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Abstract. We introduce the concept of identity-based encryption (IBE)
with master key-dependent chosen-plaintext (mKDM-sID-CPA) security.
These are IBE schemes that remain secure even after the adversary sees
encryptions, under some initially selected identities, of functions of the
master secret keys. We then show that the Canetti, Halevi and Katz
(Eurocrypt 2004) transformation delivers chosen-ciphertext secure key-
dependent encryption (KDM-CCA) schemes when applied to mKDM-
sID-CPA secure IBE schemes. Previously only one generic construction
of KDM-CCA secure public key schemes was known, due to Camenisch,
Chandran and Shoup (Eurocrypt 2009), and it required non-interactive
zero knowledge proofs (NIZKs). Thus we show that NIZKs are not in-
trinsic to KDM-CCA public key encryption. As a proof of concept, we
are able to instantiate our new concept under the Rank assumption on
pairing groups and for affine functions of the secret keys. The scheme is
inspired by the work by Boneh, Halevi, Hamburg and Ostrovsky (Crypto
2008). Our instantiation is only able to provide security against single
encryption queries, or alternatively, against a bounded number of en-
cryption queries. Secondly, we show that a special parameters setting
of our main scheme provides master-key leakage-resilient identity-based
encryption against chosen-plaintext attacks. This recently proposed se-
curity notion aims at taking into account security against side-channel
attacks that only decrease the entropy of the master-key up to a certain
threshold. Thirdly, we give new and better reductions between the Rank
problem (previously named as Matrix-DDH or Matrix d-Linear problem)
and the Decisional Linear problem.

1 Introduction

Master-Key Dependent Encryption. Until recently public key encryption
(PKE) schemes were only required to provide confidentiality against adversaries

� Supported by the National Research Fund, Luxembourg C09/IS/04. Partially sup-
ported by the Spanish research project MTM2009-07694, and the European Com-
mission through the ICT programme under contract ICT-2007-216676 ECRYPT II.

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 627–642, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



628 D. Galindo, J. Herranz, and J. Villar

that see encryptions of plaintexts that depend solely on public information. That
is, it was assumed (and even advocated) that an encryption scheme would never
be used to encrypt its own decryption key. This requirement is certainly rea-
sonable for many applications, but it has been challenged both by practical and
foundational reasons [1,2]. The paradigmatic case is the scenario of circular en-
cryptions, where for n ≥ 2 public/secret key pairs (pk1, sk1), . . . , (pkn, skn), the
adversary is given the ciphertexts Encpk1(sk2), Encpk2(sk3), . . . , Encpkn(sk1),
and still semantic security shall hold. Thus, a dedicated stronger security no-
tion called key-dependent message security has emerged in the last few years [3].
Roughly speaking, it is required that semantic security holds even if the adver-
sary sees encryptions of plaintexts that depend on the decryption keys. Such a
scenario arises in systems that require hard-disk encryption, in computational
soundness results in the area of formal methods, or in specific cryptographic
protocols for anonymous credentials or fully homomorphic encryption. For the
motivation, applications and history of key-dependent message security we refer
to the excellent survey by Malkin, Teranishi and Yung [4].

The first breakthrough was due to Boneh, Halevi, Hamburg and Ostrovsky
(BHHO) [5], who proposed a public key encryption scheme with indistinguisha-
bility against key-dependent chosen-plaintext attacks (KDM-CPA) in the stan-
dard model under the Decisional Diffie-Hellman assumption for affine functions
of the secret key. Shortly after Applebaum, Cash, Peikert, and Sahai [6] proposed
an efficient KDM-CPA secure scheme for affine functions under the Learning Par-
ity with Noise assumption. Brakerski and Goldwasser [7] extended the BHHO
scheme to a suite of KDM-CPA schemes secure under subgroup indistinguisha-
bility assumptions.

Camenisch, Chandran and Shoup [8] proposed a generic construction of
chosen-ciphertext secure key-dependent encryption (KDM-CCA) schemes in the
public key setting, that requires in particular a KDM-CPA secure scheme and
specialized non-interactive zero knowledge proofs (NIZKs). By applying their
transformation to (a variation of) the BHHO scheme, they obtained a KDM-
CCA secure scheme under the Decision Linear assumption on pairing groups.

Master-Key Leakage-Resilient Identity-Based Encryption. Side channel
attacks are often effective in recovering the secret key of cryptosystems that are
provably secure otherwise [9,10]. On the other hand, it is desirable to extend the
traditional provable security methodology to also include side channel attacks.
This area of contemporary cryptography is usually referred to as leakage-resilient
cryptography and it has been an increasingly active arena in recent years. Current
security models assume an upper bound on the type or amount of information
about the secret key that an adversary might learn from side-channel data. Here
we allow the adversary to mount master-key leakage attacks, by allowing it to
obtain the result of efficiently computable functions of the master-key. These
functions might be asked adaptively, subject to the restriction that after all the
queries the master-key has enough entropy left and that no master-key leakage
queries are allowed after the adversary receives the challenge ciphertext. For
the definitions of master-key leakage resilience we refer the reader to [11]. We
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stress that in our case the adversary mounts a selective-identity chosen-plaintext
attack with master-key leakage, that we denote as mIND-sID-LCPA. Let λ be
the bit-length sum of the outputs obtained by the adversary via master-key
leakage queries. λ is called the leakage parameter and it is assumed that λ < L,
where L is the master-key length. The relative leakage (or leakage ratio) of the
system is defined as λ/L.

