. 

If the substantivalist approach is adopted then this 

could be interpreted as implying that the underlying 

substratum is truly 'unknowable' in quantum physicso 

in the sense that it cannot even be designated by a 

meaningful label. Alternatively the above statement 

could be taken to support the view that the particles 

should be regarded as nothing more than 'bundles' of 

qualities, corresponding to the intrinsic properties, 

which can be distinguished one from another by the 

states they happen to be in (110) 
- 

Thus we have arrived at the position where we have 

non-individual particles together with individuated 

states. Insofar as the particles exist 'in' the states 

and the latter in turn are embedded in space-time, 

this may be regarded as a form of 'space-time 

individuality', albeit a very weak one, not equivalent 

to the classical version. Thus the particles are 

distinguished at any one time by the states they are 

in. As regards reidentification through time it is 

110. Thus Post has proposed an ontology of 'states of 

eisturbance in an uni0entifiable medium, without 

substance'. Post op rit p. 20. 
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true that instead of the position x as in C. Y. one has 
kP (x) but to reidentify the latter one still has to 

effect a reidenti fi cation through the forrrer. Thus one 
still has the space-time background in Q. V. with all 
the attendant problems regarding its interpretation. As 
in the classical case adopting the relational view 
leads tocircxllarity whereas the alternative absolutist 
approach suggests that the points of space-time 

underlying the states should be regarded as individuals 

themselves. 

As we have said, however, the form of S. T. in this 

case is much weaker than the classical version since 

there are no well-defined spatio-trajectories in Q. N'. 

and, as we have seen, there is a sense in which it 

can be said that the I -A - is violated. As we saw at the 

end of Chapter 2 this is precisely the situation which 

holds in the case of fields and the above position 

regarding particle 'individuality' - or rather the 

supposed lack of it - finds its most coherent expression 

in Quantum Field Theorys where an account of many-body 

systems can be given without referring to particle 

labels at all. (111) In this case the P's are undefined# 

which is to be expected as the creation operators in 

Q. F. T. already contain the effects of 'particle' 

indistinguishability, but the P's are not and allow 

a correspondence to be established between the first 

and second quantised theories (112). We shall briefly 

consider this situation in section 3.5. 

In section 3.4 we shall also indicate how the above 

view can be found running through the history of quantum 

statistics where one approach was to count the energy 

states occupied by various numbers of particles rather 

than the number of particles in various states. 

Before discussing these further points however we 

111. Thus Redhead has argued that quantal particles also 

belong to his new category of entities called 

lephemerals' and that the latter can be regarded as 

bereft of individuality in the sense that a collection 

of indistinguishable particles is itself an 

ephemeral. Redhead (1983) p. 38-39 

112. Stolt and Taylor op cit. 
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must consider the alternative conclusion regarding 
particle individuality in Q. N. which can be arrived 
at through further examination of the nature and 
consequences of the I. P. 

We noted in section, 3.2 that the IP- acts as a 
super-selection rule which partitions the Hilbert 

space into a number of irreducible subspares. Thus# 
for example, in the three particle case the six- 
dimensional subspace E of Y-: 

S , spanned by the vectors 
Piý> decomposes into irreducible subspaces 

invariant under the P's as follows : 

E ý: -- 
ES0( Ec- "0 Et // ) (ý eA 

We can represent this schematically thus: 

Jý Put- 
a-ce- 

li 
I 

10 

C-00 Z-ClýeAScoACLI 

s,, Asfacas 

C"e-#OLSLIOAJ 

S 14- 

Given I. P. Schur's Lemma implies that all matrix 

elements of an observable Q connecting different 

representations are zero. It then follows that if 

there exist states corresponding to subspaces of 

Oifferent representations then transitions between 

such states must be forbidden. States corresponding 

to subspaces of the same representation are not 

separated in this way and transitions may therefore 

occur between them as we saw in section -ý. 
2.3. 



211 

These considerations also hold for the general case of 
an N-particle system. The Hilbert space then decomposes 
into a number of subspaces and transitions between 
states corresponding to certain of them, viz, those 
of different representations, are forbidden. 

Thus I-P imposes a restriction on the states such 
that certain of them are rendered inaccessible to the 

particles. If we consider the time evolution of the 
system as effected by some Hamiltonian, then we conclude 
that I. P. implies that if the system starts in one 
irreducible representation then it will always remain 
in that representation. Bosons will always be bosons, 
fermions fermions etc. 

The I. P. can therefore be thought of as an extra postulate 

of Q. M., an initial condition in the specification of a 

situation. It divides up the Hilbert space into a 

number of subspaces and once a system is placed in one 

of these subspaces the dynamics is such that it can 

never get out of it. 

Thus quantum mechanical particles can be regarded as 

individuals which are prevented from occupying certain 

states because of an extra initial condition which 

has been introduced into the formalism. once it has 

been decided which states are inaccessible the dynamics 

is such that the particles can never get into them. 

Thus, for example, let us consider again the 

distribution of two indistinguishable particles over 

two one-particle states. If the two states are 

specified by orthogonal wave functions OL and OL and 

the two particles are labelled 1 and 2 (note: we are 

effectively introducing some form of individuality here) 

then for B-E statistics the three product wave 

functions corresponding to the three possible 
IZI 

0V arrangements EE 

are iaiaIi CL >t CJ-z > 
a, aýz. 

respectively. For F-D statistics we have 

-I- CL CL 7- > cez-> > 57 
""r, Zý 

corresponding to the arrangement 0 56 and 

57 are chosen to retain certain simp, e symmetry prop- 

erties under a particle permutation, viz 56 is symmetric 
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anO 57 is anti-symmetric. 
We have noted that I. P. can be interpreted as 

stating that every observable, in particular the 
Hamiltonian governing the time development of the 
statevector, must be symmetric under a particle 
permutation. It then follows that a symmetric state 
will always remain symmetric and an anti-symmetric 
state always anti-symmetric. In other words if the 
initial condition is imposed that the state of the 

system is either symmetric or anti-symmetric then 

only one of the states 56 or 57 is ever available 

to the system and this explains why the statistical 

weight attaching to the pair of states 56 and 57 

is half the classical value. 

On this view 56 and 57 are not regarded as the 

same state any more than the classical states 

and are, just 

that there exists a dynamical restriction on the 

accessibility ofcertain states. This restriction arises 

from the symmetry of the Hamiltonian under the P'so 

which in turn can be deduced as a necessary condition 

for the indistinguishability of the particles, as 

we have seen, and hence follows from I. P. 

On this view then* the non-classical weighting 

assignment of quantum statistics is 'explained' not 

in terms of 'non-individuality', but as being due 

to the accessibility restrictions imposed on the 

states as an initial condition. In the above exa--nple 

only one of the two possible states is accessible 

to either kind of particle because the Hamiltonian 

is such that they cannot get into it - transitions 

to that state are forbidden. More generally states 

formed through a particle permutation are not counted 

not because they do not exist but because they are 

not available to the particles. We therefore have the 

rather odd situation in which certain states exist, 

ontologically speaking, but they cannot be reached by 

the particles, and this is due, not to the laws of 

Q. m., but to the restrictions imposed by an initial 
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ronOition - the I. P. 

So once the symmetry type of the particle is fixed 
the I. P. ensures that some states are never accessible 
to the particles. Thus, for example, the state 

corresponding to the symmetric combination above is 

inaccessible to fermions and the triangular paraparticle 
state is not accessible to either bosons or fermions. 

In general* as we have seen, states carrying different 

representations are separated by a superselection rule, 

although states carrying the same representation are not. 
koweve-1- 

collisionsAthese latter states 

are connected and hence the statistical weight is 

increased accordingly. These considerations of state 

accessibility conditions are then a little more 

complicated for paraparticles than for ordinary particles 

as we shall see. 

Before discussing this, however, there are two further 

points to note. The first is that what we have given here 

is a description in which the particles are labelled. 

The fact that we cannot tell which label attaches to 

which particle, because they are permuted, does not 

necessarily compel us to give up such a description. 

only an extreme form of positivism would hold that we 

should. Thus the particles can be regarded as individuals, 

with the labels designating the underlying substantial 

substratum. According to this view then the particles 

possess T. I. exactly as in the classical case* and 

are therefore simply classical particles which are 

subject to restrictions on the possible states they can 

occupy. 

The second point is that this notion of state 

accessibility restrictions can also be found in classical 

statistical mechanics, although in a much weaker 

form. 

The fundamental problem of statistical mechanics is to 

rct stationary states of 
(9iscover how to select the cor 

r, 

an assembly of a large number of particles. A decision 

-nust be made as to whether the assembly, when left to 

itself, tends to settle down mainly into one or other of 

a small preferred group of stationary states whose 

properties control the equilibrium properties of the 
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assembly, or whether it wanders at ran6om over the 
whole range of stationary states made accessible by 
the general conditions of the problem. In the latter 
case the assembly's equilibrium properties will be 
determined by the properties of the vast majority 
of states. These equilibrium properties can only 
then be calculated by taking a suitable average over 
all stationary states or by selecting the properties 
of the most probably occupied type of state, or by 
some other method which will require justification. 

The choice of states can be made in a number of 
ways all of which, fortunately give the same physical 
results for large assemblies (113). Each involves some 
necessary fundamental hypothesis underpinning the 

choice. Thus, the equilibrium value 5 of any property 
Q of the assembly can be obtained by averaging over 

all the distinct states of the assembly, consistent 

with a given energy or energy range and any other general 

conditions, and assigning an equal weight of unity 

4; ý: r, e 
to each state i. e. 

4J 
I "a/ (114). In this 

S 'ý4, tes S -S case states of a given energy have been selected for 

the averaging process. The energy is a uniform integral 

(115) of the equations of motion of the assembly 

which restricts the assembly's representative point in 

the phase space to a hypersurface in this space 

determined by H( x0 p. 3c 
)=E where H (x, p.. ) is the 

Hamiltonian, x stands for all the positional co-ordinates 

of the particles, p stands for the corresponding momenta 

an(ý E is a constant. 

Other uniform, integrals may exist for classical 

assemblies in certain circumstances, for example the 

linear momentum. Any such integral hasa profound effect 

113. R. C. Tolman (19-18) Ch-1. See our discussion of 

the choice of weighting assignments in Boltzmann's 

statistical mechanics in Section 2.3.5 of Chapter 2. 

114. R. H. Fowler and E. A. Guggenheim (1939) p. 7 

115. An integral of the equations of motion is a function 

of the generalised coordinates and momenta and time, 

whose value remains constant along a path in phase 

space. A uniform imtegral is a time independent 

integral, also called a 'constant of the rrotion'. 
See D. A. Lavis (1977) p. 258. 



215 

on the trajectory of the representative point in 
phase space, confining it to a particular surface 
in this space, or, if a small range of the constant 
is allowe(ý, to the region enclosed between two such 
neighbouring surfaces. When such additional uniforTri 
integrals exist they must be incluOed in the general 
condition lai6 down in the formulation of the fundamental 
hypothesis. It is then necessary to average over only 
such regions of phase space, or over such states of the 
assembly, as conform to the extra requirements , 
Such regions or states are called accessible phase 
space regions or accessible states, respectively. 

However, it can be shown that as regards thermodyna7ic 

consequences, it makes no difference whether these extra 
integrals are considered to exist or not. (116). Thus 
it is generally assumed that it is only the energy 
integral which imposes any constraints on what phase 

space regions are accessible to the system (117) 

In quantum statistical mechanics, on the other hand, 

further constraints on state accessibility are introduced 

over and. above those imposed by the energy integral. 

In this case, as we have seen, not all of the states 

of an assembly of inOistinguishable particles are 

accessible one from another; they may be analysed into 

groups of non-combining states by means of their 

symmetry properties. The symmetry type of any suitably 

specified set of states is an absolute constant of the 

motion (118) equivalent to an exact uniform integral 

in classical terms. The set of accessible states for 

the purposes of the 'fundamental hypothesis' is that set 

in the correct energy range, of the appropriate symmetry. 

Thus the notion of accessibility can be formulated 

for both classical and quantum systems, although in 

the latter case there is the added complication of the 

symmetry requirements imposed on the wave functions 

CorresponOing to these there are various accessibility 

postulates which can be invoked, each giving a 

116. Op. 
117. P. Penrose (1970) p. 124-125. 

118. I)irac op cit p. 213 
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different statistical mechanics. In order to 
completely specify a quantum system therefore it is 
net, essary to specify not only its Hamiltonian but also 
which type of statistics - that is, which of the 
various accessibility postulates - it satisfies (119). 

out of all the non-combining groups of eigenfunctions, 
Oefined according to their symmetry properties, the 

symmetric and antisymretric groups in particular stand 
out on account of their simplicity. In the former 

the eigenfunctions are all symmetric under a particle 

permutation and the eigenfunctions of the assembly are 
then restricted to the symmetric subspace of the 

Hilbert space. Only the states within this subspace 

are accessible to the assembly and B-E statistics is 

obtained. The anti-symmetric group consists of 

eigenfunctions which are anti-symmetric under the P's 

and in this case the eigenfunctions of the assembly are 

restricted to the anti-symmetric subspace of the whole 

Hilbert space. Only the states within this subspace are 

accessible to the assembly and F-D statistics are 

obtained (120). 

However, as we have emphasised, these two are 

merely the simplest examples which can be taken from the 

set of all possible symmetry groups. The other, 

more complicated, types of symmetry which are possible 

are obeyed by paraparticles, whose wave functions 

are symmetric in a certain number of particles and anti- 

symmetric in the rest (121). The question of what 

states are accessible to paraparticles is, as we have 

indicated, more problematic than in the case of ordinary 

particles. 

For particles obeying Gentile's paragas statistics 

the number of accessible states will simply be 

119. If no symmetry requirements at all are imposed then 

one recovers classical iv. -axwell-Boltzmann statistics 

120. Penrose op cit p. 930 
121. For example a parafermion of order n has a wave- 

function which is symmetric in n particles but 

anti-symmetric under the exchange of one of these 

with all particles other than the n. 
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intermediate between the number accessible to 
ferTrions an(7 bosons. This number will increase as 
the statistics becomes less fermionic ane more 
bosonic. In the case of paraparticle statistics 
however, where there is the possibility of transitions 
occurring between states carrying the same representation, 
it is a linear combination of states that now becomes 

accessible to the particles. 

Thus after taking into account the above considerations 
the 'fundamental hypothesis' must be re-written as 

a='. 5 r- 1 (122) 

1 Loe_ 
Uas 

e-S The purpose of this digression was to emphasize that 

the concept of state accessibility restrictions occurs 

quite naturally in both C. Y. anO Q.. ýI. 7,1' Obviously it plays 

a larger ane more prominent role in the latter because 

symmetry constraints are imposed over and above the 

energy constraint laid down in the former. This goes 

some way towards explaining the greater role played by 

symmetry in QM compared to CIV. 

We conclude that there are two alternative positions 

which can be adopted with regard to particle individuality 

in Q. T, -.: 

1). Non-individual particles + individuaEvAstates; 

2). Individual particles possessing T. I. + state 

accessibility restrictions. 

This conclusion lends support to the argument that one 

can 'do' quantum statistics with the particles regarded 

either as individuals or non-individuals so that 

arguments over individuality become irrelevant. In this 

context it is interesting to note that Dorling has 

suggested that counting states and arguing about the 

individuality of particles is a totally irrelevant 

exercise as far as the statistics are concerned, whereas 

122. Fowler and Guggenheim op cit p-18 
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a consideration of the dynamics, specifying the transition 
probabilities, is absolutely crucial. Thus he has 
written 'You can't get out the statistics without 
putting in the dynamics, and .... it is then quite 
irrelevant what you count as distinct states and 
whether you consider the individuals themselves as 
ieentical or non-iOentical'. (123) In terms of this type 
of approach the statistical behaviour of quantal 
particles, or their tendency to display certain 
correlations of the kind exhibited in B-E and F-D 

statistics* can then be regarded as an 'ineependent and 
fundamental property of the particles' (124). Thus 

this view, with its emphasis on the dynamics, can be 

regarded as a version of the 'Ehrenfest-Reichenbach 

description' outlined in Section 3.3.10 in which quantum 

statistics is interpreted in terms of 'peculiar' inter- 

actions, possibly non-localo existing between the 

particles. 

This underdetermination of the philosophical 

interpretation by the physics implies that one cannot 

determine any particular distribution of particles over 

states on the grounds of apriori considerations of 

particle individuality, or non-ineividuality, alone. 

Such a determination can only be obtained by paying 

, ýue regard to the various transition probabilities 

involved and hence to the dynamics of the situation. 

As in the classical case our conclusion regarding 

particle individuality is supported by historical 

considerations of the development of quantum statistics. 

indeed this development cano to a certain extent, be 

viewed in terms of successive shifts from one inter- 

pretation to another. 

123. J. Dorling (1978a) and (1978b) p. 7-9 

124. W. De muynck (1975) p. 334. This work was explicitly 

based on mirman's attempt to analyse the experimental 

meaning of the concepts 'identity', 'individuality' 

etc. R. Yirman (1973) p. 110. 
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3.4 The History of Quantum Statistics 

The birth of quantum statistics coinciOes with the 
birth of quantum theory as a whole, in Planck's 
famous paper of 1900 (125). In order to change the 
status of his raOiation law from a happy conjecture to 

a statement of some physical significance Planck was 
forced to abandon his electro-magnetic H-Theorem 

Approach and turn to the Combinatorial Approach 
developed by Boltzmann for gas thermodynamirs (126) 

(thus also changing the status of this approach from 

a relatively obscure response to a particular criticism 
to a major component of physics). However, the 

details of the statistics used by Planck were radicallyzLAJ- 
fundamentally different from Boltzmann's. 

The statistical step in Planck's derivation of 

his law lay in a consideration of how a given total 

energy could be distributed over N lineari oscillators, all 

vibrating with f requenry)) He divided this energy into 

a finite number, P, of energy elements which were then 

distributed over the resonators. The number of ways 

of doing this, i. e. the number of 'complexions', is 

given by 
(AJ+ P-1) ! 

(127) It is not C/o-[)! pi. 

immediately clear how Planck arrived at this expression 

although Rosenfeld has suggested that he discovered it 

by working backwards from his distribution law. (128) 

The rest of the derivation is straightford and has 

been extensively discussed and analysed elsewhere. 

However, it is worth noting Plack's comments at the end. 

He considered his deduction to be based on only two 

theorems: the well established relation between the 

radiation energy density and the average resonator 

energy and Boltzmann's relationship between the entropy 

of a system and the logarithm of the total number of 

125. V. Planck (1900) p. 202, reprinted in D. terHaar 

(1967) p-80 
126. M.. Klein (1970) p. 221; T. Kuhn (l978)p-7X[f, * 

A. Pais (1982) p. 368-372; also see Planck in ter 

Haar op cit p-81 anO p. 83 

127. Planck IbiO p. 237 

128. L. Rosenfeld (1936) p-149; R. Cranfield (1968) 

p. 69; Kuhn op cit p-100-101; for a ("iscussion of 

the source of this expression see Kuhn ibi(ý p. 282 



possible complexions. Planck split the latter into 
two parts: 1 (1) The entropy of the system in a given 
state is proportional to the logarithm of the 

probability of that state anO (2) The probability of 
any state is proportional to the number of correspon0ing 
complexions, or, in other words, any definite complexion 
is equally as probable as any other complexion (129)' 

The first part is just a definition of the probability 

of the state as far as radiation is concerned. The 

second was regarded by Planck as the core of his whole 

theory and its proof must rest ultimately on empirical 

groun0s. He considered it to be a more elaborate 

and detailed expression of his hypothesis of natural 

raOiation, previously stated in the form that the energy 

of the radiation is randomly distributed over the various 

partial vibrations present in the radiation. 

Thus the statistical component of Planck's work follows 

Boltzmann's Combinatorial Approach in broaýl outline but 

differs from it in certain profoundly significant 

respects. First of all, whereas Boltzmann let the size 

if his energy elements decrease to zero, as we have 

seen, Planck did not but left them as finite and related 

to the frequency via E= k-x, >(l30)- Secondly, and more 

importantly from the point of view of this thesisj 

Planck's combinatorial expression above is very different 

from Boltzmann's. Planck considered, at least implictlY 

only the number of energy quanta assigned to each 

oscillator ancý not which quanta were possessed by which 

oscillators. Thus the numerator of his expression gives 

simply the total number of ways of arranging the 

quanta and oscillators, regarded as N+P-1 distinct 

elements. (We shall discuss the significance of the -1 

when we come to consider Ehrenfest's analysis of this 

result). 

129. Planck in ter Haar op cit p-87 
130. It is not clear whether Planck regarded his energy 

quanta as having real physical significance or as 

merely convenient mathematical artefacts. See 

Kuhn op cit and Dorling (1967). 
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The division by P! implies that perrutations of the 
quanta are not to be regarded as giving rise to new, 
countably (ýIif ferent arrangements. one interpretation 
of this is that the quanta should be regarded as not on- 
ly indistinguishable but also unlabeled and hence 
devoid of individuality (131). Thus whereas Boltz- 
mann considered the distribution of indistinguishable 
( in the weak sense of possessing all intrinsic 

properties in common), individual atoms over energy 
states or cells in phase space, Planck could be 

regarded as considering the distribution of indisting- 

uishable (in the same sense), non-individual quanta 
over resonators (132). Alternatively the quanta could 
be regarded as individuals but with certain arrange- 

ments now forbidden. 

The non-classical nature of Planck's expression 

and the questions surrounding its interpretation became 

a focus of early criticism, particularly from Ehrenfest 

who undertook to expose the conceptual foundations of 
the new quantum theory. 

Finally it should be noted that Planck's second 

sub-theorem aboveo regarding the probability of a state, 

is simply a restatement of the crucial assumption 

that equal apriori weights should be assigned to the 

various complexions. As we shall see it was again 

Ehrenfest who subject this assumption to critical 

examination and who first discussed the way in which 

the weighting assignments of classical statistical 

mechanics had to be revised in the light of the new 

physics. 

In 1901 Plack presented a more complete but condensed 

version of his (: Ierivation which would be difficult to 

follow if considered separately from, his earlier work. 

131. See for example, Pais op cit 0.370 or Kuhn op cit 
1.101 

132. Cranfield remarks in Planck's TethoO, energy 

elements were the distributed quantities rather 

than oscillators whose distribution over phase 

space would have been the analogue of Boltzmann's 

approach. ' Cranfield op cit p. 70. 
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(133). As a result many of his contemporaries 
foun(: 1 his work obscure and it was not until he 

published the 'Lectures on the Theory of Thermal 
Ra(-Iiation' in 1906 that comprehension of the nature 
an(: ' implications of his results became more wi(7ýespread- 

Howevero Lorentz briefly mentioned Planck's work in 
1902 and in 1903 remarked that the latter's r-riethod of 
introducing probability was not the only one that 

could be chosen (134). As Ehrenfest was attending 
Lorentz's lectures at the time and had read extensively 

on the problem of black body radiation, it seems 

reasonable to suggest that his later detailed analysis 

of the probabilistic assumptions underlying quantum 

theory, and his investigation of possible alternatives, 

were greatly influenceA by Lorentz's comment. (135) 

Ehrenfest's first thoughts on this subject were 

set down in his 1905 paper in which he expressed his 

puzzlement over the exact nature of the relationship 

between Planck's work and Boltzmann's Combinatorial 

Approach (136) 
- In particular he noted that Planck's 

choice of those states to be given equal apriori 

probabilities was different from Boltzmann's. This 

Oifference arises from the different choice of events 

to be counted, and whereas Boltzmann atta cYed equal 

apriori probabilities to each region of phase space 

Planck assigned them to each energy distribution (137). 

Ehrenfest was well aware that a definite hypothesis 

concerning such assignments was crucial to the 

Combinatorial Approach and six years later he presented 

a generalised weight function suitable for the new 

statistics. 

Rayleigh and Jeans were also puzzled by Planck's 

derivation (138) - In particular Jeans argued that 

13?. Kuhn op cit p. 102-103 
4? 6 and (1903) p. 666 (1901) 134. H. A. Lorentz p. 

1? 5. 
136. 

See Klein op 
P. Ehrenfest 

rit p. 
(1905) 

231 

p. 1301; (1959) p-88 

1? 7. 
138. 

cranfield op 
LorO Rayleigh 

cit p. 
(1905) 

70 

p-54; J. Jeans (1905) p. 293 
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Planck's combinatorial expression violated the 
classical probability calculus because he has not 
specified the population from which such probabilities 
coulO be calculated. Such a population coul(ý not' be 
introduced with an apriori weighting assignment 
consistent with Planck's arguments. 

1905 also saw the publication of Einstein's famous 

paper in which he proposed the hypothesis of 
independent energy quanta in radiation. (139) The 

central argument of this paper is based, not on 
Pl. anck's, but on Wien' law which is strictly incorrect. 

However Einstein was able to obtain the correct quantum 

conclusion because he treated his quanta as individual 

maxwel 1 -Boltzmann particles instead of as bosons (140). 

It is precisely in the Wien limit that the latter behave 

like the former. Cranfield has demonstrated that 

Einstein's result can also be derived using the correct 
distribution law, Planck's, and the correct statistics, 

Bose-Einstein, as expected. 

Thus it was effectively shown that quanta which are 

statistically independent will behave in accordance with 

Wien's law. The fact that Planck's law is actually the 

correct one therefore suggested that the light quanta 

were not statistically independent. This point, anO the 

related question of the nature of the interdependence 

between quanta, was subsequently the subject of much 

discussion by Ehrenfest and others as we shall see. 

The following year Einstein pointed out that Planck's 

theory pre-supposed the existence of light quanta (141) 

ane in 1907 he noted that if this theory were correct, 

then energy values other than those given by kV are not 

accessible to the oscillators (142). His analysis of 

1-3 cl A- 1': 7 ý, xs tecýA C 19057) tet Ho-o-j- op L, &7(-- p-qI 
140. As Cranfield. has demonstrated. Cranfield op cit 

p. 125 
141. A. Einsteain (1906) p. 199 
142. A. Einstein (1907) p-150 
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energy fI uctuations in black boeýy radiation in 1909 
pro(: ', uced an expression for the mean square energy 
fluctuation which was the sum of two terrrs (143). 
The classical wave theory of light woulO give the 
second term, the wave term, only, an(' the first, the 

particle term, corresponded to I ... independently 

moving pointlike quanta with energyhv'. (144) This 
is the first intimation of 'wave-particle duality' 
in which light, and eventually matter as well, is 

conceived of as a fusion of wave and particle aspects.. 
There are two points to note regarding Einstein's 

statement above concerning light quanta. Firstlyo 

he obviously regarded them as being statistically 

independent. The non-classical statistical inter- 

dependence of quanta, which was to be subseque-ntly 

emphasized by Ehrenfesto for example, could then be 

explained by referring to their wave like aspect. 

Regarded as crests in a system of waveso quanta woule 

become properties of the whole system and there would 

be no reason to attribute individuality and statistical 

independence to them. The probability of a quantum 

existing in a particular state would then be 

dependent on the other quanta in the system. Thus 

the separation into particle-like and wave-like aspects 

allowed the former to be regarded as independent 

whilst the non-classical statistical interdependence 

was invested in the latter. As we have said this 

was the first example of the wave-particle duality 

which became a way of interpreting the lack of 

statistical independence between quantal entities. 

Thus Einstein justified the Bose-Einstein counting 

procedure by referring to de Broglie's suggestion that 

particles are analogous to crests in a syster of waves; 

a suggestion that was subsequently taken up by Schrodinger 

and elaborated into his so-called 'wave mechanics'. 

143. See Pais op cit p. 402-410 for a good discussion of 

this analysis. 
144. A. Einstein (1909) p. 185-817 
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Two alternative views of the statistical dependence 
inherent in quantum theory thus came to be developed. 
one regarded it as a manifestation of the wave-like 
nature of all quantal entities, light quanta and material 
particles. The apparent loss of individuality for 

quantal particles could then be explained in terms of 
their complementary wave-like aspects. The other 
regarded such particles simply as particles which 
behaved in strange, non-classical ways and. could be 

thought of either as 'non-individuals' in some sense, or 

as classical individuals restricted as to the states 
they could occupy. 

To a certain extent the difference between these 

positions corresponds to that between people like 

Schrodinger, who believed that an electron, for example, 
is, in some non-visualizable sense, also a wave, and 

others like Born who argued that the electron is really 

just a particle whose position and velocity are 

fundamentally random and which, therefore, exhibits 

non-classical behaviour. This is, of course, painting 

the picture with a very broad brush but nevertheless it 

is true to say that much of the argument over this 

statistical interdependence was concerned with the 

question of in what aspect of quantal entities should 

this non-classical behaviour reside. 

The second point to note concerning Einstein's state- 

ment is that he referred to the light quanta as 

point-like. it is clear that by 1909 he was thinking 

of quanta as particles (145). This view was reinforced 

by his work on spontaneous and induced radiative 

transitions in the course of which he derived the result 
k -0 (146). Thus that a light quantum carries momentum C 

emerged the concept of a photon as a particle carrying 

both energy and momentum. 

