
Identity, Location, Disease and More: Inferring Your
Secrets from Android Public Resources

Xiaoyong Zhou1, Soteris Demetriou2, Dongjing He2, Muhammad Naveed2,
Xiaorui Pan1, XiaoFeng Wang1, Carl A. Gunter2, Klara Nahrstedt2

1School of Informatics and Computing, Indiana University, Bloomington, IN USA
2Department of Computer Science, University of Illinois, Urbana-Champaign, IL USA

{zhou, xiaopan, xw7}@indiana.edu,
{sdemetr2, dhe6, naveed2, cgunter, klara}@illinois.edu

ABSTRACT

The design of Android is based on a set of unprotected shared re-
sources, including those inherited from Linux (e.g., Linux public
directories). However, the dramatic development in Android ap-
plications (app for short) makes available a large amount of public
background information (e.g., social networks, public online ser-
vices), which can potentially turn such originally harmless resource
sharing into serious privacy breaches. In this paper, we report our
work on this important yet understudied problem. We discovered
three unexpected channels of information leaks on Android: per-app
data-usage statistics, ARP information, and speaker status (on or off).
By monitoring these channels, an app without any permission may
acquire sensitive information such as smartphone user’s identity, the
disease condition she is interested in, her geo-locations and her driv-
ing route, from top-of-the-line Android apps. Furthermore, we show
that using existing and new techniques, this zero-permission app can
both determine when its target (a particular application) is running
and send out collected data stealthily to a remote adversary. These
findings call into question the soundness of the design assumptions
on shared resources, and demand effective solutions. To this end,
we present a mitigation mechanism for achieving a delicate balance
between utility and privacy of such resources.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protection—Se-

curity kernels; K.4.1 [COMPUTERS AND SOCIETY]: Public
Policy Issues—Privacy

Keywords

Mobile Security, Privacy, Information Leaks

1. INTRODUCTION
Compared with the phenomenal progress in smartphone technolo-

gies, the ways smartphones are being used today are even more
stunning. Increasingly, they become primary devices not only for
the traditional phone calling, but for email checking, messaging,
mapping/navigation, entertainment, social networking and even for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’13, November 4–8, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.

http://dx.doi.org/10.1145/2508859.2516661 .

activities as important as healthcare and investment management.
This abrupt development challenges the limits of smartphone de-
signers’ imagination, and naturally calls into question whether the
original security designs of smartphone systems, like Android, are
ready for those highly diverse, fast-evolving applications. Indeed,
recent years have seen waves of Android-based malware [3, 7] that
exploit different vulnerabilities within this new computing platform,
highlighting the security and privacy threats it is facing.

Android’s security protection has been under scrutiny for years. A
few weaknesses of the system, such as permission re-delegation [21]
and capability leaks [27], are revealed by researchers. Particularly,
a recent blog [16] from Leviathan Security Group describes the
malicious activities that could be performed by an app without any
permissions, including reading from SD card, accessing a list of
installed apps, getting some device and system information (GSM
and SIM vendor ID, the Android ID and kernel version) and pinging
through a Linux Shell. Most of the problems reported here are
either implementation weaknesses or design ambiguities that lead
developers to inadvertent exposures. Examples include SD card
read and unauthorized ping, which have all been fixed. The rest turn
out to be less of a concern, as they are almost impossible to exploit
in practice (GSM/SIM/Android ID, which leads to nothing more
than mobile country code and mobile network code).

Actually, the design of Android takes security seriously. It is
built upon a sandbox and permission model, in which each app is
isolated from others by Linux user-based protection and required
to explicitly ask for permissions to access the resources outside its
sandbox before it can be installed on a phone. Compared with what
are provided by conventional desktop-oriented OSes, even Linux on
which Android is built, this security design looks pretty solid.

Information leaks from public resources. In our research, we are
asking a different question: assuming that Android’s security design

has been faithfully implemented and apps are well protected by their

developers, what can a malicious app still learn about the user’s

private information without any permissions at all? For such a zero-
permission app, all it can access are a set of seemingly harmless
resources shared across users (i.e. apps), which are made publicly
available by Android and its underlying Linux, for the purpose of
facilitating coordination among apps and simplifying access control.
However, the rapidly-evolving designs and functionalities of emerg-
ing apps, particularly their rich and diverse background information
(e.g., social network, public online services, etc.), begin to invalidate
such design assumptions, turning thought-to-be innocuous data into
serious information leaks.

