
An extended abstract of this paper appeared in Michele Bugliesi, Bart Preneel, Vladimiro Sassone,
and Ingo Wegener, editors, 33rd International Colloquium on Automata, Languages and Programming

– ICALP 2006, volume 4052 of Lecture Notes in Computer Science, Springer-Verlag, 2006 [ACD+06].
This is the full version.

Identity-Based Encryption Gone Wild

Michel Abdalla1, Dario Catalano1, Alexander W. Dent2,

John Malone-Lee3, Gregory Neven1,4, Nigel P. Smart3.

December 3, 2006

1 Département d’Informatique, Ecole Normale Supérieure,
45 rue d’Ulm, 75230 Paris Cedex 05, France.

Email: {Michel.Abdalla,Dario.Catalano,Gregory.Neven}@ens.fr
2 Information Security Group,

Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, United Kingdom.

Email: a.dent@rhul.ac.uk
3 Department of Computer Science, University of Bristol,

Woodland Road, Bristol, BS8 1UB, United Kingdom.
Email: {malone,nigel}@cs.bris.ac.uk

4 Department of Electrical Engineering, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

Email: Gregory.Neven@esat.kuleuven.be

Abstract

In this paper we introduce a new primitive called identity-based encryption with wildcards, or
WIBE for short. It allows to encrypt messages to a whole range of users simultaneously whose
identities match a certain pattern. This pattern is defined through a sequence of fixed strings and
wildcards, where any string can take the place of a wildcard in a matching identity. Our primitive
can be applied to provide an intuitive way to send encrypted email to groups of users in a corporate
hierarchy. We propose a full security notion and give efficient implementations meeting this notion
under different pairing-related assumptions, both in the random oracle model and in the standard
model.

Keywords: Identity-based encryption, provable security.

i

Contents

1 Introduction 1

2 Basic Definitions 3

3 Identity-Based Encryption with Wildcards 5

4 A Generic Construction 6

5 A Construction from Waters’ HIBE Scheme 6

5.1 Waters’ HIBE Scheme . 6
5.2 The Wa-WIBE Scheme . 7

6 More Efficient Constructions in the Random Oracle Model 11

6.1 A Construction from Boneh-Boyen’s HIBE Scheme . 11
6.2 A Construction from Boneh-Boyen-Goh’s HIBE Scheme 12
6.3 From Selective-Identity to Full Security . 15

7 Chosen-Ciphertext Security 16

Acknowledgements 20

References 20

A The BB-HIBE Scheme 22

B The BBG-HIBE Scheme 25

ii

1 Introduction

The concept of identity based cryptography was introduced by Shamir as early as in 1984 [Sha85]. How-
ever, it took nearly twenty years for an efficient identity based encryption (IBE) scheme to be proposed.
In 2000 and 2001 respectively Sakai, Ohgishi and Kasahara [SOK00] and Boneh and Franklin [BF03]
proposed IBE schemes based on elliptic curve pairings. Also, in 2001 Cocks proposed a system based
on the quadratic residuosity problem [Coc01].

One of the main application areas proposed for IBE is that of email encryption. In this scenario,
given an email address, one can encrypt a message to the owner of the email address without needing
to obtain an authentic copy of the owner’s public key first. In order to decrypt the email the recipient
must authenticate itself to a trusted authority who generates a private key corresponding to the email
address used to encrypt the message.

Identity-based encryption with wildcards. Our work is motivated by the fact that many email
addresses correspond to groups of users rather than single individuals. Consider the scenario where
there is some kind of organisational hierarchy. Take as an example an organisation called ECRYPT
which is divided into virtual labs, say AZTEC and STVL. In addition, these virtual labs are further
subdivided into working groups WG1, WG2 and WG3. Finally, each working group may consist of
many individual members. There are several extensions of the IBE primitive to such a hierarchical
setting (HIBE) [HL02, GS02]. The idea is that each level can issue keys to users on the level below.
For example the owner of the ECRYPT key can issue decryption keys for ECRYPT.AZTEC and
ECRYPT.STVL.

Suppose that we wish to send an email to all the members of the AZTEC.WG1 working group,
which includes personal addresses ECRYPT.AZTEC.WG1.Nigel, ECRYPT.AZTEC.WG1.Dario and
ECRYPT.AZTEC.WG1.John. Given a standard HIBE one would have to encrypt the message to each
user individually. To address this limitation we introduce the concept of identity based encryption

with wildcards (WIBE). The way in which decryption keys are issued is exactly as in a standard HIBE
scheme; what differs is encryption. Our primitive allows the encrypter to replace any component of
the recipient identity with a wildcard so that any identity matching the pattern can decrypt. Denoting
wildcards by *, in the example above the encrypter would use the identity ECRYPT.AZTEC.WG1.*
to encrypt to all members of the AZTEC.WG1 group.

It is often suggested that identity strings should be appended with the date so as to add time-
liness to the message, and so try to mitigate the problems associated with key revocation. Using
our technique we can now encrypt to a group of users, with a particular date, by encrypting to
an identity of the form ECRYPT.AZTEC.WG1.*.22Oct2006 for example. Thus any individual in
ECRYPT.AZTEC.WG1 with a decryption key for 22nd October 2006 will be able to decrypt.

As another example, take a hierarchy of email addresses at academic institutions of the form
name@department.university.edu, i.e., the email address of John Smith working at the computer
science department of Some State University would be johnsmith@cs.ssu.edu. Using our primitive,
one can send encrypted email to everyone in the computer science department at SSU by encrypting to
identity *@cs.ssu.edu, to everyone at SSU by encrypting to *@*.ssu.edu, to all computer scientists
at any institution by encrypting to *@cs.*.edu, or to all system administrators in the university by
encrypting to sysadmin@*.ssu.edu.

Our contributions. In this paper, we introduce the primitive of identity-based encryption with
wildcards, define appropriate security notions under chosen-plaintext and chosen-ciphertext attack,
and present the first instantiations of this primitive. An overview of our schemes is given in Figure 1.

We first show a generic construction from any HIBE scheme which has the disadvantage that the
size of the secret key of a user on level ℓ in the hierarchy is exponential in ℓ. The scheme clarifies
the relationship between both primitives and motivates our search for direct schemes with efficiency

1

Scheme |mpk | |d | |C | Dec Assumption RO

Generic |mpkHIBE | 2L · |dHIBE | |CHIBE | DecHIBE
HIBE is

IND-ID-CPA
No

Wa-WIBE (n + 1)L + 3 L + 1 (n + 1)L + 2 L + 1 BDDH No

BB-WIBE 2L + 3 L + 1 2L + 2 L + 1 BDDH Yes

BBG -WIBE L + 4 L + 2 L + 3 2 L-BDHI Yes

Figure 1: Efficiency and security comparison between the generic scheme of Section 4, the Wa-WIBE
scheme of Section 5.2, and the BB-WIBE and BBG -WIBE schemes presented in Section 6.1 and
Section 6.2. The schemes are compared in terms of master public key size (|mpk |), user secret key
size (|d |), ciphertext size (|C |), decryption time (Dec), the security assumption under which the
scheme is proved secure, and whether this proof is in the random oracle model or not. (The generic
construction does not introduce any random oracles, but if the security proof of the HIBE scheme
is in the random oracle model, then the WIBE obviously inherits this property.) Values refer to the
underlying HIBE scheme for the generic scheme, and to the number of group elements (|mpk |, |d |,
|C |) or pairing computations (Dec) for the other schemes. L is the maximal hierarchy depth and n is
the bit length of an identity string. Figures are worst-case values, usually occurring for identities at
level L with all-wildcard ciphertexts. L-BDHI refers to the decisional bilinear Diffie-Hellman inversion
assumption [MSK02, BB04].

polynomial in all parameters.

The Wa-WIBE scheme is based on Waters’ HIBE scheme [Wat05] and provably secure in the
standard (i.e., non-random-oracle [BR93]) model under the bilinear decisional Diffie-Hellman (BDDH)
assumption. Its efficiency is polynomial in all parameters, but has the disadvantage that each wildcard
adds n + 1 group elements to the ciphertext. In practice, one would typically use the output of a
collision-resistant hash function as identity strings, so that n ≈ 160. The resulting ciphertexts may
be prohibitively long for many applications.

Our second direct construction, the BB-WIBE scheme, is based on the Boneh-Boyen HIBE
scheme [BB04], and adds only two group elements to the ciphertext for each wildcard in the re-
cipient pattern. It is provably secure under the (weaker) selective-identity security notion under the
BDDH assumption. We extend an observation of [BB04, BBG05] to the case of WIBE schemes and
show how to achieve full security in the random oracle model.

Lastly, the BBG -WIBE scheme that we derive from the Boneh-Boyen-Goh [BBG05] HIBE scheme
offers more efficient decryption (two pairings, versus L + 1 for the other schemes) and even shorter
ciphertexts if few wildcards are used. (The ciphertext size is not constant, however, but depends
linearly on the number of wildcards in the recipient pattern.) The scheme is provably selective-identity
secure under the decisional L-bilinear Diffie-Hellman inversion (L-BDHI) assumption [BBG05], which
is a stronger assumption than BDDH.

We note that all of our fully (as opposed to selective-identity) secure constructions lose a factor
exponential in L in the reduction to the underlying assumption. This limits the secure use of our
schemes to very small hierarchy depths. This (quite severe) restriction is not so surprising however,
viewing that WIBE schemes are in fact a generalization of HIBE schemes, and that the same restriction
arises in all currently-known HIBE constructions. We therefore leave the construction of a truly
polynomial (in terms of efficiency and security) WIBE scheme as an open problem.

Finally, we show how to achieve chosen ciphertext security in Section 7. We adapt the technique
of Canetti, Halevi and Katz [CHK04] and show that an L-level CCA-secure WIBE can be built from
a (2L + 2)-level CPA-secure WIBE and a strongly unforgeable one-time signature scheme.

2

2 Basic Definitions

In this section we introduce some notation, computational problems and basic primitives that we will
use throughout the rest of the paper. Let N = {0, 1, . . .} be the set of natural numbers. Let ε be the
empty string. If n ∈ N, then {0, 1}n denotes the set of n-bit strings, and {0, 1}∗ is the set of all bit
strings. More generally, if S is a set, then Sn is the set of n-tuples of elements of S, S≤n is the set

of tuples of length at most n. If S is finite, then x
$
← S denotes the assignment to x of an element

chosen uniformly at random from S. If A is an algorithm, then y ← A(x) denotes the assignment to

y of the output of A on input x, and if A is randomised, then y
$
← A(x) denotes that the output of

an execution of A(x) with fresh coins is assigned to y.

Bilinear maps and related assumptions. Let G, GT be multiplicative groups of prime order p
with an admissible map ê : G × G → GT. By admissible we mean that the map is bilinear, non-
degenerate and efficiently computable. Bilinearity means that for all a, b ∈ Zp and all g ∈ G we have
ê(ga, gb) = ê(g, g)ab. By non-degenerate we mean that ê(g, g) = 1 if and only if g = 1.

In such a setting we can define a number of computational problems. The first we shall be
interested in is called the bilinear decisional Diffie-Hellman (BDDH) problem: given a tuple (g,A =
ga, B = gb, C = gc, T), the problem is to decide whether T = ê(g, g)abc or whether it is a random
element of GT. More formally, we define the following game between an adversary A and a challenger.