Planck's 1906 'Lectures ... 
(147) contained a re- 

arranged version of his 1900 derivation which gave the 

combinatorial expression after the law itself. it was 

145. See Pais op cit p-403 
146. A. Einstein (1916) p. 47 and A. Einstein (1917) p-121 
147. N. Planck (1906) Ch. 4. 
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emphasized that this law restricted the discussion to 
the equilibrium case, this distinguishing Planck's 

problem from Boltzmann's. However the latter counting 

procedure could also be applied although it would then 
be necessary to take the sum over all possible Boltzmann 
distributions compatible with the constraints on the 

total number of resonators and total energy, to obtain 
the number of complexions relevant to Planck's problem. 
Rather than actually go through this summation Planck 

produced his own combinatorial formula as its result. 

He also introduced an alternative approach involving 

a phase-space description of the equiprobable regions 

accessible to a resonator. These regions were elliptical 

rings of area h on the energy hypersurface, within 

whirh lay the resonators, and consideration of the 

distri ution of the reslatoVs over these areas týe4 

complexions corresponding to given state. 

This formed the basis for a quantised statistical 

treatment of the distribution of entitiest particles or 

resonators, over certain regions of phase space, which 

was much more akin to the classical combinatorial 

procedure. Quantal results were ensured, however, by 

the fixed size given to these regions as determined 

by h. (148) 

Shortly after the publication of Planck's book, 

Ehrenfest presented a general study of some aspects of 

radiation theory in the light of Planck's work (149). 

In particular he derived the distribution law without 

recourse to resonators and showed that the entropy 

function obtained was common to Boltzmann and Planck. 

Ehrenfest therefore concluded that the source of the 

difference in distribution laws must lie, not in the 

entropy equations but in the imposed constraints, i. e. 

in the quantization requirement. 

148. Thus Cranfield has shown that whereas the results 

of classical statistics are invariant with respect 

to a change in the volume of the cells in phase 

space, those of quantum statistics are not. 

149. P. Ehrenfest (1906) p. 528 
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It is clear from this work that Ehrenfest regarded 
Planck's energy quanta as nothing more than a formal 

(3evice. Einstein, 
* however, believed that the 

quantization procedure represented a new limitation 

on possible motions at the molecular level. His 

consequent application of this procedure to the 

problem of the specific heats of solids contributed 

greatly to the general acceptance of the quantum 
theory (150). 

in 1910 Debye gave a derivation of Planck's law, 

very similar to Ehrenfest's, in which the field vibration 

modes were quantized directly without using resonators. 
(151) Lorentz also published a derivation in the line 

of Planck's 1906 approach, in which the classical 

Boltzmann combinatorial formula was used and each 

(ýistribution was specified by a set of integers giving 

the number of resonators possessing so many energy 

elements. (152) 

Ehrenfest's observations of 1906 were developed in 

a further paper published in 1911, in which he analysed 

the restrictions imposed on the weight. function of a 

statistical theory of radiation by the properties 

of black body radiation. (153) He now realised that 

Planck's derivation could be brought into a logical form 

not by introducing additional constraints but by 

generalising the apriori probability or weight function 

assigned to the phase space. Thus he abandoned the 

classical uniform weighting and by considering the 

restriction imposed upon the generalised weight function 

by the known properties of black body radiation, showed 

that this function could depend only on the ratio 

and possessed non-zero values only for the points 

, -1/y = 0,1,2# .e* 

150. Kuhn op cit p. 206 
151. P. Debye (1910) p. 1427 
152. H. A. Lorentz (1910) p. 1234 
153. P. Ehrenfest (1911) p. 91 anO (1959) p. 185 
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He then examined the difference between Planck's 
quantized resonators and Einstein's light quanta. The 

tke prevailing opinion at the time was thatXmain difference 
lay in the separate existence of quanta in empty space. 
However, Ehrenfest also pointed out that the statistical 
independence of quanta was another source of contention, 
with Einstein affirming and Planck denying it. He 

emphasized that Planck had not assumed this in his 
derivation and that it led, in fact, to Wien's law 

which Einstein had used. This problem of interdependent 

statistical behaviour of Planck's quanta clearly 
troubled Ehrenfest and he returned to it three years 
later, as we shall see. It was also discussed by Joff6 

and Natanson ane was the subject of an interesting 

controversy between Krutkow and Wolfe in 1914. 

Natanson was also interested in the differences 

between Planck's and Einstein's conceptions of quanta. 

In his 1911 paper he probed the assumptions underlying 

Planck's consideration of the distribution of energy 

elements over 'receptacles', and identified three 

different 'modes of distribution', depending on whether 

the quanta or receptacles or both were regarded as 

individuals (154). 

Thus he used the term 'mode of distribution' for the 

correlation of energy elements with receptacles in which 

the distribution is characterised only by the number 

of receptacles containing a given number of quanta. 

In this case no account is taken of the possible 

individuality (li0entifiability') of receptacles or 

energy elements. However if the former are regarded as 

inOividuals then every 'mode of distribution' branches 

out into a number of'modes of collocation't which specify 

the number of energy elements in each individual 

receptacle. This, he argued, corresponded to Planck's 

microstate. If energy elements are also regarded as 

individuals then each Imodeof collocation' splits up 

154. L. Natanson (1911) p. 659. 
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into a number of 'modes of association', which associate 
individual energy elements with individual receptacles. 
This corresponds to Boltzmann's complexion. (155) 

As Natanson noteJ, the thermodynamic probability 
of a given mode of distribution depends on whether all 
modes of collocation or all modes of association are 
regarded as equally probable. Whereas Einstein took 
the latter view, Planck took the former and thus, 

according to Natanson, implicitly regarded his recep- 
tacles, the resonators, as individuals but not his energy 

elements, the quanta. The odd notation is an attempt 
to distinguish the meaning of the term 'complexion' 

as used L4 quantum and classical statistics. In the 

former a complexion specifies only how many elements 

are in each receptacle and this is called a mode of 

collocation. A permutation of two elements between 

receptacles does not lead to a new mode of collocation. 

In the latter, a complexion specifies which individual 

element is in which individual receptacle, and this 

is termed a mode of association. A permutation of 

elements between receptacles does lead to a different 

mode of association. 

Joffe also attempted to modify Einstein's idea of 

quanta so as to reconcile it with Planck's law (156), 

and three years later a controversy arose between 

Krutkow and Wolýe over just this question. 

Krutkow, following Ehrenfest, demonstrated that if 

classical statistics are used then the assumption of 

independent quanta leads to Wien's law. Planck's law 

can only be obtained, he argued, if this assumption 

is abandoned. Wolýe, however, argued that one must 

Oistinguish between two meanings of the word lindepen- 

dent'. If the quanta exist independently then, he claimed 

c, A A, vo-ot da M &- 0 e- 

155. A. KastlerX (I Iq 33)p. 620 This js an interesting 

although rather broad, account of these 

developments. 
156. A. Joffe (1911) p. 534. 
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Planck's law is obtained, but if, in addition, the 
quanta are regarded as spatially independent then 
Wien's law will result (157). Thus he concluded that 
Einstein hact implicitly assumed the quanta to exist 
independently and to be also spatially independent 

whereas Planck has assumed only the former, leading 
to the suggestion that some sort of spatial 

correlation had to exist between Planck's quanta. 
Further light was shed on these questions by Ehrenfest 

and Onnes' paper of 1914,. (158), which gave an intuitive 

way of understanding Planck's combinatorial formula. 

Ehrenfest had not been satisfied with the standard 
derivation given in the text books as they appealed to 

proof by induction and offered no insight into the 

peculiar structure of the result. Thus he set out to 

provide his own. 

The problem he considered was to find the number 

of ways in which P objects could be placed in N 

containers where only the number of objects in each 

container is of importance. Two distributions were called 

identical when corresponding containers, i. e. oscillators* 

in each distribution possessed the same number of 

objects, i. e. energy elements. A distribution was 

represented symbolically thus 
-F 

6 c- e c- oE c- 00 EIT 
where the TT are the fixed boundaries , 4ff represents 

the energy units, and the 0 separate these units in 

successive oscillators, numbered from left to right. (159) 

k 
157. M. Wolýe (1914) p. 133 and 363 
158. P. Ehrenfest and H. Kamerlingh Onnes (1914) p-870 

anO. (1959) p. 353; Y. Klein (1970) p. 255-257 and 
(1959) p. 47-48. 

159. This notation is confusing in that the symbolO has 

a dual significance of both the separation of quanta 

in successive oscillators and also that an oscilla- 

tor possess no quanta. A clearer way of writing 
it is il e--, 6-6-CICe- 1 16 11 where the 

dividers separate the energy symbols for (ýifferent 

oscillators. Klein (1970) p. 256 
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With general values of N and P the symbol will contain 
6P times and 0 N-1 times, and Ehrenfest asked how rrany 

eifferent symbols for the distribution could be formed 
from the given number of C_ and 0 His answer was 

CA) P derived as follows. 
P! CA) -1) 

There are N-1+P quantities and () which, if 

regarded as distinguishable, can be arranged in 
(N-1+P) ! ways between the ends 

11 
- However the 6 Is 

and 0 Is can be permuted among themselves P! and 
(N-1) ! times respectively and two distributions differing 

only by such permutations are identical. Therefore 

as there are P! (N-1) ! symbols corresponding to these 

identical distributions one must divide (N-1+P) ! by 

P! (N-1)! to obtain the number of distinct distribu- 

tions. The result is (A) -1 +- P) !, 
Planck's 

P. 1 CA) -1 )! 
combinatorial formula. 

This 6erivation allowed some important conclusions 

to be (ýrawn regarding the status of Planck's quanta 

ane their relationship with Einstein's. It confirmed 

Ehrenfest in his old opinion that, the energy elements 

and. hence also Planck's quanta, were merely a formal 

Oevice, imbued with no more physical significance than 

the divider elements. (160) The failure to realise 

this, he believed, had led to the mistaken interpret- 

ation that these quanta were mutually independent and 

identical to Einstein's. The difference between the 

two was demonstrated by comparing their different 

statistical behaviour. Ehrenf est noteeL that the number 

of ways of distributing a number p of Einstein's light 

quanta, regarded as independent, over N1 and then over 

N cells in space stand to each other in the ratio 
2 Is 

A) 
IP: A); LP 

If PlanckXquanta were also 

regarded as mutually independent then in passing from 

N1 to N2 oscillators, the number of possible distributions 

woulO increase in the same ratio. This, Ehrenfest noted, 
iSf. I eaýl- 

I 
tve &Akz 0, S; PI a-, VL C 

L'S AWA L& 
I 
CX Iý Ve-S 

-. 

872 160. Ehrenfest ana Kamerlingh Onnes op cit P- 
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P)! 
- 

4- P) (161) 

According to Ehrenfest the explanation was simple, 
Einstein's quanta could be regarded as-existing 
independently of each othere whereas Planck's could 
not and were no more than a formal device. 'The 

real object which is counted remains the number of all 
the different distributions of N resonators over the 

energy grades 0_.,, E,. ZC, 
>& with a given total P1. 

(162) 

Finally Ehrenfest gave an example of the quantal 

reduction in the number of possible arrangements which 
illustrated the classical nature of Einstein's quanta 

anO the non-classical behaviour of Planck's. 

Ehrenfest thus contended that if Planck's quanta 

were to be considered as statistically independent then 

the traditional classical counting procedure should 

be applied rather than Planck's own. (163) Since the 

number of distributions obtained by Planck differed 

from that obtained by treating the quanta as independent 

the entropy change in any appropriately specified process 

would also have to be different. It is ironic that 

although Ehrenfest's derivation is now almost univer- 

sally given as an intuitive underpinning of Planck's 

procedure, it's original purpose was to argue that 

this procedure cannot be correct if the quanta are to 

be independent. This was also the substance of his 

criticism of Einstein's 1924 paper as we shall see. 

It thus follows, in a reciprocal manner, that if 

Planck's procedure is correct than the quanta cannot be 

regarded as statistically independent and must exhibit 

some sort of non-classical correlation. Also, the fact 

that a permutation of Einstein's quanta gives a new 

distribution whereas a permutation of Planck's does not 

implies that the former can be regarded as individuals 

whereas the latter, nor the oscillators either for the 

161. Ibid p. 873; Also see Jammer (19? 3) p. 51-52 

162. Ibid p. 873 
163. M. - Klein (1970a)p. 256 
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ka-S 
same reason, cannot. Klein4remarked that the blurring 

of the concept of particle when it comes to light 

quanta was already implicit in Einstein's results for 

energy and momentum fluctuations in black body radiation. 
(164) These results furthered the identification between 
Einstein's and Planck's quanta because they effective- 
ly allowed Einstein to explain quantum phenomena in 

terms of the wave-like aspect associated with his, 

individuall quanta, whereas Planck effectively had to 

appeal to the non-classical correlations between his, 

non-individual, quanta. The same phenomena was explained 
by both kinds of quanta and thus they came to be seen 

as identical. 

By the time this 1914 paper had been published, 

Planck's 1906 method of treating whole regions of phase 

plane of area h as a single event, had. been generalised 

and by 1913 it had been established that there was a 

natural unit for phase extension :h for each degree of 

freedom. This led to the result that each cell in phase 

space could be given the volume h3, thus giving an 

absolute value for the entropy via the Sackur-Tetrode 

Equation. 

These results implied that the classical assignment 

of equal apriori weights to equal volumes of phase 

space had to be abandoned and only certain regions of 

this space given non-zero weight. Thus for Planck's 

oscillators the area assigned non-zero weights 

were those particular ellipses of constant energy whose 

enclosed areas were integral multiples of h. As we have 

said, it was Ehrenfest who was virtually alone in 

recognising that the basis of Boltzmann's proof of the 

Second Law had been lost in principle as soon as 

pilysics had followed Planck in abandoning the classical 

weighting assignment (165). Thus in 1914 he returned 

to the problem of obtaining a suitably generalised 

weight function for quantum statistics and presented a 

164. Ibid p. 257 
165. Ehrenfest's letter to Bohr, given in Klein op cit 

p. 283 
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general discussion which did not re,,, ly on the notion 
of an oscillator (166). He proved that the statistical 
weights had to be adiabatically invariant) (167), a 
result which was fundamental in extending the 
Combinatorial Approach to quantum statistics. 

From about 1910 onwards attention shifted increasing- 
ly towards the problems of atomic structure and other 
questions, but the publication of Bose's work in 1924, 

and the subsequent elaboration of its consequences by 
Einstein, rekindled many of the old arguments concern- 
ing the statistical behaviour of quantal particles. 

As is well known Bose asked Einstein to translate 
his paper and arrange for its publication. In the 

accompanying letter he emphasized the division of phase 

space into cells of volume h3 as a basic assumption 

of his work, thus clearly indicating its ancestry. Bose 

presented a derivation of Planck's law on the basis of 

Einstein's light quantum hypothesis using the traditional 

combinatorial formula. (168) 

He regarded the quanta as particles localizable in 

space and considered their distribution over the cells 

of phase space. It was in determining this distribution 

that Bose deviated from the traditional line and 

adopted Planck's 1900 approach in specifying the 

distribution by the numbers of cells containing each 

possible number of quanta rather than the numbers of 

quanta in each of the cells. Thus he employed a quantal, 

166. P. Ehrenfest (1914) p. 657, (1959) p. 347 

167. In terms of adiabatic invariance his 1911 paper 

can be understood as having established that 

Boltzmann's relationship between entropy and the 

number of ways of obtaining the most probable 

(ýistribution remained valid precisely because 

Planck had quantized the oscillators' adiabatic 
invariant, the ratio of its energy to frequency. 

IV, ore generally.. he (Ehrenfest) had shown that if, 

and only if, the weight function was dependent on 

this adiabatic invariant, then the statistical 

168. 
thermodynamics of the oscillator was secure. 

S. N. Bose (1924) p. 178 rep. in H. A. Boorse and 

L. Motz'(1966) p. 1013; also see Pais op cit 

p. 423 ff. 
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rather than a classical, characterisation of the 
events to be counted : cells occupied by the quanta. 

However, he used a form of the traditional Boltzmann 
combinatorial formula, giving the number of ways W 
of distributing As cells over Ns quanta as 

where PT. is the number of T1 
S Pal - P11 !&aa 

cells containing i quanta. Indeed Bose followed the 
classical Combinatorial approach very closely, but 

replaced everywhere 'particles' by 'cells 1. (169) 

The view (170) that this work represents a 
significant departure from traditional Boltzmann 

statistics, as modified by Planck in 1906, is there- 
fore rather simplistic. Bose did depart from the 
traditional line as regards what was taken as a countable 

event, although the departure was hardly strikingly 

original, merely a return to Planck's characterisation 

of 1900, but the combinatorial formula useO and his 

whole procedure in general, were located entirely within 
the traditional approach. It is worth remarking that 

just as Boltzmann's procedure implied that his atoms 

were statiscally independent so Bose's juxtaposition 

of the classical combinatorial expression with the 

quantal characterisation of countable events, implied 

the statistical independence of the cells. The statist- 

ical independence of the quanta had vanished. As we 

shall see, this aspect of Bose and Einstein's work 

was seized upon by Ehrenfest as a perpetuation of Planck's 

earlier mistake. Finally we emphasise again that by 

counting the cells containing the quanta, rather than the 

quanta themselves, and by asking how many quanta are 

in a cell rather than which quanta are in a cell, 

Bose was implicitly regarding the quanta as devoid of 

individuality in the classical sense. (171) 

169. Thus As is not the number of stan6ing waves as 
in Rayleigh and Jeans work, nor the number of 

particles as in Boltzmann's but the number of cells 
170. L. Wessels (1977) p. 315 
171. See M. Klein (1964) P. 29 
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Shortly after he had arranged for the publication 
of Bose Is paper Einstein presented a paper of his own 
in which he applied Bose Is methods to a gas of naterial 

particles. This paper and the two which followed it 
laid down the foundations of the quantum theory of the 
ideatgas embodying what is now called Bose-Einstein 

Statistics. 

In his first paper Einstein used- exactly the same 

combinatorial formula and techniques as Bose, suitabl 

modified to take into account the finite mass of the 

gas atoms and their fixed number.. and employed a 

similar characterisation of countable events, with 

'quanta' replaced by 'gas atoms'. (172) 

Thus Einstein followed Bose in using the traditional 

form for the expression for the number of ways of 

rnistributing Zs cells over N particles W =1T : Rtý i 
Sý 

together with the quantal 'Planck 1900' 
F, 

characterisation of the events to be counted. (173) 

The thermodynamic properties of Einstein's gas were 

consequently more complicated than in the classical 

case but tended to support his theory. Thus it 

predicted a value for the entropy at high temperatures 

which was equal to that given by the Sackur-Tetrode 

equation, which contained the correct additive constant. 

(174) Einstein also showed that at temperatures 

approaching absolute zero the entropy approached zero 

for all values of the volume thus demonstrating that 

his quantum gas also satisfied Nernst's heat theorem. 

Further support was to come several years later with 

the experimental verification of the famous low 

temperature degenerate behaviour of the gas atoms, only 

hinted at in this first paper. 

This behaviour was the subject of one of Einstein's 

letters to Ehrenfest where he wrote 'From a certain 

temperature on, the molecules 'condense' without 

attractive forces, that is, they accumulate at zero 

172. A. Einstein (1924) p. 261 

173. See pais op cit p. 428 

174. P. Ehrenfest and U. Trkal (1920) p. 162, also 

Ehrenfest (1959) p. 414. 
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velocity'(175), and he wondered how true his theory 
was. It is interesting to note that Einstein appears 
to have ruled out the possibility of the non-classical 
condensation phenomena being accounted for in terms 
of peculiar interatomic forces. In a reply, sometime 
that same year, Ehrenfest criticised this work on 
the grounds that the gas molecules were not statistically 
independent (176) 

. This criticism is pivotal to an 
understanding of the difference between Einstein's 
1924 and 1925 papers as we shall shortly see. 

Einstein's second. paper was published in 1925 and 
dealt first of all with this condensation phenomena. 
(177). He then went on to consider Ehrenfest's objection 

and accepted that it was entirely correct. In the course 

of the discussion of this question Einstein gave a 

combinatorial formula and a characterisation of countable 

events which were completely different from those given 
in the previous year. Thus he wrote down 

W TT (A)'+ A- 1) 

s /V II( A'- I) 
where As is the number of cells and NS the number of 

particles. which clearly is of the same form as Planck's 

of 1900. (178) However he now took a distribution to 

be characterised, in a classical manner, by the number 

of particles in each available cell, and counted the 

number of ways in which the particles could be distribu- 

ted over the cells. This is a combination which is 

the reverse of the one used in 1924. 

it is surprising that Ehrenfest directed his criticism 

not at this work as would perhaps be expected, but at 

the 1924 paper which explicitly used a version of the 

traditional combinatorial formula. To what then was 

Ehrenfest objecting? Clearly it was to the 

rharacterisation of countable events used in 1924 which, 

as we have noted, implied that the cells were statistically 

independent but the particles were not. Thus Ehrenfest 

175. Pais op cit p. 432 

176. Klein op cit p. 31 

177. A, Einstein (1925) p. 3 

178. If certain trivial substitutions are made then 

Einstein's expression is completely identical with 

the product over all frequencies of Planck's. 
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criticised Planck for the statistical interdependence 
inherent in his combinatorial formula of 1900 ane 
criticised Einstein for the same thing, manifested now 
in the characterisation of what was to be counted. 

Einstein admitteO the truth of this objection anO 
attributed the statistical Oependence to some kind 

of mutual interaction between the particles. Thus, 

referring to his expression above, he wrote, 'The 

formula, therefore, expresses indirectly a certain 
hypothesis on a mutual influence of the molecules which 
for the time being is of a quite mysterious nature. 

1(179). 

It was absolutely crucial that this statistical 

dependence was not eliminated by the 1925 reworking of 

the theory, despite Ehrenfest's objections, because 

as Einstein obviously realised, it lay at the very 

heart of the condensation phenomenon to which he 

attached so much importance. But if the particles were 

now regarded as distinguishable (180), in a classical 

sense, in what did this dependence lay? The answer is 

that it lay in the wave-like aspect which Einstein now 

attributed. to his gas atoms. 

The 1924 paper also represents a return by Einstein 

to the study of fluctuations about equilibrium but 

consieered now in the context of material gas atoms rather 

than of radiation (181). He succeeded in obtaining 

an expression for the mean square fluctuation of the 

number of particles which was analogous to the one for 

the mean square energy fluctuation of electromagnetic 

radiation and which was also the sum of two terms. 

However, it was now the first term which was familiar 

179. Einstein-op cit. 
180. Thus Brush's brief analysis is both over 

simplistic and incorrect. S. G. Brush (1983) p. 131 

181. Einstein op cit. See also Pais op cit p. 437 
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and which applied to a distribution of distinguishable 

particles. The second term was associated with waves in 

the case of radiation and thus Einstein was led to 
I ... interpret it in a corresponding way for the gas, 

by associating with the gas a radiative phenomenon'. 
(182) 

It was at t is point that Einstein turned to deBroglie 's 

icleas and suggested that a de Broglie matter wave-field 

should be associated with the gas particles thus account- 

ing for their statistical dependence As we have noted 

this suggestion was subsequently developed by 

Schro(linger into his theory of wave mechanics and the 

wave-like nature of material particles became a way of 

unelerstanding their lack of statistical independence. 

It is interesting to note that Einstein also showed 

that for a gas of independent particles the entropy 

must violate either the requirement that it be extensive 

or Nernst's heat theorem. The entropy expression for 

the quantum gas satisfied both of these and Einstein 

regarded this as a good reason for preferring his 

procedure, even if it could not be shown to be superior 

on apriori grounds (183). 

Following the publication of a third paper (184) 

tidying up some of the details, Einstein's theory provoked 

a number of responses (185). Planck's theory of the 

ideal gas was presented as a conservative reply to 

Einstein and derived the entropy on the basis of the 

former's 1906 work, employing the N! Oivision in order 

to avoicý counting 'redundant' complexions -formed by 

the permutation of two atoms (186). This procedure was 

justified on the grounds that such a permutation produced 

no change in the state of the gas. Thus Planck was 

insisting here on the use of what Gibbs called the generic 

rather than the specific phase (187). Unlike Einstein 

Planck was deeply sceptical of any strange statistical 

182. Pais Ibid p. 438; V. V- Raman and p. Forman (1969) p. 291 

183. See also A. Einstein (1925) p. 18 

184. Ibid 
185. See W. Pauli (1927) p. 81 and IVI. 1;, lein (1964) p. 31 

186. M. Planck (1925) p. 49; See P. Hanle (1977) p. 177 

for a good discussion of these responses. 

187. J. W. Gibbs (1902) Chol5. 
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interaction between the atoms and thus his theory Oid 
not predict any degenerate behaviour at low temperatures. 

The procedure of dividing the number of possible 
arrangements, obtained by implicitly regarding the 
atoms as in(Ilividuals and statistically independento by 
N! in order to obtain the 'correct' quantal count hact 
been the subject of a dispute between Planck and Ehrenfest. 
(188) Planck had vigourously defended the division, on 
the above grounds, while Ehrenfest had argued that it 

was ad hoc and simply not cogent. These arguments 
greatly influenceel Schrodinger who believed that one 
could only divide by N! when the gas was in the 

condensed state in which the atoms were virtually held 

fixed, so the permutation number N! becomes physically 

meaningful and the atoms become 'identifiable' (189). 

A year later Schrodinger reconsidered this problem 
in the light of Bose and Einstein's work and again 

attacked Planck's justification for the N! division on 

the grounds that the molecules were either individuals 

or not and the theory should be constructed accordingly 

without first assuming theywere and then 'correcting 

away' the resulting multiplicity (190). Thus he 

adopted a holistic view which attributed Miantum states 

not to individual gas atoms but to the body of the gas 

as a whole. However, Schrodinger could not find a way 

to carry out such a programme in a physically plausible 

way - 
This defect forced him to arend his approach and in 

1926 he applied Boltzmann's combinatorial procedure to 

a gas considered, significantly) as a collection of 

de Broglie matter waves. (191) This gave a theory broadly 

similar to Einsteinýs but which ruled out the possibility 

of the condensation effect predicted by the latter. 

188. P. Ehrenfest anO V. Trkal (1920), (1921) p-609; 

M. Planck (1921) p. 365 (1924) p. 673 

189. E. SchroOlinger (1924) p. 41-45 

190. E Schro0inger (1925) p. 434 

191. E. Schrodinger (1926) p. 95; also see Pais op cit 

P. 438-439 
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In 1928 the He I- He II phase transition was 
r"iscovered. (192) an(9 this was subsequently interpreted 

as an example of B-E condensation, but not until 1938 
however, (193) Thus it was not the experimental 

verification of a crucial prediction which decided 
between Einstein's gas theory and the rival approaches 
of Planck and Schrodinger but rather, as we shall now 
see, the accommodation of this theory within a self- 

consistent theoretical framework by Heisenberg and 
]Dirac (194). 

Before discussing this it is worth noting that the 

above account serves to illustrate Klein's remark that 

... the same impasse which blocked the understanding 

of the statistics of photons was at least the case of 

a Oetour in the statistics of atoms and molecules. In 

both cases the classical concept of the particle was 

at fault, since non-interacting classical particles 

are necessarily independent'. (195) 

Following the construction of quantum mechanics as 

we now know it, during the years 1925-1927 (196), three 

different authors independently applied the new theory 

to the statistical mechanics of indistinguishable 

particles. 

Thus Fermi attempted to formulate a theory of the ideal 

gas which was consistent with both the new Q. Y. anO the 

third law of thermodynamics (197). He assumed the 

192. See W. H. Keeson (1942) 
193. F. London (1938) p. 947; Brush op cit p. 172-203, 

gives an excellent discussion of the developments 

surrounding this phenomenon. 
194. Planck continued to propound his approach, u til 

1926 but appears to have realised that he"ýOxrayed 

away from the mainstream of quantum statistical 

mechanics. 
195. Y. Klein (1959) p-55 
196. T, '. Jammer (1973) 
197. E. Fermi (1926a) p. 145 and (1926b) p-902; F. Rasetti's 

introeuction to Fermi's collected papers has a gooO 

discussion of the genesis of this work. E. Fermi 

(1962) P. 178 
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vali0ity of Pauli's Exclusion Principle (198) for gas 
atoms an(q obtained an expression for the number of 
arrangements of Nsmolecules (9istributed over Qsstates, 
subject to the constraint that not more than one 
molecule could be in any one state: 

IT QS) ( 
AJS The Boltzmann relation and standard thermo6ynamics then 

gave the equation of state for such a gas, now known 

as the Fermi gas formula. From this Fermi Oerived the 
Sackur-Tetrode equation thus demonstrating that his 

gas would exhibit the correct behaviour at low temperat- 

ures - 
With the publication of this work there were then two 

very different theories of the ideal gas, each 

embodying a different form of statistics. Shortly 

afterwards Heisenberg explicated the connection between 

these two forms and the symmetry characteristics of 

states of systems of indistinguishable particles. 

