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Abstract

Enhancing low resolution images via super-resolution or

synthesis algorithms for cross-resolution face recognition

has been well studied. Several image processing and ma-

chine learning paradigms have been explored for address-

ing the same. In this research, we propose Synthesis via

Hierarchical Sparse Representation (SHSR) algorithm for

synthesizing a high resolution face image from a low reso-

lution input image. The proposed algorithm learns multi-

level sparse representation for both high and low resolution

gallery images, along with identity aware dictionaries and

a transformation function between the two representations

for face identification scenarios. With low resolution test

data as input, a high resolution test image is synthesized

using the identity aware dictionaries and transformation,

which is then used for face recognition. The performance of

the proposed SHSR algorithm is evaluated on four datasets,

including one real world dataset. Experimental results and

comparison with seven existing algorithms demonstrate the

efficacy of the proposed algorithm in terms of both face

identification and image quality measures.

1. Introduction

Group images are often captured from a distance, in or-

der to capture multiple people in the image. In such cases,

the resolution of each face image is relatively small, thereby

resulting in errors during automated tagging or recognition.

Similarly, in surveillance and monitoring applications, cam-

eras are often designed to cover the maximum field of view,

thus limiting the size of face images captured, especially

for individuals at a distance. These low resolution images

are often used to match against high resolution images, e.g.,

profile images on social media or mugshot images captured

by law enforcement. In such scenarios, the resolution gap

between the two may lead to incorrect results. This task of

matching a low resolution input image against a database of

high resolution images is referred to as cross resolution face

recognition.

Several researchers have shown that the performance of
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Figure 1: Images (taken from the Internet) captured min-

utes before Boston Marathon Bombing, 2013, of suspect

Dzhokhar Tsarnaev (circled). The resolution of the circled

image is less than 24×24, which is interpolated to (96×96).

state-of-the-art (SOTA) face recognition algorithms reduces

while matching cross-resolution face images [4, 36, 37]. In

order to overcome this limitation, an intuitive approach is

to generate a high resolution image for the given low res-

olution input, which can be provided as input to the face

recognition engine. Figure 1 shows sample real world im-

ages captured minutes before the Boston Bombing (2013).

Since the person of interest is at distance, the face captured

is thus of low resolution. Performing bicubic interpola-

tion to obtain a high resolution image results in an image

suffering from blur and of poor quality. With the aim of

high recognition performance, the generated high resolu-

tion image should have good quality while preserving the

identity of the subject. As elaborated in the next subsec-

tion, while there exist multiple synthesis or super resolu-

tion techniques, we hypothesize that utilizing a (domain)

face-specific, recognition-oriented model for face synthesis

will result in improved recognition performance, especially

for close-set recognition scenarios. To this effect, this work

presents a novel domain specific identity aware Synthesis

via Hierarchical Sparse Representation (SHSR) algorithm

for synthesizing a high resolution face image from a given

low resolution input image.

1.1. Literature Review

In literature, different techniques have been proposed

to address the problem of cross resolution face recogni-
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tion. These can broadly be divided into transformation

based techniques and non-transformation based techniques.

Transformation based techniques address the resolution dif-

ference between images by explicitly introducing a transfor-

mation function either at the image or at the feature level.

Non-transformation techniques propose to extract/learn res-

olution invariant features or classifiers, in order to address

the resolution variations [4, 12, 36]. In 2013, Wang et al.

[37] present an exhaustive review of the proposed tech-

niques for addressing cross resolution face recognition.

Peleg and Elad [27] propose a statistical model that uses

Minimum Mean Square Error estimator on high and low

resolution image pair patches for prediction. Lam [19] pro-

pose a Singular Value Decomposition based approach for

super resolving low resolution face images. Researchers

have also explored the domain of representation learning

to address the problem of cross resolution face recognition.

Yang et al. [38] propose learning dictionaries for low and

high resolution image patches jointly, followed by learn-

ing a mapping between the two. Yang et al. [39] propose

a Sparse Representation-based Classification approach in

which the face recognition and hallucination constraints are

solved simultaneously. Gu et al. [18] propose convolutional

sparse coding where an image is divided into patches and

filters are learned to decompose a low resolution image into

features. A mapping is learned to predict high resolution

feature maps from the low resolution features. Mundunuri

and Biswas [25] propose a multi-dimensional scaling and

stereo cost technique to learn a common transformation ma-

trix for addressing the resolution variations.

A parallel area of research is that of super-resolution,

where research has focused on obtaining a high resolution

image from a given low resolution image, with the objec-

tive of maintaining/improving the visual quality of the in-

put [3, 28, 34, 35]. There has been significant advance-

ment in the field of super-resolution over the past several

years including recent representation learning architectures

[5, 8, 9, 22, 32] being proposed for the same. It is impor-

tant to note that while such techniques can be utilized for

addressing cross resolution face recognition, however, they

are often not explicitly trained for face images, or for pro-

viding recognition-oriented results.

