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Abstract. We propose an Identity Based Strong Designated Verifier Signature (IBSDVS) scheme
using bilinear pairings. Designated Verifier Signature finds application in e-voting, auctions and
call for tenders. We prove that the scheme is secure against existential forgery under adaptively
chosen message and identity attack in random oracle model. We also show that the problem of
delegatability does not exist in our scheme.
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1. Introduction

Designated verifier signature (DVS), first proposed at Eurocrypt’96 by Jakobsson et al.
(1996) is special type of digital signature which provides message authentication with-
out non-repudiation. These signatures have several applications such as E-voting, call for
tenders, software licensing etc. Suppose Alice has sent a DVS to Bob. Unlike the con-
ventional digital signatures, Bob cannot prove to a third party that Alice has created the
signature. This is possible, as Bob also posses the capability of creating the signature
designated to himself which is indistinguishable from Alice’s signature. So, there is no
reason for a third party to believe that the signature has been created by Alice. However,
Bob has two reasons to accept the DVS as he knows that (i) only he and Alice are capable
of creating it and (ii) he has not created it. Thus, DVS provides signer ambiguity between
Alice and Bob to the rest of the world. Even though signer ambiguity exists in DVS, they
do not prevent a third party to check the correctness of the signature. In a scenario, where
Bob can prove to a third party that he has not yet received the signature, the third party

*Part of work was carried out when the author was affiliated to Secure Technology Lab., IDRBT,
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believes with high probability that Alice has created it. Strong Designated Verifier Signa-
tures (SDVS), introduced in (Saeednia et al., 2003), overcomes this problem by forcing
the Designated verifier (DV) to use his secret key at the time of verification. Thus, no one
else other than the DV can verify SDVS.

Lipmaa et al. (2005) pointed out an attack called delegatability on DVS and SDVS
schemes, where Alice can delegate her signing ability, with respect to a fixed designated
verifier, to a third party without disclosing her secret. In the scenario of library system,
the librarian expects a SDVS designated to him, by the members to authenticate and issue
the material. Suppose that a member Alice has delegated her designated verifier signing
ability, with respect to librarian, to a non member Cindy, then Cindy can also borrow the
material in the account of Alice. Though this is not a severe attack, it is undesirable in
many such applications.

The first identity based SDVS scheme has been proposed by Susilo et al. (2004).
Identity based signatures were first introduced by Shamir (1984). In identity based cryp-
tosystems (IBC), user’s public key is derived from the identity and there is a trusted third
party called Key Generation Center(KGC) which generates the secret keys of the users.
Shamir also conveyed that IBC has the advantages as it does not require the public key
directories and key revocation is simplified.

Related Work

Chaum and Van (1989) proposed undeniable signatures, where the verifier needs to in-
teract with signer for verifying the signature. Jakobsson et al. (1996) and Chaum (1996)
introduced designated verifier signatures and private signatures independently, which can
also be treated as non-interactive undeniable signatures. In (Rivest et al., 2001), Rivest et
al. introduced the ring signatures, which have signer ambiguity. By setting the ring size
to two, ring signatures lead to DVS, but these schemes may not be strong DVS. Later
on, several DVS and SDVS schemes (Saeednia et al., 2003; Steinfeld et al., 2003; Stein-
feld et al., 2004; Laguillaumie and Vergnaud, 2004a; Huang et al., 2005) were proposed.
Susilo et al. (2004) proposed a generic construction of strong designated verifier signa-
tures. However, the resulting schemes are not efficient, since they require an additional
identity based encryption scheme. In the same paper authors also presented a IBSDVS
scheme. Unfortunately, all the schemes mentioned above suffer from the delegatability
attack (Lipmaa et al., 2005), including (Susilo et al., 2004). Laguillaumie and Vergnaud
(2004b) proposed a strong bi-designated verifier signature scheme, where the signer can
designate the signature to two members.

