
A preliminary version of this paper appears in Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, CCS 2008, ACM Press, 2008. This is the full version.

Identity-based Encryption with Efficient Revocation

Alexandra Boldyreva∗ Vipul Goyal† Virendra Kumar‡

Abstract

Identity-based encryption (IBE) is an exciting alternative to public-key encryption, as IBE
eliminates the need for a Public Key Infrastructure (PKI). Any setting, PKI- or identity-based,
must provide a means to revoke users from the system. Efficient revocation is a well-studied
problem in the traditional PKI setting. However in the setting of IBE, there has been little
work on studying the revocation mechanisms. The most practical solution requires the senders
to also use time periods when encrypting, and all the receivers (regardless of whether their keys
have been compromised or not) to update their private keys regularly by contacting the trusted
authority. We note that this solution does not scale well – as the number of users increases,
the work on key updates becomes a bottleneck. We propose an IBE scheme that significantly
improves key-update efficiency on the side of the trusted party (from linear to logarithmic in
the number of users), while staying efficient for the users. Our scheme builds on the ideas of
the Fuzzy IBE primitive and binary tree data structure, and is provably secure.

Keywords: Identity-based encryption, revocation, provable security.

∗School of Computer Science, College of Computing, Georgia Institute of Technology, 266 Ferst Drive, Atlanta,
GA 30332, USA. E-mail: sasha@gatech.edu. Supported in part by NSF CAREER award 0545659 and NSF Cyber
Trust grant 0831184.

†Dept. of Computer Science, University of California, Los Angeles, CA, USA. E-mail: vipul@cs.ucla.edu. The
author was supported in part from grants from the NSF ITR and Cybertrust programs (including grants 0627781,
0456717, and 0205594), a subgrant from SRI as part of the Army Cyber-TA program, an equipment grant from Intel,
a Microsoft Research Fellowship, an Alfred P. Sloan Foundation Fellowship, and an Okawa Foundation Research
Grant.

‡School of Computer Science, College of Computing, Georgia Institute of Technology, 266 Ferst Drive, Atlanta,
GA 30332, USA. E-mail: virendra@gatech.edu. Supported in part by the grant of the first author.

1

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Related work . 3
1.3 Contributions . 4

2 Notation and Conventions 5

3 Revocable IBE and its Security 5
3.1 Syntax of Revocable IBE . 5
3.2 Security of Revocable IBE . 7

4 Main Construction 8

5 Addressing CCA Security 20

6 Revocable ABE and Fuzzy IBE 29

7 Conclusions 30

8 Acknowledgements 30

2

1 Introduction

1.1 Motivation

Identity (ID)-based encryption, or IBE for short, is an exciting alternative to public-key encryption,
which eliminates the need for a Public Key Infrastructure (PKI) that makes publicly available the
mapping between identities, public keys, and validity of the latter. The senders using an IBE do
not need to look up the public keys and the corresponding certificates of the receivers, because the
identities (e.g. emails or IP addresses) together with common public parameters are sufficient for
encryption. The private keys of the users are issued by a trusted third party called the private key
generator (PKG). Ideas of identity-based cryptography go back to 1984 and Shamir [24], but the
first IBE scheme was constructed by Boneh and Franklin only in 2001 [6], building on the progress
in elliptic curves with bilinear pairings.

Any setting, PKI- or identity-based, must provide a means to revoke users from the system,
e.g. if their private keys get compromised. In a PKI setting a certification authority informs the
senders about expired or revoked keys of the users via publicly available digital certificates and
certificate revocation lists.

As a solution to this problem for IBE, Boneh and Franklin [6] suggested that users renew their
private keys periodically, e.g. every week, and senders use the receivers’ identities concatenated
with the current time period, e.g. “week 15 of 2008”. Notice that since only the PKG’s public
key and the receiver’s identity are needed to encrypt, and there is no way to communicate to the
senders that an identity has been revoked, such a mechanism to regularly update users’ private
keys seems to be the only viable solution to the revocation problem. This means that all users,
regardless of whether their keys have been exposed or not, have to regularly get in contact with
the PKG, prove their identity and get new private keys. The PKG must be online for all such
transactions, and a secure channel must be established between the PKG and each user to transmit
the private key. Taking scalability of IBE deployment into account, we observe that for a very large
number of users this may become a bottleneck.

We note that alternatively, in order to avoid the need for interaction and a secure channel, the
PKG may encrypt the new keys of non-revoked users under their identities and the previous time
period, and send the ciphertexts to these users (or post them online). With this approach, for
every non-revoked user in the system, the PKG is required to perform one key generation and one
encryption operation per key update. We note that this solution, just as the original suggestion,
requires the PKG to do work linear in the number of users, and does not scale well as the number
of users grow. The goal of the paper is to study this problem and find solutions to alleviate it.

1.2 Related work

Efficient revocation is a well-studied problem in the traditional PKI setting, e.g. [18, 21, 1, 20,
19, 11, 12]. However in the setting of IBE, there has been little work on studying the revocation
mechanisms. Hanaoka et al. [15] propose a way for the users to periodically renew their private
keys without interacting with the PKG. The PKG publicly posts the key update information, which
is much more convenient. However, each user needs to posses a tamper-resistant hardware device.
This assumption makes the solution rather cumbersome.

Revocation has been studied in the ID-based setting with mediators [5, 17]. In this setting there
is a special semi-trusted third party called a mediator who holds shares of all users’ private keys
and helps users to decrypt each ciphertext. If an identity is revoked then the mediator is instructed

3

to stop helping the user. But we want to focus on a much more practical standard IBE setting
where users are able to decrypt on their own.

The goal of broadcast encryption is to prevent revoked users from accessing secret informa-
tion being broadcast. The broadcast encryption solutions, however, and in particular ID-based
broadcast encryption ones, do not directly translate into solutions for our problem. In broadcast
encryption, a non-revoked user can help a revoked user gain access to the sensitive information
being broadcast (since this information is the same for all parties). On the other hand, in the
IBE setting a revoked user, or the adversary holding its private key, should not be able to decrypt
messages even if it colludes with any number of non-revoked users.

Thus, to the best of our knowledge, the solution proposed by Boneh and Franklin in [6] remains
the most practical user revocation solution in the IBE setting.

1.3 Contributions

We propose a new way to mitigate the limitation of IBE with regard to revocation, and improve
efficiency of the previous solution. We want to remove interaction form the process of key update,
as keeping the PKG online can be a bottleneck, especially if the number of users is very large. At
the same time we do not want to employ trusted hardware and we want to significantly minimize
the work done by the PKG and users.

First we define the Revocable IBE primitive and its security model that formalizes the possible
threats. The model, of course, takes into account all adversarial capabilities of the standard IBE
security notion. I.e. the adversary should be able to learn the private keys of the users with
identities of its choice, and in the case of chosen-ciphertext attack to also see decryptions under
the private key of the challenge identity of the ciphertexts of its choice. The adversary should not
be able to learn any partial information about the messages encrypted for the challenge identity.
In addition we consider the adversary having access to periodic key updates (as we assume this
information is public) and being able to revoke users with IDs of its choice. The adversary should
not be able to learn any partial information about the messages encrypted for any revoked identity
when the ciphertext is created after the time of revocation (i.e. for the ID containing the time past
the revocation time).

We show that it is possible to reduce the amount of work a PKG has to do for key updates and
the total size of key updates to logarithmic in the number of users, while keeping the key update
process non-interactive, and encryption and decryption efficient.

Our idea is to build on the Fuzzy IBE construction by Sahai and Waters [23]. The Fuzzy IBE
primitive provides some sort of error-tolerance, i.e. identities are viewed as sets of attributes, and
a user can decrypt if it possesses keys for enough of (but not necessarily all) attributes a ciphertext
is encrypted under. At the same time, colluding users cannot combine their keys to decrypt a
ciphertext which none of them were able to decrypt independently.

We propose to combine the Fuzzy IBE construction from [23] with the binary tree data structure,
which was previously used to improve efficiency of revocations in the PKI setting [21, 1]. In order
to decrypt a ciphertext encrypted for an identity and time period the user must possess the keys
for these two attributes. The PKG publicly posts and regularly updates the keys for the current
time attribute. Even though the time attributes are the same for all users, this does not have to
compromise security, thanks to the collusion-resistance property of Fuzzy IBE. To reduce the size
of key updates from linear to logarithmic in the number of users, the binary tree data structure is
used. Here we employ a trick to modify the Fuzzy IBE scheme in such a way that collusion of some
users (corresponding to non-revoked users in our scheme) on some attributes (i.e. time attribute)

4

is possible. We provide more details and present the full construction in Section 4.
While our scheme provides major computation and bandwidth efficiency improvements at the

stage of key update, it also permits efficient encryption and decryption. We show that our scheme
provably guarantees security assuming the decisional bilinear Diffie-Hellman (DBDH) problem is
hard, which is a quite common assumption nowadays (cf. e.g. [3, 23, 25, 14]).

We also show two ways to address chosen-ciphertext attack. Our first solution is to modify our
scheme by additionally employing a strongly-unforgeable one-time signature scheme in a manner
somewhat similar to that from [7, 14]. We also show that it is possible to employ the Fujisaki-
Okamoto (FO) transform [9, 10]. Security of the latter solution relies on the random oracle model
[2], but unlike the former solution, it is generic, in that it can be applied to any Revocable IBE
scheme.

Since the existing Fuzzy IBE schemes are only secure in the weaker selective-ID model [8], where
the adversary has to declare the challenge identity up front, with the above approach we can only
achieve selective-ID security as well. We leave it as an interesting open problem to achieve full
security without such limitation.

Finally we note that the problem of revocation is equally important for Fuzzy IBE and attribute-
based encryption (ABE) [14] schemes. While the same periodic key update solution due to Boneh
and Franklin applies, it similarly limits scalability. We show that it is possible to extend our
techniques to provide efficient non-interactive key update to Fuzzy IBE and ABE schemes.