Our Contribution. We initiate here the study of identity-based encryption
(IBE) schemes secure against key dependent messages. This has a double inter-
est, since IBE is relevant by itself [12] and by its numerous applications [13].
In IBE there are two types of secret keys, on the one hand a master secret key
SKi corresponding to the master public key PKi; on the other hand the secret
keys sk[id] belonging to individual users id. This gives rise to two levels of key-
dependent message security, depending on whether the adversary is allowed to
ask for encryptions of functions of the master-keys or the user-keys. We choose
here to deal only with master key-dependent messages (mKDM security). The
first reason is that this allows us to update mKDM-sID-CPA to KDM-CCA.
Secondly, in some cases master-key dependent security implies a restricted form
of user-key dependent security “for free” (see Section 4.2 for the case of our
scheme).

Informally, we say that an IBE scheme has master key-dependent indistin-
guishability against selective-identity and chosen plaintext attacks (mKDM-sID-
CPA security for short) if no adversary is able to distinguish between encryptions
of a particular message m and encryptions of some functions of a set of master
secret keys, under a certain set of identities chosen by the adversary ahead of
time. We are able to give an instantiation of a mKDM-sID-CPA secure IBE in
the standard model, under the Rank assumption over bilinear groups. The Rank
assumption states that it is difficult to distinguish whether an n× n matrix has
rank r1 or r2, where 2 ≤ r1 < r2 ≤ n. As an additional contribution, which may
be of independent interest, we give a new reduction between the Rank problem
and the Decisional Linear problem. Our new reduction improves that of [14]
from a linear to a logarithmic factor and can be used to improve the reduction
from the Rank assumption to the Decisional Diffie-Hellman problem given in [5]
in a similar fashion.

We also show that a slight modification of the new mKDM-sID-CPA secure
IBE scheme maintains its security properties in the presence of leakage of parts
of the master secret key. This implies, in particular, new chosen ciphertext se-
cure public key encryption secure in the presence of leakage [14] which compare
favourably with previous related work.

One of the most well-known applications of IBE in the theory of cryptogra-
phy is the CHK generic construction of chosen-ciphertext secure public key en-
cryption out of chosen-plaintext secure identity-based encryption. We show that
the same transformation can be applied to the KDM setting, resulting in KDM-
CCA secure public key encryption out of mKDM-sID-CPA secure identity-based
encryption. Thus we show a practical generic construction for key-dependent
chosen-ciphertext security that dispenses with the need of NIZKs from [8].
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Plugging our concrete IBE scheme into the Canetti-Halevi-Katz transformation
gives rise to a KDM-CCA secure encryption scheme under the Decisional Linear
assumption. One drawback of our chosen-ciphertext secure schemes is that the
public key size depends on the number of encryption queries per public key (but
importantly ciphertext-size does not); in other words, we were only able to prove
security against a bounded number of encryption queries per public key.

Concurrent and Independent Related Work. Concurrent work by Alperin-
Sheriff and Peikert [15] deals with the related notion of user key-dependent mes-
sage security. We stress that their IBE construction has a drawback similar to
ours: therein, the size of the master public key, the user secret keys and the
ciphertext depend on the parameter n, which is the maximum number of user
secret keys involved in an encryption query. Also concurrently to this work,
Hofheinz [16] has proposed a PKE scheme with KDM-CCA security in the stan-
dard model with compact ciphertexts. His construction is direct and does not
use key-dependent IBE.

Organization. In Section 2 we recall previous KDM security notions for public
key encryption. In Section 3 we define master key-dependent indistinguisha-
bility against selective-identity and chosen-plaintext attacks for identity-based
encryption. We show then that the celebrated CHK transformation from
passively-secure IBE to chosen-ciphertext PKE also holds in the KDM setting.
Section 4 contains an instantiation of identity-based encryption with master
key-dependent security in the standard model under the Decisional Linear as-
sumption. Although we refer to the full version of this work [17] for the complete
security proof, we include in this Section 4 a key part of it which may be of in-
dependent interest: a new and better relation between the Decisional Linear
problem and the Rank problem. In Section 5 we discuss the leakage-resilience
properties of (a slight variation of) our new IBE scheme. We end in Section 6
by outlining future research directions.

2 Preliminaries: KDM Secure Public Key Encryption

A public key encryption scheme Π supporting ciphertexts consists of four prob-
abilistic polynomial algorithms, Π = (Π.Stp, Π.KG, Π.Enc, Π.Dec). The setup
protocol Π.Stp takes as input a security parameter λ and outputs some public
information pms, including plaintext space M and secret key space S. The se-
curity parameter λ is included in the string pms, which is implicitly an input
to the remaining algorithms. The key generation protocol Π.KGpms on input the
empty string ε outputs a pair of secret and public keys, (sk, pk), where the se-
cret key sk belongs to the set S of possible secret keys. The encryption protocol
takes as input a public key pk and a message m ∈ M and outputs a ciphertext
C = Π.Encpms(pk,m). Finally, the decryption protocol takes as input secret key
sk and a ciphertext C, and outputs m̃ = Π.Decpms(sk, C), where m̃ ∈ M∪{⊥}.
The correctness property requires that Π.Decpms(sk,Π.Encpms(pk,m)) = m, for
any message m ∈ M and parameters pms generated by Π.Stp and any pair
(sk, pk) generated by Π.KGpms.
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Informally, security with respect to key dependent messages under chosen
plaintext attacks (KDM-CPA) requires that an adversary is not able to distin-
guish between encryptions of a particular message m and encryptions of some
functions (chosen by the adversary from a specific set of functions F) of a set
of secret keys. In the case of security with respect to key dependent messages
under chosen ciphertext attacks (KDM-CCA), the adversary is given additional
access to a decryption oracle that he can query for ciphertexts of his choice, as
long as these ciphertexts are different to those the adversary has to distinghish.