The challenger first chooses a random generator g
$
← G

∗, random integers a, b, c
$
← Zp, a random

element T
$
← GT and a random bit β. If β = 1 it feeds A as input the tuple (g, ga, gb, gc, ê(g, g)abc), if

β = 0 it feeds it (g, ga, gb, gc, T). The adversary A must then output its guess β′ for β. The adversary
has advantage ǫ in solving the BDDH problem if

∣

∣

∣
Pr
[

A
(

g, ga, gb, gc, ê(g, g)abc
)

= 1
]

− Pr
[

A
(

g, ga, gb, gc, T
)

= 1
] ∣

∣

∣
≥ 2ǫ,

where the probabilities are over the choice of g, a, b, c, T and over the random coins of A.

Definition 2.1 The (t, ǫ) BDDH assumption holds if no t-time adversary A has at least ǫ advantage
in the above game.

We note that throughout this paper we will assume that the time t of an adversary includes its code
size, in order to exclude trivial “lookup” adversaries.

A second problem we will use in our constructions is the ℓ-bilinear Diffie-Hellman Inversion (ℓ-

BDHI) problem [MSK02, BB04]. The problem is to, compute ê(g, g)1/α for random g
$
← G

∗ and

α
$
← Zp given g, gα, . . . , g(αℓ). The decisional variant of this problem is to distinguish ê(g, g)1/α from

a random element of GT. We say that adversary A has advantage ǫ in solving the decisional ℓ-BDHI
problem if

∣

∣

∣
Pr
[

A
(

g, gα, . . . , g(αℓ), ê(g, g)1/α
)

= 1
]

− Pr
[

A
(

g, gα, . . . , g(αℓ), T
)

= 1
] ∣

∣

∣
≥ 2ǫ ,

where the probability is over the random choice of g
$
← G

∗, α
$
← Zp, T

$
← GT and over the coins of

A.

Definition 2.2 The (t, ǫ) decisional ℓ-BDHI assumption holds if no t-time adversary A has at least
ǫ advantage in the above game.

Identity-based encryption schemes. An identity-based encryption (IBE) scheme is a tuple of
algorithms IBE = (Setup,KeyDer,Enc,Dec) providing the following functionality. The trusted author-
ity runs Setup to generate a master key pair (mpk ,msk). It publishes the master public key mpk and

3

keeps the master secret key msk private. When a user with identity ID wishes to become part of the

system, the trusted authority generates a user decryption key dID

$
← KeyDer(msk , ID), and sends this

key over a secure and authenticated channel to the user. To send an encrypted message m to the user

with identity ID , the sender computes the ciphertext C
$
← Enc(mpk , ID ,m), which can be decrypted

by the user as m ← Dec(dID ,C). We refer to [BF03] for details on the security definitions for IBE
schemes.

Hierarchical IBE schemes. In a hierarchical IBE (HIBE) scheme, users are organised in a tree of
depth L, with the root being the master trusted authority. The identity of a user at level 0 ≤ ℓ ≤ L in
the tree is given by a vector ID = (ID1, . . . , ID ℓ) ∈ ({0, 1}∗)ℓ. A HIBE scheme is a tuple of algorithms
HIBE = (Setup,KeyDer,Enc,Dec) providing the same functionality as in an IBE scheme, except that a
user ID = (ID1, . . . , ID ℓ) at level ℓ can use its own secret key dID to generate a secret key for any of its

children ID ′ = (ID1, . . . , ID ℓ, IDℓ+1) via dID
′

$
← KeyDer(dID , IDℓ+1). Note that by iteratively applying

the KeyDer algorithm, user ID can derive secret keys for any of its descendants ID ′ = (ID1, . . . , ID ℓ+δ),

δ ≥ 0. We will occasionally use the overloaded notation dID
′

$
← KeyDer(dID , (ID ℓ+1, . . . , IDℓ+δ)) to

denote this process. The secret key of the root identity at level 0 is dε = msk . Encryption and
decryption are the same as for IBE, but with vectors of bit strings as identities instead of ordinary
bit strings. For 1 ≤ i ≤ ℓ and I ⊆ {1, . . . , ℓ}, we will occasionally use the notations ID |≤ i to denote
the vector (ID1, . . . , ID i), ID |> i to denote (ID i+1, . . . , IDℓ), and ID |I to denote (ID i1 , . . . , ID i|I|)
where i1, . . . , i|I| are the elements of a set I ⊆ N in increasing order. Also, if S ⊂ N, then we define
S|≤ i = {j ∈ S : j ≤ i} and S|> i = {j ∈ S : j > i}.

The security of a HIBE scheme is defined through the following game. In a first phase, the adver-

sary is given as input the master public key mpk of a freshly generated key pair (mpk ,msk)
$
← Setup

as input. In a chosen-plaintext attack (IND-ID-CPA), the adversary is given access to a key derivation

oracle that on input of an identity ID = (ID1, . . . , ID ℓ), returns the secret key dID

$
← KeyDer(msk , ID)

corresponding to identity ID . In a chosen-ciphertext attack (IND-ID-CCA), the adversary is addi-
tionally given access to a decryption oracle that for a given identity ID = (ID1, . . . , ID ℓ) and a given
ciphertext C returns the decryption m← Dec(KeyDer(msk , ID),C).

At the end of the first phase, the adversary outputs two equal-length challenge messages m
∗
0,

m
∗
1 ∈ {0, 1}

∗ and a challenge identity ID∗ = (ID∗
1, . . . , ID

∗
ℓ∗), where 0 ≤ ℓ∗ ≤ L. The game chooses

a random bit b
$
← {0, 1}∗, generates a challenge ciphertext C ∗ $

← Enc(mpk , ID∗,m∗
b) and gives C ∗ as

input to the adversary for the second phase, during which it gets access to the same oracles as during
the first phase. The adversary wins the game if it outputs a bit b′ = b without ever having queried the
key derivation oracle on any ancestor identity ID = (ID∗

1, . . . , ID
∗
ℓ) of ID∗, ℓ ≤ ℓ∗, and, additionally,

in the IND-ID-CCA case, without ever having queried (ID∗,C ∗) to the decryption oracle.

Definition 2.3 A HIBE scheme is (t, qK, ǫ) IND-ID-CPA-secure if all t-time adversaries making at
most qK queries to the key derivation oracle have at most advantage ǫ in winning the IND-ID-CPA
game described above. It is said to be (t, qK, qD, ǫ) IND-ID-CCA-secure if all such adversaries that
additionally make at most qD queries to the decryption oracle have advantage at most ǫ in winning
the IND-ID-CCA game described above.

In a selective-identity (sID) attack [BB04], the adversary has to output the challenge identity
ID∗ at the very beginning of the game, before even seeing the master public key. The definitions
for IND-sID-CPA and IND-sID-CCA security are otherwise identical to those above. In the random
oracle model [BR94], all algorithms, as well as the adversary, have access to a random oracle mapping
arbitrary bit strings onto a range that possibly depends on the master public key. All above security
definitions then take an extra parameter qH denoting the adversary’s maximum number of queries to
the random oracle.

4

3 Identity-Based Encryption with Wildcards

Syntax. Identity-based encryption with wildcards (WIBE) schemes are essentially a generalisation
of HIBE schemes where at the time of encryption, the sender can decide to make the ciphertext
decryptable by a whole range of users whose identities match a certain pattern. Such a pattern is
described by a vector P = (P1, . . . , Pℓ) ∈ ({0, 1}∗∪{*})ℓ, where * is a special wildcard symbol. We say
that identity ID = (ID1, . . . , ID ℓ′) matches P , denoted ID ∈* P , if and only if ℓ′ ≤ ℓ and ∀ i = 1 . . . ℓ′:
ID i = Pi or Pi = *. Note that under this definition, any ancestor of a matching identity is also a
matching identity. This is reasonable for our purposes because any ancestor can derive the secret key
of a matching descendant identity anyway.

More formally, a WIBE scheme is a tuple of algorithms WIBE = (Setup,KeyDer,Enc,Dec) provid-
ing the following functionality. The Setup and KeyDer algorithms behave exactly as those of a HIBE
scheme. To create a ciphertext of message m ∈ {0, 1}∗ intended for all identities matching pattern P ,

the sender computes C
$
← Enc(mpk , P,m). Any of the intended recipients ID ∈* P can decrypt the

ciphertext using its own decryption key as m← Dec(dID ,C). Correctness requires that for all key pairs
(mpk ,msk) output by Setup, all messages m ∈ {0, 1}∗, all 0 ≤ ℓ ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {*})ℓ,
and all identities ID ∈* P , Dec(KeyDer(msk , ID) , Enc(mpk , P,m)) = m with probability one.

Security. We define the security of WIBE schemes analogously to that of HIBE schemes, but with
the adversary choosing a challenge pattern instead of an identity to which the challenge ciphertext
will be encrypted. To exclude trivial attacks, the adversary is not able to query the key derivation
oracle on any identity that matches the challenge pattern, nor is it able to query the decryption oracle
on the challenge ciphertext in combination with any identity matching the challenge pattern.

More formally, security is defined through the following game with an adversary. In the first phase,

the adversary is run on input the master public key of a freshly generated key pair (mpk ,msk)
$
←

Setup. In a chosen-plaintext attack (IND-WID-CPA), the adversary is given access to a key derivation

oracle that on input ID = (ID1, . . . , IDℓ) returns dID

$
← KeyDer(msk , ID). In a chosen-ciphertext

attack (IND-WID-CCA), the adversary additionally has access to a decryption oracle that on input a
ciphertext C and an identity ID = (ID1, . . . , IDℓ) returns m← Dec(KeyDer(msk , ID),C).

At the end of the first phase, the adversary outputs two equal-length challenge messages m
∗
0,m

∗
1

and a challenge pattern P ∗ = (P ∗
1 , . . . , P ∗

ℓ∗) where 0 ≤ ℓ∗ ≤ L. The adversary is given a challenge

ciphertext C ∗ $
← Enc(mpk , P ∗,m∗

b) for a randomly chosen bit β, and is given access to the same
oracles as during the first phase of the attack. The second phase ends when the adversary outputs a
bit β′. The adversary is said to win the IND-WID-CPA game if β′ = β and if it never queried the key
derivation oracle for the keys of any identity that matches the target pattern (i.e., any ID such that
ID ∈* P ∗). Also, in a chosen-ciphertext attack (IND-WID-CCA), the adversary cannot query the
decryption oracle on C ∗ in combination with any identity ID ∈* P ∗ matching the challenge pattern.

Definition 3.1 A WIBE scheme is (t, qK, ǫ) IND-WID-CPA-secure if all t-time adversaries making at
most qK queries to the key derivation oracle have at most advantage ǫ in winning the IND-WID-CPA
game described above. It is said to be (t, qK, qD, ǫ) IND-WID-CCA-secure if all such adversaries that
additionally make at most qD queries to the decryption oracle have advantage at most ǫ in winning
the IND-WID-CCA game described above.

As for the case of HIBEs, we also define a weaker selective-identity (sWID) security notion, in which
the adversary commits to the challenge pattern at the beginning of the game, before the master public
key is made available. The notions of IND-sWID-CPA and IND-sWID-CCA security are defined
analogously to the above. In the random oracle model, the additional parameter qH denotes the
adversary’s maximum number of queries to the random oracle, or the total number of queries to all
random oracles when it has access to multiple ones.