2 Notation and Conventions

Let N denote the set of natural numbers and R denote the set of real numbers. For n ∈ N, let Zn
denote the set of integers modulo n and Z∗n denote the set Zn \ 0. We denote by {0, 1}∗ the set of
all binary strings of finite length. If x is string then |x| denotes its length in bits and if x ∈ R then
|x| denotes its absolute value. If x, y are strings then x‖y denotes the concatenation of x and y,
and we assume that x and y can be efficiently and unambiguously recovered from x‖y. If κ ∈ N
then 1κ denotes the string consisting of κ consecutive “1” bits. We denote by φ the empty set. If
x, y are strings then x‖y denotes the concatenation of x and y, and we assume that x and y can

be efficiently and unambiguously recovered from x‖y. If S is a finite set then s
$← S denotes that

s is selected uniformly at random from S . We will often write s1, s2, . . . , sn
$← S as a shorthand

for s1
$← S; s2

$← S; . . . ; sn
$← S. When describing algorithms, a← b denotes that a is assigned the

value b. If A is a randomized algorithm and n ∈ N, then a
$← A(i1, i2, . . . , in) denotes that a is

assigned the outcome of the experiment of running A on inputs i1, i2, . . . , in. If A is deterministic,
then we drop the dollar sign above the arrow. If S = {s1, s2, . . . , sn}, then {xs}s∈S denotes the set
{xs1 , xs2 , . . . , xsn}. An adversary is an algorithm. By convention, the running time of an adversary
includes that of its overlying experiment. All algorithms are assumed to be randomized and efficient
(i.e. polynomial in the size of the input), unless noted otherwise. In the rest of the paper κ ∈ N is
the security parameter, n(·) denotes a polynomial in κ, but for simplicity we use the notation n.

3 Revocable IBE and its Security

3.1 Syntax of Revocable IBE

We start with defining the general syntax of a Revocable IBE scheme.

5

Definition 3.1 [Revocable IBE] An identity-based encryption with efficient revocation or simply
Revocable IBE scheme RIBE = (S,SK,KU ,DK, E ,D,R) is defined by seven algorithms and has
associated message space M, identity space I and time space T . We assume that the size of T
is polynomial in the security parameter. Each algorithm is run by either one of three types of
parties - key authority, sender or receiver. Key authority maintains a revocation list rl and state st.
Revocation list rl can be part of state st, but we keep it explicit for clarity. In what follows, we call
an algorithm stateful only if it updates rl or st. We treat time as discrete as opposed to continuous.

• The stateful setup algorithm S (run by key authority) takes input security parameter 1κ and
number of users n, and outputs public parameters pk, master key mk, revocation list rl (initially
empty) and state st.

• The stateful private key generation algorithm SK (run by key authority) takes input public
parameters pk, master key mk, identity ω ∈ I and state st, and outputs private key skω and
an updated state st.

• The key update generation algorithm KU (run by key authority) takes input public parameters
pk, master key mk, key update time t ∈ T , revocation list rl and state st, and outputs key
update kut.

• The deterministic decryption key generation algorithm DK (run by receiver) takes input private
key skω and key update kut, and outputs decryption key dkω,t or a special symbol ⊥ indicating
that ω was revoked. (We say an identity ω was revoked at time t if revocation algorithm R
was run by key authority on input (ω, t, rl, st) for any rl, st.)

• The encryption algorithm E (run by sender) takes input public parameters pk, identity ω ∈ I,
encryption time t ∈ T and message m ∈M, and outputs ciphertext c. For simplicity and wlog
we assume that ω, t are efficiently computable from c.

• The deterministic decryption algorithm D (run by receiver) takes input decryption key dkω,t
and ciphertext c, and outputs a message m ∈ M or, a special symbol ⊥ indicating that the
ciphertext is invalid.

• The stateful revocation algorithm R (run by key authority) takes input identity to be revoked
ω ∈ I, revocation time t ∈ T , revocation list rl and state st, and outputs an updated revocation
list rl.

The consistency condition requires that for all κ ∈ N and polynomials (in κ) n, all pk and mk output
by setup algorithm S, all m ∈M, ω ∈ I, t ∈ T and all possible valid states st and revocation lists1

rl, if identity ω was not revoked before or, at time t then the following experiment returns 1 with
probability 1:

(skω, st)
$← SK(pk,mk, ω, st) ; kut

$← KU(pk,mk, t, rl, st)

dkω,t ← DK(skω, kut) ; c
$← E(pk, ω, t,m)

If D(dkω,t, c) = m then return 1 else return 0.

Remarks. Note that we differentiate between the terms “private key” and “decryption key”.
One can also define the decryption key generation algorithm that instead of private key skω

takes input the decryption key for the previous time period dkω,t−1. We do not further discuss this
version here since it is not used in our construction.

1A valid state is the one that is output by either setup algorithm S or private key generation algorithm SK. A
valid revocation list is the one that is output by either setup algorithm S or revocation algorithm R.

6

3.2 Security of Revocable IBE

We define the selective-revocable-ID security for Revocable IBE schemes. Our security model cap-
tures the standard notion of selective-ID security but it also takes into account possible revocations.
Since we explicitly consider time periods, in the beginning of the experiment in addition to the
challenge identity the adversary also declares the challenge time. Just as in the standard slective-ID
security definition the adversary can request to learn users’ keys. In addition we let the adversary
to revoke users of its choice (including the challenge identity) at any period of time and see all key
updates. Unlike in the standard security model, we allow the adversary to learn the private key for
the challenge identity, but only if it was revoked prior to or at the challenge time. The adversary
is given a ciphertext of one of the two messages of its choice encrypted for the challenge identity
and time. It has to guess which of the messages was encrypted.

First we define (selective) security against chosen-plaintext attack and then show how to extend
the definition to chosen-ciphertext attack.

Definition 3.2 [sRID Security] Let RIBE = (S, SK, KU ,DK, E ,D,R) be a Revocable IBE
scheme. The adversary first outputs the challenge identity and time, and also some information
state it wants to preserve. Later it is given access to three oracles that correspond to the algorithms
of the scheme. The oracles share state.2 Since we use the simplified notation for the oracles, we
define them now:

• The private key generation oracle SK(·) takes input identity ω and runs SK(pk,mk, ω, st) to
return private key skω.

• The key update generation oracle KU(·) takes input time t and runs KU(pk,mk, t, rl, st) to
return key update kut.

• The revocation oracle R(·, ·) takes input identity ω and time t and runs R(ω, t, rl, st) to update
rl.

For adversary A and number of users n define the following experiments:

Experiment Expsrid−cpa
RIBE,A,n(1κ)

b
$← {0, 1}

(ω∗, t∗, state)
$← A(1κ)

(pk,mk, rl, st)
$← S(1κ, n)

(m0,m1, state)
$← ASK(·),KU(·),R(·,·)(pk, state)

c∗
$← E(pk, ω∗, t∗,mb)

d
$← ASK(·),KU(·),R(·,·)(pk, c∗, state)

If b = d return 1 else return 0.

The following conditions must always hold:

1. m0,m1 ∈M and |m0| = |m1|.

2. KU(·) and R(·, ·) can be queried on time which is greater than or equal to the time of all
previous queries i.e. the adversary is allowed to query only in non-decreasing order of time3.

2To be more formal we could define a single oracle that maintains the state and invokes these oracles as subroutines.
We do not do it for simplicity.

3This is wlog because, the adversary can query the oracles for all possible time periods, one by one.

7

Also, the oracle R(·, ·) cannot be queried on time t if KU(·) was queried on t.4

3. If SK(·) was queried on identity ω∗ then R(·, ·) must be queried on (ω∗, t) for any t ≤ t∗.

We define the advantage of the adversary Advsrid−cpa
RIBE,A,n(κ) as

2 · Pr
[

Expsrid−cpa
RIBE,A,n(1κ) = 1

]
− 1 .

The scheme RIBE is said to be sRID-CPA secure if the function Advsrid−cpa
RIBE,A,n(·) is negligible in κ

for any efficient A and polynomial n.

Chosen-ciphertext attack. We extend the above definition in the standard way to take into
account chosen-ciphertext attack. Whenever the adversary is given the oracles, it is also given the
decryption oracle D(·) that takes input ciphertext c and runs D(dkω∗,t, c) to return message m or ⊥.
The usual restriction is that D(·) cannot be queried on challenge ciphertext c∗. The advantage of
the adversary Advsrid−cca

RIBE,A,n(κ) and sRID-CCA security are defined analogously to the CPA setting.

4 Main Construction

Intuition. At a high level we build on the (large universe) construction of Fuzzy IBE [23] and the
binary tree data structure. We briefly recall the Fuzzy IBE primitive ideas and the basics of the
construction.

In the Fuzzy IBE construction from [23], users’ keys and ciphertexts are associated with sets
of descriptive attributes. A user’s key can decrypt a particular ciphertext only if some number of
attributes (so called “error-tolerance”) match between the ciphertext and the key. The number of
attributes used to encrypt and the error-tolerance are fixed during the setup. Security of Fuzzy
IBE requires that different users should not be able to pool their attributes together in order to
decrypt a ciphertext which none of them were able to decrypt individually. To prevent collusions,
the key generation algorithm of Fuzzy IBE generates a random polynomial (of degree one less than
the error-tolerance) for each user. This polynomial is used to compute keys corresponding to a set
of attributes. Since all the keys are computed on different polynomials, they cannot be combined
in any meaningful way.

In our IBE scheme messages are encrypted for two “attributes”: identity of the receiver and
time period. The decryption key is also computed for attributes identity and time, on a first-degree
polynomial, meaning both attributes of the decryption key must match with those of a ciphertext
in order to decrypt. We split the decryption key in two components corresponding to identity
and time that we call private key and key update respectively. The private key is issued to each
user by the key authority,5 just like regular private keys in IBE. The key update is published by
the key authority and is publicly available to all users. To be able to decrypt a ciphertext a user
needs both the private key and the key update. Thus, when the key authority needs to revoke a
user it may simply stop publishing key updates for that user. As we recalled above, in Fuzzy IBE
the polynomial of a decryption key is selected at random to prevent collusion between different
keys. Using Fuzzy IBE in a naive way would thus require computing key updates for each user
separately. We use a different approach to reduce the number of key updates that key authority

4This is because we assume that the key update is done at the end of the time period t.
5We use a different name than PKG to emphasize a new way to handle revocations.