In his first paper, published in June 1926, Heisenberg 

showed that two indistinguishable systems, i. e. particles, 

which were weakly coupled, always behaved like two 

oscillators for which there were two sets of non- 

combining states (199). Thus he demonstrated that the 

eigenfunctions of one system were symmetric in all 

the co-ordinates whereas those of the other were anti- 

symmetric. The fact that the two sets of states 

were not connected then followed from the symmetry of the 

Hamiltonian of the system under a particle permutation. 

An example of such systems, according to Heisenberg, were 

the two electrons in the helium atom and in July he 

investigated more fully the theory of such two electron 

atoms using the Schrodinger approach (200). The 

conclusion he reached was that only those states whose 

eigenfunction are anti-symmetric in their electron 

co-or0inates can arise in nature. 

rirac had read Fermi's paper but claims to have 

forgotten it (zol) cLAJ haO not seen Heisenberg's at all 

198. W. Pauli (1925) p. 765 

199. W. Heisenberg (1926) p. 411 

200. W. Heisenberg (1926b) p. 499 

201. Archive for the History of Quantum Physics. 
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although it is mentioned in a note added in proof. 
Thus his August 1926 paper (202) represents a completely 
ineependent effort which went further than those above 
in setting the two forms of statistics and the 

corresponding theories of the ideal gas within their 

correct theoretical context. 

He began with the fundamental requirement that the 
theory should not make statements about unobservable 

quantities and noted that it then followed that two 

states which differed only by the interchange of two 

particles and which were therefore physically 
indistinguishable, rust in fact be counted as only one 

state (203) 
. This in turn implied that out of the 

set of possible two-particle eigenfunctions there 

were only two which satisfied the conditions that the 

eigenfunction should correspond to both of the above 

states and should be suf f icient to give the matrix 

representing any symmetric function of the particles, 

these-two being the symmetrical and the anti-syrmetrical 

eigenfunctions. Dirac then noted that the theory as it 

then stood was incapable of deciding which of these two 

actually applied in nature (204), indicating that it 

had not yet been realised that each symmetry type had 

its own domain of applicability. 

He then showed how these results could be extended to 

any number of non-interacting particles, writing the 

anti -symme tri c eigenfunction in determinantal form, 

from which the Exclusion Principle followed quite natually. 

(205) Dirac concluded by remarking that 'The solution 

with symmetrical eigenfunctions ... allows any number 

of electrons to be in the same orbit so that this 

solution cannot be the correct one for the problem of 

electrons in an atom. 
' (206). Thus as the theory cannot 

202. PAD,, Pira(- (1926) p. 661 
203. Ibi(I p. 667 
204. IbiO p. 669 
205. Ibirl p. 669-670 
206. IbiO p. 670 
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tell which solution is correct extra-theoretical 
considerations harl to be appealed to. 

rirac then applied this theory to the ideal gas, noting 
that the two possible types of eigenfunction would 
give two (ýifferent solutions of the probleF. 

By multiplying together the single particle eigen- 
functions he obtained the eigenfunctions for the 
assembly as a whole, from which the symmetric and 
anti-symmetric ones could be selected. The former 

were identified with Bose-Einstein statistics, taken 
to be applicable to light quanta (207)0 and the latter 

with what are now known as Fermi-Dirac statistics, 

regarded as applying to electrons in atoms anC gas 

molecules. 

The equation of state of an ideal gas was then derived 

on the assumption that the solution with anti -symme trica 1 

eigenfunctions is the corect one, so that not more 
than one molecule can be associated with each de Broglie 

matter wave (208). The set of such waves associated 

with the molecules was then divided into a number of 

sub-sets such that the waves in each sub-set are 

associated with molecules of about the same energy. 

Assuming that equal apriori weights are assigned to 

all stationary states of the assembly, the probability 

of a distribution in which Ns molecules are associated 

with the A. waves in the s' th set is given by 

AS I- 
A)S 

(209) 

(As 
Boltzmann's relation was then used to give the entropy 

anO the equation of state was obtained very straight- 

forwarOly. 

rirac's combinatorial formula, above, is simply a 

suitably amen0ed. version of the well-known expression 

207. This is a rather odd ieentification given that rirac 

presumably knew of Einstein's 1925 papers. He may 

perhaps have been influenced by the controversy 

surrounOing this work ane the arguments against it 

put forwar(ý by Planck and Schrodinger. 
208. Ibicq p. 672 
209. Ibi(: ' p. 673 



245 

M 
for the number of ways in which4objects can be selected 
from a set of n objects, written as A! 

m37 i 
anO often referred to as the number of combinations of 
n things taken4at a time (210). Thus it gives the 
number of ways in which N molecules can be selected from 
a set of A Tolecules assoriated with A waves, or the 
number of possible combinations of , 

ýk waves taken Na 
time. We can un(ýerstand Dirac's formula in the 
following way: if we have Aswaves anc-ý Nsmolecules 
then the number of ways of associating theserrolecules 

with the waves, such that no wave is associate(' with 

more than one molecule is given by 
(As - A)s)! 

However a permutation of the molecules does not lead 

to a new arrangement and so this result must be 

(: ýivided by the total number of arrangements formed by 

such permutations, N!, giving 
A 

s. ' We 
A)s t (As-A)s) !0 

repeat this procedure for each set of de Broglie waves 

and the probability of a particular distribution is 

then given by the product of the above over all sets 

i. e. IT As ! 
S Ns! (As -A)s) 

In other wor(9s Dirac's formula is simply a version 

of Planck's non-tra6itional 1900 formula, suit-ably 

amended to take account of the Exclusion Principle. It 

is clear that Dirac was concerned with the distribution 

of particles over de Broglie waves, or states, anO thus 

he implicitly aeopted a classical characterisation of 

particles distributed over states as the events to be 

counted. 

It is not clear whether Dirac regarded the particles 

as classical individuals, subject to restrictions on 

the set of states they can occupy, or as'non-individuals' 

in some sense. In the former case the division by N! 

in the combinatorial formula above can be interpreted 

in terms of giving the required reduction in the 

statistical weights, whereas on the latter view it 

is intro0ured to eliminate the unobservable and hence 

210. H. margenau ane Yurphy (1956) p. 432 
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meaningless permutations of the 'non-individual I 

particles. There is certainly nothing in this paper 
which inOicates that Pirac supported the latter view. 

The great explanatory power of rirac's work, 

particularly as regards electrons in metals, for example, 
led to its rapid acceptance by the physics community. 
out of the very many papers exploring the consequences 

of this theory we shall just note Heitler anO Loneon's 

analysis of the hydrogen molecule in which they explained 
the consequences of Fermi-Dirac statistics in terms 

of saturable, non-(IynarTiic forces - the so-called 
'exchange' forces of attraction and repulsion - existing 

between particles (211). As we have seen this is one 

way of accounting for the statistical dependence of 

quantal particles and Heitler and London's suggestion 

follows very naturally on from Einstein's and Ehrenfest's 

remarks. 

Following the realisation that there were now three 

kin(-Is of statistics, classical, Bose-Einstein and Fermi- 

Pirac, several papers were published exploring the 

relationship between them. Thus Fowler, in 1926, mar'le 

the first attempt to construct a general form of 

statistiral Techanics embracing all three types. (212) 

Ehrenfest and Uhlenbeck tackled the question as to 

whether B-E or F-D statistics are necessarily requireO 

by the formalism of Q. M. or whether there were areas 

in which classical statistics was still vali(I. (213) 

They concluded that it is the imposition of syrrmetry 

requirements on the set of all solutions of the 

Schrodinger equation for an assembly of particles, 

obtained by considering the permutations of all the 

particles among themselves, which produce the syr-metric 

and anti-symmetric combinations and hence give rise to 

B-E and F-D statistics respectively. 

If no constraints are imposed then Vaxwell-Boltzrann 

statistir-s are the most appropriate form to use. Thus 

211. W Heitler anc3 F. London (1927) p. 455 

212. R. H. Fowler (1926) p. 432 
21? P. Ehrenfest and G. E. Uhlenberk (1927) p. 24 
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they ("emonstrated that the Q-Y- formalisrr does not, 
by itself, necessarily imply one or other of the 
two forms of quantum statistics. It is the i7position 

of specific symmetry requirements (214) on the wave- 
functions which determines which form is obtainee. 

We have noted. that the non-rlassical statistical 
depen("ence of the particles manifested in quantuF 
statistics could be 'explained' by reference to the 
Oe Broglie inatter waves associated with each particle. 
Thus Uhlenbeck contended that Srhrodinger had shown 
in 1926 that Einstein's gas theory could be obtained 
by considering the gas either as an assembly of particles 

and applying B-E statistics or as a system of standing 
de-Broglie waves and applying classical M-B statistics. 
(215) He used the recently developed wave mechanics to 

extend this discussion into a detailed analysis of the 

various interpretations of the three forms of 

statistics and their different areas of applicability. 

The conc-lusion he reached was that the lack of 

independence of quantal particles was introduced in a 

natural way in the appropriate wave interpretation. 

Thus Ehrenfest co-rrented 'one must distinguish between 

identity and independence, between the particle and the 

wave picture'. (216) 

It is interesting to note that the development of 

quantum statistics took place entirely within the 

Combinatorial Approach and therefore was capable of 

treating equilibrium situations only. The neglect of 

Boltzmann's alternative H-Theorem Approach ended in 

1928 with Nordheim's attempt to construct a theory of 

quantum statistical mechanics based on this approach 

which would give, not only all the results derived 

previously, but also expressions applicable to phenomena 

214. These can be regarded as initial conditions as 

we have noted. 
215. G. E. Uhlenbeck (1927). This is not strictly correct, 

as we have seen, because Schro0inger's approach, 

using matter waves, did not give the condensation 

phenomena to which Einstein attached so much 
importance. 

216. Klein op cit p. 58 
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associated with non-equilibrium states. (217) 
Nordheim began by following the classical H-Theorer 

approach but noted that the time variation of the 
distribution function for an assembly of particles 
could be separated into two parts. One was a 
flux term due to the particles own motion and external 
forces, which following Darwin and Kennard's demonstration 
that a single quantal particle behaved classically under 
the influence of external forces, (218) remained 
unaltered by the quantum theory. The other term was a 
collision term due to interactions between the particles, 
which Nordheim rewrote to take account of the fact that 
in Q. M. the probability of a collision depends not 
only on the number of particles in the initial states., 

as in C. M. but on the number in the final states also. 
(219). 

Having done this he then substituted for the number 

of particles undergoing collisions in his version of 
Boltzmann's transport equation from which followed 

the well-known distribution functions for quantum statis- 

tics. To justify this derivation he established the 

quantal version of the H-Theorem, obtaining an expression 

for H and showing that it could only decrease and that 

its derivative would be zero in the equilibrium case 

(220) 

However,. Nordheim's conclusion that he had constructed 

a theory of quantum statistics based purely on kinetic 

arguments is not strictly correct as combinatorial 

initial conditions were introduced in the consideration 

of the flux term in order to obtain the correct quantal 

behaviour. Thus he wrote 'The prohibition of certain 

states of motion, characteristic for quantum statistics, 

emerges here not out of the law of motion but out of 

the choice of the initial state ... of a proper wave 

group. Thus, for instance, it is prohibited in the Fermi- 

217. L. W. Nordheim (1928) p. 689 
218. ]Darwin (1927) p. 258 and Kennard (1927) p. 326 

219. Nordheim op cit p. 691-693 
220. Ibid p. 695 



249 

Dirac statistics to choose an initial distribution, 
the density in the phase space Of which is greater than 331 
one particle per h /m 

. (221) In other words the 
results of quantum statistics can only be obtained if 
certain states are regarded as inaccessible and a 
particular initial state selected. once this choice 
has been made the laws of Q. m. can only ensure that 
there are no transitions to the forbidden states. Thus, 
on Nordheim's own admission, the H-Theorem alone cannot 
give the appropriate statistics, some external, non- 
kinetic constraint, such as the symmetry restrictions 
imposed upon the wave-functions, must be imposed. 

A similar attempt was made by Ornstein and Kramer to 
derive F-D statistics from purportedly purely kinetic 

arguments (222). However, their derivation was based 

on the Exclusion Principle whicho again, can be regarded 
as a non-kinetic initial restriction on the set of 
accessible states. Further work was continued along 
th6se lines by Halpern and Doermann and others (223). 

It was an historical accident that the sufficiency 

condition for particle indistinguishability embodied 
in the Symmetrization Postulate namely that the eigen- 
function should be either symmetric or anti-symmetric, 

was first demonstrated within the context of B-E and 

F-D statistics. The realisation that this was not a 

necessary condition only came later with the conception 

of parastatistics. However, even in 1926 Dirac realised 

that the symmetric and anti symmetric functions were 

merely the two simplest out of the set of possible 

eigenfunctions for the assembly. Thus he later wrote 

'It appears that all particles occurring in nature are 

either fermions or bosons, and those only anti-symmetri- 

cal or symmetrical states for an assembly of similar 

particles are met with in practice. other more 

complicated kinds of symmetry are possible mathematically 

221. Ibid p. 691 
222. L. S. Ornstein and H. A. Kramers (1927) p. 481 
223. o. Halpern and F. W. Doermann (1939) p. 1077; for an 

excellent review of these developments and quantum 
statistical mechanics in general see D. ter Haar 
(1955) P. 312 
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but do not apply to any known particles 1. (224) 
The investigation into these alternative symmetry 

types was initiated by Gentile in 1940. (225) He used 
Bose's combinatorial methods to derive an expression 
for the average number of particles in a group of states 
which was dependent upon a parameter d giving the maximum 
number of particles which could occupy any given state. 
F-D and B-E statistics were special cases of these 
intermediate statistics, obtained when d=1 or W 
respectively. From this Gentile arrived at an expression 
for the entropy of a gas of particles obeying these 

statistics also dependent on d from which the F-D and 
B-E entropies could also be obtained as special cases. 

ter Haar (226) and. Sommerfeld (227) objected on 
Q. F,. grounds thato apart from the purely academic 

cases considered by Miiller (228)o the only application 

of Gentile's statistics was in the case of a system of 
bosons in which d equals the number of particles in 

the system N. Several authors had discussed the 

implications of Gentile's formula when d=N and ter 

Haar concluded that in this case there would be no 
difference between intermediate and B-E statistics. From 

an inspection of integrals in the complex plane Wergeland 

(229) and Schubert (230) had both concluded that it did 

not matter whether one took d=N or d=00 - 
However ter Haar's demonstration that Gentile's work 

conflicted with the postulates of Q-M- was based only 

on S. P. from which, as we have seen, one can only 

obtain conventional quantum statistics- 

In 1952 a work was published in Japan by Okayama which 

received little attention then or since, but which 

anticipated several later results (231). Thus he 

distinguished between particle and place permutations and 

224. P. A. M. Dirac (1930), (1958) p. 211 

225. G. Gentile (1940) p. 493 
226. D. ter Haar (1952p-) p., Icici aAl CICIS-4) Ck. -(z 

- 
227. A. Sommerfeld (1942) p. 1988 

228. H. Willer (1950) P. 199. 
229.. H. Wergeland (1944) p. 51 
230. G. Schubert (1946) p. 113 
231. T. Okayama (1952) p. 517 
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realised. that the fact that a wave function operated on 
by the former represents the same state as the original 
function only implies the conventional statistics if it 
is assumed that the two functions must be proportional 
and must li9, in a one dimensional irreducible subspace. 
If this assumption is dropped and the possibility is 

allowed that a single state could correspond to some 
larger collection of vectors spanning a multi-dimensional 
subspace, then other statistical types will result. 
Okayama noted that these would be related to various 
representations of the symmetric group and could thus 

be investigated using the apparatus of group theory (232). 

He also inquired into the relationship between para- 

statistics and the degeneracy which results when certain 

degrees of freedom assigned to conventional particles 

are neglected (233), as we noted on p 199 and 

demonstrated that paraparticles also obey the Cluster 

Principle, upon which the practical utility of 

conventional statistics is dependent. (234). Finally 

he tried to develop a second quantised version of para- 

statistics but this was not particularly successful, 

as his generalised. commutation relations allowed only 

the trivial solution that the Hilbert space consists 

only of null vectors. (235) 

Apparently unaware of Okayama's contribution Green 

made a similar, but much more successful attempt in 

1953, (236) following Wigner's demonstration that the 

Q. M. commutation relations were not uniquely determined 

by the equations of motion (237), which suggested that 

more general forms of such relations were possible. 

Thus Green's aim was to relax the formal structure of 

232. Ibid p. 517-521 
233. Ibid p. 523 We considered this relationiship at the 

end of Section 3.2.3. 
234. Ibid p. 523-524. 
235. Ibid p. 530; see the comments by S. Kamefuchi & 

Y. Takahashi (1962) p. 200-202 
236. H. S. Green (1953) p. 270 
237. E. P. Wigner (1950) p. 711 
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Q-F. T. in order to allow a possible resolution of some 
of the problems with which it was beset. His basic 

requirement was that any quantization scheme would be 
regarded as satisfactory if it ensured the equations 
of motion. This permitted the introduction not only of 
the usual fermion and boson commutation relations, but 

also of wholefamilies of alternative commutation schemes 
obeyed by paraparticles. (238). Nowadays these schemes 
are labelled by an integer p and thus if we quantize 
with the p1th scheme one talks of a parafermion or 
paraboson field of order p. The conventional relations 

are recovered when p=1. 

Green noted that although this generalized theory 

implied that a new state would result from the inter- 

change of two particles, the particles would always 
divide into groups in such a way that such permutations 

within a group would not lead to a new statel and that 

furthermore interactions can be devised which prevent 

the formation of new states by permutations between 

the groups. These, suspiciously ad hoc, moves allowed 

him to say that the 'Principle of Indistinguishability 

of Identical Particles' is retained in parafield theory. 

The physical properties of Green's paraparticles were 

first studied by McCcu6u, )_ in 1955. (239) He argued that 

analysis of the spectra of certain bound states could 

give a means of conclusively identifying paraparticles 

whereas scattering experiments could not. The problem 

of distinguishing paraparticles in nature was later 

taken up by Messiah and Greenberg. McCarthy also 

concluded that the thermodynamic properties of a para- 

fermion gas were identical to those of Gentile's paragas 

and those for a paraboson gas corresponded to those of 

a number of superimposed Bose gases. (240) 

During the next few years it was shown that Green's 

parafield theory was consistente both internally and 

with the fundamental principles of physics (relativistic 

238. Green op cit p. 273 
239. I. E. mcCarthy (1955) p. 131 
240. Ibid p. 139 
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and non-relativistic) , 
(241) and that its formalism 

could be extended to allow for interactions between 
the fields (242) 

- The only problem, recognised by 
Volkov, for example, as a serious one, was the lack of 
evidence for the existence of paraparticles in 

nature (243). 

This problem was addressed by Greenberg and Messiah 
in the course of their construction of a consistent 
first quantized paraparticle theory (244). By 

rigo,,., rously examining the role of S. P. within Q. M. they 

concluded that it was neither necessary for a consistent 

quantal treatment of indistinguishable particles nor 

strongly supported by experiment. The first point 
led them to replace S. P. by a form of the I. P. which 

then permitted the existence of, previously forbidden, 

mixed symmetry paraparticle states through the reduction 

of the Q. M. state vector space into irreducible subspaces 

of dimension greater than one. The set of vectors 

spanning such a muti-dimensional subspace was termed a 

Igeneralised ray' and Greenberg and Messiah demonstrated 

that the associated indeterminacy causes no difficulty 

in the interpretation of the theory because measurable 

results on a state associated with such a ray do not 

depend on which state vector in the multi-dimensional 

subspace is chosen to represent the state. (245) 

They then showed that it follows from I. P. and Schur's 

lemma that there exists a superselection rule between 

vectors in inequivalent representations. (246) However, 

their proposal that any paraparticle would have N- 

241. Kibble and Polkinghorne (1957) p. 252; D. V. Volkov 

(1959) p. 1107; S. Kamefuchi and Y. Takahashi op cit; 

G. F. Dell'Antonio, O. W. Greenberg and E. C. G. 

Sudarshan (1964) p. 403 

242. D-V. Volkov (1960) p. 375; S. Kamefuchi and J. 

Strathdee (1963) p. 166 

243. Volkov op cit. 
244. A. M. L. Messiah and O. W. Greenberg (1964) p. 248 

245. Ibid p. 251 
246. Ibid p. 252. We have discussed this Zj 5-ecu'oeL3.2-, 
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particle states corresponding to just one representation 
of the symmetric group was later shown to be incompati- 
ble with the Cluster Principle, discussed in Section 
3.2.2. 

It was also made clear that those arguments which 
purport to show that state vectors must be either 
symmetrical or anti-symmetrical can only be carried 
through if an extra assumption is introduced to the 

effect that states which cannot be distinguished by any 
observation are represented by the same vector to within 

a phase factor (247). Thus Galindo and Yndurain's 

conclusion that paraparticles cannot be regarded as 
indistinguishable in the usual sense, is incorrect 

because their argument assumes the existence of a 

complete set of commuting observables, which is 

equivalent to the assumption that the state vectors 
transform under a one dimensional representation of the 

permutation group (248). Perhaps the greatest and most 
fundamental achievement of Greenberg and Messiah's work 

was to demonstrate that assumptions such as this are 

not a necessary part of the Q. M. formalism and can be 
Ca-A 

replaced by the less restrictive rule that statesAbe 

represented by any multi-dimensional irreducible sub- 

space invariant under the permutation group. 

In the second half of their paper they gave a very 

detailed discussion of the direct experimental tests 

of SP and concluded that in many cases such experiments 

actually tested I. P. instead (249). This prompted 

them to lay down a set of criteria for valid tests of 

S. P. and some possible types of such tests were given. 

Finally, they surveyed the experimental evidence for 

S. P. for various kinds of particles and concluded that 

although the statistical character of many types of 

particles was accepted and well established, there 

were some for which it was not. 

247. Ibid. p. 253 
248. A. Galindo and F. J. Yndurain (1963) p. 1040 

249. Messiah and Greenberg op cit p. 259-267 



255 

Although Messiah and Greenberg thus demonstrated that 
the status of many known particles as regards their 
symmetry type was unclear, the question whether 
paraparticles themselves existed remained open. A 
possible answer was, however, given later that same 
year by Greenberg when he suggested that the 'statistics 
problem' in quark theory could be resolved if quarks 
were regarded as para-fermions of order 3. (250) 

It had been suggested, on various grounds, that 
quarks should be assigned spin 1/2 (251) and therefore, 
according to the spin-statistics theorem, they should 
possess totally anti-symmetric wave functions. This 

worked well in the cases of mesons but failed in that 

of baryons where the symmetric quark model, which 
demanded that the total wavefunction be symmetric, had 

proven successful in classifying the baryon spectrum. 
(252) 

Greenberg's way out of this dilemma was to propose 
that quarks be regarded as parafermions of order P=3. 

This allowed them to possess separate wave functions which 

were symmetric under permutation of any two quarkst 

as required by the symmetric quark model, and also 

overall, composite wave functions which were anti- 

symmetric under permutations with other composite 

states, as demanded by the spin statistics theorem, 

The price paid for this resolution was the intro- 

duction of three labels assigned to each quark (253). 

These labels were subsequently interpreted, in the 

three triplet quark model (254), as representing a new 

250. O. W. Greenberg (1964) p. 600 
251. F. Gursey and L. A. Radicati (1964) p. 173; A 

Pais (1964) p. 173; Gurseyo Pais and Radicati 
(1964) p. 299 

252. F. E. Close (1979) Ch. 5- 
253. Greenberg op cit p. 602 
254. MI. Y. Han and Y. Nambu (1965) p. 1006 



256 

three-fold degree (255) of freedom, later called 
colour. The colours possessed by a quark provided the 
extra degree of freedom which could be used to anti- 
symmetrise the otherwise symmetric wave-function. Thus 
there were two alternative models (256) which could 
solve the statistics problem : one regarded quarks as 
paraparticles, the other took them to be 'ordinary' 

particles possessing an extra degree of freedom. 

Insofar as all three triplet models have the same 
consequences with regard to hadron (baryon and meson) 
spectroscopy the above two models are equivalent 

experimentally (257). As regards the relationship 
between their formalisms we shall note the following. 

There exists a certain transformation (258) which 

effectively transforms paraquark fields into degenerate 

Bose or Fermi Fields. Thus it would appear that the 

paraquark and colour models are formally equivalent. 

However, the Hilbert space of the transformed para- 

fields is larger than that of the untransformed fields. 

It can then be shown that the Hilbert space generated 
e by the dege rate Bose and Fermi fields acting on the 

vacuum contains all physically different states for 

sets of local observables invariant under the groups 

So (p), O(p), and U(p). However, this is only true 

for para-fields for the last group, U(p). (259). 

Furthermore, all the irreducible representations of each 
e 

group are produced with the degenrate Bose and Fermi 
4 

fields and so the physical states are represented 

255. It is only with three different values of colour, 

corresponding to a paraf ield of order p=3, that Fermi 

statistics are allowed for quarks, and unique baryon 

states are produced. O. W. Greenberg and C. A. Nelson 

(1967) p. 79-80. Recall Ohnuki and Kamefuchils point 
discussed on p. 190 

256. Various other kinds of models were also proposed. 
See Greenberg and Nelson op cit, for a taxonomy 

of the different types. 
257. Han and Nambu op cit p. 1010; O. W. Greenberg and M. 

Resnikoff (1968) p. 1844. Greenberg and Nelson op 

cit p. 84-88. 
258. The 'Klein' transformation. Ibid p. 85ff for details 

259. Greenberg and Nelson op cit p. 85-87. 
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redundantly. In the para-field case each different 
state is represented 'non-redundantly' by one vector 
in the Hilbert space generated by the para-field 
acting on the vacuum (260) 

- Thus it can be concluded 
that the para-quark and colour models have the same 
states only in certain cases, which depend on the 
choice of observables in the former, and so are 
'formally equivalent' only to this extent. 

If the required choice of observables is made however 
the two models can be regarded as equivalent, both 
formally and in terms of their observable implications. 

The question then arises as to why the colour model was 
subsequently almost unanimously chosen to be the 
fundamental interpretation of quark theory? (As is well 
known, a Yang-Mills gauge theory of Han-Nambu colour 
became the dominant theory of the strong interactions 

in the early 1970's and formed the core of the new 
theory of quantum chromodynamics). 

A possible answer is that, first of all, the formalism 

of the colour model was more familiar to elementary 

particle physicists and was easier to use, and secondly 

colour could be easily gauged whereas the parafield 

model could not (261). Thus although the two descriptions 

were equivalent formally, under the circumstances noted 

above, they were not equivalent heuristically, the 

colour theory being 'more fruitful' (262) in the sense 

of possessing a greater capacity for generating new 

and successful lines of development. 

There is one further point we wish to make concerning 

this historical episode. As we shall discuss in the 

next section the quantum field theoretic description 

of an N-particle system regards the 'particles' as 

merely excitations of the field. it is in this sense 

260. Recall our discussion on p. 
261. O. W. Greenbergo private correspondence 12/6/81. 

As regards the second point note the qualifying 

remarks in Greenberg and Nelson op cit p. 88 

262. M. Redhead (1975) p. 77 
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that one can say that the interpretation of the first 
quantised theory in which the particles are regarded 
as 'non-individuals I finds its most coherent expression 
in Q. F. T. However, the above equivalence between the 
parafield and colour descriptions suggests that the 
particle individuality 'lost' in the field theory can 
be regained, in a sense, by transforming to an 
alternative model in which the particles are regarded 
as distinguishable through the introduction of a 
new quantum number. Thus quarks become distinguishable 

through the attribution of different colours just as 
electrons with different spins can be regarded as 

, 
distinguishable. 

Furthermoreo it was subsequently shown, as we shall see, 
that parafield theory was (completely) formally 

equivalent to the first quantised theory of paraparticles, 

at least for particles of finite order. Thus following 

the 'chain' of equivalence we can argue that particles 

regarded as indistinguishable in one first quantised 

description may be considered to be distinguishable in 

another. 

If colour is regarded as an extrinsic property of 

the particles then one could interpret quarks with 

different colour as merely different states of the same 

particle, possessing different values of colour. On 

the other hand if colour is regarded as an intrinsic 

property then quarks with different colour are different 

kinds of quarks. Thus the introduction of colour 

may be regarded as corresponding to a further classifica- 

tion of particles into different natural kinds. 