1.2. Research Contributions

This research focuses on cross resolution face recogni-

tion by proposing a recognition-oriented image synthesis

algorithm, capable of handling large magnification factors.

We propose a hierarchical sparse representation based trans-

fer learning approach, termed as Synthesis via Hierarchi-

cal Sparse Representation (SHSR). The proposed identity

aware synthesis algorithm can be incorporated as a pre-

processing module prior to any existing face recognition

engine to enhance the resolution of a given low resolution

input. In order to ensure recognition-oriented synthesis, the

proposed model is trained using a gallery database contain-

ing a single image per subject. The results are demonstrated

with four datasets in terms of face identification accuracies

with existing face recognition models and no-reference im-

age quality measure of the synthesized images.

2. Synthesis via Hierarchical Sparse Represen-

tation (SHSR)

Dictionary learning algorithms have an inherent property

of representing a given sample as a sparse combination of

its basis functions [29]. This property is utilized in the pro-

posed SHSR algorithm to synthesize a high resolution im-

age from a given low resolution input. The proposed model

learns a transformation between the representations of low

and high resolution images. Further, motivated by the ab-

straction capabilities of deep learning, we propose to learn

the transformation between deeper levels of representation.

Unlike traditional dictionary learning algorithms, we pro-

pose to learn the transformation at higher levels of repre-

sentation. This leads to the key contribution of this work:

Synthesis via Hierarchical Sparse Representation, a transfer

learning approach for synthesizing a high resolution image

for a given low resolution input.

2.1. Preliminaries

Let X = [x1|x2|...|xn] be the training data with n sam-

ples. Dictionary learning algorithms learn a dictionary (D)

and sparse representations (A) using data (X). The objec-

tive function of dictionary learning is written as:

min
D,A

1

n

n
∑

i=1

(

∥

∥xi −Dα
i
∥

∥

2

2
+ λ

∥

∥α
i
∥

∥

1

)

(1)

where, A = [α1|α2|....|αn] are the sparse codes, ‖·‖
1

rep-

resents ℓ1-norm, and λ is the regularizing constant that gov-

erns the weight given to induce sparsity in the representa-

tions. In Eq. 1, the first term minimizes the reconstruction

error of the training samples, and the second term is a regu-

larization term on the sparse codes.

In literature, researchers have extended a single level

dictionary to a multi-level or hierarchical dictionary to

learn multiple levels of representation of the given data

[26, 30, 31]. A k−level hierarchical dictionary learns

k dictionaries D = {D1, ...,Dk} and sparse coefficients

A = {A1, ...,Ak} for a given input X:

min
D,A

1

n

n
∑

i=1

(

∥

∥xi −D1...Dk
α

k,i
∥

∥

2

2
+ λ

∥

∥α
k,i
∥

∥

1

)

(2)

where, αk,i corresponds to the kth level representation of the

ith sample. This architecture is analogous to deep learning

techniques, where deeper layers of feature learning enhance

the level of abstraction learned by the network, thereby
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learning meaningful latent variables. A two layer hierar-

chical dictionary learning model is formulated as follows:

min
D

1
,D

2
,

A
1
,A

2
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1

)

(3)

here, α
1,i = D2

α
2,i such that A1 = [α1,1|α1,2|...|α1,n].

the above equation can be modeled as a step-wise optimiza-

tion of the following two equations:

min
D

1,A1

1

n
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min
D

2,A2

1

n
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(

∥

∥α
1,i −D2

α
2,i
∥

∥

2

2
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∥

∥α
2,i
∥

∥

1

)

(5)

The above two equations correspond to standard dictio-

nary learning formulations, which can be optimized using

existing techniques such as alternating minimization over

the dictionary and representation [29].

2.2. SHSR Algorithm

In real world scenarios of surveillance or image tagging,

the task is to match a low resolution test image (probe) to

the database of high resolution images known as gallery im-

ages. Without loss of generality, we assume that the tar-

get comprises of high resolution gallery images while the

source domain consists of low resolution images. In the

proposed model, for low resolution face images Xl, and

high resolution face images Xh, k-level hierarchical dic-

tionaries are learned in both source (GL = {G1
l , ...,G

k
l })