8

needs to compute. We use a binary tree of height h (with at least as many leaves as the number of
users in the system) and assign a random polynomial to each node of the tree. Next, we associate
each user to a unique leaf node. Every user gets keys (corresponding to its identity) computed
on polynomials of all nodes on the path from the leaf node corresponding to that user to the root
node. To be able to decrypt a ciphertext encrypted with time t, any user just needs one key
update (corresponding to t) computed on any one of the polynomials of nodes on the path from the
leaf node of the user to the root node. Thus, when no user is revoked, key authority just needs to
publish the key update computed on the polynomial of the root node. When a subset of the users is
revoked, key authority first finds the minimal set of nodes in the tree which contains an ancestor (or,
the node itself) among all the leaf nodes corresponding to non-revoked users. Then, key authority
publishes key updates on polynomials of the nodes in this set. We first address chosen-plaintext
attack only, and later show how to extend the scheme to resist chosen-ciphertext attack as well.

Before we give a formal description of the scheme, we define bilinear maps (aka. pairings).

Bilinear maps and group generator. Let G,GT be groups of prime order p (so they are
cyclic). A pairing is an efficiently computable map e : G × G → GT such that the following two
conditions hold:

• Bilinearity: For all g1, g2 ∈ G and x, y ∈ Z, we have e(gx1 , g
y
2) = e(g1, g2)xy.

• Non-degeneracy: For any generator g of G, e(g, g) is a generator of GT .

Note that e(·, ·) is symmetric since e(gx, gy) = e(g, g)xy = e(gy, gx).
A bilinear group generator G is an algorithm that on input 1κ returns G̃, which is a description

of groups G,GT of order p and the bilinear map e as defined above, and also p and a generator
g of G. There can be numerous such prime order bilinear group generators. We will not specify
a particular one but will use it as a parameter to the hardness assumption that we use for our
security proof. The description of a group should specify the algorithms for group operations
(multiplication, inverse and pairing), the algorithm for testing group membership, and also the
random group element sampling algorithm. Here and further in the paper we assume that the
group elements are uniquely encoded as strings.

Construction. We now specify the scheme RIBE [G] = (S,SK,KU ,DK, E ,D,R) in detail. We
assume that all users agree on how time is divided by time periods and how each time period is
specified, e.g. by days and “04.14.08”. In our RIBE scheme messages are encrypted using identity
and time. Identity is a string associated with any user, e.g. an email “abc@xyz.com”. Time
indicates when the ciphertext is supposed to be decrypted, e.g. on 04.14.08. The message space
M is GT . The identity space I is {0, 1}∗, and the time space T is an arbitrary bitstring set of size
polynomial in the security parameter. We require that the strings specifying identities and times
can be distinguished, e.g. by reserving the most significant bit (MSB) 0 for identity strings and 1
for time strings. In our construction the identity and time strings are mapped to unique elements
of Z∗p (if needed, a collision-resistant hash function {0, 1}∗ → Z∗p can be used). From now on for
simplicity we assume that identity and time are distinguished elements in Z∗p.

For x, i ∈ Z, set J ⊆ Z the Lagrange coefficient ∆i,J(x) is defined as

∆i,J(x)
def
=

∏
j∈J, j 6=i

(
x− j
i− j

)
.

9

u1 u2 u3 u4 u5

u1 u2 u3 u4 u5

No user is revoked

User u3 is revoked

Nodes for key updates output by KUNodes

Nodes marked as revoked by KUNodes

Figure 1: A pictorial description of the actions of KUNodes function used in Construction 4.1.

For x ∈ Z, g ∈ GT , J ⊆ Z, h1, . . . , h|J| ∈ G, we define

Hg,J,h1,...,h|J|(x)
def
= gx

2
|J|∏
i=1

(
h

∆i,J(x)
i

)
.

Our construction uses the binary tree data structure, so we introduce some notation here. We
denote by root the root node. If v is a leaf node then Path(v) denotes the set of nodes on the path
from v to root (both v and root inclusive). If v is a non-leaf node then vl, vr denote left and right
child of v. We assume that nodes in the tree are uniquely encoded as strings, and the tree is defined
by all of its nodes descriptions.

We also define a function KUNodes that is used to compute the minimal set of nodes for which
key update needs to be published so that only non-revoked users at time t are able to decrypt
ciphertexts.6 The function takes input a binary tree T, revocation list rl and time t and outputs
a set of nodes, which is the minimal set of nodes in T such that none of the nodes in rl with
corresponding time ≤ t (users revoked on or before t) have any ancestor (or, themselves) in the
set, and all other leaf nodes (corresponding to non-revoked users) have exactly one ancestor (or,
themselves) in the set. The function operates as follows. First mark all the ancestors of revoked
nodes as revoked, then output all the non-revoked children of revoked nodes. Refer to Figure 1 for

6A similar function was used in [1].

10

a pictorial depiction. Here is a formal specification.

KUNodes(T, rl, t)
X,Y ← φ
∀(vi, ti) ∈ rl

if ti ≤ t then add Path(vi) to X
∀x ∈ X

if xl /∈ X then add xl to Y
if xr /∈ X then add xr to Y

If Y = φ then add root to Y
Return Y

We are now ready to present the description of Revocable IBE. We could not use the algorithms
of the Fuzzy IBE construction from [23] in a black-box manner. The reason is that there the
polynomial for each key is picked independently by the key generation algorithm. And in our
construction some polynomials need to be shared by different keys. After we provide the details
for each algorithm, we give some intuition and relation to the construction from [23] following “//”
sign.

Construction 4.1 Let G be a prime order bilinear group generator. Let J be {1, 2, 3}.

• Setup S(1κ, n):

(G̃, p, g)
$← G(1κ) ; a

$← Zp ; g1 ← ga ; g2, h1, h2, h3
$← G. Let rl be an empty set and T be a

binary tree with at least n leaf nodes.
Return pk = (g, g1, g2, h1, h2, h3) ,mk = a ; rl , st = T.

// Besides the additional outputs of rl and st, it is essentially the same as Setup of Fuzzy
IBE where 2 out of 2 attributes need to be matched.

• Private Key Generation SK(pk,mk, ω, st):
Parse pk as (g, g1, g2, h1, h2, h3), mk as a, st as T.7 Pick an unassigned leaf node v from T
and store ω in that node.

∀x ∈ Path(v)

if ax is undefined, then ax
$← Zp,

store ax in node x,

rx
$← Zp ; Dx ← gaxω+a

2 Hg2,J,h1,h2,h3(ω)rx ;
dx ← grx .

Return skω = {(x,Dx, dx)}x ∈ Path(v), st.

// We note that ax above fixes first-degree polynomial qx(y) = axy+a corresponding to node
x. The algorithm computes the ω-components of the decryption key using the polynomials
of all the nodes on the path from leaf node corresponding to ω to the root node.

7Every node x in T stores an element ax ∈ Zp and in addition, every leaf node stores an identity ω. If no such
identity is stored at a leaf node we say that the leaf node is unassigned.

11

• Key Update Generation KU(pk,mk, t, rl, st):
Parse pk as (g, g1, g2, h1, h2, h3), mk as a, st as T.

∀x ∈ KUNodes(T, rl, t)

rx
$← Zp ; Ex ← gaxt+a2 Hg2,J,h1,h2,h3(t)rx ;

ex ← grx .
Return kut = {(x,Ex, ex)}x ∈ KUNodes(T,rl,t).

// The algorithm first finds a minimal set of nodes which contains an ancestor (or, the node
itself) of all the non-revoked nodes. Then it computes the t- component of the decryption
key using the polynomials of all the nodes in that set.

• Decryption Key Generation DK(skω, kut):
Parse skω as {(i,Di, di)}i ∈ I, kut as {(j, Ej , ej)}j ∈ J for some set of nodes I, J.

∀(i,Di, di) ∈ skω, (j, Ej , ej) ∈ kut
If ∃(i, j) s.t. i = j then dkω,t ← (Di, Ej , di, ej)
Else (if skω and kut don’t have any node
in common) then dkω,t ← ⊥.

Return dkω,t.

// Above we can drop the subscripts i, j since they are equal, i.e. dkω,t = (D,E, d, e). The
algorithm finds components of skω and kut which were computed on the same polynomial.

• Encryption E(pk, ω, t,m):
Parse pk as (g, g1, g2, h1, h2, h3).

z
$← Zp ; c1 ← m · e(g1, g2)z ; c2 ← gz ;

cω ← Hg2,J,h1,h2,h3(ω)z ; ct ← Hg2,J,h1,h2,h3(t)z.
Return c = (ω, t, cω, ct, c1, c2).

// The Encryption algorithm is essentially the same as that of Fuzzy IBE.

• Decryption D(dkω,t, c):
Parse dkω,t as (D,E, d, e), c as (ω, t, cω, ct, c1, c2).

m← c1

(
e(d,cω)
e(D,c2)

) t
t−ω
(

e(e,ct)
e(E,c2)

) ω
ω−t

.

Return m.

// The decryption algorithm is essentially the same as that of Fuzzy IBE.

• Revocation R(ω, t, rl, st):
For all nodes v associated with identity ω add (v, t) to rl.
Return rl.

12

Consistency. If identity ω was not revoked before or, at time t, then we will show thatD(dkω,t, c) =
m where dkω,t,m and c are computed as per the consistency requirement in Section 3.1.

From the definition of KUNodes we see that if ω was not revoked before or, at t then the set of
nodes output by KUNodes has one ancestor (or, the node itself) of the leaf node associated with ω
which implies that there will be a common node in skω and kut and hence DK will not output ⊥.
Now from the above construction we have that for a, ax, z, rω, rt ∈ Zp:

g, g2, h1, h2, h3 ∈ G , g1 = ga

dkω,t = (D,E, d, e) , where D = gaxω+a
2 Hg2,J,h1,h2,h3(ω)rω ,

E = gaxt+a2 Hg2,J,h1,h2,h3(t)rt , d = grω , e = grt ,
c = (ω, t, cω, ct, c1, c2) , where cω = Hg2,J,h1,h2,h3(ω)z ,
ct = Hg2,J,h1,h2,h3(t)z , c1 = m · e(g1, g2)z , c2 = gz.