5

4 A Generic Construction

We first point out that a generic construction of a WIBE scheme exists based on any HIBE scheme, but
with a secret key size that is exponential in the depth of the hierarchy tree. Let “*” denote a dedicated
bitstring that cannot occur as a user identity. Then the secret key of a user with identity (ID1, . . . , IDℓ)
in the WIBE scheme contains the HIBE secret keys of all patterns matching this identity. For example,
the secret key of identity (ID1, ID2) contains four HIBE secret keys, namely those corresponding to
identities (ID1, ID2), (“*”, ID2), (ID1, “*”), (“*”, “*”). In general, the secret key of (ID1, . . . , IDℓ)
contains the HIBE secret keys of all 2ℓ identities (ID ′

1, . . . , ID
′
ℓ) such that ID ′

i = ID i or ID ′
i = “*”

for all i = 1, . . . , ℓ. To encrypt to a pattern (P1, . . . , Pℓ), one uses the HIBE scheme to encrypt to
the identity obtained by replacing each wildcard in the pattern with the “*” string, i.e. the identity
(ID1, . . . , IDℓ) where ID i = “*” if Pi = * and ID i = Pi otherwise. Decryption is done by selecting
the appropriate secret key from the list and using the decryption algorithm of the HIBE scheme.

The efficiency of the WIBE scheme thus obtained is roughly the same as that of the underlying
HIBE scheme, but with the major disadvantage that the size of the secret key is 2ℓ times that of a
secret key in the underlying HIBE scheme. This is highly undesirable for many applications, especially
since the secret key may very well be kept on an expensive, secure storage device. Moreover, from a
theoretical point of view, it is interesting to investigate whether WIBE schemes exist with overhead
polynomial in all parameters. We answer this question in the affirmative here by presenting direct
schemes with secret key size linear in ℓ. Unfortunately, for all of our schemes, this reduction in key
size comes at the cost of linear-size ciphertexts, while the generic scheme can achieve contant-size
ciphertexts when underlain by a HIBE with constant ciphertext size, e.g. that of [BBG05].

Another related primitive is fuzzy identity-based encryption (FIBE) [SW05], which allows a ci-
phertext encrypted to identity ID to be decrypted by any identity ID ′ that is “close” to ID according
to some metric. In the schemes of [SW05], an identity is a subset containing n elements from a finite
universe. Two identities ID and ID ′ are considered “close” if |ID ∩ ID ′| ≥ d for some parameter
d. Such a FIBE scheme could be used to construct a limited WIBE scheme (without hierarchi-
cal key derivation) by letting identity (ID1, . . . , IDn) correspond to the set {1‖ID1, . . . , ℓ‖IDn}. To
encrypt to a pattern P = (P1, . . . , Pn) containing n − d wildcards, one uses the FIBE scheme to
encrypt to the set {P ′

1, . . . , P
′
n} where P ′

i = i‖Pi if Pi 6= * and P ′
i = i‖“*” if Pi = *. The schemes

of [SW05] require n, d to be fixed beforehand. Variable identity lengths ℓ and number of wildcards
w can be accomodated for by setting n = 2L, d = L and by letting the set corresponding to identity
(ID1, . . . , IDℓ) be {1‖ID1, . . . , ℓ‖ID ℓ, (ℓ + 1)‖ε, . . . ,L‖ε, 1‖“*”, . . . ,L‖“*”}. One can then encrypt to
pattern (P1, . . . , Pℓ) by encrypting to the set {1‖P ′

1, . . . , ℓ‖P
′
ℓ , (ℓ + 1)‖ε, . . . , 2L‖ε}, where the P ′

i are
defined as above.

5 A Construction from Waters’ HIBE Scheme

5.1 Waters’ HIBE Scheme

Waters [Wat05] argued that his IBE scheme can easily be modified into a L-level HIBE scheme as
per [BB04]. Here we explicitly present this construction, that we refer to as the Wa-HIBE scheme,
as it will be useful in the understanding of our first construction of a WIBE scheme.

Setup. The trusted authority chooses random generators g1, g2, u1,0, . . . , uL,n
$
← G

∗ and a random

value α
$
← Zp, where L is the maximum hierarchy depth and n is the length of an iden-

tity string. Next, it computes h1 ← gα
1 and h2 ← gα

2 . The master public key is mpk =
(g1, g2, h1, u1,0, . . . , uL,n), the corresponding master secret key is msk = h2.

6

Key Derivation. A user’s identity is given by a vector ID = (ID1, . . . , ID ℓ) where each ID i is a
n-bit string, applying a collision-resistant hash function if necessary. When we write “j ∈ ID i”,
we mean that the variable j iterates over all bit positions 1 ≤ j ≤ n where the j-th bit of ID i is
one. Using this notation, for i = 1, . . . ,L, we define the function

Fi(ID i) = ui,0
∏

j∈ID
ui,j

where the ui,j are the elements in the master public key. To compute the decryption key for

identity ID from the master secret key, first random values r1, . . . , rℓ
$
← Zp are chosen, then the

private key dID is constructed as

(a0, a1, . . . , aℓ) =

(

h2

ℓ
∏

i=1

Fi(ID i)
ri , gr1

1 , . . . , grℓ

1

)

.

A secret key for identity ID = (ID1, . . . , ID ℓ) can be computed by its parent with identity

(ID1, . . . , ID ℓ−1) as follows. Let (a0, a1, . . . , aℓ−1) be the parent’s secret key. It chooses rℓ
$
← Zp

and outputs
dID = (a0 · Fi(ID i)

rℓ , a1, . . . , aℓ−1 , grℓ

1) .

Encryption. To encrypt a message m ∈ GT for identity ID = (ID1, . . . , IDℓ), the sender chooses

t
$
← Zp and computes the ciphertext C = (C1,C2,C3) as

C1 ← gt
1 , C2 ←

(

C2,i = Fi(ID i)
t
)

i=1,...,ℓ
, C3 ← m · ê(h1, g2)

t .

Decryption. If the receiver is the root authority (i.e., the empty identity ID = ε) holding the master
key msk = h2, then he can recover the message by computing m ← C3/ê(C1, h2). Any other
receiver with identity ID = (ID1, . . . , IDℓ) and decryption key dID = (a0, a1, . . . , aℓ) decrypts a
ciphertext C = (C1,C2,C3) as follows.

C3 ·

∏ℓ
i=1 ê (ai,C2,i)

ê (C1, a0)
= m · ê(h1, g2)

t ·

∏ℓ
i=1 ê

(

gri

1 , Fi(ID i)
t
)

ê
(

gt
1, h2

∏ℓ
i=1 Fi(ID i)ri

)

= m · ê(h1, g2)
t ·

∏ℓ
i=1 ê

(

gri

1 , Fi(ID i)
t
)

ê (gt
1, h2) · ê

(

gt
1,
∏ℓ

i=1 Fi(ID i)ri

)

= m ·
ê(gα

1 , g2)
t

ê (gt
1, g

α
2)
·

∏ℓ
i=1 ê

(

gri

1 , Fi(ID i)
t
)

∏ℓ
i=1 ê (gt

1, Fi(ID i)ri)
= m

Waters [Wat05] informally states that the above HIBE scheme is IND-ID-CPA secure under the BDDH
assumption, in the sense that if there exists a (t, qK, ǫ)-adversary against the HIBE, then there exists
an algorithm solving the BDDH problem with advantage ǫ′ = O((nqK)Lǫ).

5.2 The Wa-WIBE Scheme

We first introduce some additional notation. If P = (P1, . . . , Pℓ) is a pattern, then let |P | = ℓ be the
length of P , let W(P) be the set containing all wildcard indices in P , i.e. the indices 1 ≤ i ≤ ℓ such
that Pi = *, and let W(P) be the complementary set containing all non-wildcard indices. Clearly
W(P)∩W(P) = ∅ and W(P)∪W(P) = {1, . . . , ℓ}. We also extend the notations P |≤ i, P |> i and P |I
that we introduced for identity vectors to patterns in the natural way.

7

Intuitively, we adapt the Wa-HIBE scheme to support wildcards by observing that the ciphertext
components C2,i are actually products of ut

i,0 and those factors ut
i,j for which the j-th bith of ID i is

one. If we include these factors separately in the ciphertext, instead of their product, then we can
postpone the computation of the product to decryption time and let each recipient combine the factors
corresponding to his own identity.

Of course, one still needs to show that giving away these factors in the ciphertext does not affect
security. We first describe our construction in more detail, and subsequently show in Theorem 5.1
that its security is implied by that of the Wa-HIBE scheme. We build a WIBE scheme Wa-WIBE
from the Wa-HIBE scheme with Setup and KeyDer algorithms identical to those of the Wa-HIBE
scheme, and with encryption and decryption algorithms that work as follows.

Encryption. To encrypt a message m ∈ GT to all identities matching pattern P = (P1, . . . , Pℓ), the

sender chooses t
$
← Zp and outputs the ciphertext C = (P,C1,C2,C3,C4), where

C1 ← gt
1 C2 ←

(

C2,i = Fi(Pi)
t
)

i∈W(P)

C3 ← m · ê(h1, g2)
t C4 ←

(

C4,i,j = ut
i,j

)

i∈W(P), j=0,...,n

Decryption. If the receiver is the root authority (i.e., the empty identity ID = ε) holding the
master key msk = h2, then it can recover the message by computing C3/ê(C1, h2). Any other
receiver with identity ID = (ID1, . . . , IDℓ) matching the pattern P to which the ciphertext
was created (i.e., ID ∈* P) can decrypt the ciphertext C = (P,C1,C2,C3,C4) by computing

C ′
2 =

(

C ′
2,i

)

i=1,...,ℓ
as

C ′
2,i = Fi(ID i)

t ←

{

C2,i if i ∈W(P)

C4,i,0 ·
∏

j∈IDi
C4,i,j if i ∈W(P)|≤ ℓ

and by using his secret key to decrypt the ciphertext C ′ = (C1,C
′
2,C3) via the Dec algorithm of

the Wa-HIBE scheme.

The master public key of the Wa-WIBE scheme contains (n + 1)L + 3 group elements. Encrypting
to a pattern of length ℓ containing w wildcards comes at the cost of ℓ + nw + 2 exponentiations and
ℓ + nw + 2 group elements in the ciphertext; in the worst case of ℓ = w = L this means (n + 1)L + 2
exponentiations and group elements. (The pairing ê(h1, g2) can be precomputed.) Decryption requires
the computation of ℓ + 1 pairings.

In terms of efficiency, the Wa-WIBE scheme performs well enough to be considered for use in
practice, but definitely leaves room for improvement. The main problem is the dependency of the
scheme on n, the bit length of identity strings. In practice, one would typically use the output of a
collision-resistant hash function as identity strings, so that n = 160 for a reasonable level of security.
We note that the techniques of [CS06, Nac05] could be applied to trade a factor d of efficiency against
losing a factor 2Ld in the tightness of the reduction.

We now prove the security of the Wa-WIBE scheme. To make the proof more modular, and to
avoid repeating the work of [Wat05], we do this by reducing to the security of the Wa-HIBE scheme,
rather than to the BDDH problem directly.

Theorem 5.1 If the Wa-HIBE of depth L is (t, qK, ǫ) IND-ID-CPA-secure, then the Wa-WIBE
scheme of depth L is (t′, q′K, ǫ′) IND-WID-CPA-secure for all

t′ ≤ t− Ln(1 + qK) · texp , q′K ≤ qK , and ǫ′ ≥ ǫ/2L ,

and texp is the time it takes to perform an exponentiation in G.

