
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Identity-based Linkable Ring Signatures
from Lattices
HUY QUOC LE1,2, (Student Member, IEEE), BAY VO3, DUNG HOANG DUONG1, WILLY
SUSILO1, (Fellow, IEEE), NGOC T. LE1, KAZUHIDE FUKUSHIMA4, SHINSAKU KIYOMOTO4
1Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of Wollongong, Northfields Avenue, Wollongong NSW
2522, Australia (e-mail: qhl576@uowmail.edu.au, hduong@uow.edu.au, wsusilo@uow.edu.au)
2CSIRO Data61, Australia
3Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu, Ho Chi Minh City, Viet Nam
3Information Security Laboratory, KDDI Research, Inc., 2-1-15 Ohara, Fujimino-shi, Saitama, 356-8502, Japan (e-mail: ka-fukushima@kddi-research.jp,
kiyomoto@kddi-research.jp)

Corresponding authors: Bay Vo (e-mail: vd.bay@hutech.edu.vn).

This work is partially supported by the ARC Linkage Project LP190100984. Huy Quoc Le has been sponsored by a CSIRO Data61 PhD
Scholarship.

ABSTRACT Linkable ring signatures is a useful cryptographic tool for constructing applications such
as ones relative to electronic voting (e-voting), digital cashes (e-cashes) as well as cloud computing.
Equipped with linkable ring signatures, e-voting, e-cash systems can simultaneously enjoy the privacy
and the unreusability properties thanks to the anonymity and the linkability of linkable ring signatures.
Likewise, cloud servers can enjoy a privacy-preserving ability, a flexible access control and an efficient
security management with linkable ring signatures. Moreover, linkable ring signatures built in the identity-
based setting would help to remove the expense of using the conventional public key infrastructure and also
could be applied to the user management. This primitive hence would be suitable for huge-scale applications.
In this paper, we present the first identity-based linkable ring signatures (IdLRS) in both integer lattice and
ideal lattice setting. The proposed IdLRS is proved secure in the random oracle model and based on the
hardness of the short integer solution and ring short integer solution assumption. We also implement the
proposed idLRS as a proof of concept and then do some experiments to evaluate the running times and the
sizes.

INDEX TERMS Identity-based linkable ring signatures, e-voting, e-cash, cloud computing, lattices

I. INTRODUCTION

Two Main Issues in E-cash, E-voting. Digital cash and
electronic voting are interesting applications of modern cryp-
tography. Nowadays, while trading with digital cashes has
become an undeniable and unstoppable trend, electronic vot-
ing has also been considered as a replacement of paper-based
voting in many countries [20]. For the real-life usages, there
are two common requirements for both e-voting systems and
e-cash systems that they have to strongly offer the Privacy
and Unreusability properties. On the one hand, the privacy
property ensures that all voters’ (resp., customers’) identities
to be anonymous. Seemingly, the blockchain mechanism
being embedded in many cryptocurrencies, e.g., Bitcoin [35],
Ethereum [11], Monero [36] etc., promises to provide the
privacy ability. Unfortunately, in around 2012-2013, there
were some reports on the Bitcoin’s weak anonymity [6]
[38], [42]. On the other hand, the unreusability property

guarantees that no voters (resp., no coins) can vote (resp.
can be spent) twice or more times. Particularly in e-cash,
the unreusability property can be interpreted as being secure
against the double-spending attacks. In fact, there was a
report from the Bitcoin community relative to a double-
spending attack against BetCoin Dice [16].

One Stone and Two Birds. Ring signatures (RS), first
introduced by Rivest et al. [41], allow a member of a group
of multiple signers to sign a message on the behalf of the
group without revealing his identity. For more details, in
ring signatures, there is no any group manager, there is
no way to determine the identities of signers from some
individual signature. Moreover, any set of signers in the
group can be formed as a signing ring without any extra
setup. Unfortunately, the strong anonymity of ring signatures
may help an adversial signer to produce two (or more)

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

different signatures on the same message without being
noticed. As a result, ring signature-based systems potentially
lack the unreusability property. Aiming to avoid the problem,
a relaxed variant of RS, called linkable ring signature (LRS),
was then proposed by Liu et al. [26] in 2004, offering the
linkability property. The linkability property allows one to
link two signatures if these signatures are signed by the
same signer1, while still keeping the signer anonymous. As
a consequence, LRS becomes a strong tool that can supports
both the privacy-preserving ability and the unreusability as
required by e-voting and e-cash systems. Actually, LRS has
been embedded into many applications such as e-voting in
[46], ad-hoc authentication in [26] and e-cash in [36], [37],
[2], [1], [45], [50].

Application of LRS in Cloud Computing. Clouds are
powerful resources that allow data owners to remotely store
their data, to outsource heavy computations as well as to
enjoy built-in services. On cloud service providers’ (CSP)
side, together with the requirement of protecting the privacy
of users, a flexible access control and the efficient risk
management are also challenging desires. As discussed in
Liu et al. [25], linkable ring signatures are very suitable for
cloud computing as they provides an anonymously dynamic
access control mechanism and enhanced security control. For
instance, using the linkability of LRS, CSPs are able to count
the number of times a user has accessed, which helps to
detect abnormal insider activities in the cloud system.

Identity-based Linkable Ring Signature and Huge-Scale
Applications. The notion of identity-based (ID-based) cryp-
tography, introduced by Shamir [43], aims to remove the
dependency on the public key infrastructure (PKI) hence to
simplify the certificate management in the traditional public
key cryptography. In the ID-based cryptography, public key
of each user is his identity (e.g., user name, email address,
national identification number, domain name, physical IP
address). This identity will be used to generate the private
key for each user via a Private Key Generator using a master
secret key. Instead of storing a list of certificates generated by
PKI, ID-based cryptosystems just need to store the system
parameters. In addition, the ID-based cryptography is also
an effective method in managing user credentials. The ID-
based cryptography also offer the delegation of decryption
keys which is very useful in the case of applications having
an enormous number of users [17].

Therefore, Identity-based linkable ring signatures
(IdLRSs), LRSs that are built in the identity-based setting,
would combine the advantages of both LRS and ID-based
cryptography. As such, IdLRSs are very useful in huge-scale
applications. For example, IdLRSs could be used for national
elections having a huge number of voters, in which each

1Actually, many works such as [5], [12], [47] consider the linkability in
an event-oriented manner, in the sense that two signatures is called linkable
if they are signed on the same event and by the same signer. We will follow
them in this work.

voter can use his national identification number as identity.
To reduce the storage and computing overheads, a national
election system can delegate to its legitimate local election
systems, which really manage the election with a much
smaller number of local electors. One more example is that
IdLRSs will also be appropriate for worldwide cloud systems
having a vast number of users all over the world, in which
each user is issued/registered with an identity. A worldwide
cloud system can delegate its function to the country-wise
branch cloud servers, to which users in each country really
belong.

The security requirements for IdLRS are the anonymity,
the unforgeability, the linkability and the nonslanderability.
Informally speaking, the anonymity guarantees that the real
signer is anonymous. The unforgeability prevents IdLRS
from producing valid signatures by those who do not belong
to the ring of signers. The nonslanderability requires that an
adversary itself cannot produce a valid signature that is linked
to a signature generated by an honest user. Following some
existing works (e.g., [47], [5]) we consider the linkability
of IdLRS in the event-oriented manner. In this manner, one
can tell if two signatures are linked if and only if they are
signed on the same event, even though they may be signed on
behalf of different rings of signers. Event-oriented linkable
ring signatures are comparatively more flexible in application
and can helps to avoid some shortcomings group-oriented
linkability [26]. A detailed discussion on group-oriented
linkability and event-oriented linkability can be found in [47,
Section 1].

Related Works. Linkable ring signature (LRS) was first
proposed by Liu et al. [27] in 2005. Since then, there have
been many follow-up works on this research line. e.g., [25],
[2], [7], [10], [51], [48], [1], [28], [24], [49]. The first
IdLRS was proposed in 2006 by Chow et al. [12]. From
q-Strong Diffie-Hellman (q-SDH) and q-Decisional Strong
Diffie-Hellman (q-DSDH) assumptions, the authors of [12]
constructed an IdLRS instantiation which is secure in the ran-
dom oracle model (ROM). In [12], those signatures, which
were produced by the same signer in the same event, will be
linked. In 2006, Au et al. [3] proposed a constant-size ID-
based construction. However, later in 2009, Jeong et al. [21]
made an analysis showing that the scheme [3] is insecure. In
2013, Au et al. [4] proposed a new ID-based event-oriented
linkable ring signature scheme and prove the security of
our scheme in the random oracle model, using the Discrete
Logarithm (DL), the Decisional Diffie–Hellman (DDH) and
q-Strong Diffie–Hellman (q-SDH) assumptions. Recently, in
2019, Deng et al. [13] have presented a new identity-based
linkable ring signature scheme that is secure in ROM. The
security of [13] is based on the hardness of the computational
Diffie-Hellman (CDH) problem and the decisional bilinear
Diffie-Hellman (DBDH) problem.

In Table 1, we demonstrate a summary of some existing
identity-based linkable ring signatures in the literature. We

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

stress that, all works [12], [4] and [13] are provably secure
based on classical number theory mathematical assump-
tions. Consequently, by Shor [44], they would be insecure
against large-scale quantum computers. To the best of our
knowledge, there have been no post-quantum secure IdLRS
in the literature. Therefore, a post-quantum (e.g., lattice-
based) IdLRS should be ideal and suitable for long-term
applications.

Scheme Assumption Security ModelPost-quantum
Chow [12] q-SDH, q-DSDH ROM ×

Au [4] DL, DDH, q-SDH ROM ×
Deng [13] CDH, DBDH ROM ×

Ours SIS ROM X

TABLE 1: A summary of (ID-based) Linkable Ring Signa-
tures in the literature.

Contribution and Overview. In this paper, we contribute to
solve a long-standing open problem of lattice-based identity-
based linkable ring signature by presenting the first quantum-
secure IdLRS based on integer lattices (and ideal lattices).
The proposed IdLRS enjoys the anonymity, the unforgeabil-
ity, the linkability and the nonslanderability in the random
oracle model.

In doing this, we combine the idea of ID-based ring
signature [52] and the idea of linkable ring signature [2] to
construct our IdLRS. A technically essential tool is the lattice
trapdoor mechanism [33]. In our IdLRS construction, the
public key and the master secret key are a matrix A and its G-
trapdoor R generated using a trapdoor generation. In order
to extract the private key Si for each user having identity idi,
using a secure hash function H1, we let Ai = [A|H1(idi)],
then use the trapdoor delegation mechanism and finally sam-
ple Si such that AiSi = qIn mod 2q via a discrete Gaussian
distribution. In the signing algorithm, for each signer having
identity idj other than the real one, a vector, say zj , will be
chosen uniformly, whilst for the real signer of identity ids,
the rejection sampling is called to output zs in such a way
that zs is independent of the private key Ss as well as looks
like a uniform. Note that, we also use a secure hash function
H2 in the signing algorithm and use it in the same way as in
[2]. Our IdLRS ensures that two messages are linked if they
are produced by the same real signer in the same event. To
this ends, we use a secure hash function H3 to transform an
event identity event into a matrix K and compute E = KSs,
where Ss is the private key of the real signer in the ring.

We implement and do some experiments to give a proof
of concept as well as to evaluate the practicability of the
proposed IdLRS. The experimental results show that in the
lattice-based IdLRS, the extraction algorithm is the most
time consuming one. This is due to the inefficiency of the
implemented Gaussian sampling algorithm over lattices (we
implement this using the one in [19]). Note that, Gaussian
sampling algorithms over lattices is still a bottleneck point

in the lattice-based cryptography. However, we believe that,
implementing with an appropriately chosen Gaussian sam-
pling algorithm, the speed of the extraction algorithm will be
accelerated.