An analogous situation exists in the case of neutrons 

and protons which may be regarded either as different 

kinds of particles or as different states of the same 

kind of particle, which may possess different values of 

isospin. (263) Thus the distinguishability, as far as 

the intrinsic properties are concerned, of the particles 

in the first case is 'taken up' by the states, in the 

263. A. Messiah (1962) Ch-14; See also Hamermesh for a 

group theoretical discussion of isospin. Hamermesh 

op cit. p. 433-435 
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seconde through the isospino regarded as an extra 
degree of freedom. 

These examples illustrate the general point that as 
an intrinsic property can always be reinterpreted as 
an extrinsic one, and vice versa, two different kinds 

of particles can be subsumed as different manifestations 

of the same kind of particle, and conversely, a set of 
one kind of particle can be further classified into 

different natural kinds. 

The theoretical consecruences of narafield fhpnrv Ana 
its relation to first quantised paraparticle theory, 

continued to be explored during the mid-160's. (264) 

In particular it is. -worth noting Greenberg and Messiah's 

conclusion, based on further theoretical work together 

with the experimental evidence then available* that no 

particle known at that time could be a paraparticle (265) 

Furthermore it was not possible for a paraparticle 

to decay into ordinary particles or vice versa. 

We have already dealt with Steinmann's claim that 

paraparticle theory is not consistent with the Cluster 

Principle (266) and a similar refutation of this 

conclusion can be found in Land-shoff and Stapp's general 

discussion of the problems involved in establishing a 

correspondence between first and second quantised 

paraparticle theory (267). In particular, as Greenberg 

had already pointed out (268), the particle permutations 

are not represented in the Hilbert space of Q. F. T. and 

so the I. P. is, in general, ill defined in the second 

quantised approach. Landshoff and Stapp suggested this 

problem could be overcome if a distinction were made 

between particle and place permutations. The latter were 

regarded as observables (269) and as well defined in 

264. O. W. Greenberg and A. M. L. Messiah (1965) p. 500, 

(1965) p. 1155 and O. W. Greenberg (1966) p. 29 

265. Greenberg and Messiah op cit P- 1165-1166. 

266.0. Steinmann (1966) p. 755 

267. P. V. Landshoff and H. P. Stapp (1967) p. 72 

268. Greenberg op cit p. 35 
269. But note our comments on p-7-Oý 
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parafield. theory. Indeed, they argued, the I. P. is 
equivalent to the requirement that all observables 
that distinguish among states differing only in the 
order of the variables, are functions of the 'T's. 
(See our discussion týA -3.2,. i)- In this form the 
I. P. is equally applicable in both the first and 
second quantised approaches and can thus be used to 

establish the correspondence between the two. As we 
shall see this suggestion was subsequently taken up 
and elaborated by Stolt and Taylor. 

In 1969 Hartle and Taylor rewrote the formalism of 
first quantised paraparticle theory in a very lucid and 

cogent manner. (270) It is this form of the theory 

which we have used as the basis for the outline of the 
first quantised theory of indistinguishable particles 

given in Section 3.2. As we have already discussed it's 

most significant characteristics we shall not consider 

them again here. However it is worth repeating that it 

was shown how Greenberg and Messiah's generalised ray 

could be eliminated and the usual connection between 

states and rays in Q. M. restoredo by moving to a sub- 

space of lower dimension and using the one dimensional 

ray belonging to such a subspace to label the mixed 

symmetry states (271). Hartle and Taylor also showed 

that the theory was consistent with the Cluster 

Principle and argued that it then followed that 

for a given kind of paraparticle there is a whole 

family of allowed symmetry typeso with the property 

that whenever the family contains an (N+1)- particle 

symmetry type D OVI-I)VA it contains all N-j N-1p..... 2- 

particle symmetries whose Young diagrams can be 

obtained f rom that of D (A)+I)/A by removal of 

successive blocks. i (272). 

270. J. B. Hartle and J. R. Taylor (1969) p. 2043 

271. Ibid p. 2046 
272. Ibid p. 2050 
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Finally as regards the occurrence in nature of such 
particles they conclude ... although there is no 
theoretical reason to exclude para-particlesl their 

properties are sufficiently disagreeable for one to 
hope sincerely that there will continue to be no evidence 
in their favour'. (273) 

Further work by Stolt and Taylor demonstrated that 

paraparticles could be classified into those of finite 

and those of infinite order (274). A particle 
is said to have finite column (row) order p if it has 

states associated with some Young diagram of p columns 
(rows) 

, but no states associated with any diagram of 

more than p columns (rows) 
. If a particle has neither 

finite row nor column order then it must have states 

with diagrams of arbitrarily many rows and columns - 
Such a particle is said to be of infinite order. Finite 

order paraparticles can be further divided into parabosons 

and parafermions of order p, a division which closely 

resembles that of parafield theory. (275). However, 

another result needed to be established before an 

identification could be made between the first and 

second quantise approaches. 

Kamefuchi and Ohnuki had been pursuing their own 

programme since 1967 prior to which Ohnuki has published 

a study of the statistical properties of two-body bound 

states of paraparticles (276). Their 1967 work continued 

in this vein, (277) but in 1969 they embarked upon a 

general group theoretical investigation of the wave 

functions of indistinguishable particles (278). Their 

273. Ibid p. 2051 
274. R. H. Stolt and J. R. Taylor (1970) p. 2226 

275. Ibid p. 2228. A similar classification can be estab- 
lished for infinite order paraparticles except those 

with states corresponding to all Young diagrams. 

Hartle Stolt and Taylor (1970) p. 1759 

276. Y. Ohnuki (1966) p. 285 
277. S. Kamefuchi and Y. Ohnuki (1968) p. 1279 

278. S. Kamefuchi and Y. Ohnuki (1969) p. 337 
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main conclusion was that a necessary and sufficient 
condition for particles to obey parastatistics is that 
there exists one and only one irreducible invariant 

sub-space which uniquely corresponds to each Young 
diagram whose first row or column is shorter than or 
equal to p. (279) In other words the N-particle wave 
functions associated with a para-Fermi (Bose) field of 
order p support a representation of the permutation 
group containing every irreducible representation 

with p or fewer columns (rows) 
. This was exactly the 

result which Stolt and Taylor needed. 
Following this work Kamefuchi and Ohnuki went on to 

consider the necessary and sufficient condition for 

particles to be indistinguishable Arguing that the 

premises used to establish I. P. were too restrictive 

they adopted the following field theoretic condition 

those particles are regarded as indistinguishable which 

result from the second quantisation of a given field, 

since they share the same intrinsic properties (280). 

(C-f ov-rdistinction in the Introduction to Ch-1). The 

Q. M. of such particles then follows from the corresponding 

field theory. They then obtained a general theory of 

indistinguishable particles by simply translating the 

field theoretic results of many particle systems into 

the Q. M. language. This carried with it the surprising 

discovery that this formalism could be generalised 

even further to give a theory of particles not obeying 

either ordinary or para-s tatis tics - 
(281) These results 

are collected together and discusssed in more detail in 

their recent book. (282). 

The complete equivalence between parafield theory and 

first quantised paraparticle theory was finally 

established by Stolt and Taylor in 1970 (283), although 

279. Ibid p. 345-346 
280. S. Kamefuchi and Y. Ohnuki (1970) p. 543 

281. ibid p. 569 ff; A similar generalisation was consid- 

ered by Carpenter the same year, following Landshoff 

and Stapp's work. See K. M. Carpenter (1970) 

282. Y. Ohnuki and S. Kamefuchi (1971) p. 19 and (1982) 

283. R. H. Stolt and J. R. Taylor (1970. p. l. 
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f or paraparticles of f inite order only (284) 
. Such 

an equivalence required two things : first, a 1-1 corres- 
pondence between the states of the two theories must be 
established by constructing a 1-1 isomorphism between 
the rays of the corresponding Hilbert spaces. Clearly 
this is not possible with Messiah and Greenberg's 

generalised rays so Stolt and Taylor used the alternative 
formalism of Hartle and Taylor in which the conventional 

correspondence between states and rays is preserved. 
Secondly, a correspondence must be established between 

the permutation operators in the two theories. This 

cannot be done with the particle permutation operators 

since these are undefined in the second quantised 
formalism. However, place permutation operators can 
be defined in both theories and as Landshoff and Stapp 

demonstrated, these do correspond to one another. 

Thus Stolt and. Taylor began their proof by showing 

that the physical significance of the PI 's in the second 

quantised theory is the same as in the first quantised. 

Ohnuki and Kamefuchils result, above, allowed them to 

demonstrate that the vectors in each theory transform 

under the Tils, and their second quantised analogues, 

in exactly the same way. (285). It was then shown that 

the Fock and Hilbert spaces of the second and first 

quantised formalisms respectively decompose into a sum 

of subspaces in exactly the same way also, and that 

the sums in these decompositions run over the same set 

of irreducible subspaces. Thus if the basis vectors in 

the two theories are identified with one another then 

this defines an isomorphism between the two state spaces. 

(286). Furthermore it is clear from the definitions 

of the ý; Is and their analogues, that they possess the 

same matrix elements between corresponding vectors and 

hence are corresponding operators. Thus Stolt and Taylor 

284. Paraparticles of infinite order have no second 

quantised analogues although stolt and Taylor 

conjectured that the Q. F. T. formalism could be 

generalised to include them. 
285. Ibid p. 13-14 
286. Ibid. p. 15 
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concluded 'Our construction of the desired isomorphism 
is complete; Every finite order first-quantised 

paraparticle has a second quantised analogue; and vice 
versa'. (287). 

Thus the Q. M. of indistinguishable particles of any 
statistical type (288) can be given a formulation 
in terms of field excitations, in which the particles 
are not labelled from the outset and the creation 
operators in the field theory contain the effects of 
particle non-individuality. We shall briefly return 
to parastatistics and Q. F. T. in the next section. 

Apart from the odd piece of work here and there* such 

as Green's suggestion that Aeutrinos could be para- 
fermions of order 2 (289) and Govorkov's study of the 

connection between parastatistics and simple Lie 

algebras (290)t there has been little further discussion 

of paraparticle theory. Presumably, one factor which 

could account for the sudden loss of interestt apart 

from the simple absence of anything new to add to the 

theory* was the realisation that the theory was, in a 

senseo unnecessary becauset as the development of quantum 

chromodynamics indicated* one could always devise an 

equivalent formalism, which was simpler and more 

accessible, by assigning extra degrees of freedom to 

the particles and using ordinary statistics. 

This concludes our history of quantum statistics. 

We particularly wish to emphasise the following points. 

First, questions of individuality# 'identity', statis- 

tical independence etc-P played an important and explicit 

role in shaping the development of 'ordinary' statistics. 

Secondly, the philosophical alternatives which we 

discussed in Section 3.3 find their analogues* or rather 

origins, in the development of the formalism of the 

theory and its interpretation. Thus* the use of a 

classical characterisation of the events to be counted 

287. Ibid p- 15 
288. Assuming, of course, that stolt and Taylor's 

conjecture (f n Z94- ) is correct and a similar 

equivalence can -be established for paraparticles 

of inf inite order - 
289. H. S. Green (1972) p. 1400 
290. A. B. Govorkov (1980) p. 1673 
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of, for example, particles in cells, implies that the 
former were being implicitly regarded as classical 
individuals. However, a non-traditional combinatorial 
formula was used, concomitant with this characterisation, 
which could be interpreted in terms of a restriction 
being imposed on the set of possible states accessible 
to the particles. Alternatively, a traditional 
formula could be employed but with a characterisation of 
countable events in which one counted cells continuing 
particles, thus implicitly regarding the latter as 
'non-individuals' and the cells, or states, as 
individuated. Another approach was to maintain that the 

particles were, in fact, classical individuals, but 

subject to peculiar interactions. Finally, the non- 

classical statistical behaviour of the 'particles' was 

also attributed to their 'wave-like' natures and thus 

they could be regarded as 'non-individuals' precisely 
in this sense, that they were 'also' waves. 

All four positions can be drawn from the history 

of the development of quantum statistics and thus, as 

in the classical case our philosophical conclusions 

are supported by historical considerations. Indeed, the 

development of quantum statistics can be characterised 

to a large extent, in terms of shifts from one position 

to another. 

Thirdly, the development of parastatistics demonstrates 

that the Q. M. formalism is not as rigid as is often 

thought and can be reformulated to admit entities, such 

as paraparticles and parafields, which were previously 

excluded. Thus formal restrictions as regards ontology 

should not be regarded as absolute. Philosophical 

positions also are not uniquely determined by consider- 

ations of the formalism of the theory. This point, 

already made in Section 3.3 abovet is reiterated by the 

equivalence between the paraquark and colour theories 

which demonstrated that the individuality lost by 

introducing a field theoretic description can be 'taken 

up' by the introduction of a new parameter. 

Finally# we note that although the first and second 

quantised approaches are formally equivalent, they 

differ heuristically, and, more importantly from the 
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point of view of this thesis, there may be strong 
arguments against the philosophical implications of one 
which undermine it in favour of the other. 

We shall now further discuss Q-F-T. albeit rather 
briefly. 

3.5. Individualily. and Quantum Field Theory 

As is well known we can arrive at a quantised field 

description of an N-particle system via two routes 
1). The N-particle Schrodinger equation is taken and 

subjected to the Foch space formulation i. e. to the 
formalisation of second quantisation. 

2). The 1-particle Schrodinger equation is taken, 

regarded as describing a mechanical field (i. e. resolved 
into normal modes) and the techniques of field quantisa- 

tion applied (291) 

Formally speaking these are completely equivalent, but 

the quantised field which results can be given two 

meanings according to the route taken. On the first 

one begins with particles which have T. I. attributed 

to them, both particles and states are labelled and thus 

both the Pi Is and the Pi is play an important role. 

On the second route modes of a field are considered 

and thus one begins with non-individualso only the 

states are labelled and thus only the PI Is have a role 

to play. 

Now when a many particle system is regarded as a 

quantised field one no longer talks of which particles 

are in which states but only one how many particles are 

occupying a particular state, as given by the occupation 

numbers. Thus the system is represented in occupation 

number space in which-only the states are specified and 

the number of particles or rather field excitations# 

occupying the states. 

The role of the Pi Is in Q. F. T. can then be understood 

as follows. We begin with the vacuum state which contains 

291. M. Redhead (1983), se-cttýoi. -I '3. 
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no particles and which we represent by the ket I O> 
The situation with one particle in the k'th state is 
represented by (Xk I O> , where 0(o, is a creation 
operator, and one particle in the k1th state, one in 
the kj'th state is given by tXk, O(K' I O> and so on. 
Using our ball and box analogy what we are giving 
here is a method of describing the distribution of 
balls among boxes i. e. 

k, K 7- 
If we consider a system of bosons then we can 

construct the general ket 0(1 O(z 
.,, 

I C) >- 

Applying a place permutation operator gives : 

e. a'-ý Oc'.. .. 10>= 6ý-r, DQ. - ---I O> 
but the creation operators commute i. e. 

Cq(' oqý =0 

OC tj 0( t O> 7= 
W1 JX I O> 

0a 90 

Pi 

CK 1 
lk; L 6 iý f. 

1 
C» = o( 

t 
ix 

Z- 00t; 
, 

So the effect of a place permutation on a state is 

simply to reproduce that state. For bosons the 

states are symmetric under the T's and this translates 

into a certain type of commutation relation between the 

creation and annihilation operators in Q. F. T. In the 

case of fermions, the states are anti-symmetric under 

the T's and this translates into anti-commutators 

in the field theory. Thus in general there is a 1-1 

correspondence between the symmetry types in the 'ordin- 

ary' particle description and the commutators in the 

field theory. 

The situation is a little more complex in the case 

of paraparticles because one must give not only the Occu- 

pation numbers but also the irreducible representation 

under which the state transforms, and the symmetry type 

of the state under the T's, in order to distinguish 

states transforming under the same representation. 

(292). This is why the T's play a more important role 

in Q. F. T. than in the first quantised theory. 

292. c. f Y. Ohnuki and S. Kamefuchi (1971) p. 19 

especially pp. 21-23. 
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This is all translated into a field theory of 
paraparticles via Green's ansatz which supplies a 
generalization of the commutators and anti commutators 
mixed up in such a way as to characterise the symmetry 
type in the correct way. Simple commutation or anti- 
commutation of the creation operators would not capture 
the symmetry type of the paraparticles. If the anti- 
commutators of ordinary Q. F. T. are somewhat arbitrary 
then Green's ansatz is even more artificial in the way 
it is designed to reproduce the correct symmetry type. 

This supports the view that field quantisation is 

really just a formal device. (293) 

Thus Q. F. T. is the most 'natural' framework in 

which to regard the particles as 'non-individuals' 

because they are represented as merely field excitations 

and are not labelled at the very outset. Thus there 

are no shuffling of particles as in the Schrodinger 

formulation and the P's remain undefined. The T's 

are well defined however, and the states are labelled, 

leading one to conclude that the states can be regarded 

as individuated. 

Insofar as the states are embedded in space-time this 

is a form of space-time individuality. However, as in 

the first quantised case, it is a very weak form because 

the Impenetrability Assumption is clearly violated in 

the case of quantum fields. When we discussed a possible 

field description of C. M. we noted that T. I. could not 

be attributed to the field configurations, but that 

they could be individuated through their trajectories. 

This cannotbe done in the case of Q. F. T. because of the 

overlapping wave functions of the 1-particle states. 

Together with our remarks above this supports the view, 

already outlined in the classical case, that quantum 

fields are merely properties of the points of space-time, 

to which individuality is attributed. 

In the first quantised approach we noted that the 

statistical dependence of the particles could be accounted 

for in terms of the wave-like aspect attributed to 

them. As waves they become, in a sense, properties of 

293. Redhead op cit p. 24 
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the entire system, a description which clearly invites 
a holistic approach. However, we must be careful 
here. The problems concerning the interpretation of 
de Broglie's 'matter waves' and the wave function in 
general, usually centering on the question 'what is 
it that's doing the waving? ', are well-known. Further- 

more as Dirac had pointed out, this notion of 'wave-like 

aspects I and the term 'wave mechanics' in general 
arises* both historically as we have seen, and formally, 

out of hothing more than an analogy between the systems 
of Q M. for which the quantal Superposition Principle 
holds* and systems in C. M. , such as vibrating ropes# 
for which also a superposition principle holds, 

accounting for the vibration in terms of the super- 

position of a number of waves (294). However, the nature 

of the superposition relationships between the states 

in Q. M. is very different from that in the classical 

theory because they require us to accept that whenever 

a system is definitely in one state it is also partly 

in each of two or more other states. Thus it is the 

non-classical Superposition Principle of Q. M. which lies 

behind this idea of the particles having some sort of 

wave-like aspect, and it is this which must be 

addressed, as we have done, briefly, on p. 1991 in 

any discussion of particle non-individuality and 

statistical dependence. 

it might be though that these problems could be 

circumvented by turning to Q. F. T. whiche it is said, 

offers a 'natural' description of particles as field 

excitations and which therefore resolves the wave-particle 

duality problem. (295) Unfortunately, however, this is 

not correct, as Redhead has demonstrated (296). 

294. The source of the analogy is that in both cases the 

superposition principle leads to a mathematical 
formalism in which the equations governing the 

behaviour of the system are linear in the unknowns. 
295. P. A. M. Dirac (1927) p. 243 
296. Redhead op cit p. 26-28. 
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The representation in which the field amplitude is 
diagonal can be called the field representation and 
likewise the representation in which the number operators 
are all diagonal can be termed the particle representation. 
However, in this latter representation the field 

amplitude is not sharp because the number operators 
do not commute with the creation and annihilation 

operators. Thus one cannot simultaneously ascribe 

sharp values to both the particle number and the field 

amplitude and so wave-particle duality is manifested 

again, albeit in a different form. 

Thus the creation and annihilation operators can be 

interpreted either as creating or destroying particles 

or as increasing and decreasing, in a discrete way, the 

excitation level of the oscillators comprising the 

field. The latter view allows, again, a very 'natural' 

description of the situation where the number of 

'particles' is not conserved. Particles are then 

regarded as simply quantised excitations of particular 

modes of the field and the field configurations can 

come into and go out of being without the kinds of 

conceptual and philosophical problems associated with 

creating and destroying individuals which occur with 

the particle interpretation. 

If a particle is annihilated and ceases to exist then 

clearly, existence not being a predicate, any individ- 

uality that was attributed to it is destroyed along 

with the particle. The annihilation of a particle 

followed by the creation of another, indistinguishable 

from the first, is not a process involving the same, 

i. e. identical in our sense, individual. 

One possible way of retaining individuality in 

this situation is to talk not of the creation and 

annihil 
, 
ation of particles but of particles undergoing 

transitions from 'active' to 'frozen' states in which 

they cannot be observed through any physical interaction. 

Thus Dirac originally interpreted photon radiation 

as such a transition from an unobserved to an observable 

state and similarly regarded electron-positron pair 

annihilation and creation in terms of transitions to 
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LLA 
and from unoccupied states in anAobservable negative 
energy I sea I- (297) Reichenbach has also demonstrated 
that a consistent description of quantum statistics 
could be given in these terms (298). 

With this interpretation the particles can obviously 
still be regarded as having T. I. attributed to them 
although they cannot always be reidentified because 
there are periods in their histories during which they 
are completely unobservable and ' ... exist in the form 

of nothingness'. (299) There is an obvious analogy 
here with the case of 'inaccessible states' which we 
oiscussed on p. 210ff. Likewise the particles still 

exist, ontologically speaking* when they are 'frozen' 

they just cannot be observed in any way. They are 
there but we cannot see them. Of course it might be 

objected that physics should not be concerned with 

unobservable quantities and this gives another reason 
for preferring the field description over the particle 

representation - 
It might be argued that given all this one should 

drop all reference to hon-individuall particles and 

refer iný; tead to field excitations. This is perfectly 

permissible of course, but it must be remembered 

that we are not compelled to give up a description 

in which the particles are regarded as individuals. 

On the other hand if we do insist on adopting the particle 

representation then we must be prepared to face the 

philosophical objections to the notion of T. I. and to 

the idea of 'inaccessible' states, which will come as 

a result. As we have already said, although the represent- 

ations are formally equivalent, objections such as these 

may mitigate against one in favour of the other. 

3.6 The Gibbs Paradox 

The Gibbs paradox has two aspects. 

297. P. A. M. Dirac op cit. 
298. H. Reichenbach op cit p. 259 
299. Ibid p. 262 

The f irst is that the 
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expression for the entropy obtained from classical 
Boltzmann counting is not extensive and thus when a 
sample of gas is mixed with a sample of the same 
kind of gas there is an entropy increase. This is 
unsatisfactory on two grounds. First it is not in 
agreement with the results of classical phenomeno- 
logical thermodynamics. Secondly, it can be argued 
that insofar as thermodynamics is a phenomenological 
theory, in which no reference to 'particles' need be 
made, nothing physical happens when two gases of the 
same kind are mixed. Thermodynamically speaking 
'mixing' is a concept which is only applicable to 
different kinds of gases and only becomes meaningful 
when applied to the same kind when kinetic-atomic 

considerations are introduced, as in the 'reduction' 

of the theory to statistical mechanics. Thus from a 

purely thermodynamic point of view the mixing of a 

gas with itself is not a 'real', or at least not 

a physicalo event and so the entropy change should 

be zero. 

A resolution of this form of the paradox can be 

obtained if the classical expression for the number of 

possible complexions is divided by N! . This gives 

an expression for the entropy - the Sackur Tetrode 

equation - which is extensive as required (300). The 

justification for this N! division is that it 

eliminates redundant complexions obtained through a 

permutation of the particles. This suggests a result 

which, as we have emphasised, is absolutely fundamental 

to Q. M. namely that particle permutations are not 

regarded as observable and the quantal combinatorial 

formula takes account of this fact. It is in this 

sense that Q. M. has been said to 'resolve' Gibbs paradox 

(301). 

300. W. Yourgrau, A. van der Merwe and G. Raw (1966) 

p. 236-237. 
301. T. H. Boyer (1970) p. 849. See also D- Hestenes 

(1970) p. 840 and R. Rosen (1963) p. 232 who 

sweep the problem under the carpet by adopting an 

operationalis& approach. 
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However, even if the N! division is carried out and 
an extensive entropy obtained there is still the 
second aspect of the paradox to contend with, which is 
the form in which it was originally given by Gibbs. 

Let us consider a box divided into two halves of 
equal volume by a partition. Suppose that one half 

contains a mole of gas A and the other a mole of 
gas B, both a sufficiently low pressure that deviations 
from ideal behaviour are negligible. If the partition 
is removed the gases mix at constant temperature and 
pressure and there is an entropy change of 2Rln2, 

where R is the gas constant per mole. However, if the 
two halves initially contained the same gas, A say, 
then upon removing the partition the entropy change 

would be zero. Now it would seem reasonable to assume 

that we can make the two gases as much alike as we want; 
in other words there is no limit to the degree of 

resemblance which they might have. Yet we would 

still get this abrupt decrease in the entropy as the 

two gases became identical. As Gibbs said I... the 

increase of entropy due to the mixing of given volumes 

of the gases at a given temperature and pressure would 

be independ. ent of the degree of similarity or 

dissimilarity between them '. (302) 

It is this mismatch between the continuous change in 

the entropy and the apparently continuous change in 

the distinguishability of the gases which constitutes 

the essence of this aspect of the paradox. 

It is worth noting that Gibbs himself does not appear 

to have regarded this as a paradox, but rather gave it 

as a plausibility argument for choosing generic 

phases over specific phases. The latter are phases 

which are altered by a particle permutation the 

former are phases which are not. one can define the 

entropy with respect to either but Gibbs argued that 

we should choose the former because we would not 

regard the diffusion of a gas into itself as producing 

any change in the entropy. Thus, after giving a 

302. J. W. Gibbs (1948) \/4_r p. I(vb - 16 4. 
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version of the 'paradox' he wrote, 'It is evident 
therefore that it is equilibrium with respect to 
generic phases and not with respect to specific, with 
which we have to do in the evaluation of entropy... ' 
(303). 

Attempts at resolving the paradox typically fall into 
one or other of two groups. Some authors have argued 
that the indistinguishability of the particles is a 
simple Yes/No concept and thus eliminate the 'mismatch' 
and resolve the paradox, by denying that the gases 
can pass continuously from distinguishable to indis- 
tinguishable. A typical example is Mandl who writes 
I... there is no sense in which we can gradually 
let the properties of two kinds of molecules tend to 
each other and hence the entropy difference 

... tend 
to zero ... The molecules either are identical or 
they are different. In the latter case their differ- 

ence in properties can be used to actually effect a 
separation by means of semipermeable membranes ... 
and similar devices. ' (304) This view is justified by 

an appeal to the quantal character of elementary 

particles whose intrinsic properties can possess only 
discrete values. Substances composed of such particles 

cannot therefore be infinitesimally distinguishable. 

However, this does not account for the fact that the 

entropy change is the same whether the two substances 

are very similar, i. e. the particles possessing the 

same values for all intrinsic properties except one, 

say., or very different. It seems implausible that the 

constituent particles can differ as regards only one, 

and any one, intrinsic property and the entropy change 

remains the same, whatever the property that is different# 

but that as soon as they possess the same value for this 

property the entropy change falls to zero. It also 

seems implausible that the change in the value of the 

entropy change should be the same whatever the change 

in the value of the intrinsic property taking the 

303. Gibbs (100) r-2-06, -, ýLOT. 
304. F. ManOl (1971) p. 131 



275 

particles from being distinguishable to indistinguishable. 
In other words two kinds of particles can possess the 
same values for all intrinsic properties except one. 
Then the entropy change falls from 2Rln2 to 0 whether 
this property is the spin which becomes the same, or 
the rest mass. Furthermore the change in the value of 
the entropy change is the same whether the difference in 
the value of the one remaining non-equal intrinsic 

property changes from x to 0 or y to 0. 

Thus this view cannot account for the observations 
that the change in the value of the entropy change is 

independent of the degree of similarity of the two kinds 

of particles, of which intrinsic property the two 

kinds of particles happen to differ with regard to, and 

also independent of the change in value of this property 

which makes the particles indistinguishable and of the 

same kind. 

However although this 'Yes/No' position is incorrect 

with regard to indistinguishability* it is true for 'non- 

individuality'. Thus Post has written that '... there 

is an important difference between mere indisting- 

uishability and identity in the strong sense, that is, 

being exactly alike and devoid of individuality. 

Identity is not simply extreme similarity pushed to the 

limit ... You do not approach identity gradually. ' (305) 

one of the most fundamental points which we have 

tried to emphasise has been the difference between 

indistinguishability and non-individuality. The former 

applies to both classical and quantal particles of 

the same kind, and is concerned with the intrinsic 

properties possessed by the particles, whereas the 

latter only applies to quantal particles and is concerned 

with the loss of the classical individuator, whether 

it be the underlying substratum or the particle's 

spatio-temporal trajectory. Thus non-individuality 

cannot be continuously approached from indistinguishability 

305. Post op Cit P- 16-17 
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and in this sense non-individuality is a Yes/No concept, 
particles of the same kind are either non-individuals 
or they are not. As we shall see, consideration of non- 
individuals, rather than indistinguishability, can in 
fact lead to a resolution of the paradox. 