In this paper, first we review the Susilo et al.’s (2004) IBSDVS scheme and show that
the scheme is vulnerable to non deligatability. We then propose an Identity Based Strong
Designated Verifier Signature (IBSDVS) scheme using bilinear pairings. We show that
the problem of delegatability does not exist in our scheme. Security of our scheme is
based on Bilinear Diffie-Hellman Problem (BDHP). We prove that our scheme is secure
against existential forgery under adaptively chosen message and identity attack in random
oracle model.
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The rest of the paper is organized as follows. In Section 2, we briefly describe back-
ground concepts on bilinear pairings and some related mathematical problems. Review
of (Susilo et al., 2004) is presented in Section 3. Section 4 presents the model for our
IBSDVS scheme and its security notion. In Section 5, we describe the proposed identity
based strong designated verifier signature (IBSDVS) scheme. We give the security proofs
of the scheme in the random oracle model in Section 6. Finally, we conclude the paper in
Section 7.

2. Background Concepts

In this section, we briefly review the basic concepts on bilinear pairings and some related
mathematical problems.

2.1. Bilinear Pairings

Let G1 be an additive cyclic group of large prime order q, G2 be a multiplicative cyclic
group of the same order and P be a generator of G1. A cryptographic bilinear map e is
defined as e: G1 × G1 → G2 with the following properties:

Bilinear: e(aR, bS) = e(R, S)ab ∀R, S ∈ G1 and a, b ∈ Z∗
q .

Non-degeneracy: For each R ∈ G1 there exists S ∈ G1 such that e(R, S) �= 1
Computable: There exists an efficient algorithm to compute e(R, S) ∀R, S ∈ G1.
In general implementation, G1 is the group of points on an elliptic curve and G2

denotes a multiplicative subgroup of a finite field. Typically, the mapping e is derived
from either the Weil or the Tate pairing on an elliptic curve over a finite field. We refer
to (Boneh and Franklin, 2001) for more comprehensive description on how these groups,
pairings and other parameters are defined.

2.2. Computational Problems

We present some computational hard problems here, which will form the basis of security
of our IBSDVS scheme.

Computational Diffie-Hellman Problem (CDHP). For any a, b ∈ Z∗
q , given < P ,

aP , bP >, compute abP .
Decisional Diffie-Hellman Problem(DDHP). For any a, b, c ∈ Z∗

q , given < P , aP ,
bP , cP >, decide whether c ≡ ab mod q.

Gap Diffie-Hellman Problem(GDHP). A class of problems where DDHP can be
solved in polynomial time but no probabilistic polynomial time algorithm exists which
can solve CDHP.

Bilinear Diffie-Hellman Problem (BDHP). For any a, b, c ∈ Z∗
q , given < P , aP ,

bP , cP >, compute e(P, P )abc.

For the BDH problem to be hard, G1 and G2 must be chosen such that there is no
known algorithm for solving DHP in either of the groups.
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GDH Parameter Generator. A polynomial time algorithm IGGDH is called GDH
parameter generator if for a given positive integer k, security parameter, it outputs a
cyclic group G of prime order and a polynomial time algorithm D which solves DDHP
in G. In our scheme we consider G as an additive group.

BDH Assumption. If IG is a GDH parameter generator, the advantage AdvIG(A)
that an algorithm A has in solving the BDH problem is defined to be the probability
that the algorithm A outputs e(P, P )abc on inputs G1, G2, e, P, aP, bP, cP where G1

is output of IG for sufficiently large security parameter k and a, b, c ∈ Zq. The BDH
assumption is that AdvIG(A) is negligible for all efficient algorithms A.

3. Review of Susilo et al.’s Scheme

In this section, we first give a brief review of Susilo et al.’s (2004) scheme. Authors has
claimed that the scheme is Strong UDVS, however We show that the scheme dose not
satisfy the strongness property and also it suffers from delegatability attack.