and target domain (GH = {G1
h, ...,G

k
h}). It is important

to note that the dictionaries are generated using the pre-

acquired gallery images. Corresponding sparse representa-

tions, AL = {A1
l , ...,A

k
l } and AH = {A1

h, ...,A
k
h} are also

learned for all k levels, where Ak
h = [αk,1

h |αk,2
h |...|αk,n

h ] are

the representations learned corresponding to the kth-level

high resolution dictionary and Ak
l = [αk,1

l |αk,2
l |...|αk,n

l ] are

the representations learnt from the kth level dictionary for

the low resolution images. The proposed algorithm learns a

transformation, M, between Ak
h and Ak

l . The optimization

function for Synthesis via Hierarchical Sparse Representa-

tion, a k-level hierarchical dictionary is written as:

min
GH,AH,

GL,AL,M

1

n

n
∑

i=1

(
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∥
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(6)

where, λj are regularization parameters governing the

amount of sparsity in the learned representations of the jth

layer, while λM is the regularization constant for learning

the transformation function. GH and GL correspond to the

hierarchical dictionaries learned for the high and low res-

olution gallery images, respectively. The first two terms

are responsible for learning the dictionaries and represen-

tations of high resolution face images, while the next two

terms correspond to feature learning for low resolution face

images. The last term contains the transformation between

the deepest features of both the resolutions. Therefore, the

SHSR algorithm learns multiple levels of dictionaries and

corresponding representations for low and high resolution

face images, along with a transformation between the fea-

tures learned at the last layer.

2.2.1 Training SHSR Algorithm

Without loss of generality, training of the proposed SHSR

algorithm is explained with k = 2 (shown in Figure 2). For

a two level hierarchical dictionary, Eq. 6 can be written as:

min
GH,GL

AH,AL,M

1

n

n
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∥xi
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2
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∥
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2
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∥

2

2
+ λ1

∥

∥α
1,i
l

∥

∥

1

+λ2

∥

∥α
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∥

∥

1
+ λM

∥

∥α
2,i
h − Mα

2,i
l

∥

∥

2

2

)

(7)

Since the number of variables in Eq. 7 is large, directly

solving the optimization problem may provide inaccurate

estimates. Therefore, greedy layer by layer training is ap-

plied. It is important to note that since there is a l1-norm

regularizer on the coefficients of the first and the second

layer, the dictionaries G1

h and G2

h cannot be collapsed into

one dictionary. A hierarchical dictionary of two levels (Eq.

3) is learned in two steps (Eq. 4, 5). Upon extending the

formulation to k levels, it would require exactly k steps for

optimization. The proposed SHSR algorithm (Eq. 6) builds

upon the above and utilizes k + 1 steps based greedy layer-

wise learning for a k-level dictionary. k steps are for learn-

ing representations using the dictionary architecture and the

k + 1th step is for learning the transformation between the

final representations. Therefore, Eq. 7 is solved using an

independent three step approach: (i) learn first level source

(low resolution) and target (high resolution) domain dictio-

naries, (ii) learn second level low and high resolution dic-

tionaries, and (iii) learn a transformation between the final

representations.

Using the concept in Eq. 3 - 5, in the first step, two sep-

arate level-1 (i.e. k = 1) dictionaries are learned from the

given input data for the low resolution (G1
l ) and high reso-

lution (G1
h) face images independently. Given the training

data consisting of low (Xl) and high (Xh) resolution face

images, the following minimization is applied for the two
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Figure 2: Synthesis via Hierarchical Sparse Representation algorithm for 2-level hierarchical dictionary. (a) shows the

training of the model, while (b) illustrates the high resolution synthesis of a low resolution input.

domains respectively:

min
G

1
l ,A

1
l

1

n

n
∑

i=1

∥

∥xi
l −G1

l α
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∥

∥
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2
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∥

∥

1
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min
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1
h,A

1
h

1

n
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∥

∥xi
h −G1

hα
1,i
h

∥

∥

2

2
+ λ1

∥

∥α
1,i
h

∥

∥

1
(9)

here, A1
l = [α1,1

l |α1,2
l |...|α1,n

l ] and

A1
h = [α1,1

h |α1,2
h |...|α1,n

h ] refer to the level-1 sparse

codes learned for the low and high resolution images,

respectively. Each of the above two equations can be

optimized independently using an alternating minimization

dictionary learning technique over the dictionary and

representation [23]. After this step, G1
h,G

1
l (dictionaries)

and A1
h,A

1
l (representations) are obtained for the high and

low resolution data.

In the second step, a hierarchical dictionary is created

by learning the second level dictionaries (G2
l ,G

2
h) using the

representations obtained from the first level (A1
h and A1

l ).