For concrete security concerns, in the following definitions two integer param-
eters n, qe ≥ 1 are given as input to the security game, representing respectively
the number of users in the system and the maximum number of encryption
queries per user allowed to the adversary. To formalize this notion, we follow the
definitions in [8,4]. Let n, qe ≥ 1 be integers and let F = {f : Sn → M} be a
finite set of efficiently computable functions. KDM-CPA security of a public key
encryption scheme Π is defined with respect to the set of functions F through
the following two experiments between a challenger and an adversary AΠ . Let
m ∈M be a fixed message.

Experiment ExpKDM-CCAb,Π
AΠ

(λ, n, qe) is defined as follows, for b = 0, 1.

1. Initialization. The challenger runs pms← Π.Stp(λ) and then runs n times
(ski, pki)← Π.KGpms to produce n pairs (sk1, pk1), . . . , (skn, pkn). The pub-
lic keys (pk1, . . . , pkn) and pms are sent to AΠ . A list Lquer is initially set to
empty.

2. Queries. The adversary AΠ can adaptively make two types of queries to
the challenger.
(a) Encryption queries. For each 1 ≤ i ≤ n the adversary AΠ can

make up to qe encryption queries of the form (i, f) with f ∈ F . The
challenger computes m = f(sk1, . . . , skn) ∈ M, and then sets C =
Π.Encpms(pki,m) in Experiment b = 0, and sets C = Π.Encpms(pki,m)
in Experiment b = 1. The resulting ciphertext C is sent to AΠ and the
tuple (i, C) is added to the list Lquer.

(b) Decryption queries. AΠ can make a decryption query of the form
(i, C), as long as (i, C) /∈ Lquer. The challenger sends back to AΠ the
output Π.Decpms(ski, C).

3. Final guess. The adversary AΠ outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that AΠ outputs b′ = 1 in Experiment
ExpKDM-CCAb,Π

AΠ
(λ, n, qe). For any adversary AΠ as above let

AdvKDM-CCAΠ
AΠ

(λ, n, qe) = |Pr[Ω0]− Pr[Ω1]|

For any t, n, qe we define the advantage function of the scheme Π for key-
dependent message security against chosen-ciphertext attacks (KDM-CCA) as

AdvKDM-CCA(Π,λ, n, qe; t) = maxAΠ

{

AdvKDM-CCAΠ
AΠ

(λ, n, qe)
}

,

where the maximum is over adversaries AΠ with time-complexity t and making
no more than qe encryption queries for each 1 ≤ i ≤ n.
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Definition 1. A public key encryption scheme Π is polynomially-secure against
key dependent chosen-ciphertext attacks with respect to the set of functions F
if AdvKDM-CCA(Π,λ, n, qe; t) is negligible in λ for all polynomial values of
t, n, qe.

We refer to security against single encryption queries when qe = 1, which
means that the adversary can make several encryption queries but each one
for a different public key. In this work we consider F to be the set of affine
functions. This contains as particular cases constant functions (which lead to
the notion of IND-CCA security in the multi-user setting [18]) and projections
fi(sk1, . . . , skn) = ski, for 1 ≤ i ≤ n. An encryption scheme which is KDM-
CCA-secure with respect to a set of functions containing projections achieves
clique security, which in particular captures circular security.

3 From mKDM-sID-CPA Secure IBE to KDM-CCA
Secure PKE

In this section we recall the Canetti-Halevi-Katz transformation [19] and show
that it can be used to build IND-CCA encryption with key-dependent message
security.

One-Time Signatures. We start by recalling the syntactic definition and se-
curity properties of one-time signatures. A (one-time) signature scheme Θ =
(Θ.Stp, Θ.KG, Θ.Sign, Θ.Vfy) consists of four probabilistic polynomial time
algorithms. pmsΘ ← Θ.Stp(1λ) is the setup protocol, which produces some com-
mon public parameters (that will be an implicit input for the rest of proto-
cols) for a given security parameter. (skΘ, vkΘ)← Θ.KG() is the key generation
protocol, which outputs a secret signing key skΘ and a public verification key
vkΘ. The signing protocol θ ← Θ.Sign(skΘ,m) takes as input the signing key
and a message m, and outputs a signature θ. Finally, the verification protocol
{1, 0} ← Θ.Vfy(vkΘ,m, θ) takes as input the verification key, a message and a
signature, and outputs 1 if the signature is valid, or 0 otherwise.

Regarding security, we consider an adversary FΘ in the multi-user setting,

with N users. FΘ first receives N verification keys {vk(i)Θ }1≤i≤N obtained from
running Θ.Stp(1λ) → pmsΘ once and then running N times the protocol

Θ.KG() → (sk
(i)
Θ , vk

(i)
Θ ), for i = 1, . . . , N . The adversary can make at most

one signature query of the form (i,mi), for each i = 1, . . . , N , for messages mi

of his choice, obtaining as answer valid signatures Θ.Sign(sk
(i)
Θ ,mi) → θi. Fi-

nally FΘ outputs a tuple (i�,m�, θ�). We say that the adversary FΘ succeeds if

Θ.Vfy(vk
(i�)
Θ ,m�, θ�)→ 1 and (m�, θ�) 	= (mi� , θi�).

We denote FΘ’s success probability in the above game as AdvOTSΘ
FΘ

(λ,N).