We also remark that, we can improve the complexity and
reduce the sizes of the proposed IdLRS by basing it on
ideal lattices. We then also adapt the proposed IdLRS over
integer lattices to get a version of IdLRS over ideal lattices
(called rIdLRS) as presented in Section VI. Ideal lattices are
ones with some additional algebraic structure. Specifically,
ideal lattices corresponds to ideals in quotient rings of the
form Z[x]/〈f〉 for some irreducible polynomial f . Thanks
to the algebraic structure, ideal lattice-based cryptosystems
enjoy high efficiency compared to integer lattice-based ones.
We summarize the theoretical estimation of key sizes and
signature size of our integer lattice-based IdLRS in Table 2.
There, “a · S" means “a elements in the set S". For setting
parameters, the experimental results of running time and
sizes, we refer the readers to Section V.

Paper Organization. In Section II, some background will be
presented. We present the proposed construction in Section
III. The security of the proposed IdLRS will be analysed in
Section IV. Setting parameters, implementation and exper-
imental results will be presented in Section V. An IdLRS
construction based on the hardness of the ring SIS problem
(rIdLRS) is also given in Section VI. We conclude this work
in Section VII.

II. PRELIMINARIES
Norms. For any R = [r1| · · · |rk] ∈ Rm×k, denote R̃ to
be the Gram-Schmidt orthogonalization (GSO) of R. We
will involve with the norms: (i) Euclidean norm: ‖R‖ :=
maxi ‖ri‖, where ‖ri‖ is the ordinary Euclidean norm; (ii)
Gram-Schmidt (GS) norm: ‖R̃‖; (iii) ‖x‖1 :=

∑n
i=1 |xi|;

and (iv) the sup norm: s1(R) = ‖R‖sup = supx
‖Rx‖
‖x‖ . Note

that s1(R) ≥ ‖R‖.

A. IDENTITY-BASED LINKABLE RING SIGNATURES
1) Syntax.
An identity-based Linkable Ring Signature (IdLRS)
scheme is a tuple of efficient algorithms (IdLRS.Setup,
IdLRS.Extract, IdLRS.Sign, IdLRS.Verify, IdLRS.Link)
performing as follows:

• (pp,msk) ← IdLRS.Setup(1n): A probabilistic poly-
nomial time (PPT) algorithm that takes as input a secu-
rity parameter n to output public system parameters pp
and a master secret key msk.

• skid ← IdLRS.Extract(pp, id,msk): A PPT algorithm
that takes as input public parameters pp, a user identity
id ∈ {0, 1}∗ and a master secret key msk, to generate a
private key skid with respect to the identity id.

• Sig ← IdLRS.Sign(pp, event, µ, id,R, skid): A PPT
algorithm that on input public parameters pp, an event
event, a message µ, a ring of signers R, an identity id

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Form Size

Public key A
$←− Zn×mq nm · Zq

Master secret key R ∼ Dm×nk
σ1 mnk ·Dσ1

Private key Si ∼ D
(m+nk)×n
σ3 (m+ nk)n ·Dσ3

Signature
(
{zj}j∈[`], c1,R,E

)
`(m+ nk + n) ·Dσ + 1 · Snw + n2 · Zq

TABLE 2: Theoretical estimation of key sizes and signature sizes for our integer lattice-based IdLRS version.

of the real signer inR and the corresponding private key
skid, outputs a ring signature Sig.

• 1/0 ← IdLRS.Verify(pp, event, µ, Sig,R): A deter-
ministic polynomial-time (DPT) that on input public
parameters pp, an event event, a message µ, a ring of
signers R and a ring signature Sig, returns 1 if the
signature is valid, returns 0 otherwise.

• link/unlink ← IdLRS.Link((µ1, Sig1), (µ2, Sig2)):
A DPT algorithm that on input two valid message-
signature pairs (µ1, Sig1), (µ2, Sig2), returns link if
they are generated on the same event by the same signer,
or returns unlink otherwise.

2) Correctness requirements.
• Signing correctness: Over the randomness of (pp,msk)
← IdLRS.Setup(1n), skid ← IdLRS.Extract(pp, id,msk),
and Sig ← IdLRS.Sign(pp, event, µ, id,R, skid) then
Pr[IdLRS.Verify(pp, event, µ, Sig,R) = 1] = 1 −
negl(n).

• Linking correctness: Over the randomness of (pp,msk)←
IdLRS.Setup(1n), skid ← IdLRS.Extract(pp, id,msk),
Sig1 ← IdLRS.Sign(pp, event, µ1, id,R1, skid) and
Sig2 ← IdLRS.Sign(pp, event, µ2, id,R2, skid), then
Pr[IdLRS.Link((µ1, Sig1), (µ2, Sig2)) = link] = 1 −
negl(n).

3) Security models.
In order to state the security models for an IdLRS scheme,
we summarise two kinds of queries that an adversary A can
make in the corresponding games and the way the challenger
responses to those queries.
• Extract query EQ(idi): Once the adversary A makes

an extract query on an identity idi, the challenger C runs
IdLRS.Extract(pp, idi,msk) and handsA a private key
skidi .

• Sign query SQ(µ, event,R, ids): Once the adver-
sary A makes a sign query on a tuple of (µ, event,
R, ids ∈ R) , the challenger C first computes skids
by IdLRS.Extract(pp, ids,msk) and then sends Sig ←
IdLRS.Sign(pp, event, µ, ids,R, skids) to A.

Definition 1 (Anonymity). Anonymity of an IdLRS ensures
that from a valid ring signature, it is impossible (for any ad-
versary) to decide who the real signer is. Formally, an IdLRS
scheme is called to be anonymous if for any polynomial-time
adversary A playing in GAME I below, the probability that
A wins is negligible.

GAME I (Anonymity Game):

• Setup. Given n, the challenger C calls the algorithm
IdLRS.Setup(1n) to get public parameters pp and a
master secret keymsk. Then C sends pp to the adversary
A.

• Query 1. A adaptively makes a polynomially bounded
number of extract queries EQ(idi) and sign queries
SQ(µ, event,R, ids), and the challenger responses in
such a way mentioned above.

• Challenge. A submits a message µ, an event event,
a ring R, and two identities ids0 , ids1 ∈ R
such that EQ(ids0), EQ(ids1), SQ(·, event, ·, ids0) and
SQ(·, event, ·, ids1) have not been queried before. Now,
C chooses randomly b

$←− {0, 1}, generates skidsb
by IdLRS.Extract(pp, idsb ,msk) and returns Sig ←
IdLRS.Sign(pp, event, µ, idsb ,R, skidsb).

• Query 2. Same as Query 1, except that A is
not allowed to make queries EQ(ids0), EQ(ids1),
SQ(·, event, ·, ids0) and SQ(·, event, ·, ids1).

• Guess. The adversaryA outputs a guess b′ for b.A wins
if b′ = b.

Definition 2 (Unforgeability). Unforgeability of an IdLRS
guarantees that any one, who does not have any private key
of signers in some ring, cannot produce a valid ring signature
on that ring. Formally, an IdLRS scheme is unforgeable under
adaptive chosen-identity and chosen-massage attacks if, for
any polynomial-time adversary A, the probability that A
wins GAME II below is negligible.

GAME II (Unforgeability Game):

• Setup. Same as GAME I.
• Query. Same as Query 1 of GAME I.
• Forge. Eventually, A outputs a ring signature Sig∗ on

a message µ∗, an event event∗ and a ring R∗. It wins
the game if:

1) (µ∗, event∗,R∗, Sig∗) is valid, that is,
IdLRS.Verify(pp, event∗, µ∗, Sig∗,R∗)=1.

2) Sign queries SQ(µ∗, event∗,R∗, id),∀id ∈ R∗ and
extract queries EQ(id),∀id ∈ R∗ have never been
made in the Query phase.

Definition 3 (Linkability). Linkability of an IDLRS requires
that two different ring signatures produced on the same event
and by the same real signer who belongs to two (unnecessar-
ily same) rings must be linkable. Formally, an IdLRS scheme
is linkable for the same event if for any polynomial-time
adversary A, the probability that A wins GAME III below

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

is negligible.
GAME III (Linkability Game):

• Setup. Same as GAME I.
• Query. Same as Query 1 of GAME I.
• Unlink. Finally,A outputs two tuples (µ1, event,R1, Sig1)

and (µ2, event, R2, Sig2) on the same event. The
adversary wins if all the following conditions hold:

1) (µ1, event,R1, Sig1) and (µ2, event,R2, Sig2) are
valid.

2) (µ1, event,R1, Sig1) and (µ2, event,R2, Sig2) are
not obtained through the Query phase.

3) A is given at most one private key skid, with id ∈
R1 ∪R2.

4) IdLRS.Link(Sig1, Sig2) = unlinked.

Definition 4 (Nonslanderability). Nonslanderability of an
IDLRS ensures that any adversary without having the private
key of the real signer in the ring cannot produce any new
signatures that are linkable to the previous ones. Formally,
an IdLRS scheme is nonslanderable for the same event if
for any polynomial-time adversary A, the probability that A
wins GAME IV is negligible.

GAME IV (Nonslanderability Game):

• Setup. Same as GAME I.
• Query 1. Same as Query 1 of GAME I.
• Challenge. The adversary A submits a tuple of

(µ, event,R, id∗ ∈ R), such that EQ(id∗) has not
been queried before. The challenger C generates skid∗
by IdLRS.Extract(pp, id∗,msk) and returns Sig ←
IdLRS.Sign(pp, event, µ, id∗,R, skid∗).

• Query 2. Same as Query 1, except thatA is not allowed
to make queries EQ(id∗), and SQ(·, event, ·, id∗).

• Slander. The adversary A outputs a new signature Sig′

on the same message µ and the same event event. The
adversary wins if the following conditions hold:

1) (µ, event,R′, Sig′) is valid.
2) (µ, event,R′, Sig′) was not obtained through Query

1 and Query 2.
3) IdLRS.Link(Sig, Sig′) = linked.

Constructing IdLRS in the lattice setting is a long-standing
problem. In this paper, we will give the first lattice-based
IdlRS constructions. In the next section, we will review some
background of lattices.

B. BACKGROUND OF LATTICES

Lattices. A lattice Λ in Zm is a set of integral combi-
nations of given some linearly independent vectors, say
{b1, · · · ,bn} ⊂ Zm, which is formally defined as

Λ :=

{
n∑
i=1

bixi|xi ∈ Z ∀i = 1, · · · , n

}
⊆ Zm.

Given a matrix A ∈ Zn×m and a vector u ∈ Znq , one can

prove that the following sets are essentially lattices:

Λq(A) :=
{
e ∈ Zm s.t. ∃s ∈ Znq where AT s = e mod q

}
,

Λ⊥q (A) := {e ∈ Zm s.t.Ae = 0 mod q} ,
Λu
q (A) := {e ∈ Zm s.t.Ae = u mod q} .

Hardness Assumption. The short integer solution (SIS)
problem is an average hard problem in lattices on which we
rely our proposed scheme’s security. The problem is stated as
follows:

Definition 5 (SIS Problem). Given positive integers q,m, a
random matrix A

$←− Zn×mq and β ∈ R+, the SISn,m,q,β
problem requires to seek a non-zero short vector e ∈ Zm
satisfying ‖e‖ ≤ β and Ae = 0 (mod q).

The following lemmas present the hardness of SIS prob-
lem as well as the condition for which the SISn,m,q,β problem
has a solution.

Lemma 1 ([19, Proposition 5.7]). For any poly-bounded m,
and β = poly(n), and for any prime q ≥ β · ω(

√
n log n),

average-case SISn,m,q,β and ISISn,m,q,β is as hard as SIVPγ
(among others) in the worst-case to within certain γ =
Õ(β
√
n) factor.