That is, two separate dictionaries, one for low resolution

images and one for high resolution images are learned us-

ing the representations obtained at the first level as input

features. The equations for this step are written as follows:

min
G

2
l ,A

2
l

1

n

n
∑

i=1

∥

∥α
1,i
l −G2

l α
2,i
l

∥

∥

2

2
+ λ2

∥

∥α
2,i
l

∥

∥

1
(10)

min
G

2
h,A

2
h

1

n

n
∑
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∥

∥α
1,i
h −G2

hα
2,i
h

∥

∥

2

2
+ λ2

∥

∥α
2,i
h

∥

∥

1
(11)

here, A2
l = [α2,1

l |α2,2
l |...|α2,n

l ] is the final represen-

tation obtained for the low resolution images and

A2
h = [α2,1

h |α2,2
h |...|α2,n

h ] refers to the representation ob-

tained for the high resolution images. Similar to the pre-

vious step, the equations can be solved independently using

alternating minimization over the dictionary and represen-

tations. After this step, G2
l ,G

2
h,A

2
l and A2

h are obtained.

In order to synthesize from one resolution to another, the

third step of the algorithm involves learning a transforma-

tion between the final representations of the two resolutions

(i.e. A2
l and A2

h). The following minimization is solved to

obtain a transformation M:

min
M

∥

∥A2
h −MA2

l

∥

∥

2

F
(12)

The above equation is a least square problem with a

closed form solution. After training, the dictionaries

(G1

l ,G
1

h ,G
2

l ,G
2

h ) and the transformation function (M) are

obtained which are used at test time.

2.2.2 Testing: Synthesizing a High Resolution Face

Image from a Low Resolution Image

During testing, a low resolution test image, xtest
l , is input

to the algorithm. Using the trained gallery based dictio-

naries, G1
l and G2

l , first and second level representations

(α1,test
l , α

2,test
l ) are obtained for the given image:

xtest
l = G1

l α
1,test
l ; α1,test

l = G2
l α

2,test
l (13)

The transformation function, M, learned in Eq. 12, is then

used to obtain the second level high resolution representa-

tion (α2,test
h ):

α
2,test
h = Mα

2,test
l (14)
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Table 1: Summarizing the characteristics of the training and testing partitions of the datasets used in experiments.

Dataset
Training

Subjects

Training

Images

Testing

Subjects

Testing

Images

Gallery

Resolution
Probe Resolutions

CMU Multi-PIE [17] 100 200 237 474

96× 96

8× 8, 16× 16, 24× 24,

CAS-PEAL [13] 500 659 540 705 32× 32, 48× 48

Real World Scenarios [4] - - 1207 1222

SCface [16] 50 300 80 480 24× 24, 32× 32, 48× 48

Table 2: Rank-1 identification accuracies (%) obtained using Verilook (COTS-I) for cross resolution face recognition. The

target resolution is 96× 96. The algorithms which do not support the required magnification factor are presented as ′−′.

Probe

Resolution

Original

Image

Bicubic

Interp.

Dong et

al. [9]

Kim et

al. [20]

Gu et

al. [18]

Dong et

al. [8]

Peleg et

al. [27]

Yang et

al. [38]

Proposed

SHSR

C
M

U

M
u

lt
iP

IE

8×8 0.0±0.0 0.1±0.0 - - - - - - 82.6±1.5

16×16 0.0±0.0 1.1±0.1 - - - - - - 91.1±1.3

24×24 1.2±0.4 3.1±0.6 2.0±3.5 4.1±1.0 4.3±1.0 4.2±0.6 - - 91.8±1.8

32×32 3.4±0.6 16.9±1.3 9.7±1.1 17.5±1.1 15.4±1.1 6.9±0.2 8.3±0.9 - 91.9±1.7

48×48 91.9±1.1 95.8±0.4 85.8±0.7 96.2±0.6 93.1±0.9 95.5±1.1 92.8±0.4 94.0±0.6 91.5±1.5

C
A

S
-P

E
A

L 8×8 0.0±0.0 0.0±0.0 - - - - - - 92.8±0.7

16×16 0.0±0.0 0.2±0.3 - - - - - - 94.4±1.1

24×24 0.4±0.6 14.9±1.7 0.4±0.2 2.3±0.8 1.9±0.7 2.5±0.7 - - 95.3±1.4

32×32 3.7±0.7 76.5±1.8 5.4±1.2 11.8±1.1 8.1±2.3 2.1±0.7 3.1±1.6 - 95.6±1.1

48×48 63.4±1.7 90.8±1.5 46.5±2.5 75.8±2.3 77.7±2.1 72.0±0.7 74.0±2.6 73.3±3.3 95.4±1.5