For example, consider the list of apps installed on an Android
phone, which can be obtained by calling the pubic API Package-

Manager.getInstalledApplications() or looking at

User IDs (UID) within a Linux Shell. Such an app list is not
considered sensitive by Google and UIDs are never thought to be
confidential on Linux. However, for some healthcare apps (e.g., dia-
betes app) and life-style apps (e.g., gay social network like Hornet),
simply knowing their names can lead to a grave infringement on
their users’ privacy. As another example, network data usage of an
app is deliberately published by Android through its Linux public
directory, aiming to help a smartphone user keep track of the app’s
mobile data consumption. However, we found in our research that
this piece of apparently harmless and also useful data can actually be
used to fingerprint a user’s certain online activity, such as tweeting.
This knowledge, combined with the background information that
comes with the Twitter app (i.e., public tweets), can be used to infer
the user’s true identity, using an inference technique we developed
(Section 3.2).

Our study. An in-depth understanding of such information leaks
from Android public resources is critical, as it reveals the gap be-
tween the fundamental limitations of Android security design and
the diversity in the ways the system is utilized by app developers.
This understanding will be invaluable for the future development of
securer mobile OSes that support the evolving utility. However, a
study on the problem has never been done before. In this paper, we
report our first step on this crucial yet understudied direction.

Our study inspects public resources disclosed at both the Android
and its Linux layers and analyzes the impact such exposures can
have on the private information maintained by a set of popular
apps, in the presence of the rich background information they bring
in. This research leads to a series of stunning discoveries on what
can actually be inferred from those public resources by leveraging
such auxiliary information. Specifically, by monitoring the network-
data usage statistics of high-profile Android apps, such as Twitter,
WebMD (app by a leading healthcare information provider [1]) and
Yahoo! Finance (one of the most widely-used stock apps), one can
find out a smartphone user’s true identity, disease conditions and
stocks one is interested in, without any permissions at all. Looking at
the public trace of Address Resolution Protocol (ARP) stored under
a public Linux directory, a zero-permission adversary can locate the
user with good accuracy. Even the status of a smartphone’s speaker
(on or off), which can be conveniently identified through a public
Android API, AudioManager.isMusicActive, turns out to
be a serious information leak. We show that when a GPS navigator
is being used, from the audio-on/off status, an inference technique
we built can figure out the place the smartphone user goes and her
driving route. A video demo of these attacks is posted online [12].

All such information leaks are found to be strongly related to
the fallacies of design assumptions instead of mere implementation
bugs. Every piece of information here is actually meant to be dis-
closed by Android and most of such data has been extensively used
by legitimate Android apps: for example, hundreds of data usage
monitors are already out there [5], relying on the usage statistics to
keep track of a user’s mobile data consumption. Therefore, fixing
these information leaks must be done carefully to avoid undermining
the basic functions of these existing apps and to strike a balance
between system utility and data protection. To this end, we have
designed a preliminary mitigation approach that controls the way
data usage information is released, which helps to better understand
how to achieve such a delicate trade-off.

Contributions. We summarize the contributions of the paper as
follows:

• Understanding of information leaks from Android public resources.
Different from prior research that mainly focuses on implementation
flaws within Android, our study contributes to a better understanding

of an understudied yet fundamental weakness in Android design: the
information leaks from the resources that are not originally consid-
ered to be confidential and therefore made available for improving
system usability. This has been achieved through a suite of new
inference techniques designed to demonstrate that highly-sensitive
user data can be recovered from the public resources, in the presence
of rich background information provided by popular apps and online
resources.

• First step toward mitigating this new threat. We have developed
a new mitigation approach, aiming to preserve the utility of such
public data to the legitimate parties while controlling the way that
an adversary can use it to derive user secrets.

Roadmap. The rest of the paper is organized as follows: Section 2
analyzes the privacy risks of Android public resources and the ad-
versary model; Section 3, 4 and 5 elaborate the new side channels
we discovered and the techniques we use to infer confidential in-
formation from them; Section 6 describes our mitigation approach;
Section 7 compares our work with prior related research and Sec-
tion 8 concludes the paper.

2. THREATS TO PUBLIC RESOURCES

2.1 Leaks from Public Resources
Android is an operating system built on top of Linux. Its security

model is based upon Linux’s kernel level protection (process sepa-
ration, file system access control). Specifically, each Android app
is assigned with a unique user ID and runs as that user. Sensitive
resources are usually mapped to special Linux groups such as inet,
gps, etc. This approach, called application sandboxing, enables the
Linux kernel to separate an app from other running apps. Within
a sandbox, an app can invoke Android APIs to access system re-
sources. The APIs that operate on sensitive resources, including
camera, location, network, etc., are protected by permissions. An
app needs to explicitly request (using AndroidManifest.xml) from
the device’s user such permissions during its installation so as to
get assigned to the Linux groups of the resources under protection,
before it can utilize such resources.

Public resources on Android. Like any operating system, Android
provides a set of shared resources that underprivileged users (apps
without any permission) can access. This is necessary for making the
system easy to use for both app developers and end users. Following
is a rough classification of the resources available to those zero-
permission apps:

• Linux layer: public directories. Linux historically makes available
a large amount of resources considered harmless to normal users,
to help them coordinate their activities. A prominent example is
the process information displayed by the ps command (invoked
through Runtime.getRuntime.exec), which includes each
running process’s user ID, Process ID (PID), memory and CPU
consumption and other statistics.