Lemma 2 ([34, Lemma 5.2]). For any q, A ∈ Zn×mq , and
β ≥
√
mqn/m, the SISn,m,q,β admits a solution.

Smoothing Parameters. Smoothing parameters is proposed
to measure the quality of a lattice by Micianco and Regev
[34].

Definition 6 (Smoothing Parameters, [34]). For any n-
dimensional lattice L and positive real ε > 0, the smoothing
parameter ηε(Λ) is the smallest real number s > 0 such that
ρ1/s(L∗ \ {0}) ≤ ε.

Note that, for any ε ∈ (0, 1), ηε(Z) =
√

ln(2(1+1/ε))
π .

Discrete Gaussians. Define: ρc,σ(x) = exp
(
−π ‖x−c‖

2

σ2

)
,

ρc,σ(Λ) =
∑

x∈Λ ρc,σ(x), where Λ ⊆ Zm is a lattice,
c ∈ Rm and a positive parameter σ > 0. The discrete
Gaussian distribution over Λ with center c and parameter σ is
defined by the function DΛ,c,σ(y) =

ρc,σ(y)
ρc,σ(Λ) , where y ∈ Λ.

If c = 0, we drop it out for convenience, i.e., we just write
ρσ and DΛ.σ standing for ρσ,0 and DΛ,0,σ respectively. If
Λ = Zm, we just write Dm

c,σ instead of DZm,c,σ. For σ = 1,
we will use ρ as a replacement of ρ1.

Lemma 3 ([34]). Let n, q be any positive integers and m ≥
2n log q. Given a matrix A ∈ Zn×mq , a basis B of Λ⊥q (A)

and a vector u ∈ Znq , if the Gaussian parameter σ ≥ ‖B̃‖ ·
ω(
√

log n), then for any x
$←− DΛu

q (A),σ , we have ‖x‖ ≤
σ
√
m with overwhelming probability.

Lemma 4 ([29, Lemma 4.4-4.5]). For any positive η, σ ∈ R
any vector c ∈ Zm, we have

1) Pr[|z| > ησ; z
$←− D1

σ] ≤ 2e
−η2
2 .

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

2) For η > 1, Pr[‖z‖ > ησ
√
m; z

$←− Dm
σ] <

ηme
m
2 (1−η2).

3) For z ∈ Zm, if σ ≥ 3/
√

2π, then Dm
σ (z) ≤ 2−m.

4) Pr[Dm
σ (z)/Dm

c,σ(z) = O(1); z
$←− Dm

σ] = 1 −
2−ω(logm) for σ = ω(‖c‖

√
logm). Specifically, for any

c ∈ Zm, if σ = α · ‖c‖, where α > 0, we have

Pr

[
Dmσ (x)

Dmc,σ(x)
≤ e12/α+1/(2α2) : x← Dmσ

]
≥ 1−2−100.

Remark 1. In Item 2 of Lemma 4, one usually chooses η ∈
[1.1, 1.3]. (See [23, Remark 2] for a detailed discussion.)

Remark 2. In Item 4 of Lemma 4, if α = 12, i.e., σ =
12‖c‖ then with probability at least 1 − 2−100, we have
Dmσ (x)/Dmc,σ(x) ≤ e1+1/288.

C. G-TRAPDOORS AND RELATED ALGORITHMS
In this section, we will present the notion of G-trapdoor and
recall a special matrix, called primitive matrix [33], which
will play an important role in our scheme.

Definition 7 (G-trapdoors, [33, Definittion 5.2]). Let
n, q,m, k be positive integers and A ∈ Zn×mq , G ∈ Zn×nkq

be matrices with m ≥ nk. Let H ∈ Zn×nq be some invert-
ible matrix. The G-trapdoor for A with tag H is a matrix
R ∈ Z(m−nk)×nk such that A

[
R
Ink

]
= HG (mod q).

The quality of the G-trapdoor R is measured by its largest
singular value s1(R), which is essentially small if every
element of R is sampled from Dσ . Formally we have the
following lemma.

Lemma 5 ([33, Lemma 2.9]). LetDn×m
σ be a discrete Gaus-

sian distribution with parameter σ and R ← Dn×m
σ . Then

with overwhelming probability s1(R) ≤ σ· 1√
2π
·(
√
n+
√
m).

In particular, we only focus on the primitive matrix G
defined as G = In ⊗ gt ∈ Zn×nkq , where k = dlog2 qe,
gt = (1, 2, 4, ..., 2k−1) ∈ Zkq , In ∈ Zn×n is an identity
matrix and ⊗ stands for the tensor product. Moreover, one
can find a short special basis, say Bk ∈ Zk×k for Λ⊥(gt),
i.e., gt.Bk = 0 ∈ Zkq . Accordingly, the short matrix
B := In ⊗Bk ∈ Znk×nk is the basis of Λ⊥(G).

Now we recall several useful algorithms related to the
primitive matrix G and G-trapdoors. In the following, let
q ≥ 2,m ≥ 1, k = dlog2 qe, and m = O(n log q).
• (A,R) ← GenTrap(A,H, σ) [33, Algorithm 1]:

Given a uniformly random matrix A ∈ Zn×mq and
an invertible matrix H ∈ Zn×nq , the polynomial time
algorithm GenTrap(A,H) will output a random matrix
A =

[
A|HG−AR

]
and a G-trapdoor R ∼ Dm×nk

σ

with tag H, where σ ≥ ηε(Z) for any ε ∈ (0, 1) (we

should choose σ ≥
√

ln(2(1+1/ε))
π) . Note that, there

exists ε = ε(n) negligible for which σ ≥ ω(
√

log n).
Also, by Lemma 5, s1(R) ≤ σ · 1√

2π
· (
√
m+

√
nk).

• e ← SampleD(A,R,H,u, σ) [33, Algorithm 3]:
Given a G-trapdoor R ∈ Zm×nk for A ∈ Zn×(m+nk)

q ,

an invertible matrix H ∈ Zn×nq , a uniform vector u $←−
Znq and Gaussian parameter σ ≥

√
7(s1(R)2 + 1) ·

ω(
√

log n) (see [33, Section 5.4]). The polynomial time
algorithm SampleD(A,R,H,u, σ) will output a vec-
tor e ∈ Zm+nk sampled from a distribution that is
statistically close to DΛu(A),σ .

• R′ ← DelTrap(A,A1,R,H, σ) [33, Algorithm 4]:
Given a matrix A ∈ Zn×mq along with a G-trapdoor
R ∈ Z(m−nk)×nk, a new matrix A1 ∈ Zn×nkq , an
invertible matrix H ∈ Zn×n and a Gaussian parameter
σ ≥ ηε(Λ

⊥
q (A)), (we should choose σ ≥

√
5(s1(R) +

1) · ω(
√

log n) (see [33, Lemma 2.3, Lemma 5.3])), the
polynomial time algorithm DelTrap(A,A1,R,H, σ)
will output a G-trapdoor R′ ∈ Zm×nk for matrix
[A|A1] with tag H.

In the rest of the paper, we will set H = In and omit it for
simplicity.

D. REJECTION SAMPLING
Lemma 6 (Rejection Sampling, [14]). Let m be a positive
integer and V be an arbitrary set. Let f : Zm → R be
probability distributions. If gv : Zm → R is a family of
probability distributions indexed by v ∈ V with the property
that

∃M ∈ R+ s.t ∀v ∈ V,Pr[M ·gv(z) ≥ f(z); z
$←− f] ≥ 1−ε

Then the distributions of the following two algorithms
are statistically indistinguishable (within statistical distance
∆(A,F) =

ε

M
).

1) A: v ← h, z ← gv , output(z, v) with probability
f(z)/(M · gv(z));

2) F: v ← h, z← f , output(z, v) with probability 1/M .

III. OUR IDENTITY-BASED LINKABLE RING SIGNATURE
SCHEME
A. DESCRIPTION
In our scheme, each signer of a ring has an identity id.
For simplicity, we denote a ring by a tuple of identity,
e.g., R = (id1, · · · , id`). From now on, we always con-
sider ci = ci mod `. Our scheme consists of algorithms
IdLRS.Setup, IdLRS.Extract, IdLRS.Sign, IdLRS.Verify
and IdLRS.Link working as follows:

IdLRS.Setup(1n): On input a security parameter
n, do the following:

1) Choose integers q ≥ 2, w ≥ 3, M ≤ 3 fixed
and k := dlog(2q)e and m ≥ 1, such that m :=
m+ nk ≥ O(n log q).

2) Choose σ1, σ2, σ3, σ to be Gaussian parameters.
3) Choose three collision-resistant hash functions

H1 : {0, 1}∗ → Zn×nkq , H2 : {0, 1}∗ → Snw,
where Snw := {c ∈ {0, 1}n : ‖c‖1 = w},
and H3 : {0, 1}∗ → Zn×(m+nk)

q . These hash
functions will play as random oracles in our
security proof later. This means that their outputs
look like random.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

4) Choose A $←− Zn×nkq , and run GenTrap(A, I, σ1)
to get a matrix A ∈ Zn×mq along with a G-
trapdoor R ∼ Dm×nk

σ1
.

5) The public key is pk := A and the master
secret key is msk := R and system public
parameter pp consists of H1, H2, H3 and the rest
parameters.

IdLRS.Extract(idi,msk): On input an identity
idi ∈ {0, 1}∗ of a user in a ring and a master secret
key msk = R, do:

1) Compute Qi = H1(idi) and set Ai := [A|Qi] ∈
Zn×(m+nk)
q .

2) Sample Ri ← DelTrap(A,Qi,R, σ2), Ri ∼
Dm×nk
σ2

.
3) For t ∈ [n], sample si,t ∈ Z(m+nk)×n ←

SampleD(Ai,Ri, In,ut, σ3) such that Aisi,t =
ut mod q, where ut is the t-th column of qIn.
Let Si ∈ Z(m+nk)×n = [si,1| · · · |si,n]. Then,
AiSi = qIn mod 2q.

4) Output the private key skidi := Si.
IdLRS.Sign(µ, event,R, sks): On input a mes-
sage µ, an event event, a ring of ` users R =
(id1, ..., id`), an identity ids ∈ R and a corre-
sponding key sks = Ss, do:

1) Let K := H3(event) and E := KSs ∈ Zn×nq .
2) Let K̂← [2K|−2E+qIn] ∈ Zn×(m+nk+n)

2q and
Ŝs ←

[
Ss
In

]
∈ Z(m+nk+n)×n

2q . Note that K̂·Ŝs =
qIn mod 2q.

3) For i ∈ [`], let Âi ← [Ai|0] ∈ Zn×(m+nk+n)
2q .

Then, Âs · Ŝs = qIn mod 2q.
4) Choose a vector y← Dm+nk+n

σ .
5) Calculate cs+1 = H2(Âsy mod 2q, K̂y mod

2q, K̂,R, µ, event,E).
6) For each identity idj ∈ R \ {ids}, choose a

vector zj ← Dm+nk+n
σ .

7) For i = s+ 1, · · · , `− 1, 0, 1, · · · , s− 1, do:

• Calculate ci+1 = H2(Âizi + qci mod
2q, K̂zi + qci mod 2q, K̂,R, µ, event,E).

8) For j = s, choose b $←− {0, 1} and calculate
zs ← (−1)bŜscs+y mod 2q and output zs with

probability min

{
Dm+nk+n
σ (zs)

M ·Dm+nk+n

(−1)bŜscs,σ
(zs)

, 1

}
.

9) Output the ring signature σR = σR(µ, event) =(
{zj}j∈[`], c1,R,E

)
.