S
C

fa
ce 24×24 1.1±0.2 0.8±0.1 0.4±0.2 0.4±0.2 1.5±0.3 1.3±0.3 - - 14.7±3.3

32×32 1.8±0.5 2.5±0.3 2.2±0.4 2.0±0.0 2.3±0.3 0.7±0.3 1.8±0.5 - 15.6±1.3

48×48 6.5±0.6 9.5±1.9 6.9±0.6 6.7±1.2 7.7±0.6 7.5±1.3 7.3±0.9 6.8±0.7 18.5±2.6

Using Eq. 9 and Eq. 11, and the second level representation

for the given image in the target domain, a synthesized out-

put of the given image is obtained. First α1,test
h is calculated

with the help of G2
h, and then xtest

h is obtained using G1
h,

which is the synthesized image in the target domain:

α
1,test
h = G2

hα
2,test
h ; xtest

h = G1

hα
1,test
h (15)

It is important to note that the synthesized high resolution

image is a sparse combination of the basis functions of the

learned high resolution dictionary. In order to obtain a good

quality, identity-preserving high resolution synthesis, the

dictionary is trained with the pre-acquired high resolution

database. As will be demonstrated via experiments as well,

a key highlight of this algorithm is to learn good quality,

representative dictionaries with a single sample per subject.

The high resolution synthesized output image xtest
h can then

be used by any face identification engine for recognition.

3. Datasets and Experimental Protocol

The effectiveness of the proposed SHSR algorithm

is demonstrated by evaluating the face recognition per-

formance with original and synthesized images. Two

commercial-off-the-shelf face recognition systems (COTS),

Verilook (COTS-I) [2] and Luxand (COTS-II) [1] are used

on four different face databases. For Verilook, the face qual-

ity and confidence thresholds are set to minimum, in order

to reduce enrollment errors. The performance of the pro-

posed algorithm is compared with six recently proposed

super-resolution and synthesis techniques by Kim et al.

[20]1 (kernel ridge regression), Peleg et al. [27]2 (sparse

representation based statistical prediction model), Gu et al.

[18]3 (convolutional sparse coding), Yang et al. [38]4 (dic-

tionary learning), Dong et al. [8]5 (deep convolutional net-

works), and Dong et al. [9]6 (deep convolutional networks)

along with one of the most popular techniques, bicubic in-

terpolation. The results of the existing super-resolution al-

gorithms are computed by using the models provided by

the authors at the links provided in the footnotes. It is to

be noted that not all the algorithms support all the levels of

magnification. For instance, the algorithm proposed by Kim

et al. [20] supports up to 4 levels of magnification whereas,

Yang et al.’s algorithm [38] supports up to 2 levels of mag-

nification.

Face Datasets: Table 1 summarizes the statistics of the

datasets in terms of training and testing partitions, along

with the resolutions. Details of each are provided below:

1. CMU Multi-PIE Dataset [17]: Images pertaining to

337 subjects are selected with frontal pose, uniform illumi-

1https://people.mpi-inf.mpg.de/ kkim/supres/supres.htm
2http://www.cs.technion.ac.il/ẽlad/software/
3http://www4.comp.polyu.edu.hk/ cslzhang/
4http://www.ifp.illinois.edu/j̃yang29/
5http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
6http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
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nation, and neutral expression. 100 subjects are used for

training while the remaining 237 are in the test set.

2. CAS-PEAL Dataset [13] consists of face images of

1040 subjects. All subjects have a single, high-resolution

normal image, and images of different covariates such as

lighting, expression, and distance. For this research, nor-

mal images are used as the high resolution gallery database

while face images under the distance covariate are down-

sampled and used as probe images.

3. SCface Dataset [16]: It consists of 130 subjects, each

having one high resolution frontal face image and multiple

low resolution images, captured from three distances using

surveillance cameras.

4. Real World Scenarios Dataset [4] contains images

of seven subjects associated with the London Bombing,

Boston Bombing, and Mumbai Attacks. Each subject has

one high resolution gallery image and multiple low resolu-

tion test images. The test images are captured from surveil-

lance cameras, and are collected from multiple sources from

the Internet. Since the number of subjects are just seven, in

order to mimic a real world scenario, the gallery size is in-

creased to create an extended gallery of 1200 subjects. Im-

ages from the CMU Multi-PIE, ND Human Identification

Set-B [10], and MEDS[11] datasets are used for the same.

Protocol: For all the datasets, a real world matching

protocol is followed. For each subject, multiple low reso-

lution images are used as probe images, which are matched

against the pre-acquired database of high resolution gallery

images. Only a single high resolution image per subject is

used as gallery. The proposed and comparative algorithms

are used to synthesize (or super-resolve) a high resolution

image from a given low resolution input. For all datasets

except the SCface dataset, test images are of sizes varying

from 8×8 to 48×48. The magnification factor varies from

2 (for probes of 48×48) to 12 (for probes of 8×8) to match

it against the gallery database of size 96 × 96. For the SC-

face database, probe resolutions are 24 × 24, 32 × 32, and

48×48, one corresponding to each distance. Face detection

is performed using face co-ordinates (if provided) or using

Viola Jones Face Detector [33] and synthetic downsampling

is performed to obtain lower resolutions. All the experi-

ments are performed with five times random sub-sampling

to ensure consistency.