3.1. Review of Scheme (Susilo et al., 2004)

The scheme consists of four algorithms namely Setup, Signature Generation, Signature
Verification and Transcript Simulation.

I. Setup. In this phase the trusted third party TA generates public parameters
(G1, G2, e, q, P, Ppub, H0, H1), where G1, G2 are two groups of prime order q, e:
G1 × G1 → G2 is bilinear map, H0: {0, 1}∗ → G1 and H1: {0, 1}∗ → Zq are hash
functions, P is the generator of G1 and Ppub = sP for some randomly chosen s ∈ Zq.
For any user with identity ID, public key QID = H0(ID) and the corresponding secret
key is SID = sQID.

II. Signature Generation. To sign a message m for B, A chooses two random num-
bers k, t ∈ Zq∗ , computes

c = e(QIDB
, P )k; r = H1(m, c); T = t−1kP − rSIDA

and sends the signature (T, r, t) on message m to B.
III. Signature Verification. On receiving the signature B verifies the its validity by

testing whether

H1

(
m,

(
e(T, QIDB

)e(QIDA
, SIDB

)r
)t

)
== r.

IV. Transcript Simulation. Simulation of the signature is constructed as follows: B

chooses random point R ∈ G1 and a random number a ∈ Z∗
q and generates the signature

(T ′, r′, t′) on message mby computing

c′ = e(R, QIDB
)e(QIDA

, SIDB
)a; r′ = H1(m, c′);

t′ = (r′)−1a (mod p); and T ′ = (t′)−1R.
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3.2. Our Attacks

Suppose either A or B has given e(QIDA
, SIDB

) (both A, B can compute) to an other
person C, then the following two attacks are possible:

I. Delegatability. Now C can also produce signature designated to B (or A) such
that it has been created by A (or B), on any message using the Transcript Simulation
phase described above. No one, including A and B, can distinguish this signature from
the signature produced by A or B.

II. Not Strong. Suppose A has sent a designated verifier signature constructed using
the scheme to B. Any one who possess e(QIDA

, SIDB
), in the above case C, can verify

the validity of the signature, even though he does not have the secret key (SIDB
) of B.

Thus, the signature scheme is not strong.

4. Model for Proposed IBSDVS

In this section, we state the definition of identity based SDVS and its security notion.
Entities involved in the proposed protocol are key generation center (KGC), signer (S) and
designated verifier (DV). We observe that IBSDVS must satisfy the following properties:

Let (A → B)DV S denote the signature generated by A and designated to B.
Correctness. A properly formed IBSDVS must be accepted by the verifying algo-

rithm.
Unforgeability. Given entities A and B, it is infeasible, without the knowledge of the

secret key of either A or B, to construct (A → B)DV S or (B → A)DV S a IBSDVS
designated to B as it is generated by A and vice versa.

Source Hiding. Given an IBSDVS (A → B)DV S , it is infeasible to determine who
formed it either the original signer (A) or the designated verifier (B).

Non Deligatability. Given any indirect form of secret key of the signer, it is infeasible
to construct IBSDVS to any designated verifier.

4.1. Phases of the Proposed Scheme

The proposed identity based strong designated verifier signature (IBSDVS) scheme has
five phases namely, Setup, KeyGen, DeSign, DeVerify and Simulation. These phases are
described as follows:

IBSDVS-Setup: Given security parameter k, this phase generates the public param-
eters params and the master secret key msk.

IBSDVS-KeyGen: Given a user identity ID, this phase computes users public key
QID and the secret key SID.

IBSDVS-DeSign: On receiving the message m, the secret key of the signer and the
public key of the DV, this phase computes the designated signature σ.

IBSDVS-DeVerify: On receiving the message-signature pair (m, σ) and the secret
key of the DV, this phase checks whether σ is valid or not.
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IBSDVS-Simulation: On receiving secret key of the DV and the public key of the
signer, this phase simulates the signature designated to DV such that it satisfies verifica-
tion process.