IdLRS.Verify(µ, event, σR): Take as input a mes-
sage µ, an event event and a signature σR =(
{zj}j∈[`], c1,R,E

)
, do the following:

1) If for all j ∈ [`], ‖zj‖ ≤ ∆ := ησ
√
m+ nk + n

where 1.1 ≤ η ≤ 1.3 go to Step 2; otherwise
output 0.

2) Let K = H3(event), and let K̂ ← [K| − E +

qIn] ∈ Zn×(m+nk+n)
2q .

3) For i ∈ [`− 1], do:

• Let Âi ← [Ai|0] ∈ Zn×(m+nk+n)
2q ,

• Calculate ci+1 = H2(Âizi + qci mod
2q, K̂zi + qci mod 2q, K̂,R, µ, event,E).

4) If c1 = H2(Â`z`+qc` mod 2q, K̂z`+qc` mod
2q, K̂,R, µ, event,E) output 1, otherwise out-
put 0.

IdLRS.Link(σR1
, σR2

): Take as input two sing sig-
natures (σR1

=
(
{z1,j}j∈[`], c1,1,R1,E1

)
) and

(σR2
=
(
{z2,j}j∈[`′], c1,2,R2,E2

)
), perform:

1) Output linked if both σR1 and σR2 are valid and
E1 = E2. Otherwise output unlinked.

B. CORRECTNESS
1) Signing Correctness.
For the signing correctness, we need to show thatH2(Â`z`+
qc` mod 2q, K̂z` + qc` mod 2q, K̂,R, µ, event,E) = c1

(in IdLRS.Verify) and H2(Âizi + qci mod 2q, K̂zi +
qci mod 2q, K̂,R, µ, event, E) = ci+1 for 1 ≤ i ≤ ` − 1
(in IdLRS.Sign). Suppose that ids is the identity of the real
signer inR. Then we have two cases:
• If i 6= s, then ci+1 = H2(Âizi + qci, K̂zi +
qci, K̂,R, µ, event,E) is the same for both IdLRS.Sign
and IdLRS.Verify.

• For i = s, remind that in IdLRS.Sign we have cs+1 ←
H2(Âsy mod 2q, K̂y mod 2q, K̂,R, µ, event,E), whilst
in IdLRS.Verify, cs+1 ← H2(Âszs + qcs mod
2q, K̂zs + qcs mod 2q, K̂,R, µ, event,E). We will
prove that cs+1 (in IdLRS.Sign) = cs+1 (in
IdLRS.Verify). Indeed, we can obtain Âsy = Âszs +
qcs, which is equivalent to Âs(y − zs) = qcs, by
replacing zs with (−1)bŜscs + y to get

−(−1)bÂsŜscs = qcs mod 2q, i.e.,

−(−1)bqcs = qcs mod 2q.

Clearly, this equation holds for all b ∈ {0, 1} thanks to
qcs = ±qcs mod 2q.
Similarly, we also have K̂y = K̂zs + qcs mod 2q.

2) Linking Correctness.
We consider two valid ring signatures σR1 = ({z1,j}j∈[`], c1,1,
R1,E1) and σR2

=
(
{z2,j}j∈[`′], c1,2,R2,E2

)
, in which an

honest user of identity ids ∈ R1 ∩ R2 is the real signer,
signing on two messages µ1 and µ2 and on the same event
event. Then IdLRS.Link(σR1 , σR2) outputs linked with
overwhelming probability. Indeed, the facts that Pr[E1 =
E2] = Pr[K1Ss = K2Ss] and that K1 = K2 = H3(event)
imply Pr[E1 = E2] = 1.

IV. SECURITY ANALYSIS
Theorem 7 (Anonymity). Our identity-based Linkable ring
signature scheme is anonymous assuming the randomness
(these hash functions are considered as random oracles), the
collision-resistance of hash functions H1, H2, H3.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Proof. We proceed the proof with a sequence of hybrid
games. We will prove that these game are indistinguishable
against the Anonymity adversary. We show that in the last
game, the advantage of the adversary is zero. Let Wi be the
event that the Anonymity adversary wins Game i.
• Game 0. This is the original Anonymity game via

Definition 1.
• Game 1. Compared to Game 0, in this game we make

some changes in extracting the private key for signers
of idi. Namely, once getting an extract query EQ(idi),
the challenger chooses Qi

$←− Zn×nkq and then pro-
grams H1(idi) ← Qi. After that, the challenger sets
Ai := [A|Qi] and then does the same steps 2-4 as in
IdLRS.Extract. Note that, the challenger has to keep
a list of Qi’s to respond consistently. In ROM, the
adversary cannot detect the change between Game 1 and
Game 0. Thus, we have

Pr[W1] = Pr[W0].

• Game 2. This game is as same as Game 4, except that
when signing (in responding signing queries and in the
challenge phase), the challenger uses IdLRS.Sign1 (see
Figure 1 (a)). In ROM, the adversary cannot distinguish
IdlRS.Sign from IdLRS.Sign1, hence

Pr[W2] = Pr[W1].

• Game 3. This game is as same as Game 2, except
that when signing (in responding signing queries and in
the challenge phase), the challenger uses IdLRS.Sign2
(see Figure 1 (b)). Lemma 6 ensures that the adversary
cannot distinguish IdlRS.Sign2 from IdLRS.Sign1.
Again, we have

Pr[W3] = Pr[W2].

• Game 4. This game is as same as Game 3, except
that when signing (in responding signing queries and in
the challenge phase), the challenger uses IdLRS.Sign3
(see Figure 1 (c)). In IdLRS.Sign2, a standard leftover
hash lemma argument claims that E = KSs looks like
uniform. In addition, the adversary is not aware of Ss.
Then we can replace E = KSs with E

$←− Zn×nq

without making the adversary get noticed. Hence, we
have

Pr[W4] = Pr[W3].

Obviously, in this game, all Qi, ci and all zi are
chosen uniformly at random from the corresponding
domain. Moreover, E is also randomly sampled without
using the secret key of the real signer (see Step 1 of
IdLRS.Sign3). Therefore, the signature generated in
the challenge phase is perfectly independent of choosing
the signer idsb . Hence,

Pr[W5] = 0.

We can conclude Pr[W0] = 0.

Theorem 8 (Unforgeability). Our identity-based Linkable
ring signature scheme satisfies Unforgeability, assuming the
hardness of SISn,m+nk,q,2∆′ , where ∆′ := ησ

√
m+ nk,

1.1 ≤ η ≤ 1.3.

Proof. To prove the proposed scheme to be secure against
any existential forger, we show that if there exists a forger
F who can compromise the unforgeability then we can
construct a solver S being able to solve a given SIS instance.
In the simulation, the real signing algorithm IdLRS.Sign
is replaced with IdLRS.Sign1 and IdLRS.Sign2 (see Fig-
ure 1 (a)-(b)). The first change in both IdLRS.Sign1
and IdLRS.Sign2 compared to IdLRS.Sign is that the
H2-oracle responses are taken as a tuple of ` first un-
used values c1, · · · , c` from CH2

(see Step 5). These H2-
oracle responses are then programmed such that for i ∈
[`], H2(Âizi + qci mod 2q, K̂zi + qci mod 2q, K̂ mod
2q,R, µ, event,E) := ci+1 (see Step 8). We emphasize
that in the ROM setting, the forger F cannot distinguish
between IdLRS.Sign and IdLRS.Sign1 as well as between
IdLRS.Sign1 and IdLRS.Sign2 (thanks to the rejection
sampling). The algorithms IdLRS.Sign1 and IdLRS.Sign2
are described as in Figure 1.

Now, suppose that there is a forger F that is able to break
the unforgeability of the proposed scheme. Using F , we
construct an SIS solver S as follows:
• SIS instance. The SIS solver S is given the SIS instance

Fx = 0 (mod q), ‖x‖ ≤ β, β = 2∆′, where ∆′ :=

ησ
√
m+ nk, 1.1 ≤ η ≤ 1.3, F = [A|Fθ] with A

$←−
Zn×mq , Fθ

$←− Zn×nkq .

• Setup. S first samples F2, · · · ,F`
$←− Zn×nkq then S se-

lects three hash functions H1 : {0, 1}∗ → Zn×nk2q , H2 :

{0, 1}∗ → Snw and H3 : {0, 1}∗ → Zn×(m+nk)
2q . Sup-

pose that F will makes at most qE extract queries, qS
sign queries. Note that, each sign query calls ` queries to
the H2 oracle. Let qT := qE + ` · qS . In order to prepare
for replying queries made by F , S creates a H1-list
L1 = {(idi,Qi,Ri,Ai, flag) : H1(idi) := Qi, Ai =
[A|Qi]}, where flag = 1 if Qi is of the form Qi =
G −ARi, flag = 2 if Qi is some Fj , j ∈ {2, · · · , `},
while flag = 3 if Qi = Fθ. Also, S creates a H2-list
L2 consisting of tuples ((u1,u2, K̂,R, µ, event,E), c)
satisfying that H2(u1,u2, K̂,R, µ, event, E) := c.
B also selects randomly from Snw a set CH2

:=
{c(1), · · · , c(qT)}. Additionally, S prepares a list L3 of
tuples (idi,Si). Moreover, S prepares a list L4 of tu-
ples (idi, {zj}`j=1,R, c1, event, µ,E) for replying sign
queries. These L1, L2, L3 and L4 are initially empty. The
public key pk = A and , H1, H2, H3 are sent to F .

• Query.
-- H1 query. Once F submits an identity idi, S first

checks whether idi exists in the list L1 or not. If
not, S samples an Ri ∼ Dn×nk

σ2
, simultaneously

selects an unused Funs from {Fθ,F2, · · · ,F`},
then returns Qi as follows: (i) Qi := G − ARi

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IdLRS.Sign1(µ, event,R, sks):
1) K = H3(event), E = KSs.
2) K̂← [2K|−2E+qIn], Ŝs ←

[
Ss
In

]
.

3) Âi ← [Ai|0], ∀i ∈ [`].
4) y← Dm+nk+n

σ .

5) c1, · · · , c`
$←− CH2

.
6) For j 6= s, zj ← Dm+nk+n

σ .
7) For j = s: b ∈ {0, 1}, output

zs ← (−1)bŜscs + y with proba-

bility min

{
Dm+nk+n
σ (zs)

M ·Dm+nk+n

(−1)bŜscs,σ
(zs)

, 1

}
.

8) Program H2(Âizi + qci, K̂zi +
qci, K̂,R, µ, event,E) := ci+1,
∀i ∈ [`].

9) Output σR = σR(µ, event) =(
{zj}j∈[`], c1,R,E

)
.

(a)

IdLRS.Sign2(µ, event,R, sks):
1) K = H3(event), E = KSs.
2) K̂← [2K| − 2E + qIn].
3) Âi ← [Ai|0], ∀i ∈ [`].
4) y← Dm+nk+n

σ .
5) c1, · · · , c`

$←− CH2
.

6) For j 6= s: zj ← Dm+nk+n
σ .

7) For j = s: zs ← Dm+nk+n
σ ,

output zs with probability 1/M .

8) Program H2(Âizi + qci, K̂zi +
qci, K̂,R, µ, event,E) := ci+1,
∀i ∈ [`].

9) Output σR = σR(µ, event) =(
{zj}j∈[`], c1,R,E

)
.

(b)

IdLRS.Sign3(µ, event,R):

1) K = H3(event), E
$←− Zn×nq .

2) K̂← [2K| − 2E + qIn].
3) Âi ← [Ai|0] ∀i ∈ [`].
4) y← Dm+nk+n

σ .
5) c1, · · · , c`

$←− CH2
.

6) For j 6= s: zj ← Dm+nk+n
σ .

7) For j = s: zs ← Dm+nk+n
σ , output

zs with probability 1/M .

8) Program H2(Âizi + qci, K̂zi +
qci, K̂,R, µ, event,E) := ci+1,
∀i ∈ [`].