Implementation Details: The SHSR algorithm is

trained using the pre-acquired gallery database for each

dataset. The regularization constant for sparsity is kept

at 0.85. Different dictionaries have different dimensions,

based on the input data. For instance, the two-level dictio-

naries created for SCface dataset contain 100 and 80 atoms

in the first and second dictionary, respectively. The source

code of the algorithm will be made publicly available in or-

der to ensure reproducibility of the proposed approach.

(a) (b) (c) (d) (e) (g)

CAS-PEAL

CMU 

Multi-PIE

Real 

World

SCface

(f)

Existing Algorithms ProposedProbe

Figure 3: Probe images of 24 × 24 are super-

resolved/synthesized to 96×96. (a) corresponds to the orig-

inal probe, (b)-(g) correspond to different techniques: bicu-

bic interpolation, Kim et al [20], Gu et al. [18], Dong et al.

[8], Dong et al. [9], and the proposed SHSR algorithm.

4. Results and Analysis

The proposed algorithm is evaluated with three sets of

experiments: (i) face recognition performance with reso-

lution variations, (ii) image quality measure, and (iii) face

identification analysis with different dictionary levels. The

resolution of the gallery is set to 96 × 96. For the first ex-

periment, the probe resolution varies from 8× 8 to 48× 48,

while it is fixed to 24× 24 for the next two experiments.

4.1. Face Recognition across Resolutions

For all datasets and resolutions, results are tabulated in

Tables 2 to 4. Figure 3 shows sample synthesized/super-

resolved images from multiple datasets obtained with the

proposed and existing algorithms. The key observations

pertaining to these set of experiments are presented below:

8× 8 and 16× 16 probe resolutions: Except bicubic in-

terpolation, none of the super-resolution or synthesis algo-

rithms used in this comparison support a magnification fac-

tor of 12 (for 8× 8) or 6 (for 16× 16); therefore, the results

on these two resolutions are compared with original resolu-

tion (when the probe is used as input to COTS as it is, with-

out any resolution enhancement) and bicubic interpolation

only. As shown in the third and fourth columns of the two

tables, on the CMU Multi-PIE and CAS-PEAL datasets,

matching with original and bicubic interpolated images re-

sults in an accuracy of ≤ 1.1% whereas, the images synthe-

sized using the proposed algorithm provide rank-1 accuracy

of 82.6% and 92.8%, respectively (Table 2).

24× 24 and 32× 32 probe resolutions: As shown in Ta-

ble 2, on CMU Multi-PIE and CAS-PEAL datasets with test

resolution of 24 × 24 and 32 × 32, the synthesized images

obtained using the proposed SHSR algorithm yield a rank-

1 accuracy greater than 91.8%. Other approaches yield a

rank-1 accuracy less than 20%, except bicubic interpolation

on 32×32 size which provides a rank-1 accuracy of 76.5%.
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Table 3: Rank-1 identification accuracies (%) obtained using Luxand (COTS-II) for cross resolution face recognition. The

target resolution is 96× 96. The algorithms which do not support the required magnification factor are presented as ′−′.

Probe

Resolution

Original

Image

Bicubic

Interp.

Dong et

al. [9]

Kim et

al. [20]

Gu et

al. [18]

Dong et

al. [8]

Peleg et

al. [27]

Yang et

al. [38]

Proposed

SHSR

C
M

U

M
u

lt
i-

P
IE

8×8 0.0±0.0 0.0±0.0 - - - - - - 82.3±1.4

16×16 0.0±0.0 0.0±0.0 - - - - - - 90.5±1.1

24×24 0.9±0.3 1.0±0.3 2.3±0.5 5.9±0.7 6.8±1.4 6.8±0.5 - - 92.1±1.5

32×32 11.3±1.1 18.3±7.1 13.5±0.6 28.6±1.2 24.3±2.3 19.4±1.5 17.4±2.5 - 92.2±1.6

48×48 90.2±0.5 97.9±0.5 96.0±0.6 97.1±0.7 96.6±0.5 96.9±0.6 97.5±0.5 96.2±0.4 91.9±1.6