The signature scheme Θ is one-time strongly unforgeable if AdvOTSΘ
FΘ

(λ,N)
is a negligible function of the security parameter λ ∈ N, for any polynomial-time
attacker FΘ against Θ and any polynomial value of N .

mKDM-sID-CPA Identity-Based Encryption. An identity-based encryp-
tion scheme Γ consists of five probabilistic polynomial algorithms,
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Γ = (Γ .Stp, Γ .Mkg, Γ .Ukg, Γ .Enc, Γ .Dec). The setup protocol, Γ .Stp takes as
input a security parameter λ and outputs some system-wide parameters ibp to
be shared by all the master authorities in the system. In particular, ibp includes
the description of the sets of admissible identities, plaintexts and ciphertexts,
I,M, C respectively. The string ibp is an implicit input to the remaining algo-
rithms. Γ .Mkgibp on input the empty string outputs (PK, SK), where PK is the
master public key and SK is the master secret key. The user’s key generation
protocol, Γ .Ukgibp, on input the master secret key SK and an identity id, out-
puts the user’s decryption key sk[id]. The encryption algorithm Γ .Encibp takes
as input PK, an admissible identity id and a plaintext m and outputs a cipher-
text c = Γ .Encibp(PK, id,m). Finally, the decryption protocol takes as input a
decryption key sk[id] and an admissible ciphertext c and outputs m̃, where m̃
is an admissible plaintext or the reject symbol ⊥. The correctness property re-
quires that Γ .Decibp(Γ .Ukg(SK, id), Γ .Encibp(PK, id,m)) = m, for any identity
id ∈ I, message m ∈ M, parameters ibp generated by Γ .Stp(1k) and any pair
(PK, SK) generated by Γ .Mkgibp().

Informally, we say that an IBE scheme has master key-dependent indistin-
guishability against selective-identity and chosen plaintext attacks (mKDM-
sID-CPA security, for short) if no adversary is able to distinguish between
encryptions of a particular message m and encryptions of some functions (chosen
by the adversary from a specific set of functions F) of a set of master secret keys.

We formalize next this notion. Let n, qe ≥ 1 be integers and let F = {f :
T n →M} be a finite set of efficiently computable functions, where T is the set
of master secret keys andM the set of admissible plaintexts. mKDM-sID-CPA
security is defined with respect to the set of functions F through the following
two experiments between a challenger and an adversary AΓ . Let m ∈ M be a
fixed message.

Experiment ExpKDM-sID-CPAb,Γ
AΓ

(λ, n, qe) is defined as follows, for b = 0, 1.

1. Setup. The challenger runs ibp← Γ .Stp(λ). The adversary AΓ on input ibp
outputs a tuple I� of n · qe identities I� = (id11, . . . , id

qe
1 , . . . , id1n, . . . , id

qe
n ).

2. Initialization. The challenger runs n times Γ .Mkgibp to obtain n pairs
(PK1, SK1), . . . , (PKn, SKn). The master public keys (PK1, . . . , PKn) are
sent to AΓ .

3. Queries. The adversary AΓ can adaptively make two types of queries to
the challenger:

(a) Encryption Queries. For every index i such that 1 ≤ i ≤ n, a
counter j is kept, with initial value j = 1. AΓ can make encryp-
tion queries of the form (i, f), where f ∈ F . The challenger computes
m = f(SK1, . . . , SKn) ∈ M, and then sets c = Γ .Encibp(PKi, id

j
i ,m)

when b = 0, and sets c = Γ .Encibp(PKi, id
j
i ,m) if b = 1, where j is the

current counter value. After the ciphertext c is sent to AΓ , the counter
is updated as j ← j + 1. AΓ can make up to qe encryption queries per
index i.
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(b) Private key Queries. AΓ can make users’ private key queries of the
form (i, id), where 1 ≤ i ≤ n and id 	= idji for all j ∈ {1, . . . , qe}. The
challenger computes ski[id] = Γ .Ukgibp(SKi, id) and gives it back to AΓ .

4. Final guess. The adversary AΓ outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that AΓ outputs b′ = 1 in the above experiment.
For any adversary AΓ let Adv-mKDM-sID-CPAΓ

AΓ
(λ, n, qe) = |Pr[Ω0] −

Pr[Ω1]|. For any t, n, qe we define Adv-mKDM-sID-CPA(Γ, λ, n, qe; t) as the

quantity maxAΓ

{

Adv-mKDM-sID-CPAΓ
AΓ

(λ, n, qe)
}

, where the maximum

is taken over adversaries AΓ with time-complexity t.

Definition 2. An identity-based encryption scheme Γ is secure against selective-
identity and master key-dependent chosen plaintext attacks (mKDM-sID-CPA)
with respect to the set of functions F if Adv-mKDM-sID-CPA(Γ, λ, n, qe; t)
is negligible in λ for polynomial values of n, t, qe.

Canetti-Halevi-Katz Transformation in the KDM Setting. Let Γ =
(Γ .Stp, Γ .Mkg, Γ .Ukg, Γ .Enc, Γ .Dec) be an IBE scheme and let Θ = (Θ.KG,
Θ.Sign, Θ.Vfy) be a one-time signature scheme. We use the well-known Canetti-
Halevi-Katz transformation [19] to construct from these two primitives a public-
key encryption scheme Π = (Π.Stp, Π.KG, Π.Enc, Π.Dec), as follows:

Π.Stp(1λ): run ibp ← Γ .Stp(1λ) and pmsΘ ← Θ.Stp(1λ). We assume that veri-
fication keys output by Θ lie in the identities space of Γ . Define the output of
the setup protocol as pms = (ibp, pmsΘ).