Most of such resources are provided through two virtual filesys-
tems, the proc filesystem (procfs) and the sys filesystem (sysfs).
The procfs contains public statistics about a process’s use of mem-
ory, CPU, network resources and other data. Under the sysfs
directories, one can find device/driver information, network en-
vironment data (/sys/class/net/) and more. Android in-
herits such public resources from Linux and enhances the sys-
tem with new ones (e.g. /proc/uid_stat). For example,
the network traffic statistics (/proc/uid_stat/tcp_snd and
/proc/uid_stat/tcp_rcv) are extensively utilized [5] to
keep track of individual apps’ mobile data consumption.

• Android layer: Android public APIs. In addition to the public
resources provided by Linux, Android further offers public APIs
to enable apps to get access to public data and interact with each
other. An example is AudioManager.requestAudioFocus,
which coordinates apps’ use of the audio resource (e.g, muting the
music when a phone call comes in).

Privacy risks. All such public resources are considered to be harm-
less and their releases are part of the design which is important
to the system’s normal operations. Examples include the coor-
dinations among users through ps and among the apps using au-
dio resources through AudioManager.requestAudioFocus.
However, those old design assumptions on the public resources are
becoming increasingly irrelevant in front of the fast-evolving ways
to use smartphones. We found that the following design/use gaps
are swiftly widening:

• Gap between Linux design and smartphone use. Linux comes
with the legacy of its original designs for workstations and servers.
Some of its information disclosure, which could be harmless in
these stationary environments, could become a critical issue for
mobile phones. For example, Linux makes the MAC address of
the wireless access points (WAP) available under its procfs. This
does not seem to be a big issue for a workstation or even a laptop
back a few years ago. For a smartphone, however, knowledge about
such information will lead to disclosure of a phone user’s location,
particularly with the recent development that databases have been
built for fingerprinting geo-locations with WAPs’ MAC addresses
(called Basic Service Set Identification, or BSSID).

• Gap between the assumptions on Android public resources and

evolving app design, functionalities and background information.
Even more challenging is the dramatic evolution of Android apps.
For example, an app is often dedicated to a specific website. There-
fore, the adversary no longer needs to infer the website a user visits,
as it can be easily found out by looking at which app is running
(through ps for example). Most importantly, today’s apps often
come with a plethora of background information like tweets, public
posts and public web services such as Google Maps. As a result,
even very thin information about the app’s behavior (e.g., posting
a message), as exposed by the public resources, could be linked to
such public knowledge to recover sensitive user data.

Information leaks. In our research, we carefully analyzed the ways
that public resources are utilized by the OS and popular apps on
Android, together with the public online information related to their
operations. Our study discovered three confirmed new sources of
information leaks:

• App network-data usage (Section 3). We found that the data usage
statistics disclosed by the procfs can be used to precisely fingerprint
an app’s behavior and even infer its input data, by leveraging online
resources such as tweets published by Twitter. To demonstrate the
seriousness of the information leakage from those usage data, we
develop a suite of inference techniques that can reveal a phone
user’s identity from the network-data consumption of Twitter app,
the disease conditions she is interested in from that of WebMD app
and the stock she is looking at from Yahoo! Finance app.

• Public ARP information (Section 4). We discovered that the public
ARP data released by Android (under its Linux public directory)
contains the BSSID of the WAP a phone is connected to, and demon-
strate how to practically utilize such information to locate a phone
user through BSSID databases.

• Audio status API (Section 5). We show that the public audio status
information (speaker on/off) collected from a GPS navigator can be
used to fingerprint a driving route. We further present an inference

technique that uses Google Maps and the status information to
practically identify her driving route on the map.

We built a zero-permission app that stealthily collects information
for these attacks. A video demo is posted online [12].

2.2 Zero-Permission Adversary
Adversary model. The adversary considered in our research runs a
zero-permission app on the victim’s smartphone. Such an app needs
to operate in a stealthy way to visually conceal its presence from the
user and also minimize its impact on a smartphone’s performance.
On the other hand, the adversary has the resources to analyze the
data gathered by the app using publicly available background in-
formation, for example, through crawling the public information
released by social networks, searching Google Maps, etc. Such
activities can be performed by ordinary Internet users.

What the adversary can do. In addition to collecting and analyzing
the information gathered from the victim’s device, a zero-permission
malicious app needs a set of capabilities to pose a credible privacy
threat. Particularly, it needs to send data across the Internet without
the INTERNET permission. Also, it should stay aware of the sys-
tem’s situation, i.e., which apps are currently running. This enables
the malicious app to keep a low profile, start data collection only
when its target app is being executed. Here we show how these
capabilities can be obtained by the app without any permission.