C
A

S
-P

E
A

L 8×8 0.0±0.0 0.0±0.0 - - - - - - 91.7±0.9

16×16 0.0±0.0 0.6±0.6 - - - - - - 93.3±0.7

24×24 0.5±0.4 49.3±1.3 2.3±0.8 10.2±1.1 7.3±1.5 5.8±0.4 - - 93.7±1.4

32×32 11.1±2.8 92.5±2.0 27.9±1.1 34.6±2.3 31.7±2.3 15.2±3.3 28.0±1.9 - 93.9±1.3

48×48 88.1±0.6 95.4±1.4 85.7±2.8 93.3±1.4 93.3±1.4 91.4±1.4 93.6±1.9 90.8±1.7 93.9±1.5

S
C

fa
ce 24×24 1.1±0.2 1.5±1.0 1.2±0.5 0.8±0.1 2.2±0.5 1.9±0.6 - - 14.7±2.4

32×32 2.2±0.4 3.2±0.4 3.5±0.5 2.6±0.7 4.0±0.7 2.6±1.0 2.8±0.7 - 15.7±1.3

48×48 9.7±1.7 12.6±1.7 9.6±1.1 11.6±1.3 10.1±1.8 11.7±2.0 11.4±1.2 11.9±1.0 19.1±3.4

Bicubic InputInput Bicubic ProposedProposed

Figure 4: Sample images from SCface dataset incorrectly

synthesized to 96×96 by SHSR algorithm for 32×32 input.

As shown in Table 3, similar performance trends are ob-

served using COTS-II on the two databases. For SCface,

the rank-1 accuracy with SHSR is significantly higher than

the existing approaches; however, due to the challenging na-

ture of the database, both commercial matchers provide low

rank-1 accuracies. Figure 4 presents sample images from

the SCface dataset, incorrectly synthesized via the proposed

SHSR algorithm. Varying acquisition devices of the train-

ing and testing partitions, along with the covariates of pose

and illumination creates the problem further challenging.

48× 48 probe resolution: Using COTS-I, the proposed

algorithm achieves improved performance than other tech-

niques, except on the CMU Multi-PIE dataset, where it does

not perform as well. On all other databases, the proposed al-

gorithm yields the best results. Upon analyzing both the Ta-

bles, it is clear that the proposed algorithm is robust to dif-

ferent recognition systems, and performs well without any

bias for a specific kind of recognition algorithm.

Another observation is that with COTS-II, images super-

resolved using bicubic interpolation yield best results on the

first two databases. However, it should be noted that these

results are only observed for a magnification factor of 2 and

for images which were synthetically down-sampled. In real

world surveillance datasets, such as SCface, the proposed

approach performs best with both commercial systems.

Real World Scenarios Dataset: Table 4 summarizes the

results of COTS-I on Real World Scenarios dataset. Since

the gallery contains images from 1200 subjects, we sum-

marize the results in terms of the identification performance

with top 20% retrieved matches. It is interesting to observe

that for all test resolutions, the proposed algorithm signifi-

cantly outperforms existing approaches. SHSR achieves an

identification accuracy of 53.3% on probe resolution of 8×8
and an accuracy of 60.0% for 48× 48 test resolution.

Cross Dataset Experiments: The SHSR algorithm was

trained on the CMU Multi-PIE dataset and tested on the

SCface dataset for a probe resolution of 24 × 24. A rank-1

identification accuracy of 1.62% (1.92%) was obtained with

COTS-I (COTS-II), and a rank-5 identification accuracy of

7.54% and 9.06% was obtained, respectively. These re-

sults show that the proposed model is able to achieve better

recognition performance as compared to other techniques.

The drop in accuracy strengthens our hypothesis that using

an identity-aware model for image synthesis is more bene-

ficial for achieving higher recognition performance.

4.2. Quality Analysis

Figure 3 shows examples of synthesized/super-resolved

images from multiple datasets generated using the proposed

and existing algorithms. In this figure, images of 96 × 96
are synthesized from low resolution images of 24 × 24. It

is observed that the images obtained using existing algo-

rithms (columns (b) - (f)) have artifacts in terms of blocki-

ness and/or blurriness. However, the quality of images ob-

tained using the proposed algorithm (column (g)) are signif-

icantly better. To compare the visual quality of the outputs,

a no reference image quality measure, BRISQUE [24] is

utilized. Blind/Referenceless Image Spatial QUality Eval-

uator (BRISQUE) computes the distortion in the image by

using the statistics of locally normalized luminance coeffi-

cients. It is calculated in the spatial domain and is used to

estimate the loss of naturalness in an image. A lower value

denotes less distortions in the image. From Table 5, it can

be seen that images obtained using the proposed SHSR al-

gorithm have a better (lower) BRISQUE score as compared
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Table 4: Real World Scenarios: Recognition accuracy obtained in top 20% retrieved matches, against a gallery of 1200

subjects using COTS-I (Verilook). The gallery database has resolution of 96× 96.