Π.KGpms(): parse pms = (ibp, pmsΘ), run (PK, SK) ← Γ .Mkgibp() and define
the secret key as sk = SK and the public key as pk = PK.

Π.Encpms(pk,m): to encrypt a plaintext m ∈ M for a receiver with public key
pk, parse pms = (ibp, pmsΘ) and proceed as follows. Run (skΘ, vkΘ)← Θ.KG()
and set id = vkΘ; run c← Γ .Encibp(pk, id,m); run θ ← Θ.Sign(skΘ, c). The final
ciphertext output by the algorithm is C = (vkΘ, c, θ).

Π.Decpms(sk, C): parse pms = (ibp, Θ) and C = (vkΘ, c, θ). First of all, run
Θ.Vfy(vkΘ, c, θ). If the output bit is 0, then stop and output ⊥. Otherwise, set
id = vkΘ and run sk[id] ← Γ .Ukgibp(sk, id) and output the result of running
Γ .Decibp(sk[id], c).

Theorem 1. If Γ enjoys mKDM-sID-CPA security with respect to a set of func-
tions F and the signature scheme Θ is one-time strongly unforgeable, then the
constructed public-key encryption scheme Π enjoys KDM-CCA security with
respect to the same set of functions F .
The proof of this theorem, which is similar to that in [19], can be found in [17].

4 A New mKDM-sID-CPA Secure IBE Scheme for qe = 1

In this section we propose an identity-based encryption scheme enjoying mKDM-
sID-CPA security for qe = 1. The new scheme upgrades the KDM-CPA tech-
niques in [5] to the IBE setting.
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4.1 Bilinear Pairings, Matrices and Hardness Assumptions

Let G be a group of prime order q admitting a bilinear pairing. That is, let GT be
a multiplicative group of prime order q and let e(·, ·) : G ×G → GT an efficiently
computable bilinear map. We will denote as gT = e(g, g) the generator of GT
induced by g a given generator of G. Note that, due to the bilinear properties of
the pairing, for any two integers a, b ∈ Zq we have gabT = e(ga, gb) = e(ga, g)b =
e(gb, g)a.

These operations extend to vectors and matrices in a natural way. Let Z�1×�2
q

denote the set of all 	1 × 	2 matrices and Z
�1×�2;r
q the matrices with rank r. In

the special case of invertible matrices we will write GL�(Zq) = Z
�×�;�
q . Let G�1×�2

and GT �1×�2 denote the set of all 	1 × 	2 matrices over G and GT respectively.
Therefore, for any two matrices A ∈ Z

�1×�2
q and B ∈ Z

�2×�3
q , we have gAB =

(gA)B ∈ G�1×�3 . Again, we can naturally extend these definitions to matrices
and bilinear pairings: if A ∈ Z

�1×�2
q and B ∈ Z

�2×�3
q , then e(gA, gB) = gAB

T .

Furthermore, if C ∈ Z
�3×�4
q , then it holds gABC

T = e(gAB, gC) = e(gA, gBC) ∈
GT �1×�4 .

The security of our scheme will be reduced to the hardness of the Decisional
Linear (DLin) problem [20]. The DLin problem consists in distinguishing between

the distributions (g, gx, gy, gz, gt, g(x
−1z+y−1t)) ∈ G6 and (g, gx, gy, gz, gt, gu) ∈

G6, where g is a generator of G and x, y, z, t, u ∈R Zq are chosen independently
and at random. The problem is formally defined through the following two exper-
iments between a challenger and a solver ADLin. Experiment ExpDLinb

ADLin
(G)

is defined as follows, for b = 0, 1.

1. The challenger chooses a generator g of G and random x, y, z, t, u ∈R Zq

independently and uniformly distributed.
In Experiment b = 0, the challenger sends (g, gx, gy, gz, gt, g(x

−1z+y−1t)) ∈ G6
to ADLin.
In Experiment b = 1, it sends (g, gx, gy, gz, gt, gu) ∈ G6 to ADLin.

2. The solver ADLin outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that ADLin outputs b′ = 1 in Experiment
ExpDLinb

ADLin
(G). Let AdvDLinADLin

(G) = |Pr[Ω0] − Pr[Ω1]|. We can then
define AdvDLin(G; t) = maxADLin

{AdvDLinADLin
(G)}, where the maximum

is taken over adversaries ADLin running in time at most t.

Definition 3. The Decisional Linear assumption in G states thatAdvDLin(G; t)
is negligible in λ = log |G| for any value of t that is polynomial in λ.

4.2 A mKDM-sID-CPA Secure Scheme

Let us consider the IBE scheme Γ = (Γ .Stp, Γ .Mkg, Γ .Ukg, Γ .Enc, Γ .Dec) de-
fined as follows:

Γ .Stp(1λ): a pairing group (G,GT , e(·, ·)) of prime order q, where q is λ-bits long,
and generators g ∈ G, gT = e(g, g) ∈ GT are chosen. A second security parameter
	 > 4λ is also considered. Therefore, we define ibp = (λ, 	, q,G, g,GT , gT , e(·, ·)).
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Γ .Mkgibp(): firstly, take S ∈R Z
2×�;2
q , ˜S ∈R Z

�×2;2
q and a binary vector x ∈R

{0, 1}�×1, and compute gyT = g−SxT ∈ G2×1T . Then define the matrices Fid and
˜Fid for id ∈ Zq as Fid = STid ∈ Z

2×�
q and ˜Fid = Tid

˜S ∈ Z
�×2
q , where Tid =

T0+idT1 ∈ Z
�×�
q is a random (matrix) polynomial of degree 1, with T0 ∈R Z

�×�
q

and T1 ∈ GL�(Zq). Note that it holds Fid
˜S = S˜Fid for any id ∈ Zq. The public

and master secret keys are then PK = (gS, g
˜S, gST0 , gST1 , gT0

˜S, gT1
˜S, g−SxT )

and SK = gxT ∈ G�×1T .