• Networking. Leviathan’s blog describes a zero-permission tech-
nique to smuggle out data across the Internet [16]. The idea is to
let the sender app use the URI ACTION_VIEW Intent to open a
browser and sneak the payload it wants to deliver to the parameters
of an HTTP GET from the receiver website. We re-implemented this
technique in our research and further made it stealthy. Leviathan’s
approach does not work when the screen is off because the browser
is paused when the screen is off. We improved this method to
smuggle data right before the screen is off or the screen is being un-
locked. Specifically, our app continuously monitors /lcd_power
(/sys/class/lcd/panel/lcd_power on Galaxy Nexus),
an LCD status indicator released under the sysfs. Note that this
indicator can be located under other directory on other devices, for
example, sys/class/backlight/s6e8aa0 on Nexus Prime.
When the indicator becomes zero, the phone screen dims out, which
allows our app to send out data through the browser without being
noticed by the user. After the data transmission is done, our app can
redirect the browser to Google and also set the phone to its home
screen to cover this operation.

• Situation awareness. Our zero permission app defines
a list of target applications such as stock, health, location
applications and monitors their activities. It first checks
whether those packages are installed on the victim’s system
(getInstalledApplications()) and then periodically calls
ps to get a list of active apps and their PIDs. Once a target is
found to be active, our app will start a thread that closely moni-
tors the /proc/uid_stats/[uid] and the /proc/[pid]/
of the target.

3. GETTING YOUR IDENTITY, HEALTH

AND INVESTMENT INFORMATION
In this section, we report our study on information leaks from

public data usage statics.

3.1 Usage Monitoring and Analysis
Mobile-data usage statistics. Mobile data usages of Android are
made public under /proc/uid_stat/ (per app) and

0 10 20 30 40 50
0

5000

10000

c
u
m

u
la

ti
v
e
 t
c
p
.l
e
n
 i
n
 b

y
te

s

packet sequence

tcp_snd

shark for root

the total length of two packets

Figure 1: Monitor tool precision

Table 1: Performance overhead of the monitor tool: there the baseline is
measured by AnTuTu [8]

Total CPU GPU RAM I/O

Baseline 3776 777 1816 588 595

Monitor Tool 3554 774 1606 589 585

Overhead 5.8% 0.3% 11.6% -0.1% 1.7%

/sys/class/net/[interface] /statistics/ (per in-
terface). The former is newly introduced by Android to keep track
of individual apps. These directories can be read by any app directly
or through TrafficStats, a public API class. Of particular in-
terest here are two files /proc/uid_stat/[uid]/tcp_rcv
and /proc/uid_stat/[uid]/tcp_snd, which record the to-
tal numbers of bytes received and sent by a specific app respectively.
We found that these two statistics are actually aggregated from
TCP packet payloads: for every TCP packet received or sent by an
app, Android adds the length of its payload onto the correspond-
ing statistics. These statistics are extensively used for mobile data
consumption monitoring [5]. However, our research shows that
their updates can also be leveraged to fingerprint an app’s network
operations, such as sending HTTP POST or GET messages.

Stealthy and realtime monitoring. To catch the updates of those
statistics in real time, we built a data-usage monitor that continu-
ously reads from tcp_rcv and tcp_snd of a target app to record
increments in their values. Such an increment is essentially the
length of the payload delivered by a single or multiple TCP pack-
ets the app receives and sends, depending on how fast the monitor
samples from those statistics. Our current implementation has a
sampling rate of 10 times per second. This is found to be sufficient
for picking up individual packets most of the time, as illustrated in
Figure 1, in which we compare the packet payloads observed by
Shark for Root (a network traffic sniffer for 3G and WiFi), when the
user is using Yahoo! Finance, with the cumulative outbound data
usage detected by our usage monitor.

From the figure we can see that most of the time, our monitor
can separate different packets from each other. However, there are
situations in which only the cumulative length of multiple packets is
identified (see the markers in the figure). This requires an analysis
that can tolerate such non-determinism, which we discuss later.

In terms of performance, our monitor has a very small memory
footprint, only 28 MB, even below that of the default Android key-
board app. When it is running at its peak speed, it takes about 7%
of a core’s cycles on a Google Nexus S phone. Since all the new
phones released today are armed with multi-core CPUs, the moni-
tor’s operations will not have noticeable impacts on the performance
of the app running in the foreground as demonstrated by a test de-
scribed in Table 1 measured using AnTuTu [8] with a sampling rate
of 10Hz for network usage and 50Hz for audio logging (Section
5). To make this data collection stealthier, we adopted a strategy
that samples intensively only when the target app is being executed,
which is identified through ps (Section 2.2).

Analysis methodology. The monitor cannot always produce deter-
ministic outcomes: when sampling the same packet sequence twice,
it may observe two different sequences of increments from the usage
statistics. To obtain a reliable traffic fingerprint of a target app’s
activity we designed a methodology to bridge the gap between the
real sequence and what the monitor sees.