Probe

Resolution

Original

Image

Bicubic In-

terpolation

Dong et

al. [9]

Kim et

al. [20]

Gu et al.

[18]

Dong et

al. [8]

Peleg et

al. [27]

Yang et

al. [38]

Proposed

SHSR

8×8 0.0 0.0 - - - - - - 53.3

16×16 0.0 13.3 - - - - - - 53.3

24×24 6.6 16.6 13.3 26.6 13.3 6.6 - - 53.3

32×32 33.3 16.6 33.3 33.3 33.3 16.6 40.0 - 53.3

48×48 33.3 46.6 26.6 33.3 26.6 20.0 33.3 40.0 60.0

Table 5: Average no reference quality measure - BRISQUE [24] for probe resolution of 24 × 24 synthesized to 96 × 96,

obtained over five folds. A lower value for BRISQUE corresponds to lesser distortions in the image.

Dataset Bicubic Interp. Dong et al. [9] Kim et al. [20] Gu et al. [18] Dong et al. [8] Proposed SHSR

CMU Multi-PIE 54.8 ± 0.1 28.94 ± 0.0 50.8 ± 0.1 52.8 ± 0.1 48.8 ± 0.1 26.2 ± 1.3

CAS-PEAL 60.0 ± 0.2 52.86 ± 0.0 54.3 ± 0.2 56.4 ± 0.1 53.4 ± 0.1 39.3 ± 0.3

SCface 58.7 ± 0.1 52.86 ± 0.0 53.2 ± 0.2 54.9 ± 0.1 47.2 ± 0.1 34.2 ± 0.6

Real World 57.5 28.94 54.5 54.6 49.54 25.9

Table 6: Rank-1 accuracies (%) for varying levels of SHSR

algorithm with 24× 24 probe and 96× 96 gallery.

Dataset COTS
Dictionary Levels

k = 1 k = 2 k = 3

CMU Verilook 91.4 91.8 91.8

Multi-PIE Luxand 92.0 92.1 92.5

CAS-PEAL
Verilook 93.8 95.3 93.7

Luxand 92.2 93.7 93.6

SCface
Verilook 15.0 14.7 15.2

Luxand 15.6 14.7 15.3

to images generated with existing algorithms.

4.3. Effect of Dictionary Levels

As explained in the algorithm section, synthesis can be

performed at different levels of hierarchical dictionary, i.e.

with varying values of k. This experiment is performed to

analyze the effect of different dictionary levels on identi-

fication performance. The proposed algorithm is used to

synthesize high resolution images (96 × 96, magnification

factor of 4) from input images of size 24 × 24 with vary-

ing dictionary levels, i.e. k = 1, 2, 3. First level dictio-

nary (k = 1) is equivalent to shallow dictionary learning,

whereas two and three levels correspond to synthesis with

hierarchical dictionary learning. Table 6 reports the rank-1

identification accuracies obtained with the two commercial

matchers for three datasets. The results show that the pro-

posed approach with k = 2 generally yields the best results.

In some cases, the proposed approach with k = 3 yields bet-

ter results. However, computational complexity with 3-level

hierarchical dictionary features is higher and the improve-

ment in accuracy is not consistent across datasets. On the

other hand, paired t-test on the results obtained by the shal-

low dictionary and 2-level hierarchical dictionary demon-

strate statistical significance with a confidence level of 95%

(for Verilook). Specifically, for a single image, synthesis

with level-1 dictionary requires 0.42 ms, level-2 requires

0.43 ms, and level-3 requires 0.45 ms.

5. Conclusion and Future Research

The key contribution of this research is a recognition-

oriented pre-processing module based on dictionary learn-

ing algorithm for synthesizing a high resolution face image

from a low resolution input. The proposed SHSR algorithm

learns the representations of low and high resolution images

in a hierarchical manner, along with a transformation be-

tween the deepest representations. The results are demon-

strated on four datasets with test image resolution ranging

from 8 × 8 to 48 × 48. Matching these requires generat-

ing synthesized high resolution images with a magnification

factor of 2 to 12 for gallery images of dimension 96 × 96.

Results computed in terms of face recognition performance

and image quality measure illustrate that the proposed algo-

rithm consistently yields good recognition results. Compu-

tationally, the proposed algorithm requires less than 1 mil-

lisecond for generating a synthesized high resolution image

which further showcases the efficacy and usability of the

algorithm for low resolution face recognition applications.

In future, we plan to extend the proposed synthesis based

approach for (i) face recogntion in videos for frame selec-

tion and enhancement [15], (ii) disguised face recognition

[6, 7, 21] where it can also be used to remove the effect of

disguise, and (iii) face recognition in low resolution near-

infrared images [14].
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