8

Proof: The proof of Theorem 5.1 is by contradiction. That is, we first assume that there exists an
adversary A that breaks the IND-WID-CPA-security of the Wa-WIBE scheme and then we show how
to efficiently build another adversary B which uses A to break the security of the Wa-HIBE scheme.

Let mpkH = (g1, g2, h1, u1,0, . . . , uL,n) be the master public key of the Wa-HIBE scheme that adversary
B receives as input for its first phase. The idea of the proof is that B will guess upfront where in
the challenge pattern P ∗ the wildcards are going to be, and “project” the non-wildcard levels of the
identity tree of the WIBE scheme onto the first levels of the HIBE scheme. In particular, B will reuse
values ui,j from mpkH for the non-wildcard levels, and will embed new values u′

i,j values of which B
knows the discrete logarithms for wildcard levels.

First, B guesses a random vector P̂ = (P̂1, . . . , P̂L)
$
← {ε, *}L. Define the projection function π :

{1, . . . ,L} → {0, . . . ,L} such that

π(i) =

{

0 if i ∈W(P̂)

i−
∣

∣

∣
W(P̂)|≤ i

∣

∣

∣
otherwise

Intuitively, B will “project” identities at level i of the WIBE scheme onto level π(i) of the HIBE
scheme whenever π(i) 6= 0. Next, the adversary B runs adversary A providing it as input for its first
phase a public-key mpkW = (g1, g2, h1, u

′
1,0, . . . , u

′
L,n), where for all 1 ≤ i ≤ L and 0 ≤ j ≤ n, the

elements u′
i,j are generated as u′

i,j ← g
αi,j

1 where αi,j
$
← Zp if i ∈W(P̂), and u′

i,j ← uπ(i),j otherwise.
Define functions F ′

i (ID
′
i) = u′

i,0

∏

j∈ID
′
i
u′

i,j . Notice that mpkA is distributed exactly as it would be if
produced by the setup algorithm described in Section 5.2.

During the first phase, B has to answer all the key derivation queries ID ′ = (ID ′
1, . . . , ID

′
ℓ) that A is

allowed to ask. For that, B first computes the corresponding identity on the HIBE tree ID = ID ′|W(P̂),

which is the identity obtained by removing from ID ′ all components at levels where P̂ contains a
wildcard. That is, the identity ID is obtained from ID ′ by projecting the component at level i of the
WIBE onto level π(i) of the HIBE if π(i) 6= 0. B then queries its own key derivation oracle for the
Wa-HIBE scheme on input ID to get the key d = (a0, . . . , aπ(ℓ)). From this, it computes the key
d ′ = (a ′

0, . . . , a
′
ℓ) as

a ′
0 ← a0 ·

∏

i∈W(P̂)

F ′
i (ID

′
i)

ri

a ′
i ←

{

gri

1 if i ∈W(P̂)

aπ(i) if i ∈W(P̂)

where ri
$
← Zp for all i ∈W(P̂). At the end of its first phase, A outputs the challenge pattern P ∗ =

(P ∗
1 , . . . , P ∗

ℓ∗) and challenge messages m
∗
0,m

∗
1. If W(P ∗) 6= W(P̂) then B aborts. Otherwise, B outputs

the corresponding HIBE identity ID∗ = P ∗|W(P ∗) together with challenge messages m
∗
0,m

∗
1. Let

C ∗ = (C ∗
1 ,C ∗

2 ,C ∗
3) be the challenge ciphertext that B receives in return from its challenger, meaning

that C ∗ is an encryption of m
∗
b with respect to the identity ID∗, where b is the secret bit chosen at

random by the challenger. B sets C ′∗
1 ← C ∗

1 , C ′∗
2 ← C ∗

2 , C ′∗
3 ← C ∗

3 and C ′∗
4 ← (C ∗

1
αi,j)i∈W(P ∗), j=0,...,n

and sends to A the ciphertext C ′∗ = (P ∗,C ′∗
1 ,C ′∗

2 ,C ′∗
3 ,C ′∗

4) as the input for its second phase. During
the second phase, A is then allowed to issue more key derivation queries, which are answered by B
exactly as in the first phase. When A outputs a bit b′, B outputs b′ and stops.

In order to analyse the success probability of B, we first need to show that the simulation it provides
to A is correct. The secret key d ′ = (a ′

0, . . . , a
′
ℓ) returned for identity (ID ′

1, . . . , ID
′
ℓ) can be seen to be

9

correctly distributed since if a ′
i = gri

1 for 1 ≤ i ≤ ℓ then

a ′
0 = a0 ·

∏

i∈W(P̂)

F ′
i (ID

′
i)

ri

= h2 ·
∏

i∈W(P̂)

Fπ(i)(ID
′
i)

ri ·
∏

i∈W(P̂)

F ′
i (ID

′
i)

ri

= h2 ·
∏

i∈W(P̂)

uπ(i),0

∏

j∈ID
′
i

uπ(i),j

ri

·
∏

i∈W(P̂)

F ′
i (ID

′
i)

ri

= h2 ·
∏

i∈W(P̂)

(

u′
i,0

∏

j∈ID
′
i
u′

i,j

)ri

·
∏

i∈W(P̂)

F ′
i (ID

′
i)

ri

= h2 ·
ℓ
∏

i=1

F ′
i (ID

′
i)

ri

Moreover, the challenge ciphertext C ′∗ = (P ∗,C ′∗
1 ,C ′∗

2 ,C ′∗
3 ,C ′∗

4) sent to A can be seen to be correctly
formed when W(P ∗) = W(P̂) as follows. Consider the ciphertext C ∗ = (C ∗

1 ,C ∗
2 ,C ∗

3) that B receives
back from the challenger after outputting (ID∗,m∗

0,m
∗
1) where ID∗ = P ∗|W(P ∗). We know that, for

unknown values t ∈ Zp and b ∈ {0, 1}, C ∗
1 = gt, C ∗

3 = m
∗
b · ê(h1, g2)

t and

C ∗
2 =

(

C ∗
2,i = Fi(ID

∗
i)

t
)

i=1,...,π(ℓ∗)
=
(

C ′∗
2,i = F ′

i (P
∗
i)t
)

i∈W(P ∗)
.

Since B sets C ′∗
1 = C ∗

1 , C ′∗
2 = C ∗

2 and C ′∗
3 = C ∗

3 , it follows that C ′∗
1 , C ′∗

2 and C ′∗
3 are of the correct form.

To show that C ∗
4 is correctly formed, notice that u′

i,j = g
αi,j

1 for indices i ∈ W(P ∗) and j = 0, . . . , n.

Thus, C ′∗
4,i,j = (C ∗

1)αi,j = g1
t αi,j = (g

αi,j

1)t = u′
i,j

t as required.

We also need to argue that B does not query its key derivation oracle on any identities that are
considered illegal in the IND-ID-CPA game when its guess for W(P ∗) is correct. Illegal identities are
the challenge identity ID∗ = P ∗|W(P ∗) or any ancestors of it, i.e. any ID∗|≤ ℓ for ℓ ≤ ℓ∗. Adversary B

only makes such queries when A queries its key derivation oracle on an identity ID ′ = (ID ′
1, . . . , ID

′
ℓ′)

such that ℓ′ ≤ ℓ∗ and ID ′
i = P ∗

i for all i ∈ W(P ∗)|≤ ℓ′ . By our matching definition, this would mean
that ID ′ ∈* P ∗, which is illegal in the IND-WID-CPA game as well. Note that, whenever ℓ′ > ℓ∗, we
always have that |ID | > |ID∗| since W(P̂)|> ℓ∗ = ∅.

To conclude the proof, we notice that the success probability of B is at least that of A when its guess
for W(P ∗) is correct. Let ǫ be the probability that A wins the IND-WID-CPA game. Thus, it follows
that the overall success probability of B winning the IND-ID-CPA game is at least ǫ′ ≥ ǫ/2L.

Note that the proof above loses a factor of 2L in the security reduction. This limits the secure use of
the scheme in practice to very small (logarithmic) hierarchy depths, but this was already the case for
the Wa-HIBE scheme as well which loses a factor (nqK)L in its reduction to the BDDH problem. In
addition, we only lose an additional factor of L2 when allowing only patterns with a single sequence
of consecutive wildcards, for example (ID1, *, *, *, ID5) or (ID1, *, *). In the selective-identity notion,
there is no need to guess the challenge pattern, so we do not lose any tightness with respect to the
Wa-HIBE scheme.

10

6 More Efficient Constructions in the Random Oracle Model

In this section, we present two alternative schemes based on the Boneh-Boyen [BB04] and Boneh-
Boyen-Goh [BBG05] HIBE schemes that perform better in terms of efficiency. In particular, unlike
the Wa-WIBE scheme, their efficiency is independent of the bit length n of identity strings: adding a
wildcard to the recipient pattern only requires two extra exponentiations and two extra group elements
in the ciphertext, as opposed to n + 1 of these in the Wa-WIBE scheme. Just like their underlying
HIBE schemes however, they can be proved secure only in the weaker selective-identity setting. As
observed for the case of IBE and HIBE schemes by Boneh, Boyen and Goh [BB04, BBG05], these
schemes can be made fully secure in the random oracle model (but losing a factor exponential in L

in tightness) by applying a hash function to the identity strings. We first present the two alternative
WIBE schemes, and for completeness prove the generic transformation from selective-identity to full
security for the case of WIBE schemes in Section 6.3.

6.1 A Construction from Boneh-Boyen’s HIBE Scheme

Our first construction in the random oracle model is based on a slight variant of the Boneh-Boyen
HIBE scheme [BB04] that we refer to as the BB-HIBE scheme. It is presented in detail and proved
secure in Appendix A. The BB-WIBE scheme that we derive from it works as follows.

Setup. The trusted authority chooses random generators g1, g2 from G
∗, a random α ∈ Zp and sets

h1 ← gα
1 . Next, it picks random elements u1,0, . . . , uL,0, u1,1, . . . , uL,1 from G

∗ and sets h2 ← gα
2 .

The master public key is mpk = (g1, h1, g2, u1,0, . . . , uL,0, u1,1, . . . , uL,1). The corresponding
master secret key is msk = h2.

Key Derivation. A user’s identity is given by a vector ID = (ID1, . . . , ID ℓ) where each ID i is an
element in Zp. To compute the decryption key for identity ID from the master secret key, first

one chooses random values ri
$
← Zp for i = 1, . . . , ℓ, then the private key dID is constructed as

(a0, a1, . . . , aℓ) =

(

h2

ℓ
∏

i=1

(

ui,0 · u
IDi

i,1

)ri

, gr1
1 , . . . , grℓ

1

)

.