4.2. Security Model for IBSDVS

Let IDsign, IDver are the identities of the signer and the verifier respectively. Let A
be an adversary and (IDsign → IDver)SDV S is the strong designated verifier signature
generated by IDsign and designated to IDver.

DEFINITION 1. The adaptively chosen-message and identity attack, having the knowl-
edge of the public keys (identities) of the signer and verifier, A can ask the challenger
to sign any message that he wants. He can then adapt his queries according to previous
message-signature pairs. Finally, A has to produce a tuple (σ, M, IDsign, IDver) where
M, IDsign, IDver are of his own choice and σ is a valid (IDsign → IDver)SDV S .

DEFINITION 2. The adaptively chosen-message and given identities attack. A is given
two identities IDsign, IDver. A can ask the challenger to sign any message that
he wants. He can then adapt his queries according to previous message-signature
pairs. Finally, A has to produce a tuple (σ, M, IDsign, IDver) where σ is a valid
(IDsign → IDver)SDV S and M is of his won choice.

Note. In both the above two attacks, adversary should not ask the sign query for this
message M and private key queries for IDsign, IDver.

For identity based signatures, the known security notion is to be secure against ex-
istential forgery under adaptively chosen message and identity attack (Cha and Cheon,
2003). We present a slightly modified version of (Cha and Cheon, 2003) and use to prove
the security of the IBSDVS scheme in random oracle model. In this model, the adversary
A wins if it produces a message, pair of identities (signer and verifier) and a valid IBS-
DVS. The adversary is allowed to query the hash oracles, secret key generation oracle and
signature oracle. The adversary can adaptively choose messages and identities, to query
the oracles, except for the following two queries: (i) sign query for the message that it
finally produces. (ii) secret key generation (IBSDVS-KeyGen) query for either one of the
identities that it finally produces.

We can visualize the security model by the following game:

• Challenger C runs IBSDVS-Setup of the scheme and sends the resulting public
parameters to the adversary A.

• Adversary A issues the following queries adaptively to the oracles:

– hash function query: C computes the hash value of the requested input and
sends it to A;

– IBSDVS-KeyGen query: on receiving the ID, C computes the corresponding
secret key and sends it to A;
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– IBSDVS-DeSign query: on receiving the message, senders and receivers
identities, C computes the designated signature and sends it to A.

• Finally adversary A outputs (IDsign, IDver, M, σ), where IDsign is the signer
identity, IDver is the designated verifier identity, σ is the signature on message
M such that IDsign and IDver have not been queried to IBSDVS-KeyGen and
(M, IDsign, IDver) have not been queried to IBSDVS-DeSign.

• C verifies the validity of the signature σ. If it is valid, A wins the game.

DEFINITION 3. We say that IBSDVS is (ε, t)-secure if there is no adversary A, capable
of existential forging IBSDVS under adaptively chosen message and identities attack with
advantage >= ε and running time <= t.

5. Identity Based Strong Designated Verifier Signature Scheme

In this section, we propose an ID-based SDVS scheme that can be built upon a Gap
Diffie-Hellman group described in the Section 2. The scheme consists of five phases:
IBSDVS-Setup, IBSDVS-KeyGen, IBSDVS-DeSign, IBSDVS-DeVerify and IBSDVS-
Simulation. The first two phases are carried out at KGC.

Let G1 be a GDH group of order q, a large prime number and G2 be a multiplicative
sub group of a finite field F of same order.

IBSDVS-Setup: In this phase, KGC chooses a generator P ∈ G1, a random number
s ∈ Z∗

q and computes PPub = sP . KGC also chooses two cryptographic hash functions
H1: {0, 1}∗ → G1 and H2: {0, 1}∗×G2 → G1 and a bilinear pairing e: G1×G1 → G2.
The system parameters (G1, G2, P, Ppub, H1, H2, e) are published and s is kept as the
master secret.