So, D(dkω,t, c)

= c1

(
e(d, cω)

e(D, c2)

) t
t−ω
(

e(e, ct)

e(E, c2)

) ω
ω−t

= m · e(g1, g2)z

×
(

e(grω , Hg2,J,h1,h2,h3(ω)z)

e(gaxω+a
2 Hg2,J,h1,h2,h3(ω)rω , gz)

) t
t−ω

×
(

e(grt , Hg2,J,h1,h2,h3(t)z)

e(gaxt+a2 Hg2,J,h1,h2,h3(t)rt , gz)

) ω
ω−t

= m · e(g1, g2)z
(

1

e(gaxω+a
2 , gz)

) t
t−ω

×
(

1

e(gaxt+a2 , gz)

) ω
ω−t

= m · e(g1, g2)z

×

 1

e(g
(axω+a)(t

t−ω
)+(axt+a)(ω

ω−t
)

2 , gz)

= m · e(g1, g2)z

1

e(ga2 , g
z)

= m · e(g1, g2)z
1

e(g2, g1)z

= m.

Remarks. The function KUNodes needs to be executed only when rl has changed, so key authority
can store the output of KUNodes and use it until rl changes. If the number of users exceeds n, the
capacity of the current tree, it is possible to extend the tree and permit n more users as follows.
Take an “empty” tree of the same size and connect the roots of the current and new trees to the new
parent root node. Now the combined tree has 2n leaf nodes, and new users can be accommodated.
Each user will need an additional private key component computed on the polynomial of the new
root node. This new private key component can be encrypted (under the corresponding identity
and time) and published.

Efficiency. We first analyze communication and time complexity of key authority in computing
and publishing key updates as a function of the number of users n and number of revoked users r.

13

r = 0 1 < r ≤ n/2 n/2 < r ≤ n
BF [6] O(n) O(n− r) O(n− r)

Revocable IBE O(1) O(r log (nr)) O(n− r)

Table 1: Key update complexity comparison. Above n is the total number of users and r is the
number of revoked users.

We compare the worst case complexity of our scheme with that of the general revocation solution
suggested by Boneh-Franklin [6] that we outlined in the Introduction. Table 1 summarizes the
results. The complexity analysis for our construction follows directly from Theorem 1 of [1], as the
number of necessary key updates in our scheme corresponds to the number of nodes returned by
function KUNodes, and a similar function on the binary tree was used in [1].

As the table shows, our scheme represents a significant improvement over the Boneh-Franklin
solution for small values of r. For larger values of r (especially as it reaches close to n), this
advantage is lost. We however note that as r becomes large, our scheme can be “reset” to keep key
update efficient (by running the setup algorithm again which will make the revocation list empty
and releasing new private keys for only non-revoked users).

In terms of encryption and decryption, our construction is slightly less efficient than the existing
IBE schemes. E.g. the decryption algorithms of IBEs by Waters [25] and Boneh-Boyen [3] require
2 pairing computations (the slowest computation compared to group operations and exponentia-
tions), and our scheme requires 4. Encryption in the schemes of [25, 3] is dominated by 3 and 4
exponentiations, while our scheme uses 12. We chose Waters and Boneh-Boyen constructions for
comparison because they are the most efficient IBE schemes secure in standard (RO devoid) model
under standard assumptions. This may be a reasonable price to pay for the significant improve-
ment in key-update efficiency, which may become a bottleneck for a large number of users. We
note that the size of secret keys is larger in our scheme, a user needs to store up to 3h = 3 log n
group elements.

We note that using the suggestion from [22], efficiency of our scheme, and in particular, its
encryption algorithm, can be improved, if a hash function is used in place of the function H.
Security analysis in this case will need to rely on the random oracle (RO) model [2]. This will
improve the number of exponentiations in encryption to 4 while the decryption algorithm will still
be dominated by 4 paring operations. In contrast, the cost of encryption and decryption in the
Boneh-Franklin scheme [6] is dominated by one pairing each.

Security. Even though different users have their private keys computed on the same polynomial
this does not introduce insecurity inRIBE as opposed to Fuzzy IBE. In our scheme collusion among
different users is possible, however such collusion is not useful. No matter how many revoked users
try to collude, they will still be unable to decrypt a ciphertext for a new time period, as they cannot
obtain the necessary decryption key component. One might be tempted to reduce the security of
RIBE to the security of Fuzzy IBE since, after all RIBE uses Fuzzy IBE as its base construction.
However, we want to point out that such a straightforward reduction of security in a black box
manner does not seem possible. The main reason for this is that in Fuzzy IBE each time key
generation algorithm is run it chooses a random polynomial and then computes the key using that
polynomial however, in RIBE it is essential that private key and key update be computed on some
fixed polynomials.

Security of RIBE is based on the hardness of decisional bilinear Diffie-Hellman (DBDH) prob-

14

lem, which we now recall.

Definition 4.2 [Decisional bilinear Diffie-Hellman] Let G be a prime order bilinear group
generator. The decisional bilinear Diffie-Hellman (DBDH) problem is said to be hard for G if for
every efficient adversary A its advantage Advdbdh

G,A (k) defined as

Pr
[

Expdbdh-real
G,A (1κ) = 1

]
− Pr

[
Expdbdh-rand

G,A (1κ) = 1
]

is a negligible function in κ, and where the experiments are as follows:

Experiment Expdbdh-real
G,A (1κ)

(G̃, p, g)
$← G(1κ) ; x, y, z

$← Zp
X ← gx ; Y ← gy ; Z ← gz ; W ← e(g, g)xyz

d
$← A(1κ, G̃, p, g,X, Y, Z,W)

Return d

Experiment Expdbdh-rand
G,A (1κ)

(G̃, p, g)
$← G(1κ) ; x, y, z, w

$← Zp
X ← gx ; Y ← gy ; Z ← gz ; W ← e(g, g)w

d
$← A(1κ, G̃, p, g,X, Y, Z,W)

Return d

We now state the security result.

Theorem 4.3 Let G be a prime order bilinear group generator and RIBE [G] = (S,SK,KU ,DK,
E , D,R) be the associated Revocable IBE scheme defined by Construction 4.1. Then for any
adversary A attacking sRID-CPA security of RIBE with n users, whose running time is tA and
who asks qp private key generation queries, qk key update generation queries and qr revocation
queries, there exists an adversary B solving DBDH problem for G such that

Advsrid−cpa
RIBE,A,n(κ) ≤ 4 ·Advdbdh

G,B (κ) , (1)

where the running time of B, tB = tA +O(κ3).

Proof: We construct an adversary B for the DBDH problem associated with G. B gets (1κ, G̃, p, g,
X, Y, Z,W) as input and it has to return a bit d. It is going to use A.

15

B(1κ, G̃, p, g,X, Y, Z,W) :

(ω∗, t∗, state)
$← A(1κ)

g1 ← X, g2 ← Y
Pick random second-degree polynomials f(x), u(x) with coefficients in Zp,
s.t. u(x) = −x2 for x = ω∗, t∗, o.w. u(x) 6= −x2

For i = 1, 2, 3 : hi ← g
u(i)
2 gf(i)

pk ← (g, g1, g2, h1, h2, h3)
Let rl be an empty set and T be a binary tree with at least n leaf nodes.
Pick a leaf node v∗ from T and a random bit rev
Run A and answer its queries to the SK(·),KU(·), R(·, ·) oracles using the
subroutines defined.

(m0,m1, state
′)

$← ASK(·),KU(·),R(·,·)(1κ, pk, state)

b
$← {0, 1}

c∗1 ← mb ·W, c∗2 ← Z, c∗ω ← Zf(ω∗), c∗t ← Zf(t∗)

c∗ ← (ω∗, t∗, c∗ω, c
∗
t , c
∗
1, c
∗
2)

d
$← ASK(·),KU(·),R(·,·)(1κ, pk, c∗, state′)

If any of the oracles abort return 1
Else if b = d return 1 else return 0

Now, we present the subroutines for answering the oracle queries. These subroutines use the
functions that we define here. For i, j, l, r′ ∈ Zp, S = {0, j} define

F1(i, j, l, r′)
def
= g

l∆j,S(i)
2

(
g
−f(i)

i2+u(i)

1

(
g
i2+u(i)
2 gf(i)

)r′)∆0,S(i)

,

F2(i, r′)
def
=

(
g

−1

i2+u(i)

1 gr
′
)∆0,S(i)

.

SK(ω) :
If rev = 0 and ω = ω∗ then abort
If rev = 1 and ω = ω∗ then:

v ← v∗,

∀x ∈ Path(v) rx
$← Zp

if @lx then lx
$← Zp and store lx in node x

Dx ← glx2 Hg2,h1,h2,h3(ω∗)rx , dx ← grx

If rev = 0 and ω 6= ω∗ then:
Pick an unassigned leaf node v from T and store ω in node v

∀x ∈ Path(v) r′x
$← Zp,

if @lx then lx
$← Zp and store lx in node x

i← ω, j ← t∗, l← lx, r
′ ← r′x

Dx ← F1(i, j, l, r′), dx ← F2(i, r′)
If rev = 1 and ω 6= ω∗ then:

Pick an unassigned leaf node v from T and store ω in node v

∀x ∈ Path(v) r′x
$← Zp,

16

if @lx then lx
$← Zp and store lx in node x

i← ω, l← lx, r
′ ← r′x

∀x ∈ (Path(v) \ Path(v∗))
j ← t∗

Dx ← F1(i, j, l, r′), dx ← F2(i, r′)
∀x ∈ (Path(v) ∩ Path(v∗))

j ← ω∗

Dx ← F1(i, j, l, r′), dx ← F2(i, r′)
Return skω = {(x,Dx, dx)}x ∈ Path(v)

R(ω, t) :
For all leaf nodes v associated with identity ω, add (v, t) to rl

KU(t) :
If rev = 1 and t = t∗ and ∀t ≤ t∗ we have that (ω∗, t) /∈ rl, then abort
Else if t = t∗ then:

∀x ∈ KUNodes(T, rl, t), rx
$← Zp

Ex ← glx2 Hg2,h1,h2,h3(t∗)rx , ex ← grx

If rev = 1 and t 6= t∗ then:
∀x ∈ (KUNodes(T, rl, t) \ Path(v∗))

r′x
$← Zp, i← t, j ← t∗, l← lx, r

′ ← r′x
Ex ← F1(i, j, l, r′), ex ← F2(i, r′)