Notice that, as required, the secret key for identity ID = (ID1, . . . , ID ℓ) can be computed from

the secret key (a0, a1, . . . , aℓ−1) of the parent (ID1, . . . , IDℓ−1) by choosing a random rℓ
$
← Zp

and outputting

dID =

(

a0 ·

(

uℓ,0 · u
IDℓ

ℓ,1

)rℓ

, a1 , . . . , aℓ−1 , grℓ

1

)

Encryption. To create a ciphertext of message m ∈ GT intended for all identities matching pattern

P = (P1, . . . , Pℓ), where 1 ≤ ℓ ≤ L, the sender chooses t
$
← Zp and outputs the ciphertext C

= (P,C1,C2,C3), where

C1 ← gt
1 C2 ←

(

C2,i = (ui,0 · u
ID i

i,1)t
)

i∈W(P)

C3 ← m · ê(h1, g2)
t C4 ←

(

C4,i,j = ut
i,j

)

i∈W(P), j=0,1

Decryption. If the receiver is the root authority (i.e., the empty identity ID = ε) holding the master
key msk = h2, then he can recover the message by computing C3/ê(C1, h2). Any other receiver
with identity ID = (ID1, . . . , ID ℓ) matching the pattern P to which the ciphertext was created
(i.e., ID ∈* P) can decrypt the ciphertext C = (P,C1,C2,C3,C4) as follows. Let dID = (a0,

11

a1, . . . , aℓ) be the decryption key for the receiver with identity ID . He recovers the message by
computing

C ′
2,i ←

{

C2,i if i ∈W(P)

C4,i,0 · C
IDi

4,i,1 if i ∈W(P)|≤ ℓ

m ← C3 ·

∏ℓ
i=1 ê(ai, C ′

2,i)

ê(C1, a0)
.

In terms of efficiency, the BB-WIBE scheme easily outperforms the Wa-WIBE scheme: the master
public key contains 2L + 3 group elements. Encryption to a recipient pattern of length ℓ and w
wildcards involves ℓ + w + 2 (multi-)exponentiations and produces ciphertexts containing ℓ + w + 2
group elements, or 2L + 2 of each of these in the worst case that ℓ = w = L. Decryption requires the
computation of ℓ + 1 pairings, just like the Wa-WIBE scheme.

The BB-WIBE scheme can actually be seen as a close relative to the Wa-WIBE scheme, with the
functions Fi(ID i) being defined as

Fi(ID i) = ui,0 · u
ID i

i,1 .

Its security properties are different though: the BB-WIBE scheme can be proved secure in the
selective-identity model only. We reduce its security to that of the BB-HIBE scheme, which on
its turn is proved IND-sID-CPA-secure under the BDDH assumption in Appendix A. The proof of the
theorem below is very analagous to that of Theorem 5.1, and hence omitted. One important difference
with Theorem 5.1 is that the reduction from the BB-HIBE scheme is tight: because we prove security
in the selective-identity model, we do not lose a factor 2L due to having to guess the challenge pattern
upfront.

Theorem 6.1 If the BB-HIBE scheme with hierarchy depth L is (t, qK, ǫ) IND-sID-CPA-secure, then
the BB-WIBE scheme of depth L is (t′, q′K, ǫ′) IND-sWID-CPA-secure for all

t′ ≤ t− 2L(1 + qK) · texp , q′K ≤ qK and ǫ′ ≥ ǫ ,

where texp is the time required to compute an exponentiation in G.

6.2 A Construction from Boneh-Boyen-Goh’s HIBE Scheme

In this section we describe a WIBE scheme with shorter ciphertexts, especially when the recipient pat-
tern contains few wildcards. When encrypting to a pattern of length ℓ with w wildcards, a ciphertext
of the BB-WIBE scheme contains ℓ + w + 2 group elements. The HIBE scheme of Boneh-Boyen-
Goh [BBG05] offers constant-size ciphertexts (i.e, independent of the level ℓ of the recipient identity)
at the cost of being secure only under the stronger decisional L-BDHI assumption. Based on this
scheme, we build the BBG -WIBE scheme that offers ciphertexts of length w + 3 group elements and
is secure under the same decisional L-BDHI assumption. The scheme is the following:

Setup. The trusted authority chooses random generators g1, g2, u0, . . . , uL from G
∗, a random α ∈ Zp

and sets h1 ← gα and h2 ← gα
2 . The master public key is mpk = (g1, g2, h1, u0, . . . , uL). The

corresponding master secret key is msk = h2.

Key Derivation. The scheme assumes that a user’s identity is given by a vector ID = (ID1, . . . ,
ID ℓ) of elements in Z

∗
p.

1. To compute the decryption key for identity ID from the master secret

1This can be easily generalised to the case on which the identities are vectors of n bit strings by first hashing each
component IDi ∈ Z

∗
p using a collision resistant hash function H : {0, 1}∗ → Z

∗
p

12

key, first a random r
$
← Zp is chosen, then the private key is constructed as

dID = (a0, aℓ+1, . . . , aL, aL+1) =

(

h2

(

u0

ℓ
∏

i=1

uID i

i

)r

, ur
ℓ+1 , . . . , ur

L
, gr

1

)

The secret key for identity ID = (ID1, . . . , ID ℓ) can be computed from the secret key (a0, aℓ, . . . ,

aL+1) of its parent (ID1, . . . , ID ℓ−1) by choosing a random r′
$
← Zp and outputting

dID =

(

a0 · a
IDℓ

ℓ ·

(

u0

ℓ
∏

i=1

uIDi

i

)r′

, aℓ+1 · u
r′

ℓ+1 , . . . , aL · u
r′
L , aL+1 · g

r′
1

)

Encryption. To create a ciphertext of message m ∈ GT intended for all identities matching pattern

P = (P1, . . . , Pℓ), where ℓ ≤ L, the sender chooses t
$
← Zp and outputs the ciphertext C = (P,

C1,C2,C3,C4), where

C1 ← gt
1 C2 ←

(

u0
∏

i∈W(P) uPi

i

)t

C3 ← m · ê(h1, g2)
t C4 ←

(

C4,i = ut
i

)

i∈W(P)
.

Decryption. If the receiver is the root authority (i.e., the empty identity ID = ε) holding the master
key msk = h2, then he can recover the message by computing C3/ê(C1, h2). Any other receiver
with identity ID = (ID1, . . . , ID ℓ) matching the pattern P to which the ciphertext was created
(i.e., ID ∈* P) can decrypt the ciphertext C = (P,C1,C2,C3,C4) as follows. Let dID = (a0, . . . ,
aL+1) be the decryption key for the receiver with identity ID . He recovers the message by
computing

C ′
2 ← C2 ·

∏

i∈W(P)|≤ ℓ

CPi

4,i

m ← C3 ·
ê(C ′

2, aL+1)

ê(C1, a0)

The fact that decryption works can be seen as follows. Since ID ∈* P , we have that Pi = ID i for all
i ∈W(P). We then have that:

ê(C ′
2, aL+1)

ê(C1, a0)
=

ê
(

C2 ·
∏

i∈W(P)|≤ ℓ
C ID i

4,i , gr
1

)

ê
(

gt
1 , h2(u0

∏ℓ
i=1 uIDi

i)
r
)

=
ê
(

(u0
∏

i∈W(P) uPi

i)
t
·
∏

i∈W(P)|≤ ℓ
(ut

i)
ID i , gr

1

)

ê (gt
1 , h2) · ê

(

gt
1 , (u0

∏ℓ
i=1 uID i

i)
r
)

=
ê
(

(u0
∏ℓ

i=1 uIDi

i)
t
, gr

1

)

ê (gt
1 , h2) · ê

(

gt
1 , (u0

∏ℓ
i=1 uIDi

i)
r
)

=
1

ê (h1, g2)
t .

13

The BBG -WIBE scheme is significantly more efficient than the Wa-WIBE and BB-WIBE schemes
in terms of decryption, and also offers more efficient encryption and shorter ciphertexts when the
recipient pattern contains few wildcards. More precisely, the master public key contains L + 4 group
elements. Encryption to a recipient pattern of length ℓ with w wildcards involves w + 3 (multi-
)exponentiations and w + 3 group elements in the ciphertext, or L + 3 of these in the worst case
that ℓ = w = L. Decryption requires the computation of two pairings, as opposed to ℓ + 1 of these
for the Wa-WIBE and BB-WIBE schemes. We prove the security of the BBG -WIBE scheme in
the selective-identity model by reducing to the security of the BBG -HIBE scheme that is recalled in
Appendix B, rather than to the underlying decisional L-BDHI assumption directly.

Theorem 6.2 If the BBG -HIBE scheme is (t, qK, ǫ) IND-sID-CPA-secure, then the BBG -WIBE
scheme presented above is (t′, q′K, ǫ′) IND-sWID-CPA-secure for all

t′ ≤ t− L(1 + 2qK) · texp , q′K ≤ qK , and ǫ′ ≥ ǫ ,

where texp is the time it takes to perform an exponentiation in G.

Proof: The proof of Theorem 6.2 is almost identical to the proof given for Theorem 5.1. We present it
here for completeness. As before we assume that there exist an adversaryA that breaks the IND-sWID-
CPA-security of the BBG -WIBE scheme and then we show how to efficiently build another adversary
B that, usingA as a black box, manages to break the IND-sID-CPAsecurity of the BBG -HIBE scheme.

Algorithm B begins by runningA to obtain a challenge pattern P ∗ = (P ∗
1 , . . . , P ∗

ℓ∗). Define a projection
function π : {1, . . . ,L} → {0, . . . ,L} where

π(i) = 0 if i ∈W(P ∗)
= i− |W(P ∗)|≤ i| otherwise .

The projection function is such that identities at level i ∈ W(P ∗) in the WIBE tree will be mapped
onto level π(i) in the HIBE tree. B outputs ID∗ = P ∗|i∈W(P ∗) as its own challenge identity and gets

a master public key mpkH = (g1, g2, h1, u0, . . . , uL) for the BBG -HIBE scheme in return. It runs
adversary A on master public key mpkW = (g1, g2, h1, u0, u

′
1, . . . , u

′
L
), where for all 1 ≤ i ≤ L, the

values u′
i are generated as:

u′
i ← gαi

1 if i ∈W(P̂), where αi
$
← Zp

← uπ(i) otherwise.

Notice that mpkW is distributed exactly as it would be if produced by the real Setup algorithm of the
BBG -WIBE scheme.

During the first phase, B has to answer all the key derivation queries ID = (ID1, . . . , IDℓ) that A is
allowed to ask. For that, B queries its own key derivation oracle on identity ID ′ = ID |i∈W(P ∗)|≤ ℓ

to get the key d ′
ID

′ = (a ′
0, a

′
ℓ′+1 . . . , a ′

L+1) where ℓ′ = |ID ′|. Next, B computes the key dID =
(a0, aℓ+1, . . . , aL+1) as

a0 ← a ′
0 ·

∏

i∈W(P ∗)|≤ ℓ

(a ′
L+1)

αi·IDi

ai ←

{

(a ′
L+1)

αi if i ∈W(P ∗)|> ℓ

a ′
π(i) otherwise

for i = ℓ + 1, . . . ,L

a ′
L+1 ← aL+1 .

14

When at the end of its first phase A outputs challenge messages m
∗
0,m

∗
1, B also ends its first phase with

the same messages. Let C ′∗ = (C ′∗
1 ,C ′∗

2 ,C ′∗
3) be the challenge ciphertext that B receives in return

from its challenger, meaning that C ′∗ is an encryption of m
∗
b with respect to the identity ID∗, where

b is the secret bit chosen at random by the challenger. B sets C ∗
1 ← C ′∗

1 , C ∗
2 ← C ′∗

2 , C ∗
3 ← C ′∗

3 and

C ∗
4 ←

(

C ∗
4,i = (C ∗

1)αi

)

i∈W(P ∗)
, and feeds the ciphertext C ∗ = (P ∗,C ∗

1 ,C ∗
2 ,C ∗

3 ,C ∗
4) to A as the input

for its second phase. During the second phase, A is then allowed to issue more key derivation queries,
which are answered by B exactly as in the first phase. When A outputs a bit b′, B outputs the same
bit b′ and stops.