IBSDVS-KeyGen: Given an identity ID, this phase generates secret key SID =
sH1(ID). We remark that QID = H1(ID) is the public key of the user ID .

IBSDVS-DeSign: Given the secret key SIDA
of the signer A, the public key QIDB

of the designated verifier B and message M , this phase computes the signature σ as
follows: chooses three random numbers r1, r2, r3 ∈ Z∗

q , and computes

U1 = r1QIDB
,

U2 = r2QIDA
,

U3 = r1r3QIDB
,

V = r3H + r−1
1 SIDA

, where H = H2

(
M, e(r2QIDB

, SIDA
)
)
.

Signer A sends the signature σ = (U1, U2, U3, V ) along with the message M to the
designated verifier B.

IBSDVS-DeVerify: On receiving (M, σ), the designated verifier computes H =
H2(M, e(U2, SIDB)) and accepts the signature as valid if the following equality holds:
e(U1, V ) == e(U3, H) e(SIDB

, QIDA
).
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The following equations give the correctness of the verification:

e(U1, V ) = e(r1QIDB
, r3H + r−1

1 SIDA
)

= e(r1QIDB
, r3H)e(r1QIDB

, r−1
1 SIDA

)

= e(r3r1QIDB
, H)e(QIDB

, sQIDA
)

= e(U3, H)e(sQIDB
, QIDA

)

= e(U3, H)e(SIDB
, QIDA

).

IBSDVS-Simulation: The designated verifier (B) cannot prove to a third party that
the signature σ has been produced by the signer A, as B can also create an indistinguish-
able signature σ′ on the same message M . The third party can be conveyed that the user
B can produce the signature σ′ in the following way:

The user B can choose three random numbers r′1, r
′
2, r

′
3 ∈ Z∗

q and computes

U ′
1 = r′1QIDA

,

U ′
2 = r′2QIDB

,

U ′
3 = r′1r

′
3QIDA

,

V ′ = r′3H
′ + r′1

−1
SIDB

, where H ′ = H2

(
M, e(U ′

2, SIDB
)
)
.

Clearly the signature σ′ = (U ′
1, U

′
2, U

′
3, V

′) satisfies the verification described earlier.
With this we complete the description of our scheme.

It may be noted, that one can not delegate the signing capability of IBSDVS, as the
signing phase requires the secret key of the signer explicitly.

6. Security Analysis

In this section, we prove that our signature scheme is secure and that its security is based
on hardness of BDHP problem. We can prove this by using contrapositive method i.e.
if there is an adversary algorithm A0, which is capable of existential forging IBSDVS
under adaptively chosen message and identity attack, then we show that we can construct
an adversary algorithm A2 which can solve BDHP in polynomial time and with non-
negligible probability.

The following lemma reduces the adaptively chosen message and identity attack to
adaptively chosen message and given identities attack. Note that

(
x
y

)
denote “x choose y”

from here onwards.

Lemma 1. If there is an algorithm A0 for an adaptively chosen message and ID attack
to our scheme with running time t0 and advantage ε0, then there is an algorithm A1 for
an adaptively chosen message and given IDs attack which has running time t1 <= t0 and
advantage ε1 >= ε0

(
1− 1

(q
2)

)
1

(qH1
2 ) , where qH1 is the maximum number of queries to H1

asked by A0. In addition, the number of queries to hash functions, IBSDVS-KeyGen and
IBSDVS-DeSign asked by A1 are the same as those of A0.
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Proof. A1 is given two identities IDsign and IDver. As explained in the security model
presented in Section 2, adversary A0 is capable of querying the random oracles, KeyGen
oracle and DeSign oracle. Without loss of generality we can assume that these queries are
distinct. Algorithm A1 simulates the Challenger as follows:

Step 1. A1 chooses two random numbers m, n ∈ {1, 2, ...qH1} randomly. IDi denotes
the ith query made by A0 to H1. Let

ID′
i =

⎧⎨
⎩

IDsign if i = m,
IDver if i = n,
IDi otherwise.