∀x ∈ (KUNodes(T, rl, t) ∩ Path(v∗))

r′x
$← Zp, i← t, j ← ω∗, l← lx, r

′ ← r′x
Ex ← F1(i, j, l, r′), ex ← F2(i, r′)

If rev = 0 and t 6= t∗ then:
∀x ∈ KUNodes(T, rl, t)

r′x
$← Zp, i← t, j ← t∗, l← lx, r

′ ← r′x
Ex ← F1(i, j, l, r′), ex ← F2(i, r′)

Return kut = {(x,Ex, ex)}x ∈ KUNodes(T,rl,t)

Analysis. f(x) being a random polynomial ensures that h1, h2, h3 are random so, pk has the right

distribution. For i = 1, 2, 3 hi = g
u(i)
2 gf(i) which implies Hg2,h1,h2,h3(x) = g

x2+u(x)
2 gf(x). Since

x = ω∗, t∗ u(x) = −x2, then Hg2,h1,h2,h3(ω∗) = gf(ω∗), Hg2,h1,h2,h3(t∗) = gf(t∗). If W = e(g, g)xyz,
then c∗1 = mb · W = mb · e(g1, g2)z, cω∗ = Zf(ω∗) = gzf(ω∗) = Hg2,h1,h2,h3(ω∗)z, ct∗ = Zf(t∗) =
gzf(t∗) = Hg2,h1,h2,h3(t∗)z. So, if B is in Expdbdh-real

G,B (κ) then c∗ is a well-formed ciphertext of mb.
Otherwise, if W = e(g, g)w for a random w, then c∗1 = mb ·W = mb · e(g, g)w, so w being random
and independent from x, y, z ensures that c∗1 is also random and thus c∗ hides bit b information-
theoretically. In what follows let g1 = ga (to simplify notation).

Case 1. rev = 1, ω = ω∗ in SK(ω) oracle simulation:
Define ax = 1

ω∗ (lx − a). Then Dx = gaxω
∗+a

2 Hg2,h1,h2,h3(ω∗)rx , dx = grx . So, skω has the right

17

distribution.

Case 2. rev = 0, ω 6= ω∗ in SK(ω) oracle simulation:
Define ax = 1

t∗ (lx − a), rx = (r′x − a
ω2+u(ω)

)∆0,S(ω). Then

F2(i, r′) =

(
g

−1

i2+u(i)

1 gr
′
)∆0,S(i)

=
(
g
r′− a

i2+u(i)

)∆0,S(i)

=
(
g
r′x− a

ω2+u(ω)

)∆0,S(ω)

= gr
′
x

and

F1(i, j, l, r′) = g
l∆j,S(i)
2

((
g
−f(i)

i2+u(i)

1

)(
g
i2+u(i)
2 gf(i)

)r′)∆0,S(i)

= g
l∆j,S(i)
2

((
g
−af(i)

i2+u(i)

)(
g
i2+u(i)
2 gf(i)

)r′)∆0,S(i)

= g
l∆j,S(i)
2

(
ga2

(
g
i2+u(i)
2 gf(i)

) −a

i2+u(i)
(
g
i2+u(i)
2 gf(i)

)r′)∆0,S(i)

= g
l∆j,S(i)
2

(
ga2

(
g
i2+u(i)
2 gf(i)

)r′− a
i2+u(i)

)∆0,S(i)

= g
l∆j,S(i)+a∆0,S(i)
2

(
g
i2+u(i)
2 gf(i)

)(r′− a
i2+u(i)

)
∆0,S(i)

= g
l∆j,S(i)+a∆0,S(i)
2 Hg2,h1,h2,h3(i)

(
r′− a

i2+u(i)

)
∆0,S(i)

= g
lx∆j,S(ω)+a∆0,S(ω)
2 Hg2,h1,h2,h3(ω)

(
r′x− a

ω2+u(ω)

)
∆0,S(ω)

= gaxω+a
2 Hg2,h1,h2,h3(ω)rx .

So, skω has the right distribution.

Case 3. rev = 1 and ω 6= ω∗. Similar arguments as above apply if we define
ax = 1

ω∗ (lx − a), rx = (r′x − a
ω2+u(ω)

)∆0,S(ω) for nodes on the path of v∗ and

ax = 1
t∗ (lx − a), rx = (r′x − a

ω2+u(ω)
)∆0,S(ω) for rest of the nodes.

Similar arguments as above apply for all cases in KU(t) oracle simulation if we define:

In case rev = 0
ax = 1

t∗ (lx − a), rx = (r′x − a
t2+u(t)

)∆0,S(t) for all nodes.

And, in case rev = 1
ax = 1

ω∗ (lx − a), rx = (r′x − a
t2+u(t)

)∆0,S(t) for nodes on the path of v∗ and

ax = 1
t∗ (lx − a), rx = (r′x − a

t2+u(t)
)∆0,S(t) for rest of the nodes.

18

Note that we are defining ax consistently in both oracle simulations, i.e. in case rev = 0, ax =
1
t∗ (lx−a) for all nodes, and in case rev = 1, ax = 1

ω∗ (lx−a) for all nodes on the path from v∗ to the
root node, ax = 1

t∗ (lx − a) for rest of the nodes. Also note that values lx which are stored in node
x, and identities ω which are stored in leaf nodes of tree T have the right distribution and also that
they are modified only by SK(ω) oracle. KU(t) and R(ω, t) oracles do not modify them. Similarly,
revocation list rl is modified only by R(ω, t) oracle. SK(ω) and KU(t) oracles do not modify them.
Thus, oracles maintain the state and revocation list consistently and with right distribution.

Claim 4.4 Let sreal, srand denote the events that none of the oracles abort in Expdbdh-real
G,B (1κ),

Expdbdh-rand
G,B (1κ) respectively. Then,

Pr [sreal] = Pr [srand] ≥ 1

2
.

Proof: We will prove the claim in two parts. First we will show that Pr [sreal] = Pr [srand] and
then we will show that Pr [sreal] ≥ 1

2 .

First part is easy to see. The probability that SK(ω) and KU(t) oracles abort depends on the bit
rev which is chosen independently from whether B is in Expdbdh-real

G,B (1κ) or Expdbdh-rand
G,B (1κ). So,

Pr [sreal] = Pr [srand]. Now it remains to show that Pr [sreal] ≥ 1
2 .

Condition 3 of Definition 3.2 says that SK(ω) oracle can be queried on ω∗ only if R(ω, t) oracle
was queried on (ω∗, t) for any t ≤ t∗. Thus, we have

Pr [ω = ω∗] ≤ Pr [(ω∗, t) ∈ rl, ∀ t ≤ t∗]

⇒ 1− Pr [ω = ω∗] ≥ Pr [(ω∗, t) /∈ rl, ∀ t ≤ t∗]

⇒ 1− Pr [ω = ω∗] ≥ Pr [(t = t∗) ∧ ((ω∗, t) /∈ rl, ∀ t ≤ t∗)] .

We see that SK(ω) oracle aborts if rev = 0 and ω = ω∗ and KU(t) oracle aborts if rev = 1, t = t∗

and ∀t ≤ t∗ (ω∗, t) /∈ rl. Thus,

Pr
[
sreal

]
= Pr [(rev = 0) ∧ (ω = ω∗)]

+ Pr [(rev = 1) ∧ (t = t∗) ∧ ((ω∗, t) /∈ rl, ∀ t ≤ t∗)]

= Pr [rev = 0] · Pr [ω = ω∗]

+ Pr [rev = 1] · Pr [(t = t∗) ∧ ((ω∗, t) /∈ rl, ∀ t ≤ t∗)]

≤ 1

2
Pr [ω = ω∗] +

1

2
(1− Pr [ω = ω∗])

≤ 1

2
.

Therefore, Pr [sreal] ≥ 1
2 .

19

We have shown above that when B is in Expdbdh-real
G,B (1κ) and none of the oracles abort, then B

is simulating the exact experiment Expsrid−cpa
RIBE,A,n(1κ) for A. So,

Pr
[

Expdbdh-real
G,B (κ) = 1 | sreal

]
≥ Pr

[
Expsrid−cpa

RIBE,A,n(1κ) = 1
]
.

When B is in Expdbdh-rand
G,B (1κ) and none of the oracles abort then as explained earlier bit b is

information-theoretically hidden from A. So,

Pr
[

Expdbdh-rand
G,B (κ) = 1 | srand

]
≤ 1

2
.

Also, since B outputs 1 when either of the oracles aborts, so

Pr
[

Expdbdh-real
G,B (1κ) = 1 | sreal

]
= 1,

Pr
[

Expdbdh-rand
G,B (1κ) = 1 | srand

]
= 1

Thus,

Advdbdh
G,B (κ) = Pr

[
Expdbdh-real

G,B (1κ) = 1
]
− Pr

[
Expdbdh-rand

G,B (1κ) = 1
]

= Pr [sreal] · Pr
[

Expdbdh-real
G,B (1κ) = 1|sreal

]
+ Pr

[
sreal

]
· Pr

[
Expdbdh-real

G,B (1κ) = 1|sreal
]

−Pr [srand] · Pr
[

Expdbdh-rand
G,B (1κ) = 1|srand

]
−Pr

[
srand

]
· Pr

[
Expdbdh-rand

G,B (1κ) = 1|srand
]

≥ 1

2
·
(

Pr
[

Expdbdh-real
G,B (1κ) = 1|sreal

]
−Pr

[
Expdbdh-rand

G,B (1κ) = 1|srand
])

≥ 1

2
·
(

Pr
[

Expsrid−cpa
RIBE,A,n(1κ) = 1

]
− 1

2

)
≥ 1

4
·Advsrid−cpa

RIBE,A,n(κ) .

Finally we observe that tB = tA+O(κ3) as B does only a constant number of modulo exponen-
tiations and multiplications and picks a constant number of random group elements (recall that by
convention tA includes the time of the experiment including computations done by the oracles.˙

5 Addressing CCA Security

We suggest two ways to construct RIBE schemes that resist chosen-ciphertext attacks. Our first
solution is a modification of our main construction. Our second solution is generic in that it is
based on any sRID-CPA secure scheme, though CCA security relies on the RO model.