By arguments similar to those given in the proof of Theorem 5.1, one can see that B provides a
perfectly simulated environment for A and that B does not query for the key of the challenge identity
ID∗ or any of its parents. Hence, B wins the game whenever A does. The running time of B is that
of A plus the time needed for at most 2L exponentiations for each key derivation query and at most
L exponentiations to compute the challenge ciphertext.

6.3 From Selective-Identity to Full Security

As observed by Boneh-Boyen [BB04] for the case of IBE schemes and by Boneh-Boyen-Goh [BBG05]
for the case of HIBE schemes, any HIBE scheme HIBE that is selective-identity secure can be trans-
formed into a HIBE scheme HIBE ′ that is IND-sID-CPA-secure in the random oracle model. The
transformation only works for small hierarchy depths though, since the proof loses a factor O(qL

H) in
reduction tightness. We show here that the same transformation works for the case of WIBE schemes
at the cost of a factor (qH + 1)L in reduction tightness.

Let WIBE be a WIBE scheme with maximum hierarchy depth L. The idea of the transformation
is to replace every pattern (or identity) P = (P1, . . . , Pℓ) at key derivation or encryption with the
pattern P ′ = (P ′

1, . . . , P
′
ℓ) where

P ′
i ←

{

Hi(Pi) if Pi 6= *

* otherwise,

where Hi, 1 ≤ i ≤ L are independent random oracles mapping arbitrary bit strings into an appropriate
range ID corresponding to the identity space of WIBE . (These L independent random oracles are
easily constructed from a single random oracle H(·), e.g. by setting Hi(·) = H(i‖·).) We refer to the
scheme thus obtained as WIBEH and prove the following statement about its security.

Theorem 6.3 If WIBE is a (t, qK, ǫ) IND-sWID-CPA-secure WIBE scheme of depth L with identity
space ID, then the WIBEH scheme described above is (t′, q′K, q′H, ǫ′) IND-WID-CPA-secure in the
random oracle model for all

t′ ≤ t , q′K ≤ qK and ǫ′ ≥ (L + 1)(q′H + 1)L · ǫ +
q′H

2

|ID|
.

Proof: Assume there is an adversary A breaking the full security of the WIBEH scheme, we present
an adversary B that uses A as a black box and breaks the selective-ID security of the underlying
WIBE scheme.

In a preliminary phase, B guesses ℓ̂
$
← {0, . . . ,L} and ˆctr i

$
← {0, . . . , q′H} for all 1 ≤ i ≤ ℓ̂. It then

chooses a pattern P̂ ′ = (P̂ ′
1, . . . , P̂

′
ℓ̂
) by setting P̂ ′

i ← * if ˆctr i = 0 and choosing P̂ ′
i

$
← ID otherwise. B

outputs P̂ ′ as its challenge pattern, and gets public key mpk in return. It runs A on the same public
key mpk and responds to its oracle queries as follows:

15

• Hi(ID i): B keeps initially empty associative arrays Ti[·] and counters ctr i that are initialized to
zero for 1 ≤ i ≤ L. If Ti[ID i] is undefined, B increases ctr i. If ctr i = ˆctr i, it sets P̂i ← ID i

and Ti[ID i]← P̂ ′
i ; otherwise, it chooses Ti[ID i]

$
← ID. B returns Ti[ID i] as the random oracle

response to A.

• KeyDer(ID = (ID1, . . . , ID ℓ)): B simulates additional random oracle queries ID ′
i ← Hi(ID i) for

1 ≤ i ≤ ℓ and lets ID ′ = (ID ′
1, . . . , ID

′
ℓ). If ID ′ ∈* P̂ then B aborts. If Hi(ID i) = P̂ ′

i while
ID i 6= P̂i for some 1 ≤ i ≤ ℓ, then B also aborts. Otherwise, it queries ID ′ from its own key
derivation oracle and forwards the resulting key to A.

Eventually, A outputs its challenge pattern P ∗ = (P ∗
1 , . . . , P ∗

ℓ∗) and challenge messages m
∗
0,m

∗
1. B

performs additional random oracle queries Hi(P
∗
i) for all i ∈ W(P ∗). If ℓ∗ 6= ℓ̂, W(P ∗) 6= W(P̂) or

H(P ∗
i) 6= P̂i for some i ∈ W(P ∗), then B aborts. Otherwise, it submits m

∗
0,m

∗
1 as its own challenge

messages and forwards the challenge ciphertext C ∗ that it gets in return to A. During the second
phase, B responds to A’s oracle queries exactly as during the first phase. When A outputs a bit b′, B
outputs the same bit b′.

It is easy to see that B’s simulation of A’s environment is perfect as long as it doesn’t abort and
that B wins the game whenever A does. The probability that B aborts during one of A’s decryption
queries is bounded by the probability that A manages to find a collision in one of the random oracles
Hi, which is at most q′H(q′H − 1)/(2|ID |) ≤ q′H

2/|ID|. The probability that B does not abort in the

final stage of the game is at least 1/(L + 1)(qH + 1)L due to the random guesses of ℓ̂ from {0, . . . ,L}
and of ˆctr i from {0, . . . , q′H}. Therefore B’s advantage in winning the game is at least

ǫ ≥
ǫ′

(L + 1)(q′H + 1)L
−

q′H
2

|ID|
,

from which the theorem follows.

7 Chosen-Ciphertext Security

In this section, for completeness, and to avoid making any unsubstantiated claims, we present an
adaptation of the result of Canetti-Halevi-Katz [CHK04] to obtain chosen-ciphertext security for
WIBE schemes. We show that we may use a IND-WID-CPA-secure WIBE of depth 2L + 2 and
a strongly unforgeable signature scheme (SigGen,Sign,Verify) to construct an IND-WID-CCA-secure
WIBE of depth L.

Definition 7.1 A signature scheme is a triple of algorithms (SigGen,Sign,Verify) where

• SigGen takes no input (except for an implicit security parameter) and outputs a signing key sk

and a verification key vk ;

• Sign takes as input a signing key sk and a message m ∈ {0, 1}∗ and outputs a signature σ ∈
{0, 1}∗;

• and Verify takes as input a verification key vk , a message m ∈ {0, 1}∗ and a signature σ ∈ {0, 1}∗

and outputs either valid or invalid.

For correctness we require that for all (sk , vk)
$
← SigGen, for all m ∈ {0, 1}∗ and σ

$
← Sign(sk ,m), we

have that Verify(vk ,m, σ) = valid with probability one.

16

Definition 7.2 A signature scheme (SigGen,Sign,Verify) is (t, ǫ) strongly one-time secure, if no prob-
abilistic adversary A running in time at most t wins the following game with probability more than
ǫ:

1. The challenger generates a key pair (sk∗, vk∗)
$
← SigGen.

2. The attacker executes A on input vk∗ until it outputs a message m∗.

3. The challenger computes σ∗ $
← Sign(sk ,m∗) and returns σ∗ to A. A terminates by outputting a

pair (m,σ).

The attacker wins the game if Verify(vk ,m, σ) = valid and (m,σ) 6= (m∗, σ∗).

We will also make liberal use of an ‘encoding function’ Encode. For a WIBE scheme with identity
space IDL, this function will have different actions depending on its input. We assume that ID
contains at least two different elements; for simplicity we assume that {0, 1} ⊆ ID. For any identity
ID = (ID1, . . . , ID ℓ) ∈ ID≤L, we define

Encode(ID) = (0, ID1, . . . , 0, ID ℓ) .

We will also use this encoding function with two arguments to denote

Encode(ID , vk) = (0, ID1, . . . , 0, IDk, 1, vk) .

Given a WIBE scheme WIBE = (Setup,KeyDer,Enc,Dec) of depth 2L + 2 with identity space ID≤L,
consider the following WIBE scheme WIBE

′
= (Setup,KeyDer′,Enc′,Dec′) of depth L.

Key Derivation. The secret key of identity ID = (ID1, . . . , ID ℓ) under WIBE
′

is the secret key
corresponding to identity Encode(ID) = (0, ID1, . . . , 0, ID ℓ) under WIBE .

Encryption. To encrypt a message m under a pattern P and using a master public key mpk , the

following steps are performed: First, we generate a signature key pair (sk , vk)
$
← SigGen. Then

we compute C
$
← Enc(mpk ,Encode(P, vk),m) and σ

$
← Sign(sk , C). The final ciphertext is the

tuple (vk , C, σ).

Decryption. To decrypt a ciphertext (vk , C, σ) using a private key dID for an identity ID , first check
that Verify(vk , C, σ) = valid. If not, output ⊥. Otherwise, compute d = KeyDer(dID , (1, vk))
and output Dec(d,C). Note that in this case d is the decryption for the identity Encode(ID, vk)
in WIBE .

Theorem 7.3 If WIBE is (t, qK, ǫ) IND-WID-CPA-secure and (SigGen,Sign,Verify) is (ts, ǫs) strongly
one-time secure, then WIBE

′
is (t′, q′K, q′D, ǫ′) IND-WID-CCA-secure for all

t′ ≤ min(t, ts)− q′K · tKeyDer − q′D · (tKeyDer + tVerify + tDec)

q′K ≤ qK − q′D

ǫ′ ≥ ǫ + ǫs

where tKeyDer, tDec and tVerify are the running times of the KeyDer, Dec and Verify algorithms, respec-
tively.

17

Proof: The proof closely follows that of [CHK04]. Let A be an IND-WID-CCA adversary against
the WIBE

′
scheme. Suppose P ∗ is the challenge pattern that A chooses and (vk∗, C∗, σ∗) is the

challenge ciphertext that A receives during an execution of the attack game. Let Forge be the event
that at some point during its execution A queries the decryption oracle on an identity ID ∈* P ∗

and a ciphertext of the form (vk∗, C, σ) such that Verify(vk∗, C, σ) = valid. Then we have that A’s
advantage is

∣

∣Pr [A wins]− 1/2
∣

∣ ≤ Pr [Forge] +
∣

∣Pr [A wins : ¬Forge]− 1/2
∣

∣ . (1)

Claim 1 Pr [Forge] ≤ ǫs.

Claim 2
∣

∣ Pr [A wins : ¬Forge]− 1/2
∣

∣ ≤ ǫ.

Proof of Claim 1: We prove the first claim by demonstrating an attacker B that breaks the
one-time security of the signature scheme whenever the event Forge occurs. In the first phase, B

receives a verification key vk∗ from the challenger. It generates (mpk ,msk)
$
← Setup and executes

A on input mpk , responding to its key derivation and decryption queries using the real KeyDer′ and
Dec′ algorithms, which it can do because it knows msk . It keeps a list of A’s decryption queries
(ID , (vk , C, σ)) for later reference. When A outputs challenge pattern P ∗ and challenge messages

m
∗
0,m

∗
1, B chooses a random bit b

$
← {0, 1}, computes C ∗ $

← Enc(mpk ,Encode(P ∗, vk∗),m∗
b) and

requests a signature σ∗ on message C ∗ from its own challenger. Algorithm B then runs A on input
(vk∗,C ∗, σ∗) until it halts, responding to A’s oracle queries as before.