Define the functions H ′
1(IDi) = H1(ID′

i), KeyGen′(IDi) = KeyGen(ID′
i) and

DeSign′(IDi, IDj , M) = DeSign(ID′
i, ID′

j , M). Algorithm A1 uses these functions
to answer the A0 queries. Hash oracle H2 is common for both the A1 as well as A0.

Step 2. By running A0 with the given system parameters, we will get an output
(ID1, ID2, M, σ) at the end.

Step 3. If ID1 == IDm, ID2 == IDn and the signature is valid, A1 outputs
(IDsign, IDver, M, σ); otherwise it fails.

Since the distributions produced by H ′
1, KeyGen′ and DeSign′ are indistinguishable

from H1, KeyGen and DeSign, adversary A0 does not gain any information about A1.
We have that

Pr[(ID1, ID2, M, σ)] >= ε0.

Since H1 is a random oracle, the probability that the output (ID1, ID2, M, σ) of A0 is
valid, without querying H ′

1(ID1), H ′
1(ID2) is negligible and is less than the value 1

qC2
.

Let

Pr1 =Pr
[
ID1 = IDi and ID2 =IDj , for some i, j/(ID1, ID2, M, σ) is valid

]
.

So, Pr1 >= 1 − 1

(q
2)

.

Put

Pr2 =Pr
[
ID1 =IDm and ID2 =IDn/ID1 =IDi and ID2 =IDj for some i, j

]
.

Since m, n are randomly chosen, Pr2 >= 1

(qH1
2 ) .

Put

ε1 =Pr
[
ID1 =IDsign, ID2 =IDver and (ID1, ID2, M, σ) is valid

]
.

Combining these values we get the total probability

ε1 >= ε0
(
1 − 1(

q
2

)) 1(
qH1
2

) .
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Thus we have proven that if the algorithm A0 exists, then we can construct an algo-
rithm A1 which can forge the IBSDVS with the given identities.

The following lemma shows that BDHP can be solved with non negligible advantage
and in finite time, provided that there exists an adversary A1 as described in Lemma 1.

Lemma 2. If there is an adversary algorithm A1 capable of existentially forging IBSDVS
under adaptively chosen message and given IDs attack with the running time t1 and
advantage ε1, which queries H1, H2, DeSign and KeyGen at most qH1 , qH2 , qS and qK

times respectively, then there is an algorithm A2 which solves the BDHP with the running
time t2 <= t1 and advantage ε2 >= ε1(1 − 1

q ). q is the size of the output of H2 hash
function.

Proof. We assume that all the queries made by A1 are distinct and A1 queries H1(ID)
before ID is used as an input of any query to H2, KeyGen and DeSign. Finally, it outputs
an IBSDVS for the identities IDsign and IDver. Here, we construct an algorithm A2

which solves the BDHP i.e. given P, aP, bP, cP ∈ G1, A2 has to compute e(P, P )abc.

Step 1. Fix identities IDsign and IDver . Put Ppub = aP and choose randomly xi ∈
Zq for i = 1, 2, ..., qH1 , yi ∈ Zq for i = 1, 2, ..., qS , and hi ∈ Zq for i = 1, 2, ..., qH2 .
Denote by IDi, IDik

and (IDij , IDi′
j
, Mj) the inputs of the ith H1 query, the kth

KeyGen query and jth DeSign query asked by A1 respectively. Define

H′′
1 (IDi) =

⎧⎨
⎩

bP if IDi = IDsign,
cP if IDi = IDver,
xiP otherwise.