RIBECCA Construction. We combine the ideas of [4] (used there for a different problem of
constructing an IND-CCA public-key encryption scheme) with the error-tolerance property of Fuzzy

20

IBE to modify our Revocable IBE scheme. Changes are mainly in the encryption and decryption
algorithms. We employ a strongly-unforgeable one-time signature scheme (cf. [4] that recalls the
primitive and its security definition). The setup algorithm of the new scheme is very similar to
the one in Fuzzy IBE where 2 out of 3 attributes of ciphertexts should match with those of the
decryption key. The private key generation and key update generation algorithms are very similar
to those of RIBE except that we now use second-degree polynomials as opposed to first-degree
polynomials in RIBE . The encryption algorithm runs the key generation algorithm of one-time
signature to obtain a signing key and verification key and then encrypts the message with three
attributes: identity, time and verification key. Then it signs the resulting intermediate ciphertext
using the signing key. The decryption algorithm verifies the signature, and that ciphertext is
properly formed (by using a ciphertext sanity check due to [13]) before decrypting.

Let G be a bilinear group generator and OT S = (SGen,Sign,Ver) be a strongly-unforgeable one-
time signature scheme. Let RIBE [G] = (S, SK, KU ,DK, E ,D,R) be the scheme of Construction
4.1. We define RIBECCA[G,OT S] = (S ′, SK′,KU ′,DK, E ′,D′,R) by specifying the differences
from RIBE . Here we require that identities, time periods and the verification keys for the one-time
signature output by SGen are mapped to distinguished elements in Z∗p (e.g., by pre-pending “00”,
“01” and “11” to strings of these types and then using a collision-resistant hash function that maps
{0, 1}∗ to Z∗p. Let J be {1, 2, 3, 4}.

• Setup S ′(κ, n):

Everything is the same as in S except that pk has an additional element h4
$← G and

pk = (g, g1, g2, h1, h2, h3, h4).

• Private Key Generation SK′(pk,mk, ω, st):
Everything is the same as in SK except that now we pick a random second-degree poly-
nomial qx(y) with coefficients in Zp and the same restriction that qx(0) = a. Parse pk as
(g, g1, g2, h1, h2, h3, h4), mk as a, st as T. Pick an unassigned leaf node v from T and store ω
in that node.

∀x ∈ Path(v)
if qx is undefined, then pick a random second-degree polynomial qx,
s.t. qx(0) = a and store qx in node x

rx
$← Zp ; Dx ← g

qx(ω)
2 Hg2,J,h1,h2,h3,h4(ω)rx ; dx ← grx

Return skω = {(x,Dx, dx)}x ∈ Path(v), st.

• Key Update Generation KU ′(pk,mk, t, rl, st):
Parse pk as (g, g1, g2, h1, h2, h3, h4), mk as a, st as T.

∀x ∈ KUNodes(T, rl, t)

rx
$← Zp ; Ex ← g

qx(t)
2 Hg2,J,h1,h2,h3,h4(t)rx ; ex ← grx

Return kut = {(x,Ex, ex)}x ∈ KUNodes(T,rl,t).

• Encryption E ′(pk, ω, t,m):
Parse pk as (g, g1, g2, h1, h2, h3, h4)

(sigk, vk)
$← SGen(1κ).

z
$← Zp ; c1 ← m · e(g1, g2)z ; c2 ← gz ; cω ← Hg2,J,h1,h2,h3,h4(ω)z

21

ct ← Hg2,J,h1,h2,h3,h4(t)z ; cvk ← Hg2,h1,h2,h3,h4(vk)z

c← (ω, t, cω, ct, cvk, c1, c2)
σ ← Sign(sigk, c)
Return c̃ = (c, σ, vk).

• Decryption D′(dkω,t, c̃):
Parse dkω,t as (D,E, d, e), c̃ as (c = (ω, t, cω, ct, cvk, c1, c2), σ, vk)
If Ver(vk, c, σ) 6= 1 then return ⊥.

Else pick r1, r2, r3
$← Zp

If e(c2, Hg2,J,h1,h2,h3,h4(ω)r1 ·Hg2,J,h1,h2,h3,h4(t)r2 ×Hg2,J,h1,h2,h3,h4(vk)r3) 6=
e(g, cr1ω c

r2
t c

r3
vk) then return ⊥

Else m← c1

(
e(d,cω)
e(D,c2)

) t
t−ω
(

e(e,ct)
e(E,c2)

) ω
ω−t

Return m.

One can verify that consistency follows directly from consistency of OT S and RIBE .

RIBECCA Security. We claim the following.

Theorem 5.1 Let G be a prime order bilinear group generator, OT S = (SGen,Sign,Ver) be a one-
time signature scheme and RIBECCA[G,OT S] = (S ′, SK′,KU ′,DK, E ′, D′, R) be the associated
Revocable IBE scheme as per construction above. Then for any adversary A attacking sRID-CCA
security of RIBE with n users, whose running time is tA and who asks qp private key generation
queries, qk key update generation queries, qr revocation queries and qd decryption queries, there ex-
ist an adversary B solving DBDH problem for G and an adversary F attacking strong unforgeability
of OT S such that

Advsrid−cca
RIBE,A,n(κ) ≤ 4 ·Advdbdh

G,B (κ) + Advsuf−ots
OT S,F (κ) , (2)

where the last term refers to the advantage of F breaking strong unforgeability of OT S (cf. [4] for
the definition) and tB ≈ tF ≈ tA + qd(

2tp
logn) +O(k3).

We provide some intuition before giving the actual proof. It is not hard to show that RIBECCA
is sRID-CPA secure, the security proof is very similar to the proof of Theorem 4.3. Even though
a ciphertext is encrypted under an additional attribute: the verification key, the key authority
never issues the corresponding decryption key component. To show that RIBECCA is also sRID-
CCA secure, the simulator (the DBDH adversary) needs to simulate the decryption oracle. Using
the arguments very similar to those used in [13] we can show that the randomized check in the
decryption algorithm that the simulator can perform as well, does guarantee with overwhelming
probability that a ciphertext was formed correctly (according to the encryption algorithm). If
the adversary queries a ciphertext whose verification key component is the same as that of the
challenge ciphertext, then the decryption query cannot be answered correctly, but in this case one
can construct an adversary breaking security of the one-time signature scheme. If the verification
keys are different and the ciphertext passes the randomized check, then the simulator can generate
the decryption key corresponding to identity and verification key of the queried ciphertext, and such
a decryption key will successfully decrypt the ciphertext because we know from the randomized
check that the queried ciphertext is a well-formed ciphertext. Generating such a decryption key is
possible because the verification key is different from the challenge verification key, and following
the proof of security of Fuzzy IBE, it is possible for the simulator to generate valid keys for a set of

22

attributes if they overlap with the challenge set of attributes in fewer than the threshold number
of attributes.

Proof: We construct an adversary B for the DBDH problem associated with G. B gets (1κ, G̃, p, g,X,
Y, Z,W) as input and it has to return a bit d. It is going to use A.

B(1κ, G̃, p, g,X, Y, Z,W) :

(ω∗, t∗, state)
$← A(1κ)

g1 ← X, g2 ← Y

sigk∗, vk∗
$← SGen(1κ), uk∗ ← 01‖vk∗, luk∗

$← Zp
Pick random third-degree polynomials f(x), u(x) with coefficients in Zp,
s.t. u(x) = −x3 for x = ω∗, t∗, uk∗, o.w. u(x) 6= −x3

For i = 1, 2, 3, 4 : hi ← g
u(i)
2 gf(i)

pk = (g, g1, g2, h1, h2, h3, h4)
Let rl be an empty set and T be a binary tree with at least n leaf nodes
Pick a leaf node v∗ from T and a random bit rev.
Run A and answer its queries to the SK′(·),KU ′(·),R(·, ·),D′(·) oracles using
subroutines defined below

(m0,m1, state
′)

$← ASK′(·),KU ′(·),R(·,·),D′(·)(1κ, pk, state)

b
$← {0, 1}

c∗ω ← Zf(ω∗), c∗t ← Zf(t∗), c∗uk ← Zf(uk∗), c∗1 ← mb ·W, c∗2 ← Z
c∗ ← (ω∗, t∗, c∗ω, c

∗
t , c
∗
uk, c

∗
1, c
∗
2)

σ∗ ← Sign(sigk∗, c∗).
c̃∗ ← (c∗, σ∗, vk∗).

d
$← ASK(·),KU(·),R(·,·),D(·)(1κ, pk, c̃∗, state′)

If any of the oracles abort return 1
Else if b = d return 1 else return 0

Now, we present the subroutines for answering the oracle queries. Subroutines for SK′(·),KU ′(·),R(·, ·)
oracles are very similar to those in the Proof of Theorem 4.3, but we give them here too for the
sake of completeness. The oracles use the functions that we define here.

For i, j, l, r′ ∈ Zp, uk ← uk∗, luk ← luk∗ , S = {0, j, uk} define

F1(i, j, l, r′)
def
= g

l∆j,S(i)+luk∆uk,S(i)
2

(
g
−f(i)

i3+u(i)

1

(
g
i3+u(i)
2 gf(i)

)r′)∆0,S(i)

F2(i, r′)
def
=

(
g

−1

i3+u(i)

1 gr
′
)∆0,S(i)

.