Our approach first uses Shark for Root to analyze a target app’s
behavior (e.g., click on a button) offline - i.e in a controlled con-
text - and generate a payload-sequence signature for the behav-
ior. Once our monitor collects a sequence of usage increments
from the app’s runtime on the victim’s Android phone, we com-
pare this usage sequence with the signature as follows. Consider
a signature (· · · , si, si+1, · · · , si+n, · · ·), where si,··· ,i+n are the
payload lengths of the TCP packets with the same direction (in-
bound/outbound), and a sequence (· · · ,mj , · · ·), where mj is an
increment on a usage statistic (tcp_rcv or tcp_snd) of the di-
rection of si, as observed by our monitor. Suppose that all the
elements before mj match the elements in the signature (those prior
to si). We say that mj also matches the signature elements if either
mj = si or mj = si + · · · + si+k with 1 < k ≤ n. The whole
sequence is considered to match the signature if all of its elements
match the signature elements.

For example, consider that the signature for requesting the in-
formation about a disease condition ABSCESS by WebMD is
(458, 478, 492 →), where “→” indicates outbound traffic. Us-
age sequences matching the signature can be (458, 478, 492 →),
(936, 492 →) or (1428 →).

The payload-sequence signature can vary across different mobile
devices, due to the difference in the User-Agent field on the HTTP
packets produced by these devices. This information can be acquired
by a zero-permission app through the android.os.Build API,
which we elaborate in Appendix A.

3.2 Identity Inference
A person’s identity, such as name, email address, etc., is always

considered to be highly sensitive [35, 19, 15, 29] and should not be
released to an untrusted party. For a smartphone user, unauthorized
disclosure of her identity can immediately reveal a lot of private
information about her (e.g., disease, sex orientation, etc.) simply
from the apps on her phone. Here we show how one’s identity can
be easily inferred using the shared resources and rich background
information from Twitter.

Twitter is one of the most popular social networks with about
500 million users worldwide. It is common for Twitter users to use
their mobile phones to tweet extensively and from diverse locations.
Many Twitter users disclose there identity information which in-
cludes their real names, cities and sometimes homepage or blog
URL and even pictures. Such information can be used to discover
one’s accounts on other social networks, revealing even more in-
formation about the victim according to prior research [26]. We
also performed a small range survey on the identity information
directly disclosed from public Twitter accounts to help us better
understand what kind of information users disclose and at which
extend. By manually analyzing randomly selected 3908 accounts
(obvious bot accounts excluded), we discovered that 78.63% of
them apparently have users’ first and last names there, 32.31% set
the users’ locations, 20.60% include bio descriptions and 12.71%
provide URLs. This indicates that the attack we describe below
poses a realistic threat to Android users’ identity.

The idea. In our attack, a zero-permission app monitors the mobile-
data usage count tcp_snd of the Twitter 3.6.0 app when it is
running. When the user send tweets to the Twitter server, the app
detects this event and send its timestamp to the malicious server

stealthily. This gives us a vector of timestamps for the user’s tweets,
which we then use to search the tweet history through public Twitter
APIs for the account whose activities are consistent with the vector:
that is, the account’s owner posts her tweets at the moments recorded
by these timestamps. Given a few of timestamps, we can uniquely
identify that user. An extension of this idea could also be applied to
other public social media and their apps, and leverage other informa-
tion as vector elements for this identity inference: for example, the
malicious app could be designed to figure out not only the timing of
a blogging activity, but also the number of characters typed into the
blog through monitoring the CPU usage of the keyboard app, which
can then be correlated to a published post.

To make this idea work, we need to address a few technical
challenges. Particularly, searching across all 340 million tweets
daily is impossible. Our solution is using less protected data, the
coarse location (e.g, city) of the person who tweets, to narrow down
the search range (see Section 4).

Fingerprinting tweeting event. To fingerprint the tweeting event
from the Twitter app, we use the aforementioned methodology to
first analyze the app offline to generate a signature for the event.
This signature is then compared with the data usage increments
our zero-permission app collects online from the victim’s phone to
identify the moment she tweets.

Specifically, during the offline analysis, we observed the fol-
lowing TCP payload sequence produced by the Twitter app:
(420|150, 314, 580–720). The first element here is the payload
length of a TLS Client Hello. This message normally has 420 bytes
but can become 150 when the parameters of a recent TLS session
are reused. What follow are a 314-byte payload for Client Key
Exchange and then that of an encrypted HTTP request, either a GET
(download tweets) or a POST (tweet). The encrypted GET has a
relatively stable payload size, between 541 and 544 bytes. When
the user tweets, the encrypted POST ranges from 580 to 720 bytes,
due to the tweet’s 140-character limit. So, the length sequence can
be used as a signature to determine when a tweet is sent.