Γ .Ukgibp(SK, id): for an identity id ∈ Zq the secret key sk[id] = (gd1 , gd2) ∈
G�×1 × G�×1 is generated as gd1 = gx · g˜Fidt and gd2 = g

˜St, where t ∈R Z
2×1
q

and gx is computed component-wise from SK = gxT (remember x is a binary
vector). The user can verify the validity of sk[id] by checking the equation g−SxT ·
e(gS, gd1) = e(gFid , gd2).

Γ .Encibp(PK, id,m): to encrypt a message m ∈ GT for an identity id and mas-
ter public key PK, a row vector r ∈R Z

1×2
q is chosen and the ciphertext

(gc1 , gc2 , c) ∈ G1×� × G1×� × GT is computed as gc1 = grS, gc2 = grFid and

c = g−rSxT ·m. The ciphertext fulfils the equation e(gc1 , g
˜Fid) = e(gc2 , g

˜S).

Γ .Decibp(sk[id], C): let (gc1 , gc2 , c) be a ciphertext for an identity id. The user
who owns sk[id] = (gd1 , gd2) recovers m = c · e(gc1 , gd1)/e(gc2 , gd2).

A Simpler but Insecure Scheme. Notice that an extension of the Boneh
et al. KDM-CPA scheme [5] à la Boneh and Boyen [21] leads to an insecure
scheme, in the following sense. Let us consider the case where user-keys would
have been of the form sk[id] = (gd1 , gd2) with gd1 = gxF t

id and gd2 = gt, where
t ∈R Z

�
q and Fid ∈ G is defined as Fid = T0T

id
1 for T0, T1 ∈R G (ciphertexts

would be changed accordingly). In such a case, an adversary that obtains a
single user-key sk[id] can compute e(gd1 , g) = gxT · e(Fid, g

t) on the one hand,
and e(Fid, g

d2) = e(Fid, g
t) on the other hand. The adversary thus recovers gxT ,

which leads to the recovery of master secret key, since x ∈ {0, 1}�. For this
reason we are forced to “hide” t even more, by multiplying it with the matrix
˜S ∈ GL�(Zq). This makes scheme description and security proofs more intricate,
for example because some care must be taken regarding the invertibility and the
probability distribution of such matrices ˜S ∈ GL�(Zq), when master public keys
are rerandomized.

Affine Functions. Let us define the set of affine functions F = {f : T n →
GT }, where T is the set of master secret keys. Let SK1, . . . , SKn ∈ G�T be n
secret keys generated by Γ .Ukgibp(). Following the notation in [5], for every n	-

vector u = (ui) over Zq, every n	-vector s ∈ Gn�T and every scalar H ∈ GT , let
fu,H(s) =

∏

i=1,...,n� g
ui

T · si+H ∈ GT . Then, F = {fu,H : Gn�T → G}u∈Zn�
q ,H∈GT .

Additionally, since the algorithm Γ0.Ukgibp(SK, id) can be seen as an affine

function from G� to G2�, we obtain uKDM-sID-CPA security [15] with respect
to the set of affine functions from G2n� to GT . Alas, this is is only a restricted
form of uKDM-sID-CPA security, since in particular we can not encrypt the j-th
selection function (sk[id1], . . . , sk[idn]) 
→ sk[idj ], as sk[idj ] ∈ G2�.
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4.3 mKDM-sID-CPA Security of Γ and KDM-CCA Secure Public
Key Encryption

The scheme Γ is mKDM-sID-CPA secure with respect to the set of affine func-
tions F and for qe = 1 encryption queries per master public key, assuming the
hardness of the Decisional Linear problem in the group G. The proof of the fol-
lowing theorem, which is technically quite involved, can be found in [17]. In the
latter reference it is also discussed how to extend this scheme to another IBE
scheme that allows a predefined number of encryption queries qe >> 1, with the
downside that the master public key has length linear in qe. A similar problem is
encountered in the uKDM-sID-CPA IBE scheme from [15], where the efficiency
of the scheme depends linearly in n, the number of participants involved in the
security game.

Theorem 2. Adv-mKDM-sID-CPA(Γ, λ, 	, n, 1; t) ≤
2(3n+ 4)2−λ + 8 (�1.71 log2 	�+ 1)AdvDLin(G; t′).

Note that in our case the loss factor in the reduction is constant with respect to
the number n of master keys. The factor only grows logarithmically on the secu-
rity parameter 	. When the CHK transformation is applied to our IBE scheme
together with Mohassel’s one-time signature scheme [22], the resulting public
key scheme achieves KDM-CCA security for qe = 1, with a reduction loss factor
that does not depend on n.

Although the result stated in Theorem 2 relates the KDM security of our
scheme with the hardness of the Decisional Linear problem, the actual proof
relates the security of the scheme with the hardness of a different problem, the
Rank problem. The final result is obtained by applying a new and better relation
between the Rank problem and the Decisional Linear problem, which may be of
independent interest. The details are given in the following section.