An alternative to the 'Yes/No' approach is to use 
the overlap of the particle wavefunctions as a 

continuous measure of indistinguishability and then 

show that the entropy change varies continuously 
from 0 to 2Rln2 as the overlap decreases from 1 to 0. 

Thus in this case the 'mismatch' is removed by denying 

the discontinuous change in entropy. 

This view has been propounded by von Neumann (306) 

and Schrodinger (307). who suggested that the overlap 

of wave-functions representing two quantum states 

could be used to give a continuous measure of indis- 

tinguishability. Thus von Neumann demonstrated that 

the entropy change could be made to decrease to zero 

continuously if the two gases differed only in their 

quantum states and if these states could be continuously 

varied from orthogonality to proportionality. Lande 

used this argument in reverse and argued that the 

thermodynamic assumption that any two gases are 

either strictly separable by a filter or strictly 

inseparable, is false for two gases which are alike but 

whose molecules are in two different quantum states, 

as this leads to states lying between complete 

separability and inseparability. Thus he wrote 

'Actually there must be some scale of equality degrees, 

observable as a gradual scale of diffusion entropy 

values from Nk2lg2 to zero, changing from total 

separability to lack of separability' - 
(308) Lande 's 

argument hinges on a demonstration that the expression 

for the diffusion entropy can be made dependent upon 

a continuous function expressing the degree of distin- 

guishability of the gases. 

306. J. von Neumann (1955,1943) p. 370 ff. 

307. E. Schrodinger (1952) p. 58 ff. 
308. A. Lande (1973) p. 83 
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Klein has developed this approach further by 

analysing the mixing of two isomers containing nuclei 
in different energy states. (309) He calculated the 

value of the entropy of mixing as a function of the 

overlap of the states of the particles that are mixed 
and showed explicitly that the entropy change varies 
continuously from 0 to 2Rln 2 as the overlap decreases 

from 1 to 0. 

As we have remarked one can regard the non-individuality 

of quantal particles as a manifestation of the wave- 
like aspect of the particles and explain it in terms 

of the overlap of the wavefunctions. Thus this 

approach above resolves the paradox by turning to the 

non-individual character of quantal particles. 

However, one can raise the objection that if the wave 

functions are overlapping then it is difficult to 

see how one can talk about distinct things at all, 

indistinguishable or not. In the limit there is just 

some sort of smear and it seems nonsensical to talk of 

indistinguishability. The concept simply ceases to 

apply. 

Despite this the above work does establish an important 

point by demonstrating that the entropy change of 

2Rln2 is obtained not only when two particles of 

different kinds are mixed but also when two gases 

composed of particles of the same kind but in different 

states are mixed, for example a monatomic gas A 

diffusing into a gas B consisting of the same substance 

as A but with all its nuclei in an excited metastable 

state. This emphasis on the states of the constituent 

particles was seized upon by Lesk who argued that 'There 

is an element of convention in regarding particles 

as distinguishable or indistinguishable - what in 

these cases is indistinguishable is not the particles 

themselves but theset of allowed states' (310) 

Furthermoreo in order to decide whether a continuous 

measure of indistinguishability is possible, and there- 

fore whether some sort of partial indistinguishability 

309. M. Klein (1948) p. 80 and (1959) p. 73 

319. A. M. Lesk (1980) p. 112 
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is really feasible, ' ... one must examine not the 

particles themselves but the restrictions on transitions 
between sets of allowed energy levels'. (311) 

A useful example which he gives is that of conforma- 
tional isomers, where the molecules may share the high 

energy levels, so that there is no distinction between 

the isomerst but not the low energy ones. When samples 

of such isomers mix the shared energy states constitute 

a partial indistinguishability which does decrease 

the change in entropy upon mixing although not to an 

observable extent. However, as Lesk notes, it is 

unlikely that such partial indistinguishability could 

ever be realised in practice. If two species of 

molecules did share populated sets of energy levels in 

this way then transitions would occur between these 

sets and the two species could not be regarded as 

distinct. If. on the other hand, the rate of inter- 

conversation was so slow that the species could be 

regarded as distinguishable then the shared energy 

states would be insufficiently populated to cause any 

observable decrease in the entropy change. 

This approach to the paradox can also be obtained 

very straightforwardly from our discussions of particle 

individuality in Q. M. Thus in terms of the view in 

which quantal partic-I. es are attributed with individuality 

in the form of T. I. but subject to state accessibility 

restrictions, the difference in the entropy change 

can be said to arise from the fact that many states of 

a system of distinguishable particles correspond to 

a single state of a system of indistinguishable ones. 

There are very many more states accessible to the 

particles of the mixed system of distinguishable gases 

than there are to the particles of the mixture of indis- 

tinguishable gases. Thus it is not distinguishability 

of the particles which is important here but the 

accessibility of possible energy states. In both cases 

the particles are individuals, in the classical sense, 

311. Ibid p. 113 
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but in the second there is a reduction in the number 
of accessible states, which is a consequence of the 
symmetry restrictions imposed upon the observables of 
the system by I. p., corresponding to the reduction in 
the entropy change. 

On the other hand, regarding the particles as non- 
individuals cannot alter the entropy change of 2Rln2 in 
the case of the mixing of distinguishable gases because 
the particles of one gas are distinguishable from the 
particles of the other; they possess different 

values of at least one intrinsic property. More 
significantly the states of the mixed system are 
distinguishable because it is they which, on this view, 
'carry' the individuality. In the case of the mixing 

of two gases of the same species the particles are then 

all both non-individual and indistinguishable, and there 
is then an equivalence of states for the gases, so 

questions of indistinguishability do not arise. The 

entropy change is still zero. 

To illustrate this choice let us take Lesk's example 

of the mixing of two isomers. (312) Any state of either 

molecule can then be regarded as a state of the system 

consisting of the constituent atomso which of course 

will be the same in both cases. We may choose to regard 

these systems either as individual particles with 

independent sets of quantum states or as non-individual 

particles occupying different regions of phase space 

separated by activation energy barriers. Aeopting 

the latter alternative cannot alter the entropy change, 

as Lesk realized, because the states of the mixed system 

are distinguishable. The difference in the internal 

states of the system then allows the two states differing 

only by the permutation of one isomer with the other 

to be different. 

Thus we agree with Lesk that it is through a consider- 

ation of the states of the particles, rather than the 

particles themselves, that we arrive at an understanding 

of this aspect of Gibbs paradox. The sudden reduction 

in the entropy change is to be expected because the 

number of available states decreases. However, this is 

312. Ibid p. 113 
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not to be taken to imply that indistinguishability 
is a straightforward Yes or No affair. It is 
theoretically possible for there to be a form of 
partial indistinguishability in the sense that 
particles may share certain sets of energy states, but 
it is Oifficult to see how this could be realised in 
practice without either destroying the distinction 
between the particles or reducing the effect on the 
entropy change to negligible proportions. 

3.7 Conclusion 

By considering in detail the formalism of Q. M. with 
particular regard to the role of particle and place 
permutations and. to the consequences of the Indistin- 

guishability Postulate, we have concluded that, as 
in C. M., there are two positions which can be consis- 
tently adopted concerning particle individuality. One 

regards the particles as non-individuals, in some sense, 
but with the states as distinguishable. The other 

attributes T. I. to the particleso but then non- 

classical state accessibility restrictions must also 

be imposed. It must be emphasised that both views are 

consistent with the I. P. and, as we have tried to 

indicate, manifestations of each can be found in the 

history of quantum statistics. 

It has been argued that quantum physics has so degraded 

the concept of a 'particle' that it can no longer be 

meaningfully applied to the entities concerned (313). 

To a certain extent this is obviously true. By 

virtue of the profound differences between C. M. and Q. M. 

quantal 'particles' possess very different characteristics 

from classical 'particles', and these differences may 

be held to be so great that it is impossible to 

establish a correspondence between the two terms. Thus 

if it is taken to be an important, or 'essential', 

characteristic of particles that they be individuals then 

it is clearly difficult, even self -contradictoryo 
to 

conceive of 'non-individual' particles. 

313. See, for example, Coburn in Munitz (1971) p. 84 
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As we have remarked, the most 'natural' framework for 
this view is Q. F. T. where all reference to particles 
can be dropped from the very beginning. The above 
contradiction only arises because the view of particles 
as non-individuals is an imperfect translation of the 
field theoretic approach into the language of first 
quantised Q. M. 

it can therefore be argued that the only way to 
preserve a particle approach, in the above sense, within 
Q. M. is to adopt the alternative view of particle 
in(-: Iividuality and introduce T. I. In this case the 
particles can be regarded as classical individuals 
but only at the expense of accepting that non-classical 
correlations must exist between them such that 

certain states, although existing, are rendered 
inaccessible. Of course, we are implicitly assuming 
that the characteris6ic of being an individual has a 
higher priority than that of being statistically 
independent so that we can still refer to 'particles' 

in the absence of the latter as long as the former still 

applies. 

In other words if our first position is adopted then 

conceptual difficulties are encountered regarding 

'non-individual particles'. These can be avoided by 

choosing the alternative view in which one can refer to 

the particles as individuals, but then some other 

classical characteristic must be abandoned. Q. M. itself 

only dictates that there should be some differences 

in the characteristics of quantal and classical particles, 

but we still have a certain degree of choice as to 

where these differences lie, corresponding to the choice 

between the two views above. 

As would be expected, and as we have shown, this choice 

between two metaphysical credenda can be found running 

through the history of the development of quantum 

theory. Thus for example the statistical dependence of 

quantal 'particles' was explained, by Einstein and 

and others, by appealing to their wave-like aspect, which 

was a predecessor of Q. F. T. The generalisation of this 

to material particles as well as photons and, in particular, 

Schrodinger's mathematical formulation of de Broglie's 
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'matter wave' ideal seriously threatened the particle 
nature of entities such as the electron for example, 
On the other hand their corpuscular aspect was strongly 
implied by collision experiments which led Born to 
suggest that Schrodinger's wave function does not 
actually represent, in some way, the system, but 
determines the probability that the particle is in a 
certain region of space (314). As Jammer remarks, 
Born's original probabilistic interpretation of the 

wave-function * can be summarised. as saying that 
1.00 measures the probababilityof finding the 

particle within the elementary volume 
J-Zý 

. the 

article being conceived in the classical sense as a 

point mass possessing at each instant both a definite 

position and a definite momentum. Contrary to 

Schrodinger's view, * -does not represent the physical 

system nor any of its physical attributes but only our 

knowledge concerning the latter'. (315) Thus Born 

maintaineO that quantal entities, like the electron, 

could be regarded as individual particles, but only 

at the expense of accepting that the statement 'the 

system is at a given time and place in a certain state' 

314. M. Born (1926a) p. 803 and (1943) p. 23. This 
interpretation was also influenced by Einstein's 

conception of wave-particle duality for light 

quanta (Interview 18/10/62, Archive for the 

History of Quantum Physics) . However, although 
Born claimed that Einstein regarded the wave 
field as a 'ghost field' whose waves guided the 

photons along their trajectories there is little 

evidence for this view in Einstein's own work. 

For a more detailed and comprehensive discussion 

of Born's interpretation see Jammer op cit 

p. 38 ff. 

315 Jammer op cit p. 42-43 
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no longer has any meaning. (316) 

Furthermoree although T. I. is the only way of 
making sense of the particle approach in Q-N 

-- 
it has 

attracted a great deal of philosophical criticism, as 
we shall see in the next Chapter. Thus, as we have 
said, although the field and particle approaches are 
completely equivalent, formally speaking, they differ 
both as regards their heuristic value and their under- 
lying metaphysical principles. The adoption of one 
approach rather than the other will therefore depend 

to a certain extent, on one's own philosophical 
disposition. 

316. M. Born (1926b) p. 129. As is well known, Born's 

original interpretation runs into severe 
difficillties in accounting for the electron 
diffraction phenomena revealed by the two slit 

experiment, which suggested that the wave 
function must be something physically real rather 
than just a representation of our knowledge. In 

an attempt to achieve some sort of resolution of 

this conflict Heisenberg suggested that Born's 

probability waves could be conceived as a 

quantitative formulation of the Aristotelian concept 

of potentia, which determined the prv6cAýU& for 

an event to take place. 
See Jammer op cit p. 44 
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CHAPTER FOUR 

A PHILOSOPHICAL EPILOGUE 

4.1 Philosophical Criticism of T. I. 

The concept of T. I. involves, as we have seen, the 

notion of the substantial substratum, a notion which 

has been regarded with suspicion by many philosophers, 

especially those within the empiricist tradition, ever 

since Berkeley's celebrated criticism of Locke. The 

grounds for this suspicion rest, at their most basic 

level, on the supposedly unknowable character of this 

underlying ý§ubstance- If it cannot possibly be known 

then it is no more than a philosophical myth, which 

is unnecessary and can therefore be dispensed with. 

A 'thing' is no more than a set, or bundle of 

co-existing qualities with nothing existing separately 

over and above this set. 

There are two points which can immediately be made 

about this gloss. The first is that the empiricist 

tradition finds a natural ally in the positivist- 

operational ist-ins trumenta 1 is t attitude (1) which 

permeated physics at the beginning of the century and 

which played such a fundamental role in the develop- 

ment of Q. M. and its orthodox interpretation (2). The 

empiricist's treatment of lunknowables', like substance, 

finds its analogy in the positivists' rejection as 

metaphysical and scientifically useless anything which 

is not experimentally vindicable. Given the initial 

difficulty of constructing a suitable theoretical 

framework capable of consistently accounting for and 

accommodating the phenomena of quantum physicso POsitivismo 

with its implicit admonition to be content with the 

partial knowledge that could be gained as a reault of 

observation and experiment onlyo clearly seemed a very 

1. We realise that by grouping them together like 

this we are ignoring important differences between 

these positions. 

2. See Jammer (1974) 
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attractive position to adopt (3) 
- However, it can 

also be characterised, less nobly, as a retreat from 
the fundamental aspiration to obtain knowledge of 
everything and, more importantly, may unduly restrict 
or impede the progress of science. The most well- 
known example of this is Ma,.,, ch's opposition to Boltz- 
mann's atomicist ideas, and the recent debate about 
hidden variable theories in Q. M. testifies to the 
live nature of the issues involved(4). 

Secondly, the empiricist argument is by no means 
conclusive. It can be argued that although admittedly 

substance cannot be presented naked, without the 

accompanying properties, this does not imply that they 

cannot be distinguished. Substance and properties 

are logically, but not practically, distinct, in the 

sense of the subject predicate distinction. There can 
be no properties unless there can be substancesfor them 

to be properties of and to which they can belong. The 

relationship between substance and properties is akin 

to that between an owner and his/her possessions, as Oe- 

have said. Thus the defence of 'substance' can be 

anchored to the subject-predicate distinction in logic 

or the noun-adjective distinction in lanýuage. 

The sanctuary of this anchorage has been threatened 

by the empiricist analysis of logic and language. Thus 

Russell's theory of descriptions has been used to 

replace singular terms by variables and purely predica- 

tive general terms (5). Quine has suggested that 

lanqQage should be tightened up so that vague sentences 

of ordinary speech can be replaced by eternal 

3. The influence of the opponents to the mechanist 

approach in the 19th centuryp such as Mach, also 

played an important role of course - 
4. Jammer op cit p. 253-339. The connection between the 

anti-atomic stance of the late 19th century and recent 

no hidden variable proofs is provided by Mach and the 

logical positivists who, as we have said, greatly 
influences the development of the 'orthodox' inter- 

pretation of Q. M. with its rejection of hidden varia- 

bles. 
5. B. Russell (1972) p. 56. Russell hilself did not 

apply his theory to all singular terms.. 'this', for 

example, escapes. 
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sentences using definite descriptions to identify the 
subjects of discourse. (6) These descriptions would 
then contain only general predicative terms. Like- 

wise Ayer, and others, have tried to show that lang- 

uage is, or at least need only be, purely predicative 
and that one can do without the proper names which 

are used in T. I. to designate the underlying substance 
(7). 

However, the question of whether a thing can, or 

should bet regarded as anything more than the set of 
its properties is quite separate from that of whether 

we can talk about that thing entirely in terms of this 

set. In fact it is not at all clear whether we can, 

in practice, limit ourselves in this way and still 

'do' everything we want to. In particular the 

empiricist 'bundle' theory runs into severe difficulties 

with regard to individuality, which can be resolved 

very simply by invoking the notion of substance. 

Furthermoreo one must be clear as to how the properties 

in the 'bundle I are to be regarded. The view that 

they are particulars has been advanced as a solution 

to the problem concerning the multiple location of a 

property (8), but this approach has been rejected as 

incoherent (9). it is more common to regard properties 

as universals but then the bundle theory requires. 

that the Principle of Identity of Indiscernibles (P. I. I. ) 

be true. This can easily be seen as follows- If things 

are merely bundles of properties which are universalso 

then it is necessarily true that if two such things 

possess exactly the same set of properties then they 

must, in fact be one and the same thing, i. e. in the 

absence of any individuator besides the properties, 

6. W. Quine (1960) p. 191, and (1950) p. 220 

7. A. J. Ayer (1954) p. 16. Strawson has argued that there 

are no logically proper names nor any Russellian 

definite descriptions. P. F. Strawson (1960) p. 320 

8. G. F. Stout (1930) 
9. ID. Armstrong (1978) Vol. I p. 77-79. Armstrong 

presents a whole range of arguments against both the 

bundle theory, Ch-9 especially p. 98-101, and the 

Lockean account of particulars, Ch. 10 esp. p. 104- 

107, before advancing his own 'objective theory of 

universals' in Vol. II. 
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the bundle theory must require that indistinguishability 
implies identity and hence the necessary truth of P. I. i. 
However, there are, as we shall see in a later section, 
grounds for rejecting P. I. I. 0 in physics, which clearly 
weakens the empiricist Position. 

On the other hand the relation ship between the 
substratum and the properties stands in need of 
explication. It is not sufficient to say that substance 

P stands in the relation of sup)ort to the properties 
because, as Berkeley showed, the term 'Support' in this 

sense is an empty metaphor. Substance clearly does not 
lie beneath the properties supporting them as the walls 

of a house lie beneath and support the roof. To say 
that substanceo and the relation of support, are 
Isui generis' and can be acquainted with by anybody 

who grasps that things 'have' properties, is very weak 

and amounts to no more than saying that the substratum 

is something unique untoitself standing in a relation 

to the properties which is also unique to itself. The 

absence of any satisfactory explication of this relation 

represents one of the most serious drawbacks of the 

substantivalist position. 

Despite this the introduction of the notion of 'sub- 

stance' does provide a very coherent and plausible 

solution to the problem of individuality, In particular 

it can account for the individuality of two indistinguish- 

able things, such as two classical electrons, whereas 

the bundle theory must either appeal to P. I. I. in a forr 

in which spatial location is included as one of the 

properties of a thing, or turn to what we have called 

space-time individuality. Both putative solutions 

presuppose the truth of the Impenetrability Assumption, 

which is violated, in a sense by the 'particleslof 

Q. M. and therefore has only a limited validity. Arm- 

strong has argued that it is logically possible for 
Act 

there to exist particulars which areAspatio temporal at 

all (10) which casts further doubt on the role of 

spatio-temporal location as individator. 

10. Armstrong op cit P- 119 & vol. II Ch-18. The Scholastic 

angels would be one example of such entities. See T. 

Aquinas (1947-8) Part 1, Q. 50, Art. 4. 
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Furthermore, if it is claimed that the complete set 
of a thing's properties must include it's Positional 
characteristics, which necessarily distinguish that 
thing from other, indistinguishable, things, then it 
must be acknowledged that the status Of Position is 
different from that of other properties in the set. 
To. ascribe a Positional predicate to a thing involves 

anAeliminable reference to another individual or 
position, unless of course some sort of absolute view 
of space is adopted. The invocation of some coordinate 
system cannot provide an answer since the origin of 
such a system must still be specified. As Quinton 

says 'Individuals cannot be decomposed into sets of 
properties that are sufficient to individuate them unless 
positional properties are included in the set. But if 

positional properties are included the decomposition 

into properties is incomplete. Further individuals 

remain to be decomposed, inviting us into an infinite 

regress 

There are various ways of escaping this regress. one 

is to take the position where '1' am at the present 

moment as the absolute point of origin of all one's 

positional characteristics of things. This is the one 

position which does not have to be picked out by its 

relation to anything else, and by their relation to 

which everything else is, in the final analysis, related. 

Thus position as individuator connects a thing to the 

'here-and-nowl. (12) 

However, it is logically possible, as we noted in 

Chapter 1, to imagine a universe containing, for example, 

only two indistinguishable spheres and nothing else, 

not even an observer. The above account cannot then 

answer the question of how individuality can be 

attributed to the spheres since there is no fundamental 

III to which their spatial positions can be referred - 

unless of course, some sort of idealist view is also 

11. Quinton op cit p. 18 
12. Ibid p. 19-20 
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adopted (13). A relational view of space clearly cannot 
help as the spatial relation of each sphere to the other 
is the same and thus cannot be used to individuate them. 

The only choice left is to take up the absolutist position 

and say that the spheres are individuated via their rela- 
tions to the points of space regarded as some sort 

of absolute, underlying matrix or substratum. 

We shall return to this example in Section 4.2, for 

the moment it is sufficient to note the difficulties it 

poses for the bundle account. 

Thus we conclude that spatial position must be 

regarded, not as one of the properties of a thing, but 

as a substratum underlying these properties. The notion 

of substance is therefore resurrected, in the form of 

absolute space and in the sense of the individuator. 

Thus it would seem that the bundle theorists, in 

rejecting material substance as individuator and turning 

to space-time individuality, are forced to accept spatial 

substance in the same role. A concrete individual can 

then be thought of as a set of properties manifested 

at a certain point in space-time. (14) The label or 

name attached to a thing then designates the underlying 

substratum of space-time which acts as the individuator. 

In this way space-time individuality degenerates into 

a form of T. I. 

This absolutist view of space-time is not, as we have 

seen, conclusively precluded by either the Special or 

General Theories of Relativity; indeed certain interpre- 

tations of the latter, to the effect that space-time would 

possess a structure even in the total absence of matter 

would obviously strongly support this position. 

Having argued that individuality can be conferred 

upon things through the points of an absolute space- 

time, the question is how are these points themselves 

individuated? One possible answer is to relate the 

points to some macroscopic reference frame (15), identi- 

fied by some unique set of predicates, such as the human 

13. This is rejected by Quinton himself. 
14. Quinton op cit p. 28-29 
15. Strawson op cit p. 37 
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body. However, this is Obviously just another version 
of the 'here-and-now' argument and suffers from the 
same defects. Furthermore, it is clearly open to 

ate accusations of circularity. Macroscopic objects, on 
A 

this view, individuated through their relations to 
the points of an underlying absolute space-time, 
and these points are then individuated through their 

relations to the macroscopic objects acting as some 
sort of reference frame. 

Alternatively one could answer that the points 

themselves possess T. I. Each space-time point can, 

in principle, be labelled and these labels designate 

the substantial substratum which acts as individator. 

Now, howeverl there is the epistemological difficulty 

of individuating these points. With material entities, 

such as particles, this is achieved via their spatial 

positions; T. I. is revealed through space-time 

individuality. This option is clearly not available 

to the points of space-time themselves. For one thing, 

it would invite an infinite regress, for another one 

cannot conceive how a position could move in time 

This difficulty serves to illustrate the mutual 

dependence of material objects and space-time objects 

as regards individuation. This interdependence could 

be broken by those interpretations of General 

Relativity, mentioned above, which suggest that space- 

time would possess some curvature in the absence of 

matter. This internal structure might then allow the 

points to be individuated. Thus the answer to the 

question whether the points of space-time can be 

individuated by the internal structure of space-time 

itself would seem to depend upon developments in the 

theory of General Relativity. 

Strawson's example of a chess board provides a useful 

illustration of the points at issue here (16). This 

would appear to possess an internal structure which 

allows every square to be individuated (c. f. the 

16. strawson op cit p. 122-123 
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procedure used in writing down the moves in chess) 
However, the board is finite and bounded and it is 
by reference to this boundary that the squares are 
actually individuated. Thus in writing down the moves 
the convention is introduced that rows are numbered 
beginning with the nearest to the white player and 
columns are labelled by the piece occupying the 

square at the foot of the column. This provides a two- 
dimensional macroscopic reference frame which allows 

each square to be uniquely individuated. Thus unless 
the universe is similarly taken to be bounded in some 

way then some sort of external reference frame must 
be introduced. 

Attributing space-time individuality to an object 

requires that a relation be established 'downwards' 

between the object and the underlying space-time point. 
For elementary particles, regarded as point like, 

this relation is one of coincidence between unextended 

point-like entities. Every particle is coincident 

with some point of space-time. The Impenetrability 

Assumption can then be regarded as stating that no 

two material point-like objects can be coincident, 

or n6 space-time point can be coincident with more than 

one material object. In other words the I. A. required 

there to be a 1-1 correspondence only between point- 

like particles and the points of space-time. 

This relationt whether it be one-one as I. A. requires, 

or many-one, is passive in the sense that it does not 

determine in any way the relations between the points 

of space-time themselves. In other words the 

structure of space-time is not affected or altered by 

the existence of material objects. A similar independence 

does not obtain, however, in the Riemannian generaliza- 

tion of the four-dimensional pseudo-Euclidean Minkowski 

space-time appropriate to General Relativity. In 

this case the structure of space-time is connected in 

lawlike manner with the distribution of mass 'in' it 

(although it is not clear, as we have seen, whether 

one can go further and say that the mass distribution 
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causes changes in space-time) p and the relation between 
the material and space-time points can be described 
as active. This, therefore, strengthens the inter- 
dependence regarding individuality. 

The other aspect of space-time individuality, that of 
reidentifying things through time via their continuous, 
well defined spatio-temporal trajectories, also 
requires that a relation exist between the points of 
space-time themselvesl 'side-ways' along the trajectory 
between successive points of the parth. This relation 

clearly does not exist independently of the material 

object travelling along the path as it is established 
by the various requirements of continuity, causality 

etc., discussed in Chapter 2. As we remarked therer 

there is an obvious connection between the possibility 

of reidentifying, or 'tracing', a thing and the 

impenetrability Assumption. As Robinson has demon- 

strated it is, at the very least, difficult to argue for 

such a possibility and against this assumption. (17) 

Penetrability implies no possibility of reidentification. 

This situation occurs most obviously in the case of 

fields, as we have seen, but in the case of Q. M. 

particles also, it is difficult to see what meaning can 

be given to the notion of the space-time trajectory 

of a single particle, when the particles manifest the 

sort of holism which is a consequence of the Super- 

position Principle and which is exemplified by the so 

called 'entangled states'. 

Also to reidentify some thing through time it mustbe 

established that the places occupied by that thing 

at successive times are either identical or connected 

by a continuous path. However this requires that the 

places themselves be individuated and again the question 

arises whether this can be done internally, through 

some inherent structurep or externally, through some 

kind of reference framel Taking the second option 

17. D. Robinson (1982) p. 320-321 
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requires the selection of some privileged continuant 
in order to avoid any circularity involving. the mutual 
dependence of material things and space-time points. 
The identity of this privileged continuant must be 
established independently of any consideration of 
spatio-temporal trajectories. Eliminating 'myself' and 
the 'here-and-now' as possible candidates, for the 
reasons given aboveo those things which are continuously 
observed throughout the period of time during which 
other things begin and cease to be observed, may fulfill 
this role (18). However, although such things can 
form a sufficiently complex positional scheme which could 
precisely specify spatio-temporal locations, there 
is still the problem of how these primary continuants 
are themselves individuated and again the possibility of 
circularity arises. It would seem that a combination 

of T. I. together with some sort of internal structure, 

still offers the best solution to this dilemma. 

Thus although T. I. must face empiricist criticism, 
directed principally at the notion of an unknowable 

substance, it does at least give a credible account of 
individuality. Advocates of the view that things are 

mere bundles of qualities must therefore appeal to some 

other principle of individuation. one possibility is 

the Principle of Identity of Indiscernibles, but this, 

as we shall see in the next section, has a dubious 

validity. The alternative is to invoke some form of 

space-time individuality which involves a circularity 

from which it is difficult to escape. Insofar as the 

notion of a particle as a labelled individual can only 

be retained in Q. M. if one is prepared to admit T. I. 

any arguments against this concept will serve to under- 

mine the particle approach as a whole. Similar 

conclusions apply to the field approach and space-time 

individuality. Thus although they are formally equival- 

ent each approach carries with it it's own metaphysical 

problems and any weighing of the two must place these 

in the balance also. 