KeyGen′′(IDik
) = xik

(aP ),

DeSign′′(IDij , IDi′
j
, Mj) = (IDij , IDi′

j
, Mj , U1j , U2j , U3j , Hj , Vj),

where U1j = r1j xi′
j
P , U2j = r2j xij P , U3j = r1j r3j xi′

j
P , V = r3j Hj + r−1

1j
xij aP ,

where Hj = H′′
2 (Mj , e(r2j xi′

j
P, xij aP )). Here, H′′

2 is identical to H2 except for the
queries (?, e(QIDver , SIDsign)r2), and for these queries H′′

2 gives hiP . A2 responds to
A1’s queries to H1, H2, DeSign and KeyGen by evaluating H′′

1 , H′′
2 , DeSign′′ and Key-

Gen′′ respectively.
It can be observed from the above equations, that the key pair of the signer with

identity IDsign is (bP, abP ) and the verifier with identity IDver is (cP, acP ).

Step 2. Finally, A1 produces a valid signature σ = (U1, U2, U3, V ) on message M

with signer identity IDsign and designated verifier identity IDver with advantage ε1.
Since H2 is a random oracle, the probability that the output (IDsign, IDver, M, σ) of

A1 is valid, without querying H′′
2 (M, e(QIDver , SIDsign)r2) is negligible and is less than

the value 1
q . Hence, we have

Pr
[(

M, e(QIDver , SIDsign)r2
)

queried to H′′
2/(IDsign, IDver, M, σ) valid

]
>=1− 1

q
.
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Step 3. In this step A2 solves BDHP. Since the signature σ is valid, it satisfies the
verification process as given by

e(U1, V ) = e(U3, H) e(SIDver , QIDsign).

From this A2 can arrive at

e(U1, V ) = e(U3, H) e(acP, bP )

⇒ e(acP, bP ) = e(U1, V ) e(U3, H)−1

⇒ e(P, P )abc = e(U1, V ) e(U3, H)−1
.

A2 can compute the right hand side of the equation, since H is queried by A1 with high
probability and U1, U3, V are public. Thus, A2 has solved BDHP.

Step 4. Clearly the advantage (ε2) for solving BDHP is the product of the advantage
of A1 and the probability that A1 asks the query H to A2, and hence the advantage
ε2 >= ε1(1 − 1

q ).

Theorem 1. If there is an algorithm A0 for an adaptively chosen message and identi-
ties attack to our scheme with running time t0 and advantage ε0 which queries H1,H2,
KeyGen and DeSign at most qH1 , qH2 , qK and qS time respectively, then BDHP can be
solved with the probability ε2 >= ε0(1 − 1

qC2
)(1 − 1

q ).

Proof. Proof of this theorem directly follows from the above two lemmas.

7. Conclusions

Strong designated verifier signatures are applicable in e-voting, auctions and call for ten-
ders, where the designated verifier only can verify and convince himself the authenticity
of the signature. We reviewed the Susilo et al.’s (2004) IBSDVS scheme and shown that
the scheme is vulnerable to deligatability. We proposed an identity based strong desig-
nated verifier signature scheme whose security is based on the hardness of the BDHP. The
deligatability attack (Lipmaa et al., 2005) does not exist on our scheme, since the signer
has to use his secret key explicitly while signing. The security of the proposed scheme
has been proven in the random oracle model against existential forgery under adaptively
chosen message and identity attack.
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Identiškumu grindžiama stipraus priskyrimo parašo schema

Phani Kumar KANCHARLA, Shailaja GUMMADIDALA, Ashutosh SAXENA

Straipsnyje siūloma identiškumu grindžiama stipraus priskyrimo parašo schema, naudojanti
bitiesinius poravimus. Priskyrimo parašo schema taikoma elektroniniame balsavime, aukcionuose
ir kviečiant ↪i tenderius. ↪Irodoma, kad ši schema yra saugi prieš egzistencin ↪e klastot ↪e, naudojanči ↪a
adaptyviai parinkt ↪a pranešim ↪a, ir prieš identišk ↪a atak ↪a atsitiktiniuose oraklo modeliuose. Taip pat
parodoma, kad šioje schemoje neegzistuoja ↪igaliojamumo problema.