9) Output σR = σR(µ, event) =(
{zj}j∈[`], c1,R,E

)
.

(c)

FIGURE 1: A summary of hybrid signing algorithms. Note that, IdLRS.Sign3 can work without sks

with probability of δ = qE
`+qE

, sets flag = 1; (ii)
Qi := Funs with probability of 1−δ. If Funs 6= Fθ
then S sets flag = 2, and Ri = ⊥. However if
Funs = Fθ then S sets flag = 3, and Ri = ⊥.
Afterwards, S then sets Ai := [A|Qi]. Note that,
S also stores the new tuple (idi,Qi,Ri,Ai, flag)
in the list L1.

-- H2 query. Once F submits a tuple w :=
(u1 mod 2q,u2 mod 2q, K̂ mod 2q,R, µ, event,
E), S first checks whether w exists in the list L2

or not. If not, S chooses the first unused c(j) from
CH2 and programs H2(w) := c(j). Also, S puts
the new tuple ((u1 mod 2q,u2 mod 2q, K̂ mod
2q,R, µ, event,E), c(j)) into the list L2.

-- Extract query EQ(idi). S first checks whether idi
belongs to L3 or not. If yes, S returns the corre-
sponding Si. Otherwise, S checks whether idi is
in L1 or not. If idi exists in L1 and its correspond-
ing flag is flag 6= 1, S rejects the query (with
probability less than 1 − δqE). If idi exists in L1

and its corresponding flag is flag = 1, S takes
Ri. Otherwise, S samples an Ri ∼ Dn×nk

σ2
, sets

Qi := G−ARi and Ai := [A|Qi]. (Note that, S
also stores the new tuple (idi,Qi,Ri,Ai, flag =
1) in L1.) Having Ri already, S uses TG (a short
basis for Λ⊥q (G) mentioned in Subsection II-C) to
find a short matrix Si ∈ Z(m+nk)×n

q satisfying that
AiSi = qIn (mod 2q). Finally, S sends Si to F as
the response for the extract query on the identity
idi.

-- Sign query SQ(µ, event,R, ids). S first checks
whether (ids,R, event, µ) in the list L4 or not. If
yes, it just returns (ids, {zj}`j=1,R, c, event, µ,E)

stored in L4. Otherwise, S does the same as in H1

query, H2 query and Extract query using the lists
in L1, L2 and L3 for programming the values of
H1(·), H2(·) and for returning the private keys Si.
However, remark that if ids has flag 6= 1, then
S rejects the sign query. Finally, S follows the
algorithm IdLRS.Sign2(µ, event,R, sks)), where
sks = Ss and then forwards the output to F .
Also, S stores (ids, {zj}`j=1,R, c1, event, µ,E)
in L4. During each signing process, the answers
to H2 queries are also placed in the list L5 =

{(c(j)
1 , ..., c

(j)
`) : j ∈ [qS]} for the case of replying

the same sign queries if necessary.

• Forge. With probability δ, the forger F outputs
a ring signature σR∗ = σR∗(µ

∗, event∗) =(
{z∗j}j∈[`], c

∗
1,R∗,E∗

)
, such that SQ(µ∗, event∗,R∗, id),

∀id ∈ R∗ and extract queries EQ(id), ∀id ∈ R∗ have
never been made in the Query phase, and that

1) For all j ∈ [`], ‖z∗j‖ ≤ ∆ := ησ
√
m+ nk + n

where 1.1 ≤ η ≤ 1.3.
2) Let K = H3(event∗), and let K̂ ← [2K| − 2E∗ +

qIn] ∈ Zn×(m+nk+n)
2q .

3) For i ∈ [`], do:

-- Let Âi ← [Ai|0] ∈ Zn×(m+nk+n)
2q ,

-- Assign c∗i+1 ← H2(Âiz
∗
i + qc∗i mod 2q, K̂z∗i +

qc∗i mod 2q, K̂,R∗, µ∗, event∗,E∗).

4) c∗1 = H2(Â`z
∗
` + qc∗` mod 2q, K̂z∗` + qc∗` mod

2q, K̂,R∗, µ∗, event∗,E∗).
• Analysis. If all idi ∈ R∗ have flag 6= 3, then S aborts.

Otherwise, suppose that for some s ∈ [`], ids ∈ R∗ has
flag = 3, i.e., Âs = [A|Fθ|0].
Notice that, if the sign query SQ(µ∗, event∗,R∗, ids)

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

was not made as well as the random oracle H2 was not
called or programmed on input (Âsz

∗
s + qc∗s, K̂z∗s +

qc∗s, K̂,R∗, µ∗, event∗,E∗), then F has
1

|Snw|
chances

of producing a c∗s+1 mod ` such that c∗s+1 mod ` =

H2(Âsz
∗
s + qc∗s, K̂z∗s + qc∗s, K̂,R∗, µ∗, event∗,E∗),

This turns out that c∗s+1 mod ` = c(j) ∈ CH2
for some

j ∈ [qT] with probability δ
(

1− 1

|Snw|

)
≥ δ − 1

|Snw|
.

At this point, the solver S runs again the at-
tack above of F but this time with C′H2

:=
{c(1), · · · , c(j−1), c′(j), · · · , c′(qT)} instead of C′H2

on
the same message µ∗, the same event∗ and the same
ring R∗, in which c′(j), · · · , c′(qT) are new freshly
chosen from Snw. The forking lemma [8] says that the
probability that c(j) 6= c′(j) and that the forger F uses
c′(j) in his forgery is not smaller than

(
δ − 1

|Snw|

)δ −
1

|Snw|
qT

− 1

|Snw|

 . (1)

With the probability (1), F forges a new signature
σ′R∗ = σ′R∗(µ

∗, event∗) = ({z′∗j }j∈[`], c
′∗
1 , R∗,E∗),

where c′∗1 = c′(j), Âsz
∗
s + qc(j) = Âsz

′∗
s + qc′(j) and

K̂z∗s + qc(j) = K̂z′∗s + qc′(j). This implies that

Âs (z∗s − z′∗s) = q(c′(j) − c(j)) mod 2q,

which is equivalent to [A|Fθ|0] (z∗s − z′∗s) = q(c′(j) −
c(j)) mod 2q.

Separate z∗s − z′∗s as
(

z∗1,s−z
′∗
1,s

z∗2,s−z
′∗
2,s

)
, where z∗1,s − z′∗1,s ∈

Zm+nk
2q , z∗2,s − z′∗2,s ∈ Zn2q .

Let x̂ := z∗1,s − z′∗1,s. Notice that since c′(j) − c(j) 6=
0 mod 2, then we have x̂ 6= 0 mod 2q, where ‖x̂‖ ≤
2∆′ < q. We thus have x̂ 6= 0 mod q and [A|Fθ]x̂ =
0 (mod q). . This implies that Fx = 0 (mod q), where
x is obtained from x̂ by inserting zero rows into appro-
priate positions. Therefore, S obtains a solution of the
given SIS problem.

Theorem 9 (Linkability). Our identity-based Linkable ring
signature scheme satisfies Linkability, assuming the hardness
of SISn,m+nk,q,2∆′ , where ∆′ := ησ

√
m+ nk, 1.1 ≤ η ≤

1.3.

Proof. The proof is quite similar to that of Theorem 8.
Suppose that there is an attacker A that is able to break
the linkability of the scheme. Using A, we construct an SIS
solver B as follows:

• SIS instance. The SIS solver B is given the SIS instance
Fx = 0 (mod q), ‖x‖ ≤ β, β = 2∆′, where ∆′ :=

ησ
√
m+ nk, 1.1 ≤ η ≤ 1.3, F = [A|Fθ] with A

$←−
Zn×mq , Fθ

$←− Zn×nkq .

• Setup. B guesses the real signer of identity, say idπ , that
A wants to attack. The rests are the same as the Setup
phase in the proof of Theorem 8.

• Query. Same as the Query phase in the proof of The-
orem 8, except that H1(idπ) = G − ARπ , for some
Rπ ∼ Dn×nk

σ2
, Aπ := [A|G−ARπ] and its flag = 1.

• Unlink. Eventually,A outputs σ(1)
R = σ

(1)
R (µ, event∗) =(

{z(1)
j }j∈[`], c

(1)
1 ,R,E

)
and (σR′ = σR′(µ

′, event∗) =(
{z′j}j∈[`], c

′
1,R′,E′

)
such that

1) For all j ∈ [`], ‖z(1)
j ‖, ‖z′j‖ ≤ ∆ :=

ησ
√
m+ nk + n where 1.1 ≤ η ≤ 1.3.

2) Let K = H3(event∗), and let K̂ ← [2K| − 2E +

qIn] ∈ Zn×(m+nk+n)
2q , K̂′ ← [2K| − 2E′ + qIn] ∈

Zn×(m+nk+n)
2q .

3) For i ∈ [`], if we let
-- Âi ← [Ai|0] ∈ Zn×(m+nk+n)

2q ,
-- c

(1)
i+1 mod ` ← H2(Âiz

(1)
i + qc

(1)
i , K̂z

(1)
i +

qc
(1)
i , K̂,R, µ, event∗,E), and

-- c′i+1 mod ` ← H2(Âiz
′
i+qc

′
i, K̂z′i+qc

′
i, K̂,R′, µ′,

event∗,E′),
then we have
-- c

(1)
1 = H2(Â`z

(1)
` + qc

(1)
` , K̂z

(1)
` + qc

(1)
` , K̂,R,

µ(1), event∗,E), and
-- c′1 = H2(Â`z

′
` + qc′`, K̂

′z′` + qc′`, K̂
′,R′, µ′,

event∗,E′).
4) IdLRS.Link(σ

(1)
R , σ′R) = unlinked, i.e., E 6= E′.

Remind that, by the guess of B, A behaves as the real
signer idπ who was given the corresponding private key
Sπ , and that idπ ∈ R ∩ R′ as otherwise then B can
abort and restart the simulation. Also, if all idi ∈ R∪R′
have flag 6= 3, then S aborts. Otherwise, suppose that
for some s ∈ [`], ids ∈ R has flag = 3, i.e., Âs =
[A|Fθ|0].

• Analysis. B computes Eπ = KSπ , where K =
H3(event). Then one of E and E′ has to be differ-
ent from Eπ . Without loss of generality, we assume
that Eπ 6= E. Same as the proof of Theorem 8, if
the sign query SQ(µ, event∗,R, idπ) was not made as
well as the random oracle H2 was not called or pro-
grammed on input (Âsz

(1)
s +qc

(1)
s , K̂z

(1)
s +qc

(1)
s , K̂,R,

µ, event∗,E), then F has
1

|Snw|
chances of producing a

c
(1)
s+1 such that c∗s+1 = H2(Âsz

(1)
s + qc

(1)
s , K̂z

(1)
s +

qc
(1)
s , K̂,R, µ, event∗,E), This turns out that c(1)

s+1 =
c(j) ∈ CH2 := {c(1), , · · · , c(qT)} for some j ∈ [qT]

with probability δ
(

1− 1

|Snw|

)
≥ δ − 1

|Snw|
.

Now, by creating new lists L(2)
2 and C

(2)
H2

:=

{c(1), · · · , c(j−1), c′(j), · · · , c′(qT)} for H2 queries, in
which c′(j), · · · , c′(qT) are new freshly chosen from Snw,
and following the forking lemma [8], B rewinds the
attack by A. Note that, at this time, H2 queries are
responded with the lists L(2)

2 and C
(2)
H2

instead of L2

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and CH2
. Again, A outputs a new valid ring signature

(σ
(2)
R = σ

(2)
R (µ, event∗) =

(
{z(2)
j }j∈[`], c

(2)
1 ,R,E

)
,

with c
(2)
s+1 = c′(j) also with the probability (1) and

Âsz
(1)
s + qc

(1)
s = Âsz

(2)
s + qc

(2)
s and K̂z

(1)
s + qc

(1)
s =

K̂z
(2)
s + qc

(2)
s .