18. D. Wiggins op cit 
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4.2 Physics and P. I. I. 

As we saw in Chapter 1 Leibniz gave several different 

versions of P. I. I. as his position shifted in response 
to Clarke 's criticism and derived it both from the 
Complete Notion of Individual and the Principle of 
Sufficient Reason. In particular it is worth noting 
the difference between I ... it is not possible for 

there to be two inOivid. uals entirely alike or differing 

in number only. ' and '... there are not in nature two 
indiscernible real absolute beings'. In the first 

statement Leibniz is saying that the principle is 

necessary (19), in the second that it is contingent. 
This is a distinction of great importance as we shall 

now see . 
In terms of second order logic with equality P. I. i. 

can be written thus: 

where a and b are any two individual constants and 0 

is a variable ranging over the possible attributes of 

these individuals. The question arises, what sort of 

attributes should be included in the range of 

If the attribute 'being idential with a', which is 
A 

certainly true of a, is included then P. I. I. becomes 

simply a theorem of second order logic. If such 

trivializations are ignored however, a weak and strong 

form of the principle can still be distinguished (20): 

1) Weak form of P. I. I.: The range of includes 

properties of spatio-temporal location. 

The principle can then be read as saying that it is 

not possible for there to exist two things possessing 

all properties in common. 

19. Leibniz actually distinguished at least two senses 

of 'necessary', a principle could be absolutely 

necessary in the sense thay its denial was self- 

contradictory, or it could be morally necessary 
in the sense that God wills it to be so and it 

could not possibly be otherwise. see his fifth 

letter to Clarke in H. G. Alexander op cit. 
20. Quinton op cit p. 24-25. 
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2) Strong form of P. I. I.: The rar)ge of 
0 

excludes 
properties of spatio-temporal location. 

The principle can then be taken as stating that it is 
not possible for there to exist two things possessing 
all properties, exclud nes, in common. 

The weak form of P. I. I. has been described as trivial 
(wiggins) (21), and necessary (Quinton) (22). In fact 
it is neither. It is not trivial because as we shall 
see, interesting consequences follow from it when placed 
in a physical context. It is necessary only if the 
I. A. is accepted, and, as we have seen, there may be 

grounds for rejecting this assumption. Obviously, if 

I. A. were not trueo so that two numerically distinct 

particles could possess exactly the same spatio-temporal 

properties, i. e. occupy the same place at the same time, 

and be qualitatively indiscernible, then weak P. I. I. 

would also not be true. (23) 

The strong form does not presuppose I. A. and is always 

only contingently true. Leibniz himself emphasised the 

importance of non-spatio-temporal properties in 

distinguishing two separately indiscernible things: 

'It is always necessary that beside the difference of 

time and place there be internal principles of 

distinction... thus although time and place (external 

relations, that is) serve in distinguishing things, we 

do not easily distinguish them by themselves ... The 

essence of identity and diversity consists ... not in 

time and place '. (24) 

However, as Wittgenstein notes, (25) strange results 

follow from the strong form of p. i. I. because it denies 

the possibility of a universe consisting only of two 

qualitatively indistinguishable spheres, a point which 

was subsequently taken up by Black and others. 

21. D. Wiggins (1967) R. Adams (1979) p. 11, makes this 

claim also. 
22. Quinton op e,, it p. 25 
23. Thus the weak form of P-I-I- is not logically 

necessary, as is sometimes claimed, because it is 

possible to conceive of two things occupying the 
. lenk 

same space-time point and using some other principle 

of individuation, apart from spatial location, such 

as T. I. to individuate them & count them as separate. 

24. Leibniz (1916) 11 27.1,27.3 
25. L. Wittgenstein op cit 5.5302 
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(26). We shall consider this in more detail below. 
We shall now examine the status of these two forms 

of the Principle in both classical and quantum physics. 

P. I. I. and Classical 
_Physics 

Classical particles obey the I -A. and particles of the 

same kind., or species, are considered to be 

qualitatively indistinguishable as we have seen. 
Clearly then such particles are examples of things 

which violate the strong form of P. I. I. Insofar as the 
latter seeks to reduce the individual to a bundle of 

properties or qualities, this implies that an alternative 

principle of individuation must be sought for (27). 

There are tao possibilities: space-time individuality 

or T. I. 

If space-time individuality is attributed to classical 

particles then strong P. I. I. cannot be true, as we have 

seen, because such particles possess all qualitative 

properties in common and only differ as regards spatial 

location, which is inadmissable. Weak P. I. I. is not 

violated because of this difference. If the particles 

are attributed with this form of individuality then it 

follows from I. A. that they cannot also possess the 

same spatial properties and therefore cannot have all 

properties in common. 

However, this last conclusion suggests that an 

absolute view of space must be held as we noted in 

section 1.3 of chapter 1. 

We recall that the argument runs as follows- 

We assume that it is possible for there to exist a 

universe consisting of only two distinct indistinguish- 

able particles and. no observer or any other material 

thing. On a relational view of space there is then 

no way of distinguishing the particles since there is 

26. M. Black (1952) 
27. In other words it implies that things cannot 

be individuated by their properties only. See 

our discussion in the preceding section and 

Chapter 1. 
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no external reference frame to which they can be relateýl 
differently, and the spatial relation of each particle 
to the other is exactly the same. Thus on this view of 
space, the particles possess all properties and relations 
in common, including spatial ones, and therefore violate 
the weak form of P. I. I. 

The only alternative would appear to be the adoption 

of an absolute view of space in which it is regarded as 

some sort of substratum. This would provide the 

necessary frame of reference which would allow the spatial 

positions of the particles to be differentiated. They 

would not then possess all properties in common, the 

spatial ones being excluded from the shared set, 

and weak P. I. I. is satisfied. 

Although this latter alternative is ruled out by Special 

Relativity (which may be regarded, as we saw in Section 

2.2.4 of Chapter 2, as having merely replaced absolute 

space by an absolute 'space-time'), either possibility 

would be anathema to a Leibnizian. Weak P. I. I. together 

with a relational account of space implies that the two 

particle situation above is not possible. Therefore 

if our assumption, that it is possible, is accepted 

then we have the dilemma, particularly acute 

for a Leibnizian, that either weak P. I. I. is false or 

an absolute view of space is adopted. 

Black has presented similar arguments in which a 

possible universe is imagined containing two iron spheres 

and nothing else, and he concludes that P. I. I. is then 

violated. More elaborate universes were theA6 devised 

in which the same violation could occr. These arguments 

have failed to convince many philosophers, including, for 

example, Ayer who wrote ... such examples seem 

intelligible to us only. because we tacitly introduce 

into them some further feature by reference to which 

we do in fact discern between the objects which we are 

supposing to be indiscernible' (28). In other words our 

28. A. J. Ayer (I c(5'4-) 
.. 
Z3. 
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initial assumption is rejected and the dilemma 

evaporates. Presumably Ayer would accept that this 
'extra feature' need not be 'the observer' but could 
be the substratum of absolute space, for example. 
However,, someone who accepts Berkeley's dictum 
that the statement 'physical objects exist 
unperceived' is self-contradictory would argue that 
it is not possible to even conceive of a state of 
affairs in which 'the observer' is absent. The very 
act of imagining a situation involves some kind of 
observer al beit a mental one - 

In similar vein Cassullo has argued that the dispute 

between Black and those who would defend the truth of 
P. I. I. can be resolved through an investigation of 
how the possibility of a state of affairs is determined 

(29). Thus he suggests that the clearest sense of 

conceiving of a state of affairs, as well as the sense 

relevant to determining its possibility, is to 

visualize it. Whenever one visualizes a group of 

objects one visualizes them in some spatial configuration 

and consequently whenever more than one object is 

visualized each occupies a different position in the 

visual field. However, if one accepts Russell's account 

of the spatial structure of the visual field then 

objects in this field occupy different positions by 

virtue of a difference in their positional qualities. 

Thus, in order to visualize or imagine two particles 

one must visualize them as occupying different positions 

in the visual field. But then they must differ in 

their positional qualities and hence do not possess all 

properties in common. p. I. I. is therefore true. 

There are a number of places at which this argument 

can be attacked, such as the correctness of Russell's 

theory of the visual field, but we shall content 

ourselves with remarks which also apply to the Idealist 

29. A. Casullo (1982) p. 591 
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position in general. 

Thus one can criticise Casullo for failing to distin- 

guish between the statement 'one cannot think of two 
objects as existing, without a mind which is doing 
the thinking' and the statement 'one cannotihink of 
two objects as existing apart from, i. e. outside of, 
a mind'. The first is obviously true, the second may 
not be and, through the attitude it generateso 

characterises the difference between the Realist and 
Idealist positions. A clear distinction must be 
drawn between what is involved in the process of thinking 

about, or visualizing a state of affairs, and what is 

entailed by the state of affairs itself. The fact that 

the process of vc*, sLta1c7_&&Lo, 1 of two objects involves a 
difference in their positional qualities is a function 

of one's thought processes only and does not entitle 

one 1-o infer that such a difference must actually 

exist in the external state of affa±rs (30). of course 

it is impossible for me to imagine two spheres without 

the 'me' which is doing the imagining, but it is 

possible for me to imagine a situation in which the 

spheres existed batthe 'me' did not, and in which there 

is no way of ascribing a difference in spatial predicates 

to them on a relational account of space. 

This is a well-known argument against the Idealist 

account in general (31). Although it is true that thoughts 

cannot exist without minds thinking them, this does 

not prove that objects cannot exist separate from or 

in the absence of such minds. The question of whether 

such objects 'really' exist may be open but it is not 

a logical impossibility, as Berkeley claimed. AS With 

thinking so with perception also. Perception cannot 

occur without a mind. doing the perceiving but it is 

at least logically possible that that which is perceived 

can - 

30. The same mistake is made by the Indian mystic 
Krishnamurtý who argues that since we cannot think# 

or conceive, of death, in the sense of absolute non- 

existence, so true death, in this sense, cannot 

actually occur. 
31. There are others, of course. 
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It is not our intention here to give a detailed analysis 
of the Idealist arguments in general, we merely wish to 
point out that such arguments cannot be conclusive in 
resolving the dilemma regarding P. I. I. 

As we suggested in Chapter 2, space-time individuality 
could be taken to imply that the points of space-time 
themselves could possess a form of T. I. Regarding 
these points as individuals then implies, as they are 
indiscernible, obviously, that they must also violate 
P. I. I. However they only violate the strong form as 
they cannot, by definition possess the same spatial 
properties! (32) Leibniz himself would have argued that 
the points of space-time lie beyond the domain of 
applicability of the Principle as he believed that 
it applied to substances only, (although, as we have 

seen, space-time could be regarded as substantial in 

a certain sense, perhaps even in the Leibnizian sense). 
Classical particles can also have T. I. attributed to 

them. In this case it is possible for them to violate 
both forms of P-I-I- since they are indistinguishable 

and yet also regarded as distinct, and T. I. says nothing 

about their spatio-temporal properties. If in addition 

it is assumed that the- I. A. is obeyed than only the 

strong form is contingently false. However, as we have 

i 
MO-4 be 

seen, tX possible for there to exist entities, 

fields for example, to which T. I. can be attributed 

but which also violate I. A. In such cases the weak form, 

of the Principle would also be false. Even though it 

is not entailed by T. I. there are good grounds for 

assuming that the I. A. is obeyed by classical particles. 

In the quantal case there is a sense in which it is 

not and thus both weak and strong P-I-I- 
MA 

violated, 

as we shall see, although a case could be made for saying 

that things which violate the I. A. cannot be 

regarded as'particles'. 

In both kinds of individuality the particles are 

labelled# the label designating that which confers 

32. The I. A. does not apply to the points of space- 

time since they obviously cannot move. 
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individuality - the underlying spatial location or 
substantial substratum respectively. If these labels, 
or proper names could be regarded as properties of the 
particlesi in some sense, then the particles could 
be regarded as distinct through a qualitative 
Oifference and both forms of P. I. I. would be obeyed. 
of course, if this were so then there woulO be no 
need for either T. I. or space-time individuality 

since the particles would no longer be indistinguishable. 

In Chapter 1 we noted that, broadly speakingo there 

were two views of proper names. The 'sense theory' 

regards proper names as no more then a sort of 
disguised definite description whereas the 'no sense' 
theory holds that proper names simply stand for 

objects and have no meaning other than standing for 

objects. The difference between the two is that the 

latter view holds that naming is prior to describing 

whereas the former contends that describing is prior 

to naming for a name only names by describing the 

object it names. As we have said, although it seems 

implausible to claim as the sense theory does, that 

proper names are just shorthand for definite descriptions, 

this view ýoes at least give an account of identity 

and existential statements which present problems for 

the no sense position. 

On the sense theory then proper names are only a kind 

of shorthand for a description of an object. But since 

a description is simply a list of the object's properties, 

proper names, on this view, are no more than 

shorthand summaries of the properties of objects. There- 

fore a difference in proper names must signify a 

difference in properties somewhere on the list there 

must be a difference. Thus iP the proper names used 

to label- the particles are taken to fall under this view 

then the particles must be discernible and P-I-I- is 

obeyed. 

This line has recently been followed by De Munyck who 

aOvocates the view that indices, or labels, should be 

regarded as intrinsic properties of the particles (33) 

33. W. M. De Yluynck (1975) p. 327 
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He acknowledges that this implies that particles become 
distinguishable in C. M. and Q. M. . but then argues that 

this says more about the theories than about the 
experimental meaning of the labels. The languages 
of both C. M. and Q. M. are those of distinguishable 

particles and are therefore inadequate for dealing with 
particles which are experimentally indistinguishable. 

Thus it is argued that two particles are indistinguishable 
if they agree on all their dynamically relevant 
intrinsic properties and that they can thereiore be 
indistinguishable with respect to one set of experi- 
ments but distinguishable with respect to another. 
Accordingly a label can only serve to distinguish a 
particle when it is possible to extend the experiments 

under which the particle is regarded as indistinguishable, 

in such a way that the index becomes dynamically relevant 

with respect to some new property. 
This is certainly a rather odd way of looking at 

elementary particles. It is difficult to see how the 

particle labels introduced into classical statistical 

mechanics can be regarded as properties on a par with 

charge or mass. Unlike the latter these labels are not 

the subject of any theory nor are they invoked to account 

for the behaviour of the particles, their raison dletre 

being metaphysical: to stand for that which confers 

individuality upon the particles. If they were to 

be regarded as properties then they are rather 

artificial ones being not possessed by the particle 

itself but imposed somehow from without. They are not 

essential, in the sense that a particle could not 

possess them and still be a particle of that kind, and 

neither are they extrinsic in Jauch's sense of being 

dependent upon the state of the system. Particle 

labels could perhaps be regarded as extra-dynamical 

intrinsic properties of the particles (34) in the sarre 

way that the colour of a billiard ball iso (at least 

as regards collision phenomena). However, this is a 

false and misleading analogy. The colour of a billiard 

34. SuOarshan and Ivehra. op cit. pýz4E 



303 

ball is a secondary property related, by some body of 
theoryý to the primary properties of the particles of 
which the ball is composed. By definition these 

particles cannot themselves possess such secondary 
properties, and it is difficult to see what meaning could 
be given to a primary property that was both intrinsic 

and extra-dynamical - Even the hidden variables of Q 
have some bearing on the dynamical behaviour of the 

particles - indeed that is exactly why they are posited. 
Without this saving grace particle labels fall victim to 
Ockham's razor and must be excluded from the set of 

properties possessed by the particles. 

Furthermore, De Muynck's approach does not correspond 
to the way in which pcLrticle labels are regarded in C. M. 

itself. As we have emphasised, classical particles 

are considered to be indistinguishable individuals, 

with theýr individuality designated by the particle 

labels. If space-time individuality is attributed 

then the label stands for the spatio-temporaL location 

at which the properties predicated of the particle 

are instantiated, In the case of T. I. the, label denotes 

the substantial substratum which bears or possesses the 

properties. This is the important point : whichever form 

of individuality is attributed to the particles, the 

labels designate that which underlies the properties 

not the properties themselves. 

Thus the labels or proper names used in C. M. denote 

something other than the set, or any element of the set, 

of properties predicated of the particles and are there- 

fore used, or regarded)in a manner consistent with the 

#no sense' view. They do not, and cannot, plausibly., 

generate the qualitative difference necessary to 

preserve P. I. I. We therefore conclude that classical 

particles certainly violate the strong form of the 

principle, and may also render the weak form contingently 

false if the requirement that they satisfy the I. A. is 

dropped. This would be rather bizarre, however, and if 

space-time individuality is attributed or T. I. Plus 
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I. A. then the weak form remains true; classical particles 
of the same kind do not possess all properties in 

common, including spatio-temporal ones. 

5.2.2. P. I. I. and Quantum Physics 

The status of P. I. I. within Q. M. has been the subject 

of some debate among philosophers of science, particular- 
ly recently, We shall examine each of the various 

arguments in turn, indicating, where we can, their 

deficiencies, before setting down our own view. 

Most authors have argued that the Principle is refuted 

by Q. M. and the debate has then shifted to the question 

of the manner in which it fails to hold. Barbour, 

however, has argued that Q. M. definitely supports 

p. I. I. (35) a claim which is based on certain passages 

from the Leibniz-Clarke correspondence such as the 

following ''Tis a thing indifferento to place three 

bodies equal and perfectly alike, in any order what- 

soever; and consequently they will never be placed in 

any order by him who does nothing without wisdom'. 

(36). According to Barbour this is exactly the situation 

which pertains to Q. M. where only one out of the six 

possible permutations of three electrons is actually 

counted. 

This argument contains two mistakes. First in the 

passage cited Leibniz is arguing# from the Principle 

of Sufficient Reason, not that there must be only one 

arrangement of three particles but that there will be 

no such arrangement. Secondly* Barbour fails to make 

the distinction between p. I. I. as applied to the 

arrangements of particles and the Principle as applied 

to the particle themselves (37). it is clear from 

the passages given that Leibniz was arguing that one 

cannot distinguish arrangements differing in the order 

of the particles i. e. differing as regards a particle 

permutation. As we have seen, this is false in C-M- 

35. J. B. Barbour (1980) p. 34 

36. Leibniz in H. Alexander (1956)) 

, ý7 Lucas (1973) 
Lucas makes the same mistake. See J 

para. 25. 
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but true in Q. M. However* the fact that indistinguish- 

able arrangements are identical in the latter does not 
imply the same result for particles. Powers has recently 
made the same point, arguing that the reduction in the 
number of arrangements in quantum statistics may be 
taken to support P. I. I., as applied to arrangements 
obviously, whereas the particles themselves refute it. 
(38). 

Post has contended that quantal particles, being 

non-individuals, violate P. I. I. for the following 

reason (39). Such particles are, in his terms 'strongly 

identical' (40), in the sense of being both indis- 

tinguishable and devoid of individuality, and yet there 

is more then one of them. Thus they are numerically 

distinct and completely indiscernible and therefore 

Leibnizls Principle cannot hold. 

This argument immediately invites. the question, how, 

exactly are the particles numerically distinct? In what 

sense can it be said that there is more than one of them? 

Post's answer is that they differ as regards location, 

or more generally, bearing in mind the well-known 

problems concerning the non-localizability of the photon, 

that they differ with regard to their state. Indeed 

Post hasproposed an ontology of states in which all 

reference to individual particles is eliminated. 

However, this cannot be correct because first of all 

it is possible for two particles, two photons say, 

to exist in the same one particle state, and secondly 

as we have noted, the Superposition Principle can be taken 

to imply that there is a sense in which each particle 

partakes of all the states of all the other particles. 

Post himself contradicts his own answer by writing 

the location of an electron at a given moment is 

3 8- j. Powers (1982) p. 1-5'6(f 
3! ý post op cit p. 19 
40. The particles are not identical in our sense of 

the term since they are regarded as num_, erically 

distinct, 
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as numerous as the number of electrons in the universe 
(41) Clearly, some other principle by which the 
particles can be said to be numerically, or countably 
distinct must be sought for. As we shall see this is 
provided by a consideration of the particles energy ancl 
momenta. Thus on the two photon example we conclude 
that there are two particles in the state, rather than 
oneo because the total energy and momentum are twice 
that of one particle. 

Cortes has initiated a more recent debate by arguing 
that the logical form of P. I. I. is restricted to 
individuals and is therefore violated by the 'non- 

individual I particles of Q -M - which it cannot 

encompass (42) 
- His argument can be divided into two 

claims. The first is that the logical proof of Leibniz's 

Princi ple presupposes that all entities in the domain 

of discourse are individuals and that the question 

regarding the possible existence of non-individuals 

remains open. All that can be established by an 

analytis of the way names and variables function is 

that ' ... the quantificational logic as normally used is 

not capable of expressing anything whatsoever about 

non-individuals I- (43) 

Cortes adopts a form of space-time individuality 

and defines an individual to be a spatio-temporal thing 

which differs in some respect from other spatio-temporal 

things (44). Thus particles which do not differ in any 

respect, including their spatio-temporal properties, 

are, on these terms, non-individuals (45). Rather 

confusingly Cortes also defines a non-individual to be 

anything which violates P. I. I. so that this Principle is 

limited to the domain of individuals bV definition. This 

allows the possibility that quantal particles do not 

violate the Principle, but merely fall outside its range 

41. Post op cit p. 20 
42. A. Cortes (1976) p. 491 
43 Ibid p. 499 
44 Ibid p. 493 
45. See our discussion on p. 
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of application. In particular it does not apply to 
waves and, as we have pointed out, the supposed 'non- 
individuality' of quantal particles can be interpreted 

as being due to their wave-like aspect. This point, 
regarding the applicability of P. I. I. was brought up 
by Teller* as we shall see, and constitutes the essence 
of our own position. 

The second step in Cortes's argument is to demonstrate 

that non-individual entities actually exist and that 

p. I. I. is therefore violated in fact. To do this he 
A takes the example of photos in a mirror lined box or 4 

laser beam, which being bosons can simultaneously occupy 

exactly the same state, According to the Copenhagen 

Interpretation (46) such photons have all physical 

properties (47) in common and are therefore indistinguish- 

able. Furthermore they are spatio-temporally related 

to every other thing in the universe in exactly the 

same way and are therefore non-individuals, in Cortes's 

terms. Clearly their state cannot determine whether the 

photons are numerically distinct so Cortes must turn 

to some other justification for saying that, for example, 

there are two photons in the box. This is provided 

by the, observation that, in this example, the total 

energy of frequency V in the box us 2h-P , together 

with the theory of Q. M. which says that the energy of 

one photon in such a situation is h -P . Thus we surmise 

from these additional considerations* that there are 

two photons present. (48). 

However, it can be argued that two objects possessing 

all properties in common, even spatio-temporal ones, 

may be individuated by their distinct spatio-temporal 

trajectories. To counter this Cortes considersthe 

example of two indistinguishable objects with different 

historial origins but which occupy the same spatial c 
A 

location for a certain time before separating to different 

46. This states that the wave function for a given 

system of particles gives all the physically 

possible information about that system. i. e. hiýlden 

47 
variable theories are excluded. 

A 'Physicallproperties are those which lead to 

48 
observable consequences. 

, Ibid p. 500 
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historical ends - This can be represented 

00- tz 
p 

(49) 

Cortes's argument is that if their history really 
does individuate the objects then it must individuate 

them at P and it should therefore be logically 

possible to decide whether the object that arrived at 
C can-Pfrom A or B or partially from both. This is 

impossible however, and he concludes that history cannot 

always serve to individuate objects, in particular 
it cannot do so for photons. This in fact is a general 

point about the failure of spatio-temporal trajectories 

to individuate in a situation where I. A. fails to hold. 

Thus Cortes concludes that photons are indistinguishable 

non-individuals which can be counted as distinct and 

which therefore violate P. I. I. Further more he shows 

that a proof of the logical form of P. I. I. suitably 

modified to take account of such entities, is impossible 

to carry through successfully. 

Barnette attacked the above argument, regarding the 

inability of spatio-temporal trajectories to individuate 

when I. A. breaks down, on the grounds that it confuses 

epistemological arguments with metaphysical ones. (50) 

The fact that there is no way of telling between t1 

and t2 which object came from A and which from B does not 

compel us to give up the metaphysical claim that the 

predicate I object which is identical with the object 

having history A' is satisfied by one and only one of 

the two objects for all times between t1 and t 2* Given 

that this predicate is satisfied by one and only one 

of the objects at all times, it follows that for all 

times, including t1 through to t2 there is some 

49 
* Ibid p. 503 

50. R. L. Barnett (1978) p. 466 
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description which holds for one object and not the other. 
Therefore P-I -I - is not violated. 

However, as Teller has correctly pointed out, it is 

not the case that in practice we cannot distinguish the 
two photonso there is in principle nothing which can 
serve to individuate them. (51) This certainly makes a 
difference because metaphysical questions may depend on 
what characteristics are available which could, at least, 
in principle* serve to individuate the particles. Given 
this, and the absence of any such characteristics for 

the photons when they occupy the same state, it is 
begging the question to say that they are individuated 

by differences in some historical prcperty. 
Ginsberg responded to Barnette's paper by turning to 

Q. F. T. and the concepts of creation and annihilation of 

particles to break the spatio-temporal connection 

between the photons at P and those at A, B, C and D in 

Cortes's example (52). Thus he characterised this 

example as follows. The two-photon system can be 

represented by a two-particle state of the quantised 

electro-magnetetic field with each particle regarded as 

an excitation of one of the field modes. Such a mode 

may contain any number of excitation$ which in particle 

language means that any number of photons can occupy 

a field mode simultaneously. Thus a two-particle state 

of the field can be underst6od either as one in which 

one mode has two excitations or as one in which two 

different modes each have one excitation. This point was 

subsequently taken up by Teller as we shall see, 

Thus before t, the field is in a two-particle state 

with one photon, or field quantum, in mode A and one 

in mode B. From t, to t2 the field is in a two-particle 

state with both photons in mode P. After t2 the field 

is still in a two-particle state with one photon in mode 

C and the other in mode D- 

In the Q. F. T. description two photons are destroyed at 

t1 anO two 'new' ones created, these are then (festroyed 

in turn at t2 and two others created. Given this 

5 1. P. Teller (1983) p. 314 
52. A. Ginsberg (1981) p. 487 
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Ginsberg argues that it is false to claim that the 
predicate 'object identical to the object having history 
AI is possessed by either -one of the two photons 
existing between t1 and t2 since neither of these are 
identical to any of the photons existing before t1 
or after t 2' There is also no asymmetry in the relation- 
ship between the new and old photons so the former 
do not differ in their historical connections to other 
objects. 

Thuse granted certain assumptions such as completeness, 
it can be concluded that the photons existing before 

t1 and after t2 are excitations of different field 

modes and do not possess all properties in common. 
The photons existing between t, and t2 are not identical 

to any of these, are excitations of the same field mode 

and have all physical properties in common. Thus 

Ginsberg concludes that these latter photons have 

identical histories and since they are indistinguishable 

yet numerically distinct they violate P. I. I. (53) 

The first point to be made regarding this argument 

concerns the creation and annihilation operators 

which it involves. As we have noted these play a central 

role in Q. F. T. where a process beginning with a particle 
in some initial state and ending with a particle of the 

same kind in some final state, is not regarded as 

involving one and the same thing undergoing a change 

in properties, but as the annihilation of the particle 

in the initial state and the creation of a different 

particle in the final state. Thus, as Ginsberg noted* 

this description implies that particles are not identical, 

in the sense of being the same particle, through 

changes and therefore, precludes the possibility of 

reidenti fi cation through such changes (54). In Q. F. T. 

there is no enduring substance underlying the accidents. 

. This description could be applied to all temporal stages 

leading to an interpretation of motion in terms of a 

sequenc Ie of creations and annihilations. As we have 

53. Ibid p. 491 
54. Ibid p. 489 
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noted this was the view adopted by the Mutakallimun. 
On the other hand, as Teller notes, the objects of 

Q. F. T., separated as they are by the creation and annih- 
ilation processes, can be grouped together to compose 
enduring individuals, Indeed this is exactly what we 
will have to do if we are to describe a world in 

which things undergo change. However, we do not 
have a free hand in this matter, as certain groupings 
will be ruled out on grounds of inconsistency with 
theory or objective fact, we shall return to this 

point shortly. 
C The second point about Ginsberg's approach conerns 
A 

the assertion that the two photons in the same state 

are numerically distinct. They are if the particle 
interpretation is adopted in which the total energy 
2hV is regarded as being due to two particle-like 

photons each of energy hV . However, in the field, 

or wave, representation the above situation is 

described in terms of the level of excitation of a 

fieL& oscillator being raised by 2 units. In this 

latter case one clearly does not have two distinct 

indiscernible individuals and P. I. I. remains intact. 