SK′(ω) :
If rev = 0 and ω = ω∗ then abort
If rev = 1 and ω = ω∗ then

v ← v∗,

∀x ∈ Path(v) rx
$← Zp

23

if @lx then lx
$← Zp and store lx in node x

Dx ← glx2 Hg2,h1,h2,h3,h4(ω∗)rx , dx ← grx

If rev = 0 and ω 6= ω∗ then
Pick an unassigned leaf node v from T and store ω in node v

∀x ∈ Path(v) r′x
$← Zp

if @lx then lx
$← Zp and store lx in node x

i← ω, j ← t∗, l← lx, r
′ ← r′x

Dx ← F1(i, j, l, r′), dx ← F2(i, r′)
If rev = 1 and ω 6= ω∗ then:

Pick an unassigned leaf node v from T and store ω in node v

∀x ∈ Path(v) r′x
$← Zp

if @lx then lx
$← Zp and store lx in node x

i← ω, l← lx, r
′ ← r′x

∀x ∈ (Path(v) \ Path(v∗))
j ← t∗

Dx ← F1(i, j, l, r′), dx ← F2(i, r′)
∀x ∈ (Path(v) ∩ Path(v∗))

j ← ω∗

Dx ← F1(i, j, l, r′), dx ← F2(i, r′)
Return skω = {(x,Dx, dx)}x ∈ Path(v)

R(ω, t) :
For all leaf nodes v associated with identity ω, add (v, t) to rl

KU ′(t) :
If rev = 1, t = t∗ and ∀t ≤ t∗ (ω∗, t) /∈ rl then abort
Else if t = t∗ then:

∀x ∈ KUNodes(T, rl, t), rx
$← Zp

Ex ← glx2 Hg2,h1,h2,h3,h4(t∗)rx , ex ← grx

If rev = 1, t 6= t∗ then
∀x ∈ (KUNodes(T, rl, t) \ Path(v∗))

r′x
$← Zp, i← t, j ← t∗, l← lx, r

′ ← r′x
Ex ← F1(i, j, l, r′), ex ← F2(i, r′)

∀x ∈ (KUNodes(T, rl, t) ∩ Path(v∗))

r′x
$← Zp, i← t, j ← ω∗, l← lx, r

′ ← r′x
Ex ← F1(i, j, l, r′), ex ← F2(i, r′)

If rev = 0, t 6= t∗ then
∀x ∈ KUNodes(T, rl, t)

r′x
$← Zp, i← t, j ← t∗, l← lx, r

′ ← r′x
Ex ← F1(i, j, l, r′), ex ← F2(i, r′)

Return kut = {(x,Ex, ex)}x ∈ KUNodes(T,rl,t)

24

D′(c̃) :
Parse c̃ as (c = (ω, t, cω, ct, cuk, c1, c2), σ, vk)
We assume that ω = ω∗, t = t∗, o.w. such a decryption query can be trivially
replied by generating a decryption key using SK(ω) and KU(t) oracles
If Ver(vk, c, σ) 6= 1 (i.e. invalid ciphertext), then abort
If Ver(vk, c, σ) = 1 and vk = vk∗, then return a random bit
If Ver(vk, c, σ) = 1 and vk 6= vk∗ then

First do a ciphertext sanity check on c (as explained in Section 5)
If c passes sanity check then generate dkω,uk = (D,E, d, e) as follows

uk ← 01‖vk, rω, lω, lt, r′uk
$← Zp, S ← {0, ω, t}

D ← glω2 Hg2,h1,h2,h3,h4(ω)rω , d← grω

E ←
(
g
lω∆ω,S(uk)+lt∆t,S(uk)
2

)
·

(
g
−f(uk)

uk3+u(uk)

1

(
g
uk3+u(uk)
2 gf(uk)

)r′uk)∆0,S(uk)

e←
(
g

−1

uk3+u(uk)

1 gr
′
uk

)∆0,S(uk)

Now use dkω,uk to decrypt c as follows

m← c1

(
e(d,cω)
e(D,c2)

) uk
uk−ω

(
e(e,cuk)
e(E,c2)

) ω
ω−uk

Return m

Analysis. Justification mostly follows directly from the Proof of Theorem 4.3 except for the jus-
tification for the simulation of the decryption oracle that we present here. Note that in RIBECCA,
only 2 out of 3 attributes need to be matched between a ciphertext and decryption key for suc-
cessful decryption, as opposed to 2 out of 2 attributes in RIBE . Therefore, in the decryption
algorithm, the ciphertext component corresponding to the verification-key attribute is used only
for the ciphertext sanity check and not for actual decryption. However, the decryption oracle
needs to use this ciphertext component for decrypting ciphertexts encrypted for the challenge
identity and challenge time. The decryption oracle will therefore fail to decrypt malformed ci-
phertexts, in particular those ciphertexts whose verification key components are invalid. So, the
ciphertext sanity check which discards all such ciphertexts with a very high probability, ensures
that the decryption oracle will be able to answer all but a negligible fraction of valid decryption
queries. Let q(y) be a second-degree polynomial. Let g1 = ga (to simplify notation). Define
q(0) = a, q(ω) = lω, q(t) = lt, ruk = (r′uk −

a
uk3+u(uk)

)∆0,S(uk) then as in Section 6.3 of [23] we

can show that D = g
q(ω)
2 Hg2,h1,h2,h3,h4(ω)rω , d = grω , E = g

q(uk)
2 Hg2,h1,h2,h3,h4(uk)ruk , e = gruk .

From the consistency condition of RIBECCA it follows that decryption of c using dkω,uk will yield
the right message. Hence B correctly simulates the decryption oracle except for the event when A
queries a ciphertext (c, σ, vk∗) to the decryption oracle where (c, σ) 6= (c∗, σ∗) and Ver(vk∗, c, σ) = 1.
We denote this event by forge. Note that the definition of forge is essentially the same as in the
Proof of Theorem 1 of [4] but we write it here too for the sake of completeness. Event forge also
includes the case where A queries (c, σ, vk∗) before receiving the challenge ciphetext in which case
(c, σ) may or may not be equal to (c∗, σ∗). Now, it is easy to see that (c, σ, vk∗) can be used to
forge a signature of OT S with probability Pr [forge]. Namely one can construct an adversary F
such that Advsuf−ots

OT S,F (κ) ≥ Pr [forge].

25

Thus, from Theorem 4.3 and decryption oracle oracle simulation we have

Advsrid−cca
RIBECCA,A,n(κ) ≤ 4 ·Advdbdh

G,B (κ) + Pr [forge]

≤ 4 ·Advdbdh
G,B (κ) + Advsuf−ots

OT S,F (κ) .

The above implies the statement of the theorem.

We note that alternatively we could utilize simulation-sound NIZK proofs in a way similar to
the construction of CCA secure Fuzzy IBE in [23], but our construction is more efficient.

Generic CCA construction. The Fujisaki-Okamoto (or FO for short) transform [10, 9] is a
generic transform to convert a CPA secure public key encryption scheme to a CCA secure one in
the RO model. The transform can also be applied to IBE schemes as shown in [16]. Here we show
how to apply the FO transform to Revocable IBE schemes. Unlike the previous approach, this
solution is generic in that it applies to any Revocable IBE scheme. If applied to our construction
(the only secure Revocable IBE scheme currently known), then we suggest to use its more efficient
RO modification we discussed, since the FO transform also relies on the RO model.

Let RIBE = (S,SK,KU ,DK, E ,D,R) be any Revocable IBE scheme as per Definition 3.1.
We can construct another Revocable IBE scheme FO-RIBECCA = (S ′, SK, KU , DK, E ′,D′,R) as
follows (we only specify the differences from RIBE). Let (M, I, T) and (M′, I, T) be the (message
space, identity space, time space) of RIBE and FO-RIBECCA resp. Let COINS be the set from
where E draws its random coins. We require that for every m ∈ M′, σ ∈ {0, 1}κ we have that

m‖σ ∈ M. To make the use of randomness explicit we use notation r
$← COINS ; E(·, ·, ·, · ; r)

as opposed to the traditional shorthand E(·, ·, ·, ·). The setup algorithm S ′(1κ, n) follows S. In
addition, it specifies a hash function H : {0, 1}∗ → COINS and outputs it as part of public
parameters pk′. The encryption and decryption algorithms are as follows.

• Encryption E ′(pk′, ω, t,m):

σ
$← {0, 1}κ ; r ← H(m‖σ‖ω‖t)

c← E(pk, ω, t,m‖σ ; r)
Return c.

• Decryption D′(dkω,t, c):
m′ ← D(dkω,t, c)
Parse m′ as m‖σ ; r ← H(m‖σ‖ω‖t)
If c = E(pk, ω, t,m‖σ ; r) then return m else return ⊥.

Consistency follows from the justification of the consistency requirement for RIBE .
Before we present the security analysis of FO-RIBECCA, we define a property γ-uniformity for

Revocable IBE schemes.

γ-uniformity. The γ-uniformity property has been defined earlier in the context of public key
encryption schemes [10] and identity-based encryption schemes [26]. Here we define it for Revocable
IBE schemes.

Definition 5.2 [γ-uniformity] LetRIBE = (S,SK,KU ,DK, E ,D,R) be a Revocable IBE scheme.
For any public parameter pk output by S, any given identity ω ∈ I, time t ∈ T , the corresponding
decryption key dk, message m ∈M and a ciphertext c output by E define

26

γ(m, c) = Pr
[
r

$← COINS : c = E(pk, ω, t,m; r)
]
.

We say that RIBE is γ-uniform if for any ω ∈ I, t ∈ T ,m ∈ M and any ciphertext c output
by E , γ(m, c) ≤ γ.

FO-RIBECCA Security.

Theorem 5.3 Let RIBE be a γ-uniform Revocable IBE scheme with message space M, identity
space I, time space T and set of coins COINS for its encryption algorithm. Let H be a hash
function mappingM×I×T to COINS (modeled as the RO) and FO-RIBECCA be the associated
Revocable IBE scheme as per construction above. Then for an adversary A attacking sRID-CCA
security of FO-RIBECCA with n users, whose running time is tA and who asks qd decryption
queries and qh random oracle queries, there exists an adversary B attacking sRID-CPA security of
RIBE such that

Advsrid−cca
FO-RIBECCA,A,n(κ) ≤

(
Advsrid−cpa

RIBE,B,n(κ) +
1

2

)
·
(

1

1− γqd

)
+
qh
2κ
− 1

2
, (3)

where the running time of B, tB ≈ tA + κqh .

Proof: We construct an adversary B attacking sRID-CPA security of RIBE using adversary A
attacking sRID-CCA security of FO-RIBECCA (in RO model). It has access to SK(·),KU(·) and
R(·, ·) oracles. It needs to simulate random oracle RO(·) (for hash function H) and decryption
oracle D′(·).