Here c
(2)
i+1 mod ` ← H2(Âiz

(2)
i + qc

(2)
i , K̂z

(2)
i +

qc
(2)
i , K̂,R, µ, event∗,E), for i ∈ [`]. Then, Âs(z

(1)
s −

z
(2)
s) = q(c

(2)
s − c

(1)
s) and K̂(z

(1)
s − z

(2)
s) = q(c

(2)
s −

c
(1)
s). The rest is similar to Theorem 8.

Theorem 10 (Nonslanderability). Our identity-based Link-
able ring signature scheme satisfies Nonslanderability.

Proof. We will show briefly that the nonslanderability of
the proposed scheme is ensured by its unforgeability and
linkability.

Indeed, recall that, in the nonslanderability game (GAME
IV), at the Challenge phase, the adversary N sub-
mits a tuple of (µ, event,R, ids ∈ R), such that
EQ(ids) has not been queried before. The challenger
C generates sks by IdLRS.Extract(pp, ids,msk) and re-
turns σR = σR(µ, event) =

(
{zj}j∈[`], c1,R,E

)
←

IdLRS.Sign(pp, event, µ,R, sks). The adversary N out-
puts a new valid signature σ′R = σ′R(µ, event) =(
{z′j}j∈[`], c

′
1,R,E′

)
on the same message µ and the same

event event, in which E′ = E. This means that N can
create a signature with the linkability tag E without knowing
sks but some skπ with idπ ∈ R \ {ids}. Replaying the
attack, N can also produce a valid σ′′R = σ′′R(µ, event) =(
{z′′j }j∈[`], c

′′
1 ,R,E′′

)
, where E′′ = E′, using the same

skπ . Two signatures σ′R(µ, event) and σ′′R(µ, event) will be
given to an SIS solver S, who can extract a solution to the
SIS instance presented in proof of Theorem 8.

Also. notice that, in the case that N can produce a valid
σ′′R = σ′′R(µ, event) = ({z′′j }j∈[`], c

′′
1 , R,E′′), where

E′′ = E′, using a private key ski such that idi 6= ids then
by Theorem 9 guarantees that two valid signatures created by
different users are unlinked.

V. IMPLEMENTATION
As a proof of concept as well as in order to see how the prac-
ticability of the proposed IdLRS scheme is, we implemented
the proposed IdLRS scheme and ran some experiments on it.
In this section, we first show how to choose parameters in
general. We then choose some concrete tuples of parameters
being used in our experiments. Finally, we give the experi-
mental results.

A. SETTING PARAMETERS
We follow [33] for setting heuristic parameters. We also take
the security proof (was done in the Section IV) into account.
• For GenTrap to work: q ≥ 2, k = dlog qe,m ≥ 1,m =
m+ nk ≥ 2n log q.

• The parameter w defines the size of the challenges ci,
in order to have the min-entropy at least λ, we should
choose w to satisfy 2w ·

(
n
w

)
≥ 2λ. Here λ is chosen

depending on the value of n. In our experiments , we set
λ = n.

• For Gaussian parameter in GenTrap: via [33], for
any ε, we should choose σ1 ≥ ηε(Z), i.e., σ1 =√

ln(2(1+1/ε))
π . Also, we can choose ε = negl(n) such

that σ1 = ω(
√

log n).
• For Gaussian parameter in Ri ∈ Zm×nk ←

DelTrap(A,Qi,R, σ2): By Lemma 5, s1(R) ≤ σ1 ·
1√
2π
· (
√
m +

√
nk). We need σ2 ≥ ηε(Λ

⊥
q (A)), i.e.,

σ2 ≥
√

5 · (s1(R) + 1) · ω(
√

log n).
• For Gaussian parameter in Si ∈ Z(m+nk)×n ←

SampleD(Ai,Ri,ut, σ3): First, note that, by Lemma
5, s1(Ri) ≤ σ2 · 1√

2π
· (
√
m +

√
nk). Now, σ3 ≥√

7 · (s1(Ri)2 + 1) · ω(
√

log n).
• Gaussian parameter σ in rejection sampling: We have
‖Si‖ ≤ ·σ3

√
m+ nk with overwhelming proba-

bility. By Item 4 of Lemma 4, we choose σ ≥
ω(‖(−1)bŜscs‖ ·

√
log(m+ nk + n)). However, we

can choose σ ≥ ω(‖Ss‖ · ‖cs‖ ·
√

log(m+ nk + n)).
• For the SISn,m+nk,q,β problem in the security proof

(see Section IV) to be hard and to have a solution:
q ≥ β ·ω(

√
n log n), β ≥

√
m+ nk · qn/(m+nk) where

β = 2∆′ := 2ησ
√
m+ nk where 1.1 ≤ η ≤ 1.3.

(See Remark 1 for η and see also Section IV for why
β = 2∆′.)

• Choose M in the rejection sampling: Remark 2 claims
that if σ = 12‖c‖, then Dmσ (x)

M ·Dmc,σ(x) ≤
e1+1/288

M ≥ 3
M

with probability bigger than 1− 2−100. Then we should
choose σ ≥ max{ω(‖Ss‖ ·

√
log(m+ nk + n)), 12} ·

‖cs‖ then can fix M = 3.

Now, in order to set parameters for our experiments, we
first choose n. We will choose the modulus q to be a power
of two integer, i.e., q = 2k for some positive integer k. Note
that, aiming to choose m = 2nk, from q ≥

√
m+ nk ·

qn/(m+nk) · ω(
√
n log(n)) we have 2k− log(k) ≥ ω(2/3 +

log(3)+2 log(n)+ log(log(n))). Therefore, given n, we can
choose k using this condition. Now we set q = 2k. We choose
m = nk to have m = m + nk = 2nk. We choose w to be
the smallest such that 2w ·

(
n
w

)
≥ 2n.

For Gaussian parameters, we set σ1 = ηε(Z) =√
ln(2(1+1/ε))

π = 4.48083023712027, where ε = 2−90,
σ2 =

√
5 · (σ1 · 1√

2π
· (
√
m +

√
nk) + 1) · ω(log(n)), and

σ3 =
√

7(s2
i + 1) · ω(log(n))), where si = σ2 · (1/

√
2π) ·

(
√
m +

√
nk). For the Gaussian parameter σ used in the

rejection sampling, we set σ = ω(σ3 ·
√
m+ nk · w ·

max{12,
√

log(m+ nk + n)}). Finally we set M = 3.
Specifically, we will run experiments with the following

concrete tuples of parameters:

• pp1 : n = 40, q = 226,m = 1040, w = 11,m =
2080,M = 3 and σ1 = 4.48083023712027, σ2 =

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1165.22352070264, σ3 = 429061.131614986, σ =
8.11257427288557e10

• pp2 : n = 60, q = 229,m = 1740, w = 15,m =
3480,M = 3 and σ1 = 4.48083023712027, σ2 =
1504.24674659589, σ3 = 716451.780933469, σ =
3.21126195212814e11

• pp3 : n = 80, q = 232,m = 2560, w = 20,m =
5120,M = 3 and σ1 = 4.48083023712027, σ2 =
1822.45271625383, σ3 = 1.05285730202738e6, σ =
2.87875508121890e12

• pp4 : n = 100, q = 235,m = 3500, w = 24,m =
7000,M = 3 and σ1 = 4.48083023712027, σ2 =
2129.23955112039, σ3 = 1.43830770969715e6, σ =
5.51800764686501e13

B. EXPERIMENTAL RESULTS
We implemented the proposed IdLRS using SageMath 9.2
2 which in turn bases on Python 3.8. The source code
can be publicly accessed via Github 3. We ran our experi-
ments on the sever Dell Poweredge R730 installing Ubuntu
18.04.5 TLS with Memory 40GB, Processor Intel Xeon 8-
core 2.1GHz. For each tuple of parameters ppi above, we ran
5 times and computed the average times of the key generation
algorithm and extraction algorithm and also the average sizes
of public key, of master secret key and of private key. Having
used one of the tupe of public key, master secret key and
private key, we then ran 10 times the experiments with the
rings having 10, 20, 30 and 40 members. By doing this, we
evaluated the average times of the signing algorithm, veri-
fying algorithm, the linking algorithm and also the average
sizes of the corresponding signatures.

We summarize the running times of algorithms in our
experiments in Table 3, and then visualize them together
in Figures 2. Also, the sizes of public key, master secret
key, private key and signatures in both theoretical estimation
(entitled "Theo.“) and our experiments (entitled "Exp.“) are
included in Table 4. We then plot these sizes to see how they
vary in Figure 3.

It can be seen from Table 3 and Figure 2 that the extraction
algorithm consumes quite much time in comparison with
other algorithms. This is because the extraction algorithm
(IdLRS.Ext) exploits the DelTrap which calls up to n · k
times SampleD. (For example, with the tuple of public
parameters pp4, we have n · k = 3500.) SampleD in
turn calls the Gaussian sampling algorithm over lattices.
We implemented the Gaussian sampling algorithm following
the one in [19], which is quite inefficient. Moreover, our
implementation is actually not optimal. Therefore, the exper-
imental results should be much better in terms of runtime and
even of size if:
• We can implement using more efficient Gaussian sam-

pling algorithms over lattices, e.g. [39], [18] 4. We

2https://www.sagemath.org/index.html
3https://github.com/huyle84/identity-based-linkable-ring-signature
4For more updated details on Gaussian sampling, we refer readers to the

link https://cseweb.ucsd.edu/ daniele/LatticeLinks/Sampling.html.

instead implement the ring-based IdLRS version, which
will be presented in Section VI below. We can optimise
and parallelise the code.

VI. A CONSTRUCTION BASED ON RING-SIS
In this section, for n ∈ N and any prime q, we consider the
cyclotomic polynomial rings R := Z[x]/〈xn + 1〉 and Rq :=
R/qR = Zq[x]/〈xn + 1〉. Note that there is an isomorphic
berween R and Zn as well as between Rq and Znq through
the canonical embedding (see [33], [32]). For a polynomial
f = f0 + f1x + · · · + fn−1x

n−1 ∈ R, define ‖f‖∞ :=
max |fi|, ‖f‖ :=

∑n−1
i=1 f

2
i and ‖f‖1 :=

∑n−1
i=1 |fi|. Also,

for any f ∈ R we denie s1(f) := supg∈R
‖f ·g‖
‖g‖ .

First, we will present the definition of ring-SIS problem,
the gadget-based trapdoor in ideal lattices and its related
algorithms. We then give the construction.

Definition 8 (ring-SIS Problem). Given positive integers
q,m, and random vector A

$←− R1×m
q and β ∈ R+,

the ring-SISm,q,β problem requires to seek a non-zero short
vector E ∈ Rm×1 satisfying ‖E‖∞ ≤ β and AE = 0
(mod q).

The hardness of ring-SISm,q,β is proved in e.g., [40], [31]
[30] through a reduction from the shortest vector problem
(a.k.a, γ-IdealSVP) over ideal lattices. Formally, defining
θ := maxg∈Z[x],deg(g)≤3(n−1)

‖g mod (xn+1)‖∞
‖g‖∞ , we have

Theorem 11 ([30, Theorem 2.3 for f = xn + 1]). For q >
2θβmn1.5 log n, if there is a polynomial-time algorithm that
solves the ringSISm,q,β problem with some non-negligible
probability, then there is a polynomial-time algorithm that
solves the γ-IdealSVP problem with γ = 8θβmn log2 n for
any lattice Λ that corresponds to an ideal in R.

We exploit the trapdoor mechanism for ideal lattices which
was proposed in [33] then detailed in Lai et al. [22]. It
was also improved by Genise and Miciancio [18] and then
summarized in Bert et al. [9].