As discussed before, what we want to do here is to use the signa-
ture to find out the timestamp when the user tweets. The problem
here is that our usage monitor running on the victim’s phone does
not see those packets and can only observe the increments in the
data-usage statistics. Our offline analysis shows that the payload for
Client Hello can be reliably detected by the monitor. However, the
time interval between the Key-Exchange message and POST turns
out to be so short that it can easily fall through the cracks. There-
fore, we have to resort to the aforementioned analysis methodology
(Section 3.1) to compare the data-usage sequence collected by our
app with the payload signature: a tweet is considered to be sent
when the increment sequence is either (420|150, 314, 580–720) or
(420|150, 894–1034).

Identity discovery. From the tweeting events detected, we obtain a
sequence of timestamps T = [t1, t2, · · · , tn] that describe when the
phone user tweets. This sequence is then used to find out the user’s
Twitter ID from the public index of tweets. Such an index can be
accessed through the Twitter Search API [4]: one can call the API
to search the tweets from a certain geo-location within 6 to 8 days.
Each query returns 1500 most recent tweets or those published in
the prior days (1500 per day). An unauthorized user can query 150
times every hour.

To collect relevant tweets, we need to get the phone’s geo-location,
which is specified by a triplet (latitude, longitude, radius) in the
twitter search API. Here all we need is a coarse location (at city
level) to set these parameters. Android has permissions to control
the access to both coarse and fine locations of a phone. However,

we found that the user’s fine location could be inferred once she
connects her phone to a Wi-Fi hotspot (see Section 4). Getting her
coarse location in this case is much easier: our zero-permission app
can invoke the mobile browser to visit a malicious website, which
can then search her IP in public IP-to-location databases [11] to find
her city. This allows us to set the query parameters using Google
Maps. Note that smartphone users tend to use Wi-Fi whenever
possible to conserve their mobile data (see Section 4), which gives
our app chances to get their coarse locations. Please note that we
do not require the user to geo-tag each tweet. The twitter search
results include the tweets in a area as long as the user specified her
geo-location in her profile.

As discussed before, our app can only sneak out the timestamps it
collects from the Twitter app when the phone screen dims out. This
could happen minutes away from the moment a user tweets. For
each timestamp ti ∈ T , we use the twitter API to search for the set
of users ui who tweet in that area in ti ± 60s (due to the time skew
between mobile phone and the twitter server). The target user is in
the set U = ∩ui. When U contains only one twitter ID, the user is
identified. For a small city, oftentimes 1500 tweets returned by a
query are more than enough to cover the delay including both the
ti ± 60s period and the duration between the tweet event and the
moment the screen dims out. For a big city with a large population
of Twitter users, however, we need to continuously query the Twitter
server to dump the tweets to a local database, so when our app report
a timestamp, we can search it in the database to find those who tweet
at that moment.

Table 2: City information and Twitter identity exploitation

Location Population City size Time interval

covered (radius)

of times-

tamps

Urbana 41,518 11.58 mi2 243 min (3 mi) 3

Bloomington 81,381 19.9 mi2 87 min (3 mi) 5

Chicago 2,707,120 234 mi2 141 sec (3 mi) 9

Attack evaluation. We evaluated the effectiveness of this attack at
three cities, Urbana, Bloomington and Chicago. Table 2 describes
these cities’ information.

We first studied the lengths of the time intervals the 1500 tweets
returned by a Twitter query can cover in these individual cities. To
this end, we examined the difference between the first and the last
timestamps on 1500 tweets downloaded from the Twitter server
through a single API call, and present the results in Table 2. As we
can see here, for small towns with populations below 100 thousand,
all the tweets within one hour and a half can be retrieved through
a single query, which is sufficient for our attack: it is conceivable
that the victim’s phone screen will dim out within that period after
she tweets, allowing the malicious app to send out the timestamp
through the browser. However, for Chicago, the query outcome only
covers 2 minutes of tweets. Therefore, we need to continuously
dump tweets from the Twitter server to a local database to make the
attack work.

In the experiment, we ran a script that repeatedly called the Twit-
ter Search API, at a rate of 135 queries per hour. All the results
without duplicates were stored in a local SQL database. Then, we
posted tweets through the Twitter app on a smartphone, under the
surveillance of the zero-permission app. After obvious robot Twitter
accounts were eliminated from the query results, our Twitter ID
were recovered by merely 3 timestamps at Urbana, 5 timestamps at
Bloomington and 9 timestamps in Chicago, which is aligned with
the city size and population.