This is the line adopted by Teller who takes the 

general view that we can slice reality as finely or as 

coarsely as we like, and how sensible such a slicing 

is depends on the context (55). Thus the entities 

of Q. M. can be regarded in certain circumstances as 

waves and in others as particles. In particular 

Cortes's two-photon example only works because of the 

wave-like aspect of photon behaviour. Thus Teller writes 

'We get a two particle state with both particles in 

exactly the same state only by virtue of a description 

of state by a wave-function which is analysable as two 

one-particle waves superimposed. 
) (56). But then, he 

55. Teller op rit 
56. IbiO p. 314 



312 

continues, there is nothing to prevent us from 
saying that we have one two-particle wave in the state, 
i. e. slicing reality more coarsely. Instead of the two 
indiscernibles things there is now only one and P. I. I. 
remains true,, Thus he concludes that whether or not 
Leibniz's Principle is violated depends upon an 
arbitrary decision as to how the two-particle state 
shoulO be regarded. 

This conclusion is then applied to Ginsberg's quanturr. 
field theoretic analU, sis. As Ginsberg himself noted 
the creation and annihilation operators can be interpreted 

either in terms of the creation and annihilation of 
particles or in terms of increasing or decreasing the 
level of excitation of the field oscillators by one unit. 
These units, or field quanta., are particle-like in 

certain respects, such as their discrete nature, but 

wave-like in others. Thus, as we have noted, Q. F. T. 
indulges just as much in wave-particle duality as 
fyt quantized Q. m. and the two interpretations above 

correspond to the two ways of arriving at a quantised 
field briefly discussed on p. X66 - 

Therefore, in the Cortes example, between t1 and t2 one 

could say either that there are two photons, or field 

quanta, in the same state, or that the level of 

excitation of a field oscillator has been increased 

by two units. The former case represents a violation 

of P. I. I. the latter does not. According to Teller it 

is arbitrary how the state is regarded. There is one 

total oscillatory state which can be regarded either 

as having no parts or as being analysable in an 

infinite number of ways into various components 

possessing certain individuating characteristics. The 

analogy he gives is that of two waves travelling in 

opposite directions. Where they cross we can say that 

we either have two waves in the same state or one partless 

wave of amplitude equal to the sum of the amplitudes of 

the waves before the crossing. 

The fact that the level of excitation of the field 

oscillators can only be changed in discrete units of 

hv does not compel us to adopt the particle interpreta- 
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tion any more than the fact that a certain bank may 
accept deposits or withdrawals in units of C1,000 
compels us to regard a deposit of E2,000 as two 91,000's. 
In other words the mere fact that the total energy 
in the two-photon state is 2hV does not compel us to 
say that there are two distinct entities existing 
in the same state. 

Finally, for the photons to violate P. I. I., they cannot 
be observed as distinct, for the 'obvious' reason that 

any spatio-temporal difference would serve to distin- 

guish them. This example must therefore be an unobserved 

state, and- since such states enter the theory as 

superpositions of an infinite number of other states, one 
is faced with the question of whether this state actually 

occurs. 

Thus Teller's overall conclusion is that the question 

of whether Q. M. refutes P. I. I. is one whose answer 

depends upon an arbitrary decision as to how certain 

states of the theory are to be regarded. 

Although this approach is, we believe, broadly correct, 

it contains several confused or dubious points. 

Firstly, Teller's analogy between the two photon 

example and two classical waves on a rope should not be 

pushed too far. As he indicatest but fails to make 

explicit, we get a two-particle state with both particles 

in the same state only by virtue of the Superposition 

Principle which requires us to regard any state as the 

superposition of two, or more, other states and conversely 

any twoor more, states may be superposed to give a new 

state. The fact that a similar principle holds for 

classical wave systems invite8 an obvious analogy but 

the difficulties involved in regarding the wave-function 

in a classical manner are well known (58) and as Dirac has 

said 'The analogies are ... 
liable to be misleading'. 

(59) It is the Superposition Principle which should be 

considered in any discussion of Cortes's example, rather 

58. See Jammer op cit p. 33 and p. 43-44 

59. Dirac (1978) p. 14 
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than the somewhat confusing notion of wave-like 
behaviour, and as we shall see when we come to our 
own account, this allows us to generalize the 
discussion to include fermions. 

Secondly, any metaphysical slicing of reality should 
be undertaken with caution. Teller himself has noted 
Kripke's argument that the answers to the question 

of which groups of temporal parts into larger 

individuals are sensible may be objectively determined 

and are not just a matter of convention (60). Neverthe- 
less Teller appears to believe in the doctrine of temporal 

parts which holds that for every period of time that 

an individual thing exists there is a temporal part 

of that thing, which is unique to that period of time. 

Thus he writes I ... we can string together distinct 

parts in various ways to make wholes. This holds for 

temporal parts of objects conventionally conceived. 

We can consider temporal stages as independently existing 

things which can be grouped together in larger 

individuals in various ways, which ones counting as 

sensible depending on the circumstances'. (. 61) 

This doctrine has been attacked by Chisholm on the 

grounds that it is not adequate to the experiences 

we have of the unity of certain things, such as our- 

selves, that it multiplies things beyond necessity 

and thus violates requirements of economy and simplicity 

and finally that the case for the doctrine is based on 

a false analogy between space and time (62). This 

analogy states that just as an object that is extended 

through space at a given time has, for each portion of 

space that it occupies, a spatial part that is unique 

to that portion of space at that time, so any obje 
' 
ct 

that persists through a period of time has, for each 

sub-period of time that it exists, a temporal part 

that is unique to that sub-period of time. However, 

Chisholm argues, we cannot say about time everything we 

60. Teller, preprint of (1983) p. 7 

61. IbiO p. 7. 
62. R. M. Chisholm in M. K. Munitz (1971) p. 14-15 
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can say about space because although one and the same 
thing can be at two different times in one and the 
same place, one and the same thing cannot be in two 
different places at one and the same time. 

Chisholm is wrong on this last point. The disanalogy 
is not between space and time considered in themselves, 
but exists only as regards the relations between objects 
in space and time since the Superposition Principle 
implies that there is a sense in which it can be said that 

quantal particles can be in two different places at the 

same time. Nevertheless the general thrust of Chisholm's 

argument is sound; the ill-considered slicing of 

reality and unrestrained grouping of temporal parts 

can lead to bizarre results. (63) 

Teller also fails to emphasise that it is not just 

the discrete nature of their energy which leads us to 

regard the field quanta as particle like; they also 

possess momentum and satisfy the dispersion law 

characteristic of a particle of zero rest mass. His 

analogy with integral financial transitions is therefore 

misleading and fails to support the view that the particle 

and field interpretations can be given equal weight, 

at least formally. 

Finally, as regards the argument concerning unobserved 

states, such states are required to violate the weak 

form of P. I. I. only; the strong form can, of course, 

still be refuted if there is a spatio-temporal difference 

between the photons. 

This brings us on to our own view in which we argue 

that the question as to whether weak P. I. I. is violated 

or not by Q. M. is dependent upon the way in which 'mixed 

states' are interpreted in the theory. 

63. Thus the doctrine of temporal parts has been used 

to defend the theological doctrine of original sin 

by arguing that God could regard you, I or anyone 

else together with Adam as merely temporal parts 

of one 'moral individual I and could. therefore punish 

you, I or anyone else f or the sins committed by 

Adam. Ibid p. 13. 
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First of all quantal particles, like their counter- 
parts in C. M. clearly violate the str6ng form of the 
Principle since, at the very least, they possess all 
intrinsic properties in common and are therefore indis- 
tinguishable, in the weak sense, yet countably distinct. 

As regards weak P. I. I. we can say the following. 

We noted in section 3.3 of Chapter 3 that the general 
ket for an assembly of particles can be interpreted as 
corresponding to a state for the assembly for which 
one cannot say that each particle is in its own state 
but only that it is partly in several states - In 

other words each particle 'partakes' of all the states 

of all the other particles, and this result is true 

not only for bosons, such as photons, but for fernions 

also. 

Thus, f or example, we have noted that two bosons or 

two fermions distributed over two distinct one-particle 

states partake with equal probabilistic weight in the 

superposition demanded by symmetriaation or anti-symmet- 

rization. In the boson case the wave function for the 

assembly is 
I 
%PS> - -L a-,. I ,aýI 

o_', >, 
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and the statistical operators for particles 1 and 2 

respectively are 
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With two f ermions we have 
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In each case the two particles, bosons or fermions, 

respectively, have the same statistical operator. Thus 

as we also noted in section 3.3. they possess the same 

one-particle probability distribution. In the fermion 

case, as we have seen, this is given by 

C9 -IjJa 
ja 



317 

for particle 1 and 

6jci) 

for particle 2. In other words the observable 
distribution of the two particles is identical and 
hence they cannot be distinguished by any one particle 
measurement. (64) For example, the probability 

of finding particle 1 at position I, and particle 2 

at position 7- is the same as the probability of 
finding 1 at Z and 2 at 11 . This is true 

also for other observables such as energy and momentum 

and thus one can conclude that the two particles cannot 
be distinguished by a measurement of their one-particle 

properties (65) 
- 

It is in this sense that two particlest bosons or 
fermions, distributed over two one-particle states 

might be said to be in the 'same' state, namely in 

the sense that they possess the same statistical 

operators) the same one-particle probability distribution 

and thus cannot be distinguished by measurements made 

on one particle onlyo If this is accepted then, as 

we noted in Chapter 30 the Impenetrability Assumption 

cannot be taken to hold for quantal particles and since 

the validity of weak P. IoIo rests on this assumption 

this cannot be taken to hold either. 

If this were correct then the argument between 

Cortes et al over the two-photon example would be 

redundant since the particles are according to the 

above account 'in' each otherSstates before 

64. Such measurements involve operators of the orm 
Qý0 

-1 on the product space -ý4 
jG 

-4-t?. 
- 

where'ýtj and are the one particle Hilbert 

spaces, QL is the operator pertaining to one 

particle whose states are described by vectors in 

one Hilbert space and I is the unit vector in the 

other Hilbert space. 
65. See H. Margenau (1950) p. 441 
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t1 (66). It could then be concluded that P. T. T- 
violated by the photons, not only between t1ar. r-- t2 
but also prior to t1 and after t 2, * in fact at all 
times. Thus the situation depicted by Cortes would 
be regarded as both unrealizable and unnecessary. 

On the other hand, however.. it has been argued 
that Q. V,. supports P. I. I. at least for fermions, 

since the Pauli Exclusion Principle implies that no two 
fermions can exist in the same one-particle state, or 
a quantum state in which two fermions have identical 

sets of one-particle quantum numbers cannot exist 
(67). In other words for two fermions in the same 

one-particle state the two particle probability 
distribution is zero i. e. Q ") C 1. ý' I) _= 0 

since the anti-symmetric wave-function vanishes when 
both fermions are in the same one-particle state. Thus 

the probability of finding particle 1 and particle 2 

at the same position, r, say is zero. 

Clearly the Exclusion Principle is here regarded as a 

generalisation of I. A. for Q. Ni. and it can therefore 

be concluded that weak P. I. I. is not violated for 

fermions precisely because the results above are 

interpreted as saying that fermions cannot possess all 

properties, in particular spatio-temporal ones, in 

common. A consideration of the statistical correlation 

(68) between fermions thus appears to lead to the 

conclusion that weak P. I. I. isp in this sense, supported 

by Q. M. 

66. One can also question the attribution of distincto 

well defined trajectories to the photons, given their 

supposed 'non-localisability'. The difficulties of 

constructing a position operator in the first quantised 
theory which satisfies the Newton-Wigner-Wightman 

conditions are well known - In the second quantised 
theory localisation involves the creation of addit- 
ional particles and so all particleso not just photons, 

are in this sense 'non-localisable'. See F. Redhead 

(1977) p. 72 for references and further discussion. 

67. Y. Shadmi op cit 
68. The operators then relate to two-particle observables 

and are of the formal(99z i. e. the tensor product of 

one particle observables pertaining to each particle. 
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Thus, onthe one hand, a consideration of the one 
particle distribution seems to imply that weak 
P. I. I. is violated, whereas on the other, a consideration 
of the two particle distribution suggests that it is 
not, that it is in fact supported by Q. V. This apparent 
conflict is in fact a result of a play, of sorts, on 
the word. I state (69) and it can be resolved as we 
saw in the last chapter, through an examination of 
the nature of the 'states' referred to in each account. 

We noted that the statistical operators 9 and 11 rz. 

in either case, represent in fact 'mixed states'rather 

than pure states and the first argument only works 
if the former are regarded as states I on a par with 

the latter. However ej and ý, cannot be regarded as 

state ascriptions because they represent 'improper 

mixtures' rather than pure states (70) and so one 

cannot attribute pure states to each individual particle 

in this case. Therefore, the question of the particles 
Sbake_ 

being somehow in 'the same'Asimply does not arise. 

It is important to realise that the whole crux of the 

matter lies in the fact that one cannot distinguish pure 

states and mixed states by means of observations made 

on one of the particles alone. The expectation value 

for any observable 0 on the pure state contains, 

in general, 'interference' or 'cross product' terms 

which do not occur in the expression for the expectation 

value of () in the mixed state. However these terms 

vanish when 0 is of the form Q4 0 T-) 

where Q4 is any 
C-40-CO 

observable referring to one particle only. Observables 

69. Thus D 'Espagnat has discussed some aspects of this 

'play on words' noting that for some authors a 

statistical operator describes a state whereas for 

others it describes at best a mixture of ttates. 

D'Espagnat op cit p. 100 Z: V 
70. Ibid p. 61, el and are not idempotent i. e. 

7. -Oa. lkc ksc"-ssý.. ke-i-e- Les "e- o-ss-t-me e-L"- 

Fai-EUdes ate CIACLSL-ýA ucsý. OWe SO L--ýe 
dCLSS 4 06serv", We, 

etot VW-SL-eccýEzl 
&v of 

ffth; Je- la-4e-ls. 
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such as this, which are unable to Oistinguish pure and 
mixed states are called 'insensitive I. Furthermore, it 
can be shown that the expectation value of Q: 01 when 
the assembly is in a mixed state is equal to the expec- 
tation value of Qý in the state represented by t2, or 
In other words pure states behave like mixtures with 
respect to measurements performed on one particle only 
(71). 

Therefore in order to distinguish between pure states 

and mixed states one must perform a correlation measure- 

ment between observables relating to particle 1 and 

observables relating to particle 2 i. e. one must 

measure the expectation value of an observable of 
the form Q, (2) R2 (72). The joint position measurements 
in the two fermion system, relating to the probability 

of finding both fermions at the same position, whose 

results are encapsulated in the Exclusion Principle, are 

precisely measurements of this sort. As we have noted, 

it is through a consideration of the statistical 

correlation exhibited by two fermions that the conclusion 

is drawn that P. I. I. is supported by Q. M. 

However no such conclusion can in fact be drawn since 

the relational properties involved in these correlations 

betweenthe particles lie outside the domain of appli- 

cability of P. I. I. In other words, the fact that no 

two fermions can exist in the same one-particle state 

expresses a relational property of the particles, to 

the effect that if one fermion is in a particular one- 

particle state all other fermions are excluded from 

that state. We noted in Chapter 1 that Leibniz attempted 

to reduce all relationsýin particular position, 

to predicates of the individual anO it is these latter 

properties, such as the one-particle properties discussed 

above, to which p. I. I. applies. It simply cannot 

encompass entities or collections of entities which 

manifest the irreducibly relational properties 

71. Note the comment in Jammer op cit p. 479 fn 14 

72. For such observables to be 'sensitive' in this 

sense neither Q nor R must a-c-L- 0& cL-A eý eA S to-Ee- 0 
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rqarjý. tw consiOered here, and so the question 
A 

its vali(ýIity 
or otherwise cannot be well formed. 

Thus our overall conclusion regarding the status of 
P. I. I. in Q. M., given the existence of these 'entangled 
states', is as follows. 

First of all, although the particles have the same 
statistical operators, with regard to such states, and 
the same one-particle probability distribution, the 
question as to whether they are in 'the same' state, 
thereby violating P. I. I., is not a meaningful one to 

ask since the particles cannot be attributed with pure 
states. This is not true, of course, for states of 
the assembly which are simple products of one-particle 

states. In the case of two bosons in the same one- 

particle state, for example, the wave function is 

given by I V> =I CL II : ý> I ct-'Z > and one can 

attribute definite states to the individual particles. 
However the statispl operators representing the 

b 
entangled states givenýtor example, 

I \P, > 0ý 0,1 1 4, A > 

represent I improper mixtures I and so one cannot 

associate pure states with the individual particles 

when in such entangled states. 

Secondly, if we consider the two-particle probability 

distribution and those measurements relating to 

correlations between the particles then we are still 

not entitled to come to a definite conclusion regarding 

the validity of P. I. I. because such considerations 

involve the sorts of relational properties which are 

outside the scope of the Principle. These properties 

may be called 'inherently relational' since they 

cannot be reduced to non-relational properties (73) 

73. This can be expressed in the notion of Isupervenience' 

in the sense that inherently relational properties 
do not supervene upon the non-relational properties 

of the relato-. The view that there are such 

properties has been called the 'doctrine of relation- 

al holism' by Paul Teller, who recently argued, at 

the 1984 Annual Conference of the British Society 

for the Philosophy of Science, that Q. F. incorporates 

tois doctrine in an all pervasive way. 
I& 514-oJet 

ek&L- e efet LA vt- I a- ýeo A cL( e Hh: e s c, ý 
& 

StA 

4E_ CL CLI -I& 
LL L4.4- L 

5jAC_e_ eoLclý re-t C- OL VýOla_&ýos% pI(LvtC4, Pje 

e-A4-i-s s, 
__4, 

wAoL e- L-, ec-ex 
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and the fact that they are incorporated in Q. I,,,. is a 
consequence of the theory's non-classical holism, as 
exemplified by the 'entangled states'. 

Therefore the question as to whether weak P. I. I. is 

vali6 or not is simply obviated by Q. M.,. in the sense 
that one cannot say that it is either true or false 

since it 6oes not apply to those particles which are 
described by the theory. 

As we discussed in Chapter 3 one interpretation of 
the non-classical statistical correlations which 

quantal particles display is that they should be 

regarded as 'non-individuals', in the sense that they 

are part of some 'grand cosmological' collective (74). 

Clearly P. I. I. is inapplicable in this case since it 

does not apply to parts of wholes. Indeed one could 

now try to argue again that Q. M. supports P. I. I. 

since the indistinguishable particles have become 

identical in the sense of being parts of some global 
'thing'. This is exactly the sort of reasoning 

which underpins Teller's argument regarding the wave- 

like behaviour of particles and its implication of 

Opartless wholes' which are not counter examples of 

P. I. I. 

one could in fact go even further and employ the 

Leibnizian argument that as each particle includes 

among its set of predicates all the states of all the 

other particles of the same kind, then from the 

viewpoint of the Complete Notion of an Individual, there 

is simply one global individual - the collective of 

all particles of the same kind, and the set of 

predicates of this individual, contained in its complete 

notion, includes the states of all the particles. 

However this argument does not take account of the 

fact that the energy and momentum associated with the 

assembly are integer multiples of the energy and 

momentum of one particle. Thus to take the example of 

two particles in a box, we can say that there are 

74. post op cit p. 20 
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two particles in the box because the total energy 
and momentum are twice what they would be if there 
were only one particle in the box. It is on this 
basis that we say that the particles are countably 
distinct and yet 'entangled' and thus P. I. I. is 

not applicable. (75) 

There are two further points to note. Firstly in 
the case of paraparticles the statistical weights are 
not the same so they do not partake equally of each 
others states. However, in this case the restriction 
to symmetric observables, embodied in the I. P., 
implies that there is no way of telling which particle 
is in which state - 

Secondly our account above does not hold if a hidden 

variable theory is introduced since in such cases 
the particles may be regarded as having definite 

properties of their own, and thus as being in 

definite states, even when the assembly is in an entangled 

state (76) 
- However, we shall not consider such 

possibilities here (77). 

Thus, to repeat our conclusion, Q. M. effectively 

sidesteps the question of the validity of P. I. I. since, 

as a consequence of their holistic behaviour, quantal 

particles lie outside the Principle's domain of 

applicability. In this respect we are in broad 

agreement with Teller and Cortes although we believe 

that our account illuminates more clearly the underlying 

reasons for this conclusion. 

4.3 Essentialism and Natural Kinds 

We have, at several places in this thesis, referred 

to particles 'of the same kind' without fullY 

explaining what we mean by this phrase. It is our 

intention in this section to attempt just such an 

75. cf Yargenau op cit p. 441 
76. D'Espagnat op cit p. 79 
77. Ibid Chll and Jammer op cit Ch. 7 
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explication and to examine briefly the doctrine of 
essentialism as it applies to elementary particles. 

The central idea of recent essentialist accounts (78) 
is that not all of the members of the set of properties 
predicated of an object are logically on a par with 
respect to that object's identity, but that there 

exists a subset of properties which are necessary to the 

objectis identity in the sense that if any member of 
the subset were absent the object would not be an object 
of that kind. The properties in this subset are 

called essential properties and their possession 

uniquely characterises a particular natural kind. Those 

properties predicated of the object which are not 

members of this subset can be called 'accidental' 

properties. 

Such accounts find a particularly useful role in 

characterising the conditions necessary for the re- 

identification of an object through time. Thus Hirsch 

has argued that '... the core idea of the identity 

of an articulated object is simply the idea of 

a continuous space-time path that is traced under an 

articulative E term'. (79), where 1E term broadly 

means 'essential term'. Likewise Brody has recently 

said that a necessary condition for an object o 

existent at tý to be identical with the object o existent 

at t is that I ... o must have retained some of 

its properties that it had at t, the ones that o 

cannot lose without going out of existence'(80). 

In other words for two objects at different times 

to be identical, in the sense of being actually the 

same 6bject, the object at the later time must possess 

the same subset of essential properties as the object 

at the earlier time. This distinction between essential 

ane accidential properties then allows us to Oistinguish 

between substantial and accidental change. The former 

78. P. T. Geach (1962) p. 44 and Ch. 2 in general; D. 

Wiggins (1967) op cit; E. Hirsch in Munitz (1971)p. 31 

79. Hirsch op cit p. 49 
80. B. Brody (1980) p. 83 
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occurs through the loss of essential properties, the 
latter through the loss of accidental ones. 

This doctrine and its associated notion of natural 
kinds, receives a great deal of plausibility from, the 
classification of elementary particles into different 
species characterised. by differences in the values of 
a certain subset of properties (81)., which we have.. 
following Jauch* called 'intrinsic', such as charge, 
rest-mass* spin etc. Indeed it may be that these are 
the only secure examples of natural kinds as we shall 
see - 

so, a typical, and plausiblee instance of a natural 
kind is that of 'being an electron'. Bearing in mind 
Putnam's distinction between the ontology of natural 
kinds and the semantics of natural kind words (82), an 
account of natural kinds can be given in terms of 
their properties thus: It is assumed that out Of all 
the possible properties which can be predicated of 
an electron there exists a ceftain subs; 

, 
ýLwhi, fý makes 6C e, CLet ejeC&rVA 4ý, t Celer-&MA, -rkLf-,, L C: &-keM CIL J-e- Ct Co 4U AC I-L 04 

the predicate 'electron' can be applied. These., U 

intrinsic, properties are, or will be, comparatively 

few in number and are fixed by the relevant physical 

theory pertaining to the electron. This last point 

is an important one to which we shall return shortly. 

Thus the essential properties of a particle are 

those which we have, up until now, been calling its 

'intrinsic' properties, and this subset corresponds 

to the Lockean real essence of the natural 

kind concerned. 

In the case of elementary particles the real and 

nominal essences are identical, although this may 

not, of course. be true for other putative examples of 

natural kinds. Gold for example possesses a number of 

81. P. E. Hodgson (1980) 
81. H. Putnam in N. E. Kiefer and M. K. Munitz (1970) 
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properties.. such as colour, ductility etc, which 
indicate to an expert' whether or not the object 
they are observing is gold. These properties constitute 
the nominal essence of gold. However, underlying these 
there are others, concerned with the atomic structure 
of the element which correspond to its real essence. 
The reductive programme in science then ensures that 

the number of members of the subset corresponding to 

the real essence is less than the number in the subset 

corresponding to the nominal essence. Thus the nominal 

essence 'springs from' the real essence. As we shall 

now see it is the contraction of their nominal to 

their real essences which allows elementary particles 

to be regarded as perhaps the only true examples of 

natural kinds - 
it has been argued that the members of the subset of 

'essential' properties are no more important or 

necessary than any other in the general set of 

properties which can be predicated of an object. Thus 

Mellor has written. ) 
'So-called 'essential' properties 

are ... really no more essential than any other 

shared properties of a kind. They are just properties 

ascribed by the primitive predicates in a comprehensive 

deductive theory of the kind'. (83) If, as Pýellor, 

claims, the reductive programme in science required 

deducibility then the doctrine of natural kinds is 

caught on the horns of a dilemma. If deducibility does 

not hold then some of the macroscopic properties of a 

kind are not deducible from its microscopic structure and 

reference to things of that kind is still required. 

But then, of course, the whole reductive programme, taken 

to be characteristic of modern science collapses. 

If, on the other hand, such properties are deducible then 

they occur in any possible world that the microscopic 

properties occur in. Therefore, if the microscopic 

properties are 'essential' in this sense of being true 

of the object in all possible worlds then so too are 

83. D. Mellor (1977) p. 311 
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all the macroscopic properties which they explain and 
the term 'essential' loses its force. In other words 
Mellor's argument is that the deducibility required 
by the reductive programme carries the essential nature 
of the properties from the subset to the set as a whole. 

This analysis is correct in so far as the properties 
constituting the nominal essence are deducible from 

those constituting the real essence, However, the 
former set is not identical, ýoý&4the set composed of all 

possible properties which can be predicated of the 

object. The size and shape, for example, cannot be 

deduced from the microscopic properties comprising 
the real essence alone -the interaction of the object 

with others may have to be considered for example. 
There may also be microscopic properties which do not 
belong to the latter subset. In other words there 

are properties, both macro- and microscopic which 

are not included in the subsets comprising the nominal 

ancý real essences respectively, and which are not 

necessary for the object to be a thing of that kind. 

We are thus entitled to regard the properties in 

these subsets as essential. Of course Mellor is correct 

in saying that the nominal essence properties are 

deducible from those constituting the real essence and 

that therefore both sets should be termed essential. 

This is exactly what an essentialist does, with the 

addition that the two sets are distinguished by the pre- 

fixes 'nominal' and 'real'. 

Furthermore, it is not clear whether Mellor's attack 

carries any weight in cases where the nominal and real 

essences are the same and there is therefore no chain 

of deducibility running between them. Examples of these 

sorts of natural kinds are elementary particles whose 

intrinsic properties constitute the real essence but 

which do not appear to have nominal essences in the 

way gold, for exampledoes. 

Elementary particles can be regarded as fundamental, 

if the reductive programme in elementary particle 
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physics is accepted (84) in the sense of lying on the 
bottom runlof some explanatory reductive ladder. They 

can be thought of as 'irreducible' in the theory, or 
conjunction of theories, in terms of which the 

explanation is expressed. of course the irreducible 

nature of theee fundamental particles is not 

absolute, since it may be revealed that a supposedly 
fundamental particle is not fundamental at all but composed 

of some other, more basic., particles. A good example 
is the proton which was for many years regarded as fun("- 

amental but is now considered to be composed of three 

quarks. In this case the chain of deducibility is res- 

tored and the proton's real essence becomes the nominal 

essence of the quarks to be explained or deduced in 

terms of their intrinsic or essential properties. Thus 

the reductive programme can create new natural kinds 

and what counts as a natural kind is contingent upon 

the state of physics at the time . The absence of any 

guarantee that our present theories are complete or 

'true' implies that the notion of a natural kind can 

only, at best, be a relative notion, relative, that 

is, to a given physical theory. 

This idea is strongly rejected by Mellor, although 

with no good reason so far as I can see (85). Fales, 

however, has argued that I... what natural kinds we 

believe there to be at any time will be relative to 

whatever most fundamental theory is at that time 

believed to be true; and what natural kinds there are 

is determined by whatever such theory actually is 

true'. (86) In order to generate a natural kind class- 

ification which avoids the Lockean problems of border- 

84. There is of course the 'bootstrap approach' to 

elementary particle theory, although this has 

decreased in popularity with the advent and develop- 

ment of quark theory. See Redhead (1980) p. 298. 