Definition 9 (g-Trapdoor, [18, Definition 3]). Let a ∈ Rmq
and g ∈ Rkq , where k = dlog qe be vectors of polynomials,
with m > k. A matrix R ∈ R(m−k)×k is called g-trapdoor
for a with tag h (which is an invertible element in Rq) if at ·[
R
Ik

]
= hgt.

Lemma 12 ([15, Lemma 5]). For any polynomial r :=
r(x) = r0 + r1x + · · · rn−1x

n−1 in R, we have s1(r) ≤
‖r‖1 :=

∑n−1
i=0 ri.

Lemma 13 ([15, Fact 6]). If R ← Dw×k
R,σ then with

overwhelming probability, we have s1(R) ≤ σ
√
n ·O(

√
w+√

k + ω(
√

log n)).

We consider a vector of constant polynomials gt =
(1, 2, 4, ..., 2k−1) ∈ Rkq , where k = dlog2 qe. We can find
a publicly known short basis, say Bk ∈ Rk×k for Λ⊥(gt),
i.e., gt.Bk = 0 ∈ Rkq and ‖B̃k‖ ≤

√
5.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Parameters pp1 pp2 pp3 pp4
Key generation time 4 19 117 153

Extraction time 378 2115 9773 23861
Signers in ring 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Signing time 1.9 2.5 3.1 3.7 4.6 5.5 18.6 27.4 11.9 15.3 26.4 33.8 45.1 126.9 142.1 185.4
Verifying time 0.5 1 1.5 1.9 1.4 2.7 3.9 5.3 5.1 10.1 14.1 19.9 9.9 19.2 28.7 38

Linking time 1.1 1.9 3.1 3.8 2.9 5.3 7.7 10.7 10,3 20.1 28 40 19.9 38.2 57.4 76.4

TABLE 3: Running times (in second).

Parameters pp1 pp2 pp3 pp4
Public key (Theo.) 265 740 1600 2991
Public key (Exp.) 253 713 1550 2905

Master secret key (Theo.) 336 940 2034 3802
Master secret key (Exp.) 287 804 1741 3254

Private key (Theo.) 310 805 1620 2826
Private key (Exp.) 299 782 1582 2770

Signers in ring 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Signature (Theo.) 147 288 429 571 262 511 760 1008 421 817 1212 1608 639 1234 1830 2426
Signature (Exp.) 139 277 415 553 250 493 737 981 403 791 1180 1568 613 1198 1784 2369

TABLE 4: Sizes (in kB).

(a) Without Extraction time (for 10 signers) (b) Without Extraction time (for 40 signers) (c) With Extraction time (for 40 signers)

FIGURE 2: Comparison of running times in our experiments.

(a) Public key sizes, master secret key sizes and private key sizes (b) Signature sizes

FIGURE 3: Comparison of sizes in both the theoretical estimation (Theo.) (via Table 2) and our experiments (Exp.).

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The following algorithms enable us to generate a vector of
polynomials and its g-trapdoor, to sample via Gaussian and
to delegate trapdoors in the ideal lattice setting.

GenTrap(m, q, σ, h):
• Input: q, k = log q, m > k, and Gaussian parameter σ.
• Ouput: A vector a ∈ Rmq and g-trapdoor R for a.
• Execute:

1) Choose a
$←− Rm−kq .

2) Choose R ∈ R(m−k)×k from the distribution
DR(m−k)×k,σ

3) Output a = (at, hgt − atR)t ∈ Rmq , trapdoor R.
SamplePre(a,R, h, u, ζ, σ, α):
• Input: a ∈ Rmq and its g-Trapdoor matrix R ∈
R

(m−k)×k
q , invertible tag h ∈ Rq , a syndrome u ∈ Rq ,

and Gaussian parameters ζ, α, σ.
• Ouput: A vector x follows DΛuq (a),ζ .
• Execute:

1) Choose p ← SampleP(q, ζ, α,R) and set v ←
h−1(u− atp) ∈ Rq .

2) Choose z← SamplePolyG(σ, v) ∈ Rk.
3) return x← p +

[
R
Ik

]
z.

• SampleP(q, ζ, α,R)→ p : On input a ring modulus q,
Gaussian parameters ζ, α and R ∈ R(m−k)×k

q , outputs
p fromD

Rm,
√

Σp
, where Σp = ζ2Im−α2

[
R
Ik

]
[Rt Ik],

with ζ > s1(R)α.
• SamplePolyG(σ, v)→ z : On input a Gaussian param-

eter σ and a target v ∈ Rq , outputs z from DΛ⊥q (gt),α,v

with α =
√

5σ.

DelTrap((a,a1),R, h′, σ′):
• Input: A vector of polynomials a′ = (a,a1) ∈ Rmq ×
Rkq , g-Trapdoor R ∈ R(m−k)×k for a, an invertible
h′ ∈ Rq and Gaussian parameter σ′.

• Ouput: A g-trapdoor R′ ∈ Rm×k for a′ with tag h′.
• Execute:

1) Using SamplePre with Gaussian parameter σ′ to sam-
ple each column of R′ such that atR′ = h′gt −
at1 mod q.

In what follows, for any A we use the notation A ∈
R1×m
q meaning that A is a row vector of m polynomi-

als. In contrast, A ∈ Rm×1
q means that A is a col-

umn vector of m polynomials. Our ring-based scheme
rIdLRS is similar to the one in Section III consisting of
algorithms rIdLRS.Setup, rIdLRS.Extract, rIdLRS.Sign,
rIdLRS.Verify and rIdLRS.Link working as follows:

rIdLRS.Setup(1n): On input a security parameter
n, do the following:

1) Choose integers q ≥ 2, k := dlog qe, m >
k,w ≥ 3, and M ≤ 3 fixed.

2) Choose σ1, σ2, σ3, σ to be Gaussian parameters.
3) Choose three hash functions H1 : {0, 1}∗ →

R1×k
q , H2 : {0, 1}∗ → Sn,w, where Sn,w :=
{c ∈ {0, 1}[x]/ : deg(c) < n, ‖c‖1 = w} ⊆ Rq ,
and H3 : {0, 1}∗ → R

1×(m+k)
q .

4) Run GenTrap(m, q, σ1, h = 1) to get A ∈
R1×m
q along with a g-trapdoor R ∈ R(m−k)×k

via Dσ1
.

5) The public key is pk := A and the master
secret key is msk := R and system public
parameter pp consists of H1, H2, H3 and the rest
parameters.

rIdLRS.Extract(idi,msk): On input an identity
idi ∈ {0, 1}∗ of a user in a ring and a master secret
key msk = R, do:

1) Compute Qi = H1(idi) ∈ R1×k
q and let Ai :=

[A|Qi] ∈ R1×(m+k)
q .

2) Sample Ri ∈ Rm×k ← DelTrap(A,Qi,R, h =
1, σ2),via Dσ2

.
3) Sample Si ∈ R(m+k)×1 ← SamplePre(Ai,Ri,

h = 1, q, ζ, α, σ3) such that AiSi = q mod q,
hence AiSi = q mod 2q.

4) Output the private key skidi := Si.
rIdLRS.Sign(µ, event,R, sks): On input a mes-
sage µ, an event event, a ring of ` users R =
(id1, ..., id`), an identity ids ∈ R and a corre-
sponding key sks = Ss, do:

1) Let K := H3(event) ∈ R
1×(m+k)
q and e :=

KSs ∈ Rq .
2) Let K̂ ← [2K| − 2e + q] ∈ R

1×(m+k+1)
2q and

Ŝs ←
[
Ss
In

]
∈ R(m+k+1)×1. Note that K̂ · Ŝs =

q mod 2q.
3) For i ∈ [`], let Âi ← [Ai|0] ∈ R1×(m+k+1)

2q .
4) Choose a vector Y ∈ R(m+k+1)×1 via Dσ .
5) Calculate cs+1 = H2(ÂsY mod 2q, K̂Y mod

2q, K̂,R, µ, event, e).
6) For each identity idj ∈ R \ {ids}, choose a

vector Zj ∈ R(m+k+1)×1 via Dσ .
7) For i = s+ 1, · · · , `− 1, 0, 1, · · · , s− 1, do:

• Calculate ci+1 = H2(ÂiZi + qci mod
2q, K̂Zi + qci mod 2q, K̂,R, µ, event, e).

8) For j = s, choose b $←− {0, 1} and calculate
Zs ← (−1)bŜscs + Y mod 2q and output Zs

with probability min

{
D(m+k+1)×1
σ (Zs)

M ·D(m+k+1)×1

(−1)bŜscs,σ
(Zs)

, 1

}
9) Output the ring signature σR = σR(µ, event) =(
{Zj}j∈[`], c1,R, e

)
.

rIdLRS.Verify(µ, event, σR): Take as input a mes-
sage µ, an event event and a signature σR =(
{Zj}j∈[`], c1,R, e

)
, do the following:

1) If for all j ∈ [`], ‖Zj‖∞ ≤ ησ where 1.1 ≤ η ≤
1.3 go to Step 2; otherwise output 0.

2) Let K = H3(event), and let K̂← [K|−e+q] ∈
R

1×(m+k+1)
2q .

3) For i ∈ [`− 1], do:

• Let Âi ← [Ai|0] ∈ R1×(m+k+1)
2q ,

• Calculate ci+1 = H2(ÂiZi + qci mod
2q, K̂Zi + qci mod 2q, K̂,R, µ, event, e).

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

4) If c1 = H2(Â`Z` + qc`, K̂Z` + qc` mod
2q, K̂,R, µ, event, e) output 1, otherwise output
0.

rIdLRS.Link(σR1 , σR2): Take as input two sing
signatures (σR1

=
(
{Z1,j}j∈[`], c1,1,R1, e1

)
) and

(σR2 =
(
{Z2,j}j∈[`], c1,2,R2, e2

)
), perform:

1) Output linked if both σR1
and σR2

are valid and
e1 = e2. Otherwise output unlinked.

1) Correctness and Security.
The correctness and security of rIdLRS are proved in the
same way as in Section IV. That is, we have rIdLRS is
anonymity, unforgeability, linkablility ad nonslanderability
under the hardness of ring-SISm,q,2ησ problem, with 1.1 ≤
η ≤ 1.3.

2) Parameters and Sizes for the ring version.
Basically, setting paremeters for the ring-SIS based version is
similar to that for the SIS-based version but with some care.
More specifically,
• n, a power of 2, is the exponent of the cyclotomic

polynomial xn + 1.
• q is a prime such that q = 1 mod (2n).
• For GenTrap to work: k = dlog qe,m − k > 1.

Following [9], we can choose m− k = 2.
• For Gaussian parameter in GenTrap: Via [33], for any
ε = negl(n), we should choose σ1 ≥ ηε(Z), i.e., σ1 =√

ln(2(1+1/ε))
π .

• For Gaussian parameter in Ri ∈ Rm×k ←
DelTrap(A,Qi,R, σ2): By Lemma 13, s1(R) ≤
σ1
√
n · O(

√
m− k +

√
k + ω(

√
log n)). We need

σ2 ≥ ηε(Λ
⊥
q (A)), i.e., we choose σ2 ≥

√
5 · (s1(R) +

1) · ω(
√

log n). Note that, by Lemma 13, s1(Ri) ≤
σ2 ·
√
n ·O(

√
m+

√
k + ω(

√
log n).

• For Gaussian parameter in Si ∈ R(m+k)×1 ←
SamplePre(Ai,Ri, h = 1, q, ζ, α, σ3): σ3 ≥√

7 · (s1(Ri)2 + 1) · ω(
√

log n), α =
√

5σ3, ζ >
s1(Ri)α.