4.4 The Rank Problem

We consider an assumption related to matrices. Given a (multiplicative) cyclic
group G of prime order q, the Rank(G, 	1, 	2, r, s) problem informally consists
of distinguishing if a given matrix in Z

�1×�2
q has rank r or has rank s for

given integers r 	= s, when the matrix is hidden in the exponent of a gener-
ator g of G. The problem is formally defined through the following two experi-
ments between a challenger and a distinguisher ARank. For b = 0, 1, experiment
ExpRankb

ARank
(G, 	1, 	2, r, s) is defined as follows.

1. In Experiment b = 0, the challenger chooses M ∈R Z
�1×�2;r
q and sends gM

to ARank.
In Experiment b = 1, it chooses M ∈R Z

�1×�2;s
q and sends gM to ARank.

2. The solver ARank outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that ARank outputs b′ = 1 in Experiment
ExpRankb

ARank
(G, 	1, 	2, r, s). For any such adversary ARank let

AdvRankARank
(G, 	1, 	2, r, s) = |Pr[Ω0]− Pr[Ω1]|
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We can then define

AdvRank(G, 	1, 	2, r, s; t) = max
ARank

{AdvRankARank
(G, 	1, 	2, r, s)} ,

where the maximum is taken over adversaries ARank running in time at most t.

Definition 4. The Rank(G, 	1, 	2, r, s) assumption in a group G states that
AdvRank(G, 	1, 	2, r, s; t) is negligible in λ = log |G| for any value of t that
is polynomial in λ.

The Rank assumption appeared in recent papers under the names Matrix-DDH
[5] and Matrix d-Linear [14]. Therein, it was already proved that the Rank
problem is harder than the Decisional Linear problem. However, the reduction
given in the next proposition substantially improves the reductions previously
given. Namely, the loss factor is no longer linear but logarithmic in the rank.

Proposition 1. For any 	1, 	2, r, s such that 2 ≤ s < r ≤ min(	1, 	2) we have

AdvRank(G, 	1, 	2, r, s; t) ≤
⌈

log(3r)−log(3s−2)
log 3−log 2

⌉

AdvDLin(G; t′)
≤ �1.71(log2 r − log2(s− 1))�AdvDLin(G; t′),

where t′ = t+O(	1	2(	1 + 	2)), taking the cost of an exponentiation in G as one
time unit.

Before proving the proposition, we note that the Rank(G, 	1, 	2, r, s) problem is
random self-reducible, because given M0 ∈ Z

�1×�2;k
q , for random L ∈R GL�1(Zq)

and R ∈R GL�2(Zq) the product LM0R is uniformly distributed in Z
�1×�2;k
q .

For the actual proof of Proposition 1, we use the following result.

Lemma 1. Any distinguisher for Rank(G, 	1, 	2, k − δ, k), 	1, 	2 ≥ 3, k ≥ 3,
1 ≤ δ ≤

⌊

k
3

⌋

can be converted into a distinguisher for the Decisional Linear
(DLin) problem, with the same advantage and running essentially within the
same time.

Proof. We will use the notation A⊕B for block matrix concatenation:

A⊕B =

(

A 0
0 B

)

In addition, we will denote I� and 0�1×�2 for the neutral element in
GL�(Zq) and the null matrix in Z

�1×�2
q , respectively. Given the DLin instance

(g, gx, gy, gz, gt, gu) the DLin distinguisher builds the 	1 × 	2 matrix

M =

⎛

⎝

x 0 1
0 y t
z 1 u

⎞

⎠⊕ · · · ⊕

⎛

⎝

x 0 1
0 y t
z 1 u

⎞

⎠

︸ ︷︷ ︸

δ times

⊕Ik−3δ ⊕ 0(�1−k)×(�2−k)

and submits the randomized matrix gLMR to the Rank(G, 	1, 	2, k − δ, k) dis-
tinguisher, where L ∈R GL�1(Zq) and R ∈R GL�2(Zq). Notice that if u =
x−1z+ y−1t mod q then the resulting matrix is a random matrix in G�1×�2;k−δ.
Otherwise, it is a random matrix in G�1×�2;k. ��
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We can now apply a hybrid argument to prove Proposition 1. Let us consider
the sequence of integers {ri} defined by the recurrence r0 = s and ri+1 =

⌊

3ri
2

⌋

,
and let k be the smallest index such that rk ≥ r. Then define a sequence of
random matrices {Mi}, where Mi ∈R Z

�1×�2;ri
q for i = 0, . . . , k− 1, and Mk ∈R

Z
�1×�2;r
q . For any distinguisher ARank with running time upper bounded by t,

let pi = Pr[1← ARank(g
Mi)]. By Lemma 1, we have that for i = 0, . . . , k − 2

|pi+1 − pi| = AdvRankARank
(G, 	1, 	2, ri+1, ri) ≤ AdvDLin(G; t′),

|pk − pk−1| = AdvRankARank
(G, 	1, 	2, r, rk−1) ≤ AdvDLin(G; t′)

Therefore, AdvRankARank
(G, 	1, 	2, r, s) = |pk − p0| ≤

|p1 − p0|+ . . .+ |pk − pk−1| ≤ k ·AdvDLin(G; t′).
On the other hand, since

⌊

3x
2

⌋

≥ 3x−1
2 then rk ≥

(

3
2

)k (
s− 2

3

)

, which implies

that k ≤ log(3r)−log(3s−2)
log 3−log 2 . ��

In [17] we prove this same relation between the Rank problem and another
computational problem, the Decisional 3-Party Diffie-Hellman (D3DH) problem
[23,24,25]. As a consequence, the mKDM-CPA security of our scheme may rely on
either the Decisional Linear assumption or the Decisional 3-Party Diffie-Hellman
assumption.