85. Mellor op cit p. 311 
86. E. Fales (1979), p. 350. 
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line cases and gradual substantial change we must look 
tothose theories lying at the lower levels of some 
reductive hierarchy. The clearest examples of these 

are the elementary particle theories of physics and, 

as Fales shows, such theories do indeed determine 

a problem free classification for the entities in 

their domain. They do this precisely in the way we 
have indicated above, by distinguishing, through their 

laws and symmetry principles, between the intrinsic and 

extrinsic properties of the particles and constructing 

a natural kind taxonomy based around the former. Thus 

Fales contends that at the most fundamental level 

elementary particles are classified into types 

in just such a way as to precisely reflect the 

systematically discriminable interaction-governing 

properties which they display'. (87) 

A commitment to a particular fundamental theory 

therefore implies a commitment to certain restrictions 

which determine how the fundamental entities belonging 

to the domain of the theory may be classified. It 

is the theories of physics which provide the sense 

in which it can be said that particular fundamental 

entities possess essential properties by distinguishing 

between the necessary and contingent truths about 

these entities. Thus '... putative natural-kind 

classifications are parasitic upon putatively true 

theories and are, like the theories themselves, subject 

to revision under pressure from empirical information 

about the world '. (88) 

However., although certain of the possible natural kind 

classifications of the fundamental entities of a 

particular theory may be seen to be infelicitous when 

viewed against the background of the theory, this does 

not mean that the theory uniquely determines which 

classification is applicable. For example, certain gauge 

theories in elementary particle physics apparently 

87. Ibid p. 364 
88. Ibid p. 350 
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'unify' different entities by reducing them to one, 
more fundamental entity, thus reducing two, or rrore 
natural kinds to one. Different kinds of particles are 
then regarded as merely different states of one kind of 
more basic particle these states transforming into one 
another under the gauge transformations. A good 
example of this procedure is the way in which neutrons 
and. protons are regarded as merely two states of a 
single particle of a different kind, called the 

nucleon, with these states transforming under isospin 

rotations. However, as Redhead has pointed out, 

although this is a convenient way of talking, it is not 

necessarily a reduction in our ontology: 'All we can 

say is that if the gauge symmetry were exact then 

physics could not decide for us which particle was 

a proton and which a neutron, but this is not the 

same thing as saying that neutrons are protons, nor does 

it compel us to the view that neutrons and protons are 

just two states of a single entity (the nucleon). ' (89) 

one can conclude from this that arguments based on 

gauge symmetries do not help to settle the question of 

whether there are many natural kinds of elementary 

particles. 

Another example is that of the coloured and para- 

quark descriptions of hadron behaviour as we noted CA 

cltap eet- Z- These descriptions may be regarded as 

'roughly' (90) equivalent in the sense that in certain 

cases, depending on the choice of observables in the 

latter, they have the same states, but they differ as we 

have noted on p.. Z! ýV as regards the natural kind 

classification they suggest. These examples support 

the general conclusion that although a theory may 

impose certain constraints upon the classification 

into natural kinds of the entities in its domain, and 

although this classification may have to be revised 

in the light of changes to the theory, the relationship 

between the two is not such that the theory uniquely 

determines the classification - metaphysical factors Fay 

89. Redhead (1983) p. 31 

90. Greenberg and Nelson op cit p. 79 
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also play a role in deciding which particular 

classification is to be adopted. 

4.4 The Undetermination of Theories 

We have emphasised that although there is an ontological 
difference between the particle and field representations 

of elementary particles there is no observable 

difference between them in the sense that no experiment 

could ever decide which is correct. This is therefore 

an example of the underdetermination of theories by 

empirical data. By this we mean that two theories may 

both be compatible with all actual and possible 

observations and yet be incompatible with one another 

as regards their ontological foundations - In such a 

situation the question as to which of the theories is 

'true' isempiricallYundecidable in the sense that there 

is no difference in the distribution of truth values 

over those propositions of the theories deemed 

observational. 

Quine has put forward the strong thesis that all 

theories are underdetermined by the data (91) whereas 

Newton-Smith argues in favour Of the weaker position 

that there can be cases of underdetermination (92). 

The response to this situation can swing between two 

extremes: the Ignorance response concludes that there 

are facts which are inaccessible and can simply 

never be de6ided by observation. The Arrogance response 

on the other hand, holds that if we cannot know about 

something then there is nothing to know about, 

i. e. there is no matter of fact at stake. Adherence 

to the latter implies a restriction of the Law of 

the Excluded Fiddle to exclude empirically undecidable 

propositions (93). Given the number of cases of 

underde termination this could be a rather severe constraint. 

91. W. O. Quine (1970) p. 179 

92. Newton Smith w. (1980) p. 68-73 and p. 231-242 

93. Ibid p. 232 
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Furthermore adopting the Arrogance response has the 
consequence that empirically undecidable propositions 
cannot be regarded as expressing hypotheses about the 
facts. Some account of the role these propositions 
play in the theories containing them is then called for. 

Unless such an extreme positivist approach is taken, 
there are, of course, other factors, of a metaphysical 
or heuristic nature, which may be relevant in 
deciding between observationally indistinguishable 

theories. Thus the particle approach to quantum 

physics involves an ontological commitment to T. I. 

and any philosophical arguments against this notion 

may serve to adjudicate against this approach in favour 

of the field representation. Two theories may also 

Oiffer as regards their heuristic value (94). Thus 

as we have noted, the coloured quark description, 

in leading to the development of quantum chromodynamics 

was more heuristically fruitful than the formally 

equivalent para-quark model. Redhead has emphasised the 

fruitfulness of the field as compared to the particle, 

representation in Q. F. T. (95)_ other factors, like 

simplicity, may also play some role, although the 

difficulties involved in producing effective criteria 

of simplicity and economy are well known. 

We . 
can give several other examples of underde termination, 

taken from the history of physics. Thus the electrical 

theories of Maxwell and the Continental Physicists, 

although involving different formalisms and representations 

of the phenomena, were completely equivalent empirically. 

As Hesse has remarked 'At any given point of 

development it was generally possible to say that the 

empirical facts were explained as well by this continental 

action-at-distance theory as by the British fields'. (96) 
- 

However, the two theories were not equivalent heuris- 

tically or as regards the ease with which they expresse(ý 

certain phenomena; the field approach, involving 

94. Post has emphasised the role of heuristic guidelines 

'01 in the construction of theories'/, Jas regards inter- 

theory relations H. R. Post (1971) p. 213 

95. X. Pedhead. (1983) 

96. M. Hesse in E. McMullin (1978) p. 129 
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continuous action, was obviously more suited to the 
representation of continuous phenomena, rather than 
oiscrete which found easier expression in the 

continental theory. Thus ' ... the two theories were 
not equivalent for all scientifc purposes. Theories 
in science are sometimes rejected, not on grounds of 
inconsistency with empirical facts, but on the grounds 
of complexity, incoherence and lack of predictive power' 
(97) 

Another example of a pair of metaphysically incompatible 

yet empirically equivalent theories are the classical 

atomist and Boscovichean theories of matter. In 

simple terms, the former regarded matter as ultimately 

consisting of impenetrable corpuscules. This was 

rejected by Boscovich who adopted the view that matter 

was ultimately composed of point centres of force and 

should be regarded as active rather than inert. (98) 

By a suitable adjustment of their perioOic properties 

these centres of force could be mathematically 

defined so as to produce exactly the same physical effects 

as the extended impenetrable atoms. The difference 

between these two approaches was therefore not one 

which could be decided by observation alone. As Faraday 

realised (99), it was all a matter of choosing a 

particular ontology which would satisfy the demands of 

consistency and also provide the most effective heuristic 

aid to the future development of the subject. 

As Newton-Smith has pointed out (100) such cases of 

underdetermination clearly present problems to a realist 

who is going to want to say that theories are either 

true or false as determined by virtue of how the world 

'really' is, that if the theory is true then its 

theoretical terms are causally connected to certain 

observable (in the widest sense) phenomena which 

constitute the evidence of the theory, aný', finally 

that we can 'know I whether it is true or not. Thus a 

97. Ibid p. 129 
98. R. J. Boscovich (1763) see P. Yi. Harman (1982)p. 82 

99. M. Faraday (1844) p. 136 
100. Newton-Smith op cit p. 230 
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realist is led to hold that there is something in 
virtue of which either the particle or the field 

approach is true. However, there is no empirical 
(the reason for our emphasis will become apparent 
shortly) evidence for thinking that either description 
is more likely to be true than the other, which is 
incompatible with the last component in the 

characterisation of the realist position. To resolve 
this dilemma the realist must, according to Newton- 
Smith, either weaken this component and adopt the 

Ignorance response stated above, or weaken the first 

component and adopt the Arrogance response. The 
former maintains that those propositions responsible for 

underdetermination are either true or false but we 

cannot know which they are. The latter response 
involves dropping the assumption that there are things 

about the world in virtue of which empirically undecidable 

propositions are either true or false. As we have noted 
eke- this may involve restrictingA scope of the Law of 

Excluded Middle to exclude such propositions, and 

it can conceivably be asked of the ignorant realist 

what are the grounds for asserting that there exist 

the inaccessible facts required by this approach. 

However, these undesirable consequences may follow 

only because Newton-Smith is being unduly restrictive 

in claiming that '... nothing is going to count in 

favour of ... ' (101) one or other of the pair of 

empirically equivalent theories. As we have seen there 

are considerations, other then empirical ones, which 

may promote one theory over an9ther. Thus the realist 

may weaken or stretch the first component above by 

requiring that a theory should be approximately true 

in the sense that its empirical, theoretical, and 

metaphysical claims represent, with a certain degree of 

faithfulness, the way the world really is. A theory 

may then be true in certain respects but false in 

101. Ibiel p. 232 
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others. Thus a realist might regard a theory which 
involves a commitment to a philosophical position which 
he finds untenable as false or at least a worse 
approximation to the truth than one whose metaphysical 
commitments- he agrees with. Of course, this may be as 
much a relative appraisal as those based on simplicity 
criteria are. 

A claim which is less dubious and open to criticism 

would be to say that a theory which is more 
heuristically fruitful than another represents a closer 

approximation to the truth. Thus, for example, it 

seems plausible to claim that the coloured. quark theory 
is 'more true', or a closer approximation to the truth, 

than the paraquark theory because, unlike the latter 

it generated interesting consequences and novel 

preductions which were subsequently confirmed 

experimentally. A similar claim might be made for the 

field, as compared to the particle, approach 
in quantum physics. Thus by retreating from the 

requirement of truth to that of approximate truth a 

realist can introduce non-empirical considerations which 

may tip the balance one way or the other in the weighing 

up of two underdetermined theories. 

As well as playing an important role in theory 

appraisal metaphysics also has a crucial role to play 

in the generation of new theories and the advancement of 

science in general, as Watkins has emphasised. This role 

is I... to prepare the way for the most important 

scientific a6vances of all '. (102) Thus he argued that 

if one theory is to effect a 'revolutionary' reduction 

of another then their metaphysical components must 

conflict. Harman has also emphasised the role of 

metaphysics in the areiculation of theories, through a 

detailed analysis of historical case studies (103) - 

our conclusion thus giveysupport to this 'counter 

revolution' against logical empiricism, which argues 

that metaphysical considerations can and do play a 

102. J. W. N. Watkins (1975) p. 115 

103. Harman OP cit. 



336 

fun(lamental role in the articulation.. appraisal an,., ' 
advancement of scientific theories. 

4.5 Conclusion 

The primary concern of this thesis has been the 
inter-relationship between physics and that part of 
philosophy, or perhaps more properly, metaphysics, 
which deals with the individuality of things in the 
world of external perceptible phenomena. We have 

argued that either one of two broad views of individual- 
ity, which we have labelled 'transcendental' and 'space- 

time' individuality, can be consistently maintained 
in both classical and quantum physics, and that this 

rorrespon0s to the observation that either of two 

interpretations.. particle or field respectively, 

can be placed on the formalisms of these theories. 

Thus any conflict between philosophical positions 
involving, as fundamental principles, these two 

views, cannot be resolved by appealing to physics. 
For example, someone who advocates the 'bundle theory' 

of things, with its reliance upon either P. I. I. or space- 

time indiviLality, cannot legitimately claim support 

from quantum theory on the grounds that it disallows the 

view Of particles as 'transcendental', or 'substantival'.. 

individuals, because as we have seen, this view can 

be maintained within Q. M. so long as the notion of 

'inaccessible' states is also accepted. 

Conversel ya physicist cannot claim support for a 

particular interpretation of the formalism of some 

theory on the grounds that the rival interpretation lacks 

any coherent principle of individuality for the 

entities in its domain, since some such principle is 

possible for either interpretation. However, this symmetry 

regarding the reciprocal roles of physics and philosophy - 

or rather the lack of roles, at least as far as the 

above discussion is concerned - is broken when it comes 

to adopting a particular physical interpretation on 
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grounds other than the above - Thus given the noted 
un0erdetermination, in both classical anr' quantum 

physics, of the field and particle interpretations by 

the data, a consideration of empirically testable con- 
sequences obviously cannot be used to support a choice 

of one interpretation over the other. Other considerations 

VT i 11 then come into play such as metaphysical connections 

giving ontological reference to certain terms in the 

theory and the, related, notion of heuristic fruitful- 

ness. In so far as the former necessarily involves the 

adoption of a particular philosophical viewpoint, for 

example regarding individuality, any criticism of 

or arguments against this viewpoint on philosophical 

grounds, will serve to mitigate against 

the interpretation which it is entailed by. Thus, for 

example, it can be argued that a coherent particle 

interpretation can only be maintained within quantum 

physics if theltranscendental inOividualityl view is 

adopted. However as we have indicated, there are strong 

philosophical arguments which can be levelled against 

this view, especially by those within the empiricist 

camp, and these may be regarded as 'tipping the balance' 

infavour of the alternative field, interpretation. 

Thus our overall conclusion is that more than one 

$metaphysical package' is generally consistent with 

a given physical theory and therefore there exists a 

fundamental underdetermination regarding the 'picture' 

of reality which physics commits us to- In relating 

physics to philosophy, the bestwe can hope for is to 

rule out those 'packages' or descriptions of reality, 

which just do not fit', in the sense of being 

inconsistent with a particular interpretation. 

Although this may be regarded as a somewhat negative 

conclusion we feel, nevertheless, *, that it is 

significant that such results can be achieved in the 

philosophy of physics- 
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APPENDIX 
_: 

GROUP THEORY 

Detailed expositions of the definitions and theoreT7s 
presented below can be found in M. Hamermesh (1962) or 
E-P-Wigner (1959). 

A-1 Abstract Group-Theory 

An abstract group G is a set of elements A96 
qCj *eo 

such that a law of composition or 'group multiplication' 

may be defined which associates a third element with 
any ordered pair and which satisfies the following 

requirements : 

1- If A and B are in the set then so is A 9; that is, the 

set is closed under 'group multiplication'. 

2. 'Group multiplication' is associative; that is 

A (a c) = (A Wc - 
3. The set contains an element E called the identity, 

or unit element, such that Ac =CA, = A every element A 

of the set. 

4. Every element A in the set has an inverse 
denoted by 6=A1, such that A9= CA = E. 

If. in addition, all the elements of the group 

commute with one another, so that A= 6A for all A 

and (S. then the group is said to be 'commutative' or 

'Abelian'. 

The number of elements in a group is called the 

order of the group, 

An element 13 of the group G is said to be conjugate to 

an element A if XAX= (3 or X"18X= 4 If 6 is 
conjugate toA and C is conjugate to then C is also 

conjugate to A9 since if c= NJ 6 %1 -', 13 )(AX -1, then 

c= yK 4x -1 ý'= (Y)() A (AYX)-' . This relation between 

elements can therefore be used to separate the group 

into classes of elements which are conjugate to one 

another. A class is determined by stating one of its 

elements 
AI; the entire class is then found by forming 
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all products of the form 

Ai 
i, 

Ao, & A, 
**e, AhAzAko 

Thus all the elements of the group can be divided 

among the variuus classes and every element appears in 
one and only one class. 

With regard to our outline of the theory of 
representations below, it is worth noting that if the 

group elements are represented by matrices then tne 
traces of all matrices (i. e. the sum of their 

diagonal elements) in a class must be the same. This 

is because the operation then becomes that of making a 
similarity transformation which leaves the trace 

invariant. 

Two groups G and G' are said to be isomorphic if 

a. - unique one-to-one correspondence exists between 

their elements which is preserved under group 

combination. If the correspondence is not one-to-one, 

but is such that one and only one element of G' 

corresponds to every element of U and at least one 

element of G corresponds to every element of G', and 

this correspondence is still preserved under 

combination, then G and G' are said to be homomorphice 

A. 2 The Theory of GroupRepresentations. 

A representation of an abstract group G is, in 

general, any group composed of mathematical entities 

which is homomorphic to G. In this thesis we have 

restricted our attention to linear representations in 

terms of a group of linear operators D(G) in an n- 

dimensional vector space, the basis for which is 

provided by a set of n linearly independent basis 

vectors u,, ... , Rn. The representation is then said 

to have degree n, or is said to be an n-dimensional 

representation. If R and S are elements of G then the 

corresponding operators can be denoted by D(R) and 

D(S) respectively. We then have 
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-D(RS) = U(R)D(S) , D(R-1) = (D(R))- I, 
and D (E) =1. 

In this case, where the vector space is spanned by 

some chosen basis, the linear operators of the 

representation can be described by their matrix 

representatives. We then cbtain a homomorphic mapping of 
the group G onto a group of n-by-n square matrices D('11'14), 

with matrix multiplication as the group combination 
operation. This is then called a matrix representation 

of the group G and we have 

L) C 

-Dýj 
(RS) (S) Dýk (R)DIxi (S) 

Different representationsare distinguished from one 

another through the use of superscripts, e. g. D'ýý)(R). 

If the basis is changed in the vector space then the 

matrices D(R) will be replaced by their transforms by 

some matrix U. The matrices-DI(R) = CD(R)C-1, also 

provide a representation of G which is equivalent to the 

representation given by D(R). Equivalentrepresentations 

have the same group structure. Any given representation 

can be characterised by the trace, 'ý DýI(R)p known as 

the character of R in the representation D, which is 

invariant under such transformations. Thus we define 

the character of the/tth representation as being the set 

of h numbers (where h is the order of the group), 
ejE), 

, ýK) 
00 

(A whe'p 

(R) 

Thus equivalent representations have the same set of 

characters. Also, since the matrix representations of 

all elements in the same class are related by 

similarity transformations, (see, our note above), the 

invariance of matrix traces demonstrates, that all 

elements in the same class have the same character. Thus 

we can specify the character of any representation by 

giving the trace of one matrix from each class of group 

elements, denoted by ; C(Kk), where the classes of G are 

labelled by Kip Kzp eooy 
Kk9a 
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Given any two, or more reprk-: --entations D 
(I ýR) 

and Gt) 
D (R), then we can construct a larger representation 
from -lu-hem by simply combining the matrices into larger 

matrices. In other words we could form 

CA) 
AV 0 
0 0C 

ý? 
A)) 

where D (A) and 
P(A) 

are the matrices representing 

element A in the original representation and D(A) 

represents A in the derived representation. If it is 

possible to reduce the matrices representing all the 

elements in the group to this form by the same 

similarity transformation, then the representation is 

said to be reducible. If this is not possible then 

theiýepresentation is irreducible and cannot be 

expressed in terms of other representations of lower 

dimensionality. 

In terms of our n-dimensional vector space a 

representation is said to be fully reducible if this 

space can be decomposed into the direct sum of 

subspaces of dimension lessthan n which are 

invariant under all transformations of the group. A 

basis for the entire space can then be formed from 

the sets of basis vectors spanning each subspace and 

in this basis the matrices of the representation will 

assume the reduced form above. If our vector space 

cannot be decompased. into subspace6 of representations 

with lower dimensionality then the representation is 

irreducible. 

Thus a fully reducible representation can be 

decomposed into t1ie sum of irreducible representations 

of lower dimensionality. lf this sum contains several 

irreducible representations which are equivalent to 

one another then, since these latter are not 

regarded as distinct, we can say that the sum contains 

the given irreducible representation avtimes, where 

the a. are positive integers. We can then write the 

sum in the form 

D 
ýa. 

YDC 
V 
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rC0 
Furthepore it can be shownAthat for groups of finite 
order reducible representations can always be 
decomposed into a sum of representations. 

One can, however, obtain simpler criteria for 
irreducibility and also show that certain restrictions 

exist on the number of non-equivalent representations, 
through whatare known as the orthogonality theorems. We 

consider first the following lemmas. 

Lemma I. if D and D' are two irreducible representations 

of a group G, having dimensions n, and n2 respectively, 
and if a rectangular matrix A exists which satisfies 

D(R)A = ADI(R) 

f or all in G then it f ollows that 
, i) if n n.,. 

then A 0. or ii) if n, = n., then either D and D' 

are equivalent or A= OJX). 

Lemma II (Schur's Lemma). If the matrices D(R) are an 

irreducible representation of a group G and if 

AD(R) = D(R)A 

for all R in U, then A= constant .E . 
(3) 

In other words if a matrix commutes with all the 

matrices of an irreducible representation then that 

matrix must be a multiple of the unit matrix. Therefore, 

if a non-constant commuting matrix exists, i. e. one 

which satisfies the above relation but is not a 

multiple of E, then the representation is reducible. 

On the other hand if no such matrix exists, i. e. if we 

can find an A which satisfies the atove relation but we 

can show that A is a multiple of E, then the 

representation 1) is irreducible. 
C4ý 

These lemmas can then be used to proveAthe following: 

The Orthogonajity Theorem . If we consider all the 

non-equivalent irreducible representations of a group 

G then 

1. Hamermesh op cit p. 92-93 and p. 98. 

2. Ibid p. 100; Wigner 6p cit p-76-77o 
3. Hamermesh op cit p. 100-101; 'Wigner op cit p-75. 

4. Hamermesh op cit P-101-103; Wigner OP cit p. 79-81. 
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:: ýe ocý'( (z Iq &4' 
A 

MI 
el"44 

or, if the representations are unitary, 

P'Tc P) oPiv, *C P') 
-7 

S" S eý 8,, 
Iz A"Elk 

in other words for two non-equivalent irreducible 
C() a) representations and D we obtain 

cz C() 

, 
9ý5 Pý, C"C#Z) 

Oý 
- ((Z ) =0, (w 

aN if the 

representations are unitary, j0ei_ 6<) (, 'ý) - 
-0 

IIPI whereas if. /a =V then, Pcitc 

or SLM if D is unitary. 
One can then show that the number of non-equivalent 

irreducible representations of a finite group is 

finiteý'J'A)as expressed by the dimensionality theorem 

A& 
which is essential for actually obtaining the 

irredueible representations of any group. 
From the above one can derive orthogonality relations 

for the charactersý'fthus 

'g 
ý((A4-) 

(V)*- 

6&) X ce') =A S'CA-9 
P, Collecting the group elements according to classes, 

x (, U) within which the Cp, )are the same this can be 

rewritten as 

CS"V v 

where Nk is the number of elements in the class K and 

the sum now runs over classes. For a given A the numbers 
(A. ) 

7(ek, ýýJqorm a vector in an ft- dimensional space. The 
k 

vectors obtained in this way from non-equivalent 

irreducible representations are orthogonal, and it can 

then be shown that the number of non-equivalent 

irreducible representations of a group must equal the 

number of classes, in the group. 

It can then be shown that the character of a reducible-. ----- 

representation D(R) is the sum of the characters of its 

5. Hamermesh P,, 103 and p. lU6-107; Wigner op cit p. 83 

6. fiamermesh cp cit P-103-104; Wigner op cit p. 83-84. 
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component irreducible representations, i. e. 

X'( KO : 
-- 

;! 
ý 

a, 
X, 

I)#) 

CKO. ) (, 4A 

One can then obtain a A)k 
zZt 

K 
ýAA 

giving the number of times a given irreducible 

representation is contained in D. and also the 

following simple criterion for irreducibility: 

AJiz 1,2ý(Kk) Iz=A 

These results allow one to draw up the character table 

for a group directly, without first having to 

explicitly work out the representation matrices. In such 

a table the columns are labelled by the various classes 

preceded by the numoer NK of elements in the class, the 

rows are labelled by the irreduciole representations, and 
; ((, 4-A), 

the entries in the table are the (Kký Thus we obtain, 

rJj, J< I,, ý AL Kz 
_ý)jt 

Krz- 
%Ct) 00 

Co 

(4A) -X 
(AA )& 

GF *X 

ýM) 

a0* 

; 
((, (A) 

A-3 The Symmetric Group, 

The elements of the symmetric group of degree N. 

denoted by are the permutations of N objects, 

denoted by Z 

The order of 
Sou is clearly N! A permutation may also be 

denoted in terms of I cycles I. A cycle (r, rz e*. rX ) is 

a permutation which replaces every element rk by the 

element following it, rk., , except for the last 

element , rA . which is replaced by the first r, . 
Thus 

the cycle (r, r, r. ) is just another way of writing 
z A 

the permutation denoted by rl 

) 

r 
Cycles which have no elements in commc . commute and 

any permutation can be decomposed into a product of 

7. Hamqrmesh op cit P-10, ý 

8ý lbid p. lil 



3 45 

cycles which commute. Thus, for example, the 

permutation denoted by 1 '2- 34'! C 6 
can be resolved 

(1 
46 ; k-sj) 

into (136)(24)(5) and this is equivalent to 
(361)(24)(5) and (24)(5)(136) since the order of the 

cycles as well as the initial element of each cycle, is 

of no significance. 

The permutations of Ej can of course be divided into 

different classes and two permutations which have the 

same number of cycles and whose cycles are of equal 

length, i. e. contain the same number of elements, are 

contained in the same class. The number of classes is 

therfore equal to the number of different possible 

lengths of cycles. This is equal to the number of ways 

of dividing N into positive integral summands without 

regard to order and is called the partition number of N. 

Since the number of different irreducible representations 

is equal to the number of classes, as we noted above, 

it follows that this is also given by the partition 

number of N. Thus the symmetric group of degree 3 

has 3 classes, (1 ) (2) (3) 
9 

(12) (3) (123) corresponding 

to 3 irreducible representation. 

Permutations which merely interchange two elements are 

called transpositionsg written, in terms of cycles, thus 

(ij). Every permutation can be decomposed into the 

product of either an even or an odd number of 

transpositions. The even permutations form a subgroup of 

S,, known as the alternating group. 

A permutation which when resolved into cycles has 

V. -V2. cycles containing 2 
, cycles containing 1 element, 

elements, VA) cycles containing N elements is said 
V 'a j W). As we to have the cycle structure A 

have noted all permutations which have the same cycle 

structure form a class in &. For every partition of N 

there exists a corresponding c-4c-le- structure and so 

given the point noted above, every different cycle 

structure corresponds to a different irreducible 

matrices and 
representation of The characters, 

dimensions of the irreducible representations of S,. 
j 
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can be obtained by a variety of different methods (9). 
Given the results of Chapter 3 of this thesis we shall 
mention only one, the graphical method involving 
Young Tableaux (10). 

Thus we associate with each partition a graph of the 

form 
, which is obtained by placing objects one at 

a time on the diagram so that at each stage the number 

of objects in each-line is greater than the number in 

succeeding lines, until all the squares of the graph a-e 
filled. This is called a regular application of one 

square at a time. The number of different ways of 

building these graphs by regular applications of squares, 

for each partition then gives the dimension of the 

corresponding permutation. Thus for example we can find 

the dimensions of all the irreducible representations 

of S"3 as follows: 
I\j 

tJ :72. 

(z ý' 0 
IýLl 

3) A) 

A graph of a given shape, as determined by the 

partition, in which the numbers 1,... 9N are placed in 

the boxes is called a Young Tableau. When the graph is 

built up through regular application of numbers the 

tableau is said to be a standard tableau and the 

dimension of the representation corresponding to a given 

partition is equal to the number of standard tableau 

which can be constructed for that partition. This in 

turn gives, the number of equivalemt irreducible 

representations corrp'ýýponding to that partition. 

Young tableaux can also be used to obtain the 

characters (11) and basis functions of the irreaucible 

representations. Thus the irreducible representations of 

9. See Hamermesh op cit. Ch-7- 
10. lbid P. 198-201 . 
11. Ibid p. 201-208a 
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S,, can be found as follows. Une first draws the 'JaL. LA ) 
pattern for any partition of N and then put numbers 
1,..., N into the pattern in any order to give a Young 
tableau. Then one construuts the following quantities: 

ýff P 
-J PI 

where the P's and qs are permutations in the rows and 

columns respectively, ý$ is the parity of q and the sums 

are over all horizontal or vertical permutations 

respectively, of the given tableau. Application of the 

Young operator P then gives the 

irreducible representations of For different 

patterns the representations obtained in this way are 

inequivalent whereas equivalent irreducible 

representations are obtained from different tableaux 

with the same pattern. Thus for the group S3 the 

partitions (3) and C 13 ) have corresponding representations 

denoted by and 
0 

respectively, whereas there are 

two equivalent representations and 
EP 

correSponding 

to C2) 1) 
o 

With regard to the subject matter of this thesis we 

note that given a system of N indistinguishable 

particles one can construct basis functions for the 

various irreducible representations of SO by applying 

to the eigenfunction of the system the Young operators 

corresponding to all the standard tableaux for a 

given pattern, thus giving the required basis functions 
C 13) 

for the corresponding irreducible representation. We 

conclude by noting that there is a complete 

correspondence between the symmetry types of the 

wave functions and these Young patterns. 

12. Ibid p. 244. 
of uompare with the procedure of section 3.2.1. 

Chapter 3. 
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