At the end of A’s execution, B checks whether the list of A’s decryption queries contains an entry
(ID , (vk , C, σ)) such that ID ∈* P ∗, vk = vk∗ and Verify(vk , C, σ) = valid, or in other words, checks
whether the event Forge occurred. Note that in this case (C, σ) 6= (C ∗, σ∗) because A is not allowed
to query the decryption oracle on the challenge ciphertext with an identity ID ∈* P ∗. B outputs
(C ∗, σ∗) as its forgery and wins the game. The running time of B is that of A plus the time needed
for q′K + q′D applications of the KeyDer algorithm, q′K applications of the Verify algorithm and q′K
applications of the Dec algorithm.

Proof of Claim 2: To prove the second claim, we show that there exists an IND-WID-CPA attacker
C against WIBE that uses A as a subroutine and that has advantage ǫ of winning the game whenever
the event Forge does not occur. Algorithm C, on input a master public key mpk , runs A on input
mpk , answering its oracle queries as follows:

• If A queries the key extraction oracle on the identity ID , then C queries its key extraction oracle
on the identity Encode(ID) and returns the resulting key to A.

• If A queries the decryption oracle on the identity ID and ciphertext (vk , C, σ), then C checks
that Verify(vk , C, σ) = valid. If not, then C returns ⊥ to A. If the signature is valid, C queries
its key extraction oracle on the identity Encode(ID , vk) to receive the decryption key d and
returns the output of Dec(d,C) to A.

When A outputs challenge pattern P ∗ and challenge messages m
∗
0,m

∗
1, C generates a fresh key pair

(sk∗, vk∗)
$
← SigGen and outputs Encode(P ∗, vk∗) and m

∗
0,m

∗
1 as its own challenge pattern and mes-

sages. In return, it gets a challenge ciphertext C ∗ from its challenger. C computes σ∗ $
← Sign(sk ,C ∗)

18

and feeds (vk∗, C∗, σ∗) to A, answering its oracle queries exactly as before. When A outputs a bit b′,
C outputs the same bit b′.

It is not hard to see that C’s simulation of A’s environment is perfect and that C wins the game
whenever A does as long as C does not make any illegal key derivation queries. We have left to argue
why the latter fact is true. First consider the queries that C makes to respond to A’s key derivation
query ID . Let ID ′ = Encode(ID) and let P ′∗ = Encode(P ∗, vk∗). If |ID ′| > |P ′∗| then ID ′ can never
match P ′∗. If |ID ′| = |P ′∗| then still ID ′ 6∈* P ′∗ because ID ′ and P ′∗ are different on the next to last
level (ID ′ contains a zero there, while P ′∗ contains a one). If |ID ′| < |P ′∗| then the only way to have
ID ′ ∈* P ′∗ is if also ID ∈* P ∗, which are illegal queries in A’s game as well.

Second, consider the key derivation queries that C makes in order to respond to A’s decryption
queries. If A makes decryption query (ID , (vk , C, σ)), then C makes a key derivation query for ID ′ =
Encode(ID , vk). Let P ′∗ = Encode(P ∗, vk∗). If vk 6= vk∗ then definitely ID ′ 6∈* P ′∗: either ID ′ has a
zero where P ′∗ has a one, or they differ on the last level. So let’s focus on the case that vk = vk∗. If
|ID ′| > |P ′∗| then ID ′ can never match P ′∗. If |ID ′| < |P ′∗| then the next to last level of ID ′ contains
a one while P ′∗ contains a zero there, so also in that case ID ′ 6∈* P ′∗. If |ID ′| = |P ′∗|, then the only
way to have ID ′ 6∈* P ′∗ is if also ID ∈* P ∗, but this case is excluded by the event ¬Forge.

The running time of C is that of A plus the time needed to compute q′D applications of the Verify and
Dec algorithms and one application of the Sign algorithm. It also performs qK = q′K + q′D queries to
its key derivation oracle.

The bound on ǫ′ in the statement of Theorem 7.3 follows directly from Equation (1) and the two
claims above. The bound on the number of key derivation queries q′K is due to the proof of Claim 2
above. For the bound on t′ we have to take into account the running times of both algorithms B and
C in the proofs of Claims 1 and 2. From the proof of Claim 1 we have that

t′ ≤ t1 = t− (q′K + q′D) · tKeyDer − q′D · tVerify − q′D · tDec

and from the proof of Claim 2 we have that

t′ ≤ t2 = ts − q′D · tVerify − q′D · tDec .

To simultaneously satisfy both equations, we need to upper-bound t′ by

min(t1, t2) ≥ min(t, ts)− q′K · tKeyDer − q′D · (tKeyDer + tVerify + tDec) ,

where we use that min(x− z, y − z) ≥ min(x, y)− z and min(x− w, y − z) ≥ min(x, y)− w − z.

One may wonder why we require a (2L+2)-level IND-WID-CPA-secure WIBE in order to construct
an L-level IND-WID-CCA-secure WIBE when the original result of Canetti-Halevi-Katz [CHK04] only
required an (L+1)-level IND-ID-CPA-secure HIBE to construct an L-level IND-ID-CCA-secure HIBE.
The construction of [CHK04] encodes every identity string ID as 0||ID and every verification key vk

as 1||vk . For a HIBE, the different form of the two types of binary string means that when we use the
key extraction oracle to decrypt a ciphertext, we never query the key extraction oracle on an ancestor
of the challenge identity. However, if we try and use the same trick to construct a chosen-ciphertext
secure WIBE, then it is possible that we will query the key extraction oracle on an identity that
matches the challenge pattern because both 0||ID and 1||vk match the pattern string *. Hence, we
are forced to place the single bits that identify whether the following binary string is an identity or a
verification key into their own levels on the WIBE.

19

Applying the transformation to Wa-WIBE. If we apply the above transformation to the (IND-
WID-CPA-secure) Wa-WIBE scheme described in Section 5 and prove the security of the scheme
directly, rather than by applying Theorems 5.1 and 7.3, then we may achieve some small efficiency
gains. In particular, if we wish to construct an L-level CCA-secure WIBE scheme, then a naive
application of the theorems suggests that we have to start from a (2L + 2)-level Wa-WIBE scheme,
meaning that the public parameters for the WIBE consist of (2L + 2)(n + 1) + 3 group elements, and
that we lose a factor of 22L+2 in the security reduction from the Wa-WIBE to the Wa-HIBE scheme.

However, if we look at the proof techniques used in the theorems, then we can make some efficiency
gains. In particular,

• L + 1 levels of the WIBE are only used to encode either a zero or a one. This means that the
public parameters do not require the n+1 group elements required to represent an n-bit identity
at those levels; they only require the two group elements that are required to encode a single-bit
identity. Hence, the public parameters only require (L + 1)(n + 3) + 3 group elements.

• the reduction from the CPA-secure WIBE to the CPA-secure HIBE loses a factor of 22L+2

because we need to guess the positions of the wildcards in the challenge identity. However, in
this construction, the wildcards can only occur at L different positions, instead of all 2L + 2
positions. Hence, we actually only lose a factor of 2L in this reduction.

Unfortunately, we still do require a (2L + 2)-level instantiation of the Wa-WIBE scheme. This
implies an important security loss because the proof of security for the Wa-HIBE loses a factor of
O((nqK)2L+2) in the reduction to the BDDH assumption.

Versions of this Paper

An extended abstract of this paper appeared at ICALP 2006 [ACD+06]. The first full version was
posted on the IACR ePrint archive in September 2006. This is an updated version of December 2006
that corrects a minor mistake in the proof of Theorem 6.3.

Acknowledgments

We would like to thank James Birkett, Jacob Schuldt, Brent Waters and the anonymous referees
of ICALP 2006 for their valuable input. We also thank Mihir Bellare for pointing out the relation
between WIBE and fuzzy identity-based encryption. This work was supported in part by the European
Commission through the IST Programme under Contract IST-2002-507932 ECRYPT. The information
in this document reflects only the author’s views, is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability. The first two authors were supported in part by France Telecom R&D
as part of the contract CIDRE, between France Telecom R&D and École normale supérieure. The
fifth author is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO-Vlaanderen), and
was supported in part by the Concerted Research Action (GOA) Ambiorics 2005/11 of the Flemish
Government.

References

[ACD+06] Michel Abdalla, Dario Catalano, Alex Dent, John Malone-Lee, Gregory Neven, and Nigel
Smart. Identity-based encryption gone wild. In Michele Bugliesi, Bart Preneel, Vladimiro

20

Sassone, and Ingo Wegener, editors, ICALP 2006: 33rd International Colloquium on Au-

tomata, Languages and Programming, Part II, volume 4052 of Lecture Notes in Computer

Science, pages 300–311. Springer-Verlag, Berlin, Germany, July 9–16, 2006. (Cited on pages i

and 20.)

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption
without random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in

Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 223–238, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin, Germany.
(Cited on pages 2, 3, 4, 6, 11, 15, 22 and 23.)

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, Advances in Cryptology – EURO-

CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 440–456, Aarhus,
Denmark, May 22–26, 2005. Springer-Verlag, Berlin, Germany. (Cited on pages 2, 6, 11, 12,

15 and 25.)

[BF03] Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003. (Cited on pages 1 and 4.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93: 1st Conference on Computer and Communications

Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press. (Cited on

page 2.)

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture

Notes in Computer Science, pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994.
Springer-Verlag, Berlin, Germany. (Cited on page 4.)

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology

– EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 207–222,
Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin, Germany. (Cited on pages 2,

16, 18 and 19.)

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
Bahram Honary, editor, Cryptography and Coding, 8th IMA International Conference,
volume 2260 of Lecture Notes in Computer Science, pages 360–363, Cirencester, UK, De-
cember 17–19, 2001. Springer-Verlag, Berlin, Germany. (Cited on page 1.)

[CS06] Sanjit Chatterjee and Palash Sarkar. Trading time for space: Towards an efficient IBE
scheme with short(er) public parameters in the standard model. In Dongho Won and
Seungjoo Kim, editors, Information Security and Cryptology – ICISC 2005, volume 3935
of Lecture Notes in Computer Science, pages 424–440. Springer-Verlag, Berlin, Germany,
2006. (Cited on page 8.)

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang Zheng,
editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes in Com-

puter Science, pages 548–566, Queenstown, New Zealand, December 1–5, 2002. Springer-
Verlag, Berlin, Germany. (Cited on page 1.)

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture

Notes in Computer Science, pages 466–481, Amsterdam, The Netherlands, April 28 –
May 2, 2002. Springer-Verlag, Berlin, Germany. (Cited on page 1.)

[MSK02] Shigeo Mitsunari, Ryuichi Saka, and Masao Kasahara. A new traitor tracing. IEICE

Transactions, E85-A(2):481–484, February 2002. (Cited on pages 2 and 3.)

21

[Nac05] David Naccache. Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369, 2005. http://eprint.iacr.org/. (Cited on page 8.)

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lecture

Notes in Computer Science, pages 47–53, Santa Barbara, CA, USA, August 19–23, 1985.
Springer-Verlag, Berlin, Germany. (Cited on page 1.)

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing. In
SCIS 2000, Okinawa, Japan, January 2000. (Cited on page 1.)

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in

Computer Science, pages 457–473, Aarhus, Denmark, May 22–26, 2005. Springer-Verlag,
Berlin, Germany. (Cited on page 6.)

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture

Notes in Computer Science, pages 114–127, Aarhus, Denmark, May 22–26, 2005. Springer-
Verlag, Berlin, Germany. (Cited on pages 2, 6, 7 and 8.)

A The BB-HIBE Scheme

In this section, we present a variant of the HIBE scheme by Boneh and Boyen in Eurocrypt 2004
[BB04].