5 Leakage-Resilient Identity-Based Encryption and
Applications

The Boneh et al. KDM-CPA secure PKE scheme [5] was shown to be resilient
against a leakage of up to L(1 − o(1)) bits of the secret key under a suitable
parameters selection by Naor and Segev [14]. Similar results have been proven
for other extensions of Boneh et al. scheme, notably in [6,7]. We show that this is
also the case for our scheme by slightly changing the parameters. More precisely,
an improved parameters setting of our mKDM-sID-CPA scheme provides master-
key leakage resilience in the relative leakage model [11], with leakage ratio 1 −
o(1), under the Decisional Linear assumption. Such a property is particularly
useful, since IBE schemes that are secure against master-key leakage resilient
and selective-identity chosen-plaintext attacks imply chosen ciphertext secure
public key encryption secure in the presence of leakage [14].

Some Technical Tools. To give an intuition on why our scheme is leakage-
resilient we need to recall some technical tools.

Definition 5 (Min-entropy). The min-entropy of a random variable X is de-
fined as H∞(X) = − log(maxx Pr[X = x]).

Intuitively, the min-entropy of a random variable measures the difficulty of any
adversary, even unbounded, to predict the value of the variable. The notion that
measures how hard is predicting X given knowledge of another random variable
Y is that of average min-entropy.
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Definition 6 (Average min-entropy). The average min-entropy of X given
Y is defined as H∞(X |Y ) = − log (Ey←Y [maxx Pr[X = x|Y = y]]).

Definition 7 (Statistical distance). The statistical distance between two ran-
dom variables X,Y over a finite set Ω is defined as

D(X,Y ) =
1

2

∑

ω∈Ω
|Pr[X = ω]− Pr[Y = ω]|

Lemma 2 ([26] adapted). Let A,B be random variables such that H∞(A|B) ≥
h. Let H = {Hv : Z

�
q → Zq}v∈Z�

q
be the family of universal hash functions

x 
→ vx. Let V be the uniform distribution in Z
�
q. If log q ≤ h − 2t holds, then

D
(

(HV (A), V, B), (UZq , V, B)
)

≤ 2−t.

For the definitions of master-key leakage resilience we refer the reader to [11].
For our current exposition it suffices to say that we are considering an standard
IND-sID-CPA adversary which is allowed to decrease the min-entropy of the
master-key by a given number of bits before the challenge ciphertext is known.
We refer to our leakage security notion as IND-sID-LCPA (where L stands for
leakage attacks).

Scheme and Master-Leakage Resilience. The modified IBE scheme Γ ′ =
(Stp,Mkg,Ukg,Enc,Dec) is obtained by only changing the set from which the
master secret key SK is chosen. Instead of choosing x ∈R Z

�
2 in Γ.Mkg from

Section 4.2, the scheme Γ ′ chooses x ∈R Z
�
q.

Note that the average min-entropy of the master secret key x given the public
key and λ bits of leakage is h = 	 log q − 2 log q − λ. Let us set 	 = 3 + λ+2t

log q .

Then Lemma 2 guarantees that g−vxT ∈ GT is 1
2t -statistically close to the uniform

distribution in GT . This turns out to be enough for proving mIND-sID-LCPA
security, since in the simulation the legitimate ciphertext (grS, grFid , g−rSxT ·mβ)
is replaced by the illegitimate ciphertext (gv, gvTid , g−vxT ·mβ) with v ∈R Z

�
q, and

the adversary can not tell the difference thanks to the Decision Linear assump-
tion. Finally, the adversary will not be able to tell the difference (information-
theoretically) between an encryption of m0 or m1 because thanks to Lemma 2
g−vxT ∈ GT is statistically close to uniform.

We briefly comment on efficiency. For instance, for 	 = 6 our IBE scheme
offers master-key leakage-resilience against 1

2 − o(1) leakage ratio. In this case
the ciphertext consists of 12 elements in G and 1 element in GT . By using the
CHK transformation we obtain chosen-ciphertext leakage security under DLIN
with leakage ratio 1

2 − o(1) and ciphertext consisting of 18 elements in G and 1
element in GT . This compares favourably with existing schemes in the relative-
leakage model.

Let us point out that via the IBE-to-signatures transformation, where mes-
sages to be signed play the role of identities, existentially unforgeable signature
schemes can be obtained. Thus we only need to provide a full-identity secure
variant of our master-leakage resilient scheme to obtain existentially unforgeable
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signature schemes secure against 1−o(1) leakage-ratio under the Decisional Lin-
ear assumption. One possibility is to use a random oracle H to construct the
elements FH(m) and ˜FH(m). Alternatively, we can use a matrix-based analogue
of Waters’ hash function [27] to implement H(m); in this way, and at the cost
of increasing the size of the public key of the signer, we obtain existentially un-
forgeable signature schemes secure against 1−o(1) leakage-ratio in the standard
model under the Decisional Linear assumption.

6 Open Problems

Given the current state of the art ([15] and this work), the most prominent open
problem is to build mKDM-sID-CPA secure IBE schemes for qe, n ≥ 1 where the
master public key and ciphertext sizes do not depend on the number of challenge
queries qe nor on the number of users n. Another interesting research direction
is to build efficient mKDM-sID-CPA secure IBE schemes from lattices, which
would lead to the first lattice-based KDM-CCA secure public key encryption
schemes.
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