3.3 Health and Investment
In this section, we show that the data-usage statistics our zero-

permission app collects also leak out apps’ sensitive inputs, e.g.,

1. Main

Menu

1.6 Sign In 1.7 Settings

1.1

Symptom

Checker

1.2

Conditions

1.5 Local

Health

1.2.1

Abscess

1.2.2 ACL

knee injury

1.2.27 Breast

cancer (male)

1.2.204

Wernicle

Syndrome

586 , 531

1168 , 1062

196 , 470698 , 530

3333 , 9527

1496 , 3500

xxx Advertisement related traffic

xxx POST request - Condition specific

xxx Condition specific responses to POSTs

 Outbound traffic (from the app to the sever)

 Inbound traffic (from the server to the app)

624, 340-341, 385-403, 174, 458, 478, 492

 530, 339-368, 2100±200, 512, 3898, 1074, 1997

638, 340-341, 385-403, 174, 464, 484, 498

 530, 339-368, 2100±200, 512, 4231, 535, 1956

657, 340-341, 385-403, 174, 471, 491, 505

 530, 339-368, 2100±200, 512, 2544, 472, 1852

643, 340-341, 385-403, 174, 468, 488, 502

 530, 339-368, 2100±200, 512, 3202, 484, 1710

Figure 2: WebMD Finite State Machine

disease conditions a user selects on WebMD mobile [6]. This has
been achieved by fingerprinting her actions with data-usage se-
quences they produce. The same attack technique also works on
Yahoo! Finance, which is elaborated in Appendix B.

WebMD mobile. WebMD mobile is an extremely popular Android
health and fitness app, which has been installed 1 ∼ 5 million times
in the past 30 days [6]. To use the app, one first clicks to select 1
out of 6 sections, such as “Symptom Checker”, “Conditions” and
others. In our research, we analyzed the data under the “Conditions”
section, which includes a list of disease conditions (e.g., Asthma,
Diabetes, etc.). Each condition, once clicked on, leads to a new
screen that displays the overview of the disease, its symptoms and
related articles. All such information is provided through a simple,
fixed user interface running on the phone, while the data there is
downloaded from the web. We found that the changes of network
usage statistics during this process can be reliably linked to the user’s
selections on the interface, revealing the disease she is interested in.

Our attack. Again, we first analyzed the app offline (i.e. in a
controlled context) using Shark for Root, and built a detailed finite
state machine (FSM) for it based on the payload lengths of TCP
packets sent and received when the app moves from one screen (a
state of the FSM) to another. The FSM is illustrated in Figure 2.
Specifically, the user’s selection of a section is characterized by
a sequence of bytes, which is completely different from those of
other sections. Each disease under the “Conditions” section is also
associated with a distinctive payload sequence.

In particular, every time a user clicks on a condition she is inter-
ested in, the app produces 4 GET requests (with 3 GETs for ads);
and then 3 POST requests to acquire the content for that condition.
Among them, all ad-related requests and responses have predictable
payload lengths (e.g., 174 bytes for GET ads/dcfc.gif) and
can therefore be easily identified. The rest of the traffic (1 GET
request, 3 POST requests and their responses) is characterized by
distinctive payload lengths that can be used to fingerprint individual
disease conditions. Just based on the POST requests, we can already
classify all 204 conditions into 32 categories. The response payload
sizes further help us uniquely identify all 204 conditions.

In a real attack, however, our zero-permission app cannot see the
traffic. The usage increments it collects could come from the com-
bination of two packets. This issue was addressed in our research
using the technique described in Section 3.1, which compares an
observed increment to the cumulative length of multiple packets.

Attack evaluation. We ran our malware on a Google Nexus S 4G
phone while using WebMD mobile. The usage data collected and
delivered by our app was further compared to the traffic signatures
we built offline. We found that the increment sequences matched

well with the signatures in all 204 cases, in which we unequivocally
identified the disease conditions being visited.

4. FINDING WHERE YOU ARE
The precise location of a smartphone user is widely considered

to be private and should not be leaked out without the user’s ex-
plicit consent. Android guards such information with a permission
ACCESS_FINE_LOCATION. The information is further protected
from the websites that attempt to get it through a mobile browser (us-
ing navigator.geolocation.getCurrentPosition),
which is designed to ask for user’s permission when this happens.
In this section, we show that despite all such protections, our zero-
permission app can still access location-related data, which enables
accurate identification of the user’s whereabout, whenever her phone
connects to a Wi-Fi hotspot.

As discussed before, Wi-Fi has been extensively utilized by smart-
phone users to save their mobile data. In particular, many users’
phones are in an auto-connect mode. Therefore, the threat posed by
our attack is very realistic. In the presence of a Wi-Fi connection, we
show in Section 3.2 that a phone’s coarse location can be obtained
through the gateway’s IP address. Here, we elaborate how to retrieve
its fine location using the link layer information Android discloses.

4.1 Location Inference
We found that the BSSID of a Wi-Fi hotspot and signal levels per-

ceived by the phone are disclosed by Android through procfs. Such
information is location-sensitive because hotspots’ BSSIDs have
been extensively collected by companies (e.g., Google, Skyhook,
Navizon, etc.) for location-based services in the absence of GPS.
However, their databases are proprietary, not open to the public. In
this section, we show how we address this challenge and come up
with an end-to-end attack.