BSK(·),KU(·),R(·,·)(1κ) :

(ω∗, t∗, state)
$← A(1κ)

Return (ω∗, t∗, state) and get back pk
Run A and answer its queries to the SK(·),KU(·) and R(·, ·) oracles by using
own oracles. For RO(·) and D′(·) oracles use subroutines defined below

(m0,m1, state
′)

$← ASK(·),KU(·),R(·,·),D′(·),RO(·)(1κ, pk, state)

σ0, σ1
$← {0, 1}κ

Return (m0‖σ0,m1‖σ1, state
′) and get back c∗

d
$← ASK(·),KU(·),R(·,·),D′(·),RO(·)(1κ, pk, c∗, state′)

If any of the oracles or A aborts then for i ∈ {0, 1} find a tuple (mi‖σi, ω, t, r)
in the list stored by RO. If such a tuple is found return i else return 1
Else if neither the oracles nor A aborts return d

Below we present the subroutines for answering RO(·) and D′(·) oracle queries.

RO(m‖ω‖t) :
If (m,ω, t) was queried before then return the corresponding r

Else r
$← COINS, store (m,ω, t, r) and return r

27

D′(c) :
Compute ω, t from c
Find a tuple (m,ω, t, r) stored by RO(·) oracle, such that c = E(pk, ω, t,m ; r)
If no such pair found then abort
Else parse m as m′‖σ where m′ ∈M′ and σ ∈ {0, 1}κ
Return m′

Analysis. Let the challenge bit for the adversary B be b. Define the following events.

abort: Decryption oracle aborts in the sRID-CCA experiment simulated by B.

succA: A succeeds in the sRID-CCA experiment simulated by B, given that abort does not occur.

succB: B succeeds in the sRID-CPA experiment, given that abort does not occur.

queryb: A queries (mb‖σb, ω, t, r) to the random oracle in the sRID-CCA experiment simulated by
B.

queryb′: A queries (mb̄‖σb̄, ω, t, r) to the random oracle in the sRID-CCA experiment simulated by
B.

Pr [succA] = Pr [succA | queryb] Pr [queryb]

+Pr
[
succA | ¬queryb ∧ queryb′

]
Pr
[
¬queryb ∧ queryb′

]
+Pr

[
succA | ¬queryb ∧ ¬queryb′

]
Pr
[
¬queryb ∧ ¬queryb′

]
Pr [succB] = Pr [succB | queryb] Pr [queryb]

+Pr
[
succB | ¬queryb ∧ queryb′

]
Pr
[
¬queryb ∧ queryb′

]
+Pr

[
succB | ¬queryb ∧ ¬queryb′

]
Pr
[
¬queryb ∧ ¬queryb′

]
.

From the description of B we have

Pr [succB | queryb] = 1 ,

Pr
[
succB | queryb′

]
= 0 ,

Pr
[
succA | ¬queryb ∧ ¬queryb′

]
= Pr

[
succB | ¬queryb ∧ ¬queryb′

]
.

Thus we have

Pr [succB]− Pr [succA] = (1− Pr [succA | queryb]) Pr [queryb]

−Pr
[
succA | ¬queryb ∧ queryb′

]
Pr
[
¬queryb ∧ queryb′

]
≥ −Pr

[
¬queryb ∧ queryb′

]
.

But, we know that the probability that A queries a (mb̄‖σb̄, ω, t, r) tuple to the random oracle is
at most 2−κ, because σb̄ is a randomly chosen κ-bit value that is information theoretically hidden
from A. So,

Pr
[
¬queryb ∧ queryb′

]
≤ qh

2κ
.

28

Also, Pr [succA] = Advsrid−cca
FO-RIBECCA,A,n(κ) + 1/2. So,

Pr [succB] ≥ Advsrid−cca
FO-RIBECCA,A,n(κ) +

1

2
− qh

2κ
.

It remains to estimate Pr [¬abort]. The event abort occurs when A queries the decryption oracle for
some ciphertext without querying the random oracle for the randomness that was used to generate
the ciphertext. From the definition of γ-uniformity Definition 5.2, we know that this can happen
with probability at most γ. Thus,

Pr [¬abort] ≤ (1− γ)qd ≈ (1− γqd) .

Therefore,

Advsrid−cpa
RIBE,B,n(κ) ≥ (1− γqd)

(
Advsrid−cca

FO-RIBECCA,A,n(κ) +
1

2
− qro

2κ

)
− 1

2
.

Thus, Equation (3) follows from the above,

Advsrid−cca
FO-RIBECCA,A,n(κ) ≤

(
Advsrid−cpa

RIBE,B,n(κ) +
1

2

)(
1

1− γqd

)
+
qro
2κ
− 1

2
.

The above implies the statement of the theorem.

6 Revocable ABE and Fuzzy IBE

Key-policy attribute-based encryption (KP-ABE) [14] is a generalization of Fuzzy IBE which allows
the authority to specify more advanced decryption policies. In KP-ABE, as in Fuzzy IBE, each
ciphertext is labeled by the sender with a set of descriptive attributes. However, each private key
is associated with an access tree that specifies which type of ciphertexts the key can decrypt. A
particular key can decrypt a particular ciphertext only if the ciphertext attributes satisfy the access
tree of the key. The problem of revocation of attributes is as relevant to KP-ABE as the problem
of identity revocation is relevant for IBE. There is no solution known other than the frequent key
update for all attributes. As we explained in the Introduction this solution does not scale well.
We extend our ideas to construct a key-policy attribute-based encryption with efficient revocation
or simply Revocable KP-ABE. Here we just explain how we obtain a Revocable KP-ABE and that
will imply a Revocable Fuzzy IBE as well. The security of our construction holds only in a weaker
selective revocation list model, where the adversary must declare in advance all the users to be
revoked prior to the challenge time.

The construction uses the KP-ABE construction from [14] and a binary tree in the following
way. Messages are encrypted with attributes β and time, where β is the set of attributes which is
used in encryption in KP-ABE. The root node of the access tree of decryption key is a 2-out-of-2
gate whose one child is time (similarly to Revocable IBE) and the other child is the root node of
access tree A. The component of decryption key corresponding to A and time are called private key
and key update, respectively. Private key for access tree A is computed in the same way as keys
are computed in KP-ABE except that, instead of the root polynomial of A, the root polynomial
of decryption key evaluates to the master key at 0. The use of binary tree is essentially the same
in both Revocable IBE and Revocable KP-ABE e.g., the way users are assigned to leaf nodes, the
way polynomials are selected for each node, the number of private keys each user gets, the way key
updates are computed etc.

29

7 Conclusions

We proposed an IBE scheme with efficient revocation, whose complexity of key updates is sig-
nificantly reduced (from linear to logarithmic in the number of users) compared to the previous
solution. We discussed several variants achieving different levels of security. We also discussed how
to construct an attribute-based encryption scheme with efficient revocation. Our schemes should
be particularly useful in the settings where a large number of users is involved and scalability is an
issue.

8 Acknowledgements

We thank Amit Sahai and Hakan Seyalioglu for pointing out that the security of our revocable
KP-ABE holds in a weaker (selective revocation list) model than was claimed in the conference
proceedings version. We also thank Adam O’Neill and anonymous reviewers for useful comments
and suggestions, and Goichiro Hanaoka for clarifications on [15].

References

[1] W. Aiello, S. Lodha, and R. Ostrovsky. Fast Digital Identity Revocation (Extended Abstract).
In CRYPTO, pages 137–152, 1998.

[2] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[3] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without
Random Oracles. In EUROCRYPT, pages 223–238, 2004.

[4] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. SIAM J. Comput., 36(5):1301–1328, 2006.

[5] D. Boneh, X. Ding, G. Tsudik, and M. Wong. A method for fast revocation of public key
certificates and security capabilities. In USENIX Security Symposium, pages 22–22, 2001.

[6] D. Boneh and M. K. Franklin. Identity-Based Encryption from the Weil Pairing. In CRYPTO,
pages 213–229, 2001.

[7] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based Encryp-
tion. In EUROCRYPT, pages 207–222, 2004.

[8] Ran Canetti, Shai Halevi, and Jonathan Katz. A Forward-Secure Public-Key Encryption
Scheme. In EUROCRYPT, pages 255–271, 2003.

[9] E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key Encryption at
Minimum Cost. In Public Key Cryptography, pages 53–68, 1999.

[10] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption
Schemes. In CRYPTO, pages 537–554, 1999.

[11] Craig Gentry. Certificate-Based Encryption and the Certificate Revocation Problem. In EU-
ROCRYPT, pages 272–293, 2003.

30

[12] V. Goyal. Certificate Revocation Using Fine Grained Certificate Space Partitioning. In Fi-
nancial Cryptography, pages 247–259. Springer, 2007.

[13] V. Goyal. Reducing Trust in the PKG in Identity Based Cryptosystems. In CRYPTO, pages
430–447, 2007.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM Conference on Computer and Communications
Security, pages 89–98, 2006.

[15] Y. Hanaoka, G. Hanaoka, J. Shikata, and H. Imai. Identity-Based Hierarchical Strongly Key-
Insulated Encryption and Its Application. In ASIACRYPT, pages 495–514, 2005.

[16] T. Kitagawa, P. Yang, G. Hanaoka, R. Zhang, H. Watanabe, K. Matsuura, and H. Imai.
Generic Transforms to Acquire CCA-Security for Identity Based Encryption: The Cases of
FOpkc and REACT. In ACISP, pages 348–359, 2006.

[17] B. Libert and J.-J. Quisquater. Efficient revocation and threshold pairing based cryptosystems.
In PODC, pages 163–171, 2003.

[18] S. Micali. Efficient certificate revocation. Technical Report MIT/LCS/TM-542b, 1996.

[19] S. Micali. Novomodo: Scalable Certificate Validation and Simplified PKI Management. In
PKI Research Workshop, 2002.

[20] D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless Receivers.
In CRYPTO, 2002.

[21] M. Naor and K. Nissim. Certificate Revocation and Certificate Update. In USENIX Security
Symposium, 1998.

[22] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systems. In ACM
Conference on Computer and Communications Security, pages 99–112, 2006.

[23] A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. In EUROCRYPT, pages 457–473,
2005.

[24] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO, pages 47–53,
1984.

[25] B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In EUROCRYPT,
pages 114–127, 2005.

[26] P. Yang, T. Kitagawa, G. Hanaoka, R. Zhang, K. Matsuura, and H. Imai. Applying Fujisaki-
Okamoto to Identity-Based Encryption. In AAECC, pages 183–192, 2006.

31