• Gaussian parameter in rejection sampling: Byy Lemma
13, we have s1(Ss) ≤ σ

√
n ·O(

√
m+ k+ω(

√
log n)).

By Item 4 of Lemma 4, we choose σ ≥ ω(‖(−1)bŜscs‖·√
log(m+ k + 1)n). Hence, we can choose σ ≥

ω(s1(Ss) · ‖cs‖ ·
√

log(m+ k + 1)n). Then, we should
choose σ ≥ ω(σ3

√
n(
√
m+ k +

√
log n) · w ·√

log(m+ k + 1)n).
• For the ring-SISm+k,q,β problem to be hard: q >

2θβ(m + k)n1.5 log n where β = 2ησ with 1.1 ≤ η ≤
1.3, and θ := maxg∈Z[x],deg(g)≤3(n−1)

‖g mod (xn+1)‖∞
‖g‖∞ .

• Choose M in the rejection sampling: M ≈ e1+1/288 ≤
3 as in Section III-B.

VII. CONCLUSION
In this paper, we present the first (integer and ideal) lattice-
based construction of identity-based linkable ring signature.

We prove that the IdLRS construction enjoys the anonymity,
unforgeability and nonslanderability properties in the random
oracle model basing on the hardness of SIS and ring-SIS
problems. As a proof of concept, we also do implementation
and run some experiments to evaluate the running times
of the algorithms in the proposed IdLRS and the sizes of
keys and the size of signature. An efficient lattice-based
IdLRS construction without a random oracle model will be
an attractive research topic for future work.

REFERENCES
[1] W. Alberto Torres, V. Kuchta, R. Steinfeld, A. Sakzad, J. K. Liu, and

J. Cheng. Lattice RingCT V2.0 with Multiple Input and Multiple Output
Wallet. In J. Jang-Jaccard and F. Guo, editors, Information Security and
Privacy, pages 156–175, Cham, 2019. Springer International Publishing.

[2] W. A. Alberto Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta,
N. Bhattacharjee, M. H. Au, and J. Cheng. Post-quantum one-time
linkable ring signature and application to ring confidential transactions
in blockchain (lattice ringct v1.0). In W. Susilo and G. Yang, editors,
Information Security and Privacy, pages 558–576, Cham, 2018. Springer
International Publishing.

[3] M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen. Constant-size id-based
linkable and revocable-iff-linked ring signature. In R. Barua and T. Lange,
editors, Progress in Cryptology - INDOCRYPT 2006, pages 364–378,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[4] M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen. Secure id-based linkable
and revocable-iff-linked ring signature with constant-size construction.
Theoretical Computer Science, 469:1 – 14, 2013.

[5] M. H. Au, W. Susilo, and S.-M. Yiu. Event-oriented k-times revocable-iff-
linked group signatures. In L. M. Batten and R. Safavi-Naini, editors,
Information Security and Privacy, pages 223–234, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[6] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to Better — How to
Make Bitcoin a Better Currency. In A. D. Keromytis, editor, Financial
Cryptography and Data Security, pages 399–414, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[7] C. Baum, H. Lin, and S. Oechsner. Towards practical lattice-based one-
time linkable ring signatures. In D. Naccache, S. Xu, S. Qing, P. Samarati,
G. Blanc, R. Lu, Z. Zhang, and A. Meddahi, editors, Information and Com-
munications Security, pages 303–322, Cham, 2018. Springer International
Publishing.

[8] M. Bellare and G. Neven. New Multi-Signature Schemes and a General
Forking Lemma. Full version, available from, 2006.

[9] P. Bert, P.-A. Fouque, A. Roux-Langlois, and M. Sabt. Practical implemen-
tation of ring-sis/lwe based signature and ibe. In T. Lange and R. Stein-
wandt, editors, Post-Quantum Cryptography, pages 271–291, Cham, 2018.
Springer International Publishing.

[10] X. Boyen and T. Haines. Forward-Secure Linkable Ring Signatures. In
W. Susilo and G. Yang, editors, Information Security and Privacy, pages
245–264, Cham, 2018. Springer International Publishing.

[11] V. Buterin. A next-generation smart contract and decentralized application
platform. 2014.

[12] S. S. M. Chow, W. Susilo, and T. H. Yuen. Escrowed linkability of
ring signatures and its applications. In P. Q. Nguyen, editor, Progress
in Cryptology - VIETCRYPT 2006, pages 175–192, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[13] L. Deng, Y. Jiang, and B. Ning. Identity-Based Linkable Ring Signature
Scheme. IEEE Access, 7:153969–153976, 2019.

[14] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice Signatures
and Bimodal Gaussians. In R. Canetti and J. A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, pages 40–56, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[15] L. Ducas and D. Micciancio. Improved Short Lattice Signatures in the
Standard Model. In J. A. Garay and R. Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, pages 335–352, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[16] B. Forum. GHash.IO and double-spending against BetCoin Dice. Ac-
cessed on 23 July, 2020, 2013. [Online] Available:https://bitcointalk.org/
index.php?topic=327767.0.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3087808, IEEE Access

Huy Quoc Le et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[17] M. Gagné. Identity-Based Encryption, pages 280–282. Springer US,
Boston, MA, 2005.

[18] N. Genise and D. Micciancio. Faster gaussian sampling for trapdoor
lattices with arbitrary modulus. In J. B. Nielsen and V. Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, pages 174–203, Cham,
2018. Springer International Publishing.

[19] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices
and New Cryptographic Constructions. In Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, STOC ’08, pages
197–206, New York, NY, USA, 2008. ACM.

[20] B. Holmes. e-voting: the promise and the practice. Accessed on 23
July, 2020, 2012. [Online] Available:https://parlinfo.aph.gov.au/parlInfo/
download/library/prspub/1979752/upload_binary/1979752.pdf;fileType=
application/pdf.

[21] i. Jeong, J. Kwon, and D. Lee. Analysis of revocable-iff-linked ring
signature scheme. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E92-A(1):322–325, Jan. 2009.

[22] R. W. F. Lai, H. K. F. Cheung, and S. S. M. Chow. Trapdoors for Ideal
Lattices with Applications. In D. Lin, M. Yung, and J. Zhou, editors, In-
formation Security and Cryptology, pages 239–256, Cham, 2015. Springer
International Publishing.

[23] H. Q. Le, D. H. Duong, and W. Susilo. A Blind Ring Signature Based
on the Short Integer Solution Problem. In I. You, editor, Information
Security Applications, pages 92–111, Cham, 2020. Springer International
Publishing.

[24] W. Li, Y. Wang, L. Chen, X. Lai, X. Zhang, and J. Xin. A Simpler and
Modular Construction of Linkable Ring Signature. Cryptology ePrint
Archive, Report 2020/333, 2020. https://eprint.iacr.org/2020/333.

[25] J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Linkable Ring Signature with
Unconditional Anonymity. IEEE Transactions on Knowledge and Data
Engineering, 26(1):157–165, 2014.

[26] J. K. Liu, V. K. Wei, and D. S. Wong. Linkable Spontaneous Anonymous
Group Signature for Ad Hoc Groups. In H. Wang, J. Pieprzyk, and
V. Varadharajan, editors, Information Security and Privacy, pages 325–
335, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[27] J. K. Liu and D. S. Wong. Linkable ring signatures: Security models and
new schemes. In O. Gervasi, M. L. Gavrilova, V. Kumar, A. Laganà, H. P.
Lee, Y. Mun, D. Taniar, and C. J. K. Tan, editors, Computational Science
and Its Applications – ICCSA 2005, pages 614–623, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[28] X. Lu, M. H. Au, and Z. Zhang. Raptor: A practical lattice-based (linkable)
ring signature. In R. H. Deng, V. Gauthier-Umaña, M. Ochoa, and
M. Yung, editors, Applied Cryptography and Network Security, pages
110–130, Cham, 2019. Springer International Publishing.

[29] V. Lyubashevsky. Lattice Signatures Without Trapdoors. Cryptology
ePrint Archive, Report 2011/537, Full version of paper appearing at
Eurocrypt 2012, last revised 18 Oct 2017, 2012.

[30] V. Lyubashevsky. Digital signatures based on the hardness of ideal lattice
problems in all rings. Cryptology ePrint Archive, Report 2016/796, 2016.
https://eprint.iacr.org/2016/796.

[31] V. Lyubashevsky and D. Micciancio. Generalized Compact Knapsacks Are
Collision Resistant. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener,
editors, Automata, Languages and Programming, pages 144–155, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[32] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe cryp-
tography. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 35–54,
2013.

[33] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
pages 700–718, 2012.

[34] D. Micciancio and O. Regev. Worst-case to average-case reductions based
on gaussian measures. SIAM Journal on Computing, 37(1):267–302,
2007.

[35] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[36] S. Noether. Ring Signature Confidential Transactions for Monero. Cryp-

tology ePrint Archive, Report 2015/1098, 2015. https://eprint.iacr.org/
2015/1098.

[37] S. Noether, A. Mackenzie, and T. Lab. Ring Confidential Transactions.
Ledger, 1:1–18, 12 2016.

[38] M. Ober, S. Katzenbeisser, and K. Hamacher. Structure and anonymity of
the bitcoin transaction graph. Future Internet, 5:237–250, 06 2013.

[39] C. Peikert. An efficient and parallel gaussian sampler for lattices. In
T. Rabin, editor, Advances in Cryptology – CRYPTO 2010, pages 80–97,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[40] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-
case assumptions on cyclic lattices. In S. Halevi and T. Rabin, editors, The-
ory of Cryptography, pages 145–166, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[41] R. L. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In C. Boyd,
editor, Advances in Cryptology — ASIACRYPT 2001, pages 552–565,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[42] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction
graph. In A.-R. Sadeghi, editor, Financial Cryptography and Data Security,
pages 6–24, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[43] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In G. R.
Blakley and D. Chaum, editors, Advances in Cryptology, pages 47–53,
Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[44] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, Nov 1994.

[45] S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen. Ringct 2.0: A com-
pact accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero. In S. N. Foley, D. Gollmann, and E. Snekkenes,
editors, Computer Security – ESORICS 2017, pages 456–474, Cham,
2017. Springer International Publishing.

[46] P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting,
e-cash and attestation. In R. H. Deng, F. Bao, H. Pang, and J. Zhou, ed-
itors, Information Security Practice and Experience, pages 48–60, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[47] P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S.
Wong. Separable linkable threshold ring signatures. In A. Canteaut and
K. Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004,
pages 384–398, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[48] X. Wang, Y. Chen, and X. Ma. Generic construction of linkable ring
signature. IACR Cryptol. ePrint Arch., 2019:371, 2019.

[49] Q. Ye, W. Wang, Y. Tang, X. Yan, J. Zhang, Z. Zhao, and P. Qin. RLWE
Commitment-Based Linkable Ring Signature Scheme and Its Application
in Blockchain. In Z. Zheng, H.-N. Dai, M. Tang, and X. Chen, editors,
Blockchain and Trustworthy Systems, pages 15–32, Singapore, 2020.
Springer Singapore.

[50] T. H. Yuen, S. feng Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and
D. Gu. Ringct 3.0 for blockchain confidential transaction: Shorter size and
stronger security. IACR Cryptol. ePrint Arch., 2019:508, 2019.

[51] H. Zhang, F. Zhang, H. Tian, and M. H. Au. Anonymous Post-Quantum
Cryptocash. In S. Meiklejohn and K. Sako, editors, Financial Cryptogra-
phy and Data Security, pages 461–479, Berlin, Heidelberg, 2018. Springer
Berlin Heidelberg.

[52] G. Zhao and M. Tian. A Simpler Construction of Identity-Based Ring
Signatures from Lattices. In J. Baek, W. Susilo, and J. Kim, editors,
Provable Security, pages 277–291, Cham, 2018. Springer International
Publishing.

16 VOLUME 4, 2016