Setup. The trusted authority chooses random generators g1, g2 from G
∗, a random α ∈ Zp and sets

h1 ← gα
1 . Next, it picks random elements u1,0, . . . , uL,0, u1,1, . . . , uL,1 from G

∗ and sets h2 ← gα
2 .

The master public key is mpk = (g1, h1, g2, u1,0, . . . , uL,0, u1,1, . . . , uL,1). The corresponding
master secret key is msk = h2.

Key Derivation. A user’s identity is given by a vector ID = (ID1, . . . , ID ℓ) where each ID i is an
element in Zp. To compute the decryption key for identity ID from the master secret key, first

one chooses random values ri
$
← Zp for i = 1, . . . , ℓ, then the private key dID is constructed as

(a0, a1, . . . , aℓ) =

(

h2

ℓ
∏

i=1

(

ui,0 · u
IDi

i,1

)ri

, gr1
1 , . . . , grℓ

1

)

.

Notice that, as required, the secret key for identity ID = (ID1, . . . , ID ℓ) can be computed from

the secret key (a0, a1, . . . , aℓ−1) of the parent (ID1, . . . , IDℓ−1) by choosing a random rℓ
$
← Zp

and outputting

dID =

(

a0 ·

(

uℓ,0 · u
IDℓ

ℓ,1

)rℓ

, a1 , . . . , aℓ−1 , grℓ

1

)

Encryption. To encrypt a message m ∈ GT for an identity ID = (ID1, . . . , ID ℓ), the sender first

chooses t
$
← Zp and outputs the ciphertext C = (C1,C2,C3), where

C1 = gt
1 C2 =

(

C2,i = (ui,0 · u
ID i

i,1)t
)

i=1,...,ℓ

C3 = m · ê(h1, g2)
t

Decryption. If the receiver is the root authority holding the master key msk , then he can recover
the message by computing C3/ê(C1,msk). Any other receiver with identity ID = (ID1, . . . , IDℓ)

22

http://eprint.iacr.org/

and decryption key dID = (a0, a1, . . . , aℓ) decrypts a ciphertext C = (C1, (C2,i)i=1,...,ℓ,C3) by
computing

m← C3 ·

∏ℓ
i=1 ê(ai,Ci)

ê(C1, a0)
.

The fact that decryption works can be seen as follows.

∏ℓ
i=1 ê(ai, Ci)

ê(C1, a0)
=

∏ℓ
i=1 ê

(

gri

1 , (ui,0 · u
IDi

i,1)t
)

ê
(

gt
1, h2

∏ℓ
i=1(ui,0 · u

IDi

i,1)ri

)

=

∏ℓ
i=1 ê

(

gt
1, (ui,0 · u

ID i

i,1)ri
)

ê(gt
1, h2) · ê

(

gt
1,
∏ℓ

i=1(ui,0 · u
IDi

i,1)ri

)

=
1

ê(g1, h2)t
=

1

ê(h1, g2)t

The main difference between the original HIBE scheme of [BB04] and our variant above is that our
scheme uses a different value ui,1 for each level, while the original scheme uses the same value u1 for
all levels. Adding wildcard functionality to the original scheme would require us to include ut

1 in the
ciphertext, but this ruins security as it can be used to change the recipient identity for non-wildcard
levels as well.

Theorem A.1 If the (t, ǫ) BDDH assumption holds in G, then the BB-HIBE scheme with hierarchy
depth L is (t′, qK, ǫ) IND-sID-CPA-secure, where t′ = t−Θ(L · qK · texp) and texp is the maximum time
for an exponentiation in G.

Proof: The present proof follows very closely the proof of security for the original scheme in [BB04].
As before, we assume that there exist an adversary A that breaks the IND-sID-CPA-security of the
HIBE scheme BB-HIBE and then we show how to efficiently build another adversary B that, using
A as a black box, manages to solve the BDDH problem in G.

Algorithm B first receives as input a random tuple (g,A = ga, B = gb, C = gc, Z) and its goal is to
determine whether Z = ê(g, g)abc or ê(g, g)z for a random element z in Zp. Algorithm B should output
1 if Z = ê(g, g)abc and 0, otherwise. Algorithm B works as follows.

Initialisation. Algorithm B starts interacting with A in the IND-sID-CPA game. Let ID∗ = (ID∗
1,

. . . , ID∗
ℓ∗), where 0 ≤ ℓ∗ ≤ L be the challenge identity outputted by A. If necessary, B appends

random elements in Zp to ID∗ so that ID∗ is a vector of length L.

Setup. To generate the systems parameters, B first sets g1 ← g, h1 ← A, and g2 ← B. Algorithm B

then chooses α1,0, . . . , αL,0, α1,1, . . . , αL,1
$
← Z

∗
p at random and sets ui,0 ← g

αi,0

1 · h
−ID

∗
i αi,1

1 and

ui,1 ← h
αi,1

1 for i = 1, . . . ,L. Next, B gives to A as the master public key the value mpk ← (g1,
h1, g2, u1,0, . . . , uL,0, u1,1, . . . , uL,1). Note that the corresponding master secret key msk = ga

2 is
unknown to B.

Key Derivation queries. During the phases of its attack against the IND-sID-CPA-security of
BB-HIBE , A can query up to qK queries to its key derivation oracle. Let ID = (ID1, . . . , IDℓ),
where ID i ∈ Zp and ℓ ≤ L, be one such query. Thus, ID cannot be a prefix of ID∗. Let j be

23

the smallest index such that ID j 6= ID∗
j . It follows necessarily that 1 ≤ j ≤ ℓ. To reply to this

query, B first computes the key for identity ID |≤ j = (ID1, . . . , ID j) and then derive the key
for ID as in the key derivation algorithm. To derive the key for identity ID |≤ j , B chooses the

values r1, . . . , rj
$
← Zp at random and sets

dID |≤ j
= (a0, a1, . . . , aj)

=

(

g2

−αj,0
αj,1(IDj−ID∗

j
) ·
∏j

i=1

(

ui,0 · u
IDi

i,1

)ri , gr1
1 , . . . , g

rj−1

1 , g2

1
αj,1(IDj−ID∗

j
) g

rj

1

)

.

To see why (a0, a1, . . . , aj) is a valid random private key for identity ID |≤ j, let r̃j = rj −
b

αj,1(IDj−ID
∗
j) mod p. Then, we have that

g2

−αj,0
αj,1(IDj−ID∗

j
) · (uj,0 · u

IDj

j,1)rj = g2

−αj,0
αj,1(IDj−ID∗

j
) · (uj,0 · u

IDj

j,1)
r̃j+

b
αj,1(IDj−ID∗

j
)

= g2

−αj,0
αj,1(IDj−ID∗

j
) · (g

αj,0

1 · h
αj,1(IDj−ID

∗
j)

1)
b

αj,1(IDj−ID∗
j
) · (uj,0 · u

IDj

j,1)
r̃j

= hb
1 · (uj,0 · u

IDj

j,1)
r̃j

= ga
2 · (uj,0 · u

IDj

j,1)
r̃j

.

From the above, it follows that

a0 = ga
2(uj,0 · u

IDj

j,1)r̃j

j−1
∏

i=1

(ui,0 · u
IDi

i,1)ri , a1 = gr1
1 , . . . , aj−1 = g

rj−1

1 , aj = g
r̃j

1 ,

where r1, . . . , rj−1, r̃j are uniformly distributed over Zp. From (a0, a1, . . . , aj), algorithm B can
derive the key for ID as in the key derivation algorithm.

Challenge. Let (m∗
0,m

∗
1) be the pair of messages that A outputs at the end of the first phase of the

IND-sID-CPA game. Algorithm B then chooses a random bit b ∈ {0, 1} and sends C ∗ = (C,

m
∗
b · Z, Cα1,0 , . . . , Cαℓ∗,0) to A as the challenge ciphertext. Since ui,0 · u

ID
∗
i

i,1 = g
αi,0

1 for all i, we
have that

C ∗ = (gc
1, m

∗
b · Z, (u1,0 · u

ID
∗
i

1,1)c, . . . , (uℓ∗,0 · u
ID

∗
ℓ∗

ℓ∗,1)c).

As a result, when Z = ê(g, g)abc = ê(h1, g2)
c, C ∗ is a valid encryption of message m

∗
b for the

challenge identity ID∗ = (ID∗
1, . . . , ID

∗
ℓ∗). On the other hand, when Z = ê(g, g)z for a random

value z ∈ Zp, then the challenge ciphertext is independent of b from the view point of the ad-
versary.

Guess. Let b′ be the output of A at the end of the second phase of the IND-sID-CPA game. If b = b′,
then algorithm B outputs 1, guessing that Z = ê(g, g)abc. Otherwise, B outputs 0.

Clearly, when Z = ê(g, g)abc, the view of A is identical to its view in a real attack and, thus, the
probability that b = b′ is exactly the probability that A wins the IND-sID-CPA game. On the other
hand, when Z is a random group element in GT, then the probability that b = b′ is exactly 1/2. From
the above, the result announced in Theorem A.1 follows immediately.

24

B The BBG-HIBE Scheme

In this section we present the HIBE scheme due to Boneh, Boyen and Goh [BBG05], referred to as
the BBG -HIBE scheme here. The Setup and KeyDer algorithms are exactly as in the BBG -WIBE
scheme presented in Section 6.2. Encryption and decryption work as follows.

Encryption. To encrypt a message m ∈ GT for an identity ID = (ID1, . . . , ID ℓ), the sender first

chooses t
$
← Zp and outputs the ciphertext C = (C1,C2,C3) ∈ G×G×GT, where

C1 ← gt
1,

C2 ←

(

u0

ℓ
∏

i=1

uID i

i

)t

,

C3 ← m · ê(h1, g2)
t .

Decryption. If the receiver is the root authority holding the master key msk = h2, then he can
recover the message by computing C3/ê(C1, h2). Any other receiver with identity ID = (ID1,
. . . , ID ℓ) and decryption key dID = (a0, aℓ+1, , . . . , aL+1) decrypts a ciphertext C = (C1,C2,C3)
as follows.

m ← C3 ·
ê(C2, aL+1)

ê(C1, a0)

= C3 ·
ê
(

u0
∏ℓ

i=1 uIDi

i , g1

)rt

ê(g1, h2)t · ê
(

g1, u0
∏ℓ

i=1 uIDi

i

)rt

= m .

The following theorem about the security of the scheme was proved in (the full version of) [BBG05].

Theorem B.1 If the (t, ǫ) decisional L-BDHI assumption holds in G, then the BBG -HIBE scheme
with hierarchy depth L is (t′, q′K, ǫ′) IND-sID-CPA-secure for arbitrary q′K and for all

t′ ≤ t−O(Lq′K · texp) and ǫ′ ≥ ǫ ,

where texp is the time for an exponentiation in G.

25

	Introduction
	Basic Definitions
	Identity-Based Encryption with Wildcards
	A Generic Construction
	A Construction from Waters' HIBE Scheme
	Waters' HIBE Scheme
	The Wa-WIBE Scheme

	More Efficient Constructions in the Random Oracle Model
	A Construction from Boneh-Boyen's HIBE Scheme
	A Construction from Boneh-Boyen-Goh's HIBE Scheme
	From Selective-Identity to Full Security

	Chosen-Ciphertext Security
	Acknowledgements
	References
	The BB-HIBE Scheme
	The BBG-HIBE Scheme