BSSID-based geo-location. In proc files /proc/net/arp and
/proc/net/wireless, Android documents the parameters of
Address Resolution Protocol (ARP) it uses to talk to a network
gateway (a hotspot in the case of Wi-Fi connections) and other
wireless activities. Of particular interest to us is the BSSID (in
the arp file), which is essentially the gateway’s MAC address, and
wireless signal levels (in the wireless file). Both files are accessible
to a zero-permission app. The app we implemented periodically
reads from procfs once every a few seconds to detect the existence
of the files, which indicates the presence of a Wi-Fi connection.

The arp file is inherited from Linux, on which its content is con-
sidered to be harmless: an internal gateway’s MAC address does
not seem to give away much sensitive user information. For smart-
phone, however, such an assumption no longer holds. More and
more companies like Google, Skyhook and Navizon are aggressively
collecting the BSSIDs of public Wi-Fi hotspots to find out where
the user is, so as to provide location-based services (e.g., restaurant
recommendations) when GPS signals are weak or even not available.
Such information has been gathered in different ways. Some compa-
nies like Skyhook wireless and Google have literally driven through
different cities and mapped all the BSSID’s they detected to their
corresponding GPS locations. Others like Navizon distribute an app
with both GPS and wireless permissions. Such an app continuously
gleans the coordinates of a phone’s geo-locations together with the
BSSIDs it sees there, and uploads such information to a server that
maintains a BSSID location database.

All such databases are proprietary, not open to the public. Ac-
tually we talked to Skyhook in an attempt to purchase a license
for querying their database with the BSSID collected by our zero-
permission app. They were not willing to do that due to their

Table 3: Geo-location with a Single BSSID

Location Total BSSIDs

Collected

Working

BSSIDs

Error

Home 5 4 0ft

Hospital1 74 2 59ft

Hospital2 57 4 528ft

Subway 6 4 3ft

Starbucks 43 3 6ft

Train/Bus Station 14 10 0ft

Church 82 3 150ft

Bookstore 34 2 289ft

concerns that our analysis could impact people’s perceptions about
the privacy implications of BSSID collection.

Exploiting commercial location services. Many commer-
cial apps that offer location-based service need a permission
ACCESS_WIFI_STATE, so they can collect the BSSIDs of all
the surrounding hotspots for geo-locating their users. In our case,
however, our zero-permission app can only get a single BSSID,
the one for the hotspot the phone is currently in connection with.
We need to understand whether this is still enough for finding out
the user’s location. Since we cannot directly use those proprietary
databases, we have to leverage these existing apps to get the loca-
tion. The idea is to understand the protocol these apps run with their
servers to generate the right query that can give us the expected
response.

Specifically, we utilized the Navizon app to develop such an
indirect query mechanism. Like Google and Skyhook, Navizon also
has a BSSID database with a wide coverage [2], particularly in US.
In our research, we reverse-engineered the app’s protocol by using a
proxy, and found that there is no authentication in the protocol and
its request is a list of BSSIDs and signal levels encoded in Base64.
Based upon such information, we built a “querier” server that uses
the information our app sneaks out to construct a valid Navizon
request for querying its database for the location of the target phone.

4.2 Attack Evaluation
Data collection. To understand the seriousness of this information
leak, we ran our zero-permission app to collect BSSID data from the
Wi-Fi connections made at places in Urbana and Chicago, including
home, hospital, church, bookstore, train/bus station and others. The
results are illustrated in Table 3.

Results. Our app easily detected the presence of Wi-Fi connections
and stealthily sent out the BSSIDs associated with these connections.
Running our query mechanism, we successfully identified all these
locations from Navizon. On the other hand, we found that not every
hotspot can be used for this purpose: after all, the Navizon database
is still far from complete. Table 3 describes the numbers of the
hotspots good for geo-locations at different spots and their accuracy.

5. KNOWING WHERE YOU GO
As discussed before, information leaks happen not only on the

Linux layer of Android but also on its API level. In this section,
we report our study of an audio public API that gives away one’s
driving route.

5.1 Driving Route Inference
Speaker usage information. Android offers a set of public APIs
that any apps, including those without any permissions, can call. An
example is AudioManager.isMusicActive, through which
an app can find out whether any sound is being played by the phone.
This API is used to coordinate apps’ access to the speaker. This

0 5 10 15 20
2

3

4

5

6

a
u
d
io

 e
le

m
e
n
ts

 l
e
n
g
th

 (
s
e
c
)

audio sequence

Incomming call noise

Figure 3: Audio elements similarity when driving on the same route

seemingly harmless capability, however, turns out to reveal sensitive
information in the presence of the powerful Google Maps API.

Consider a GPS navigation app one uses when she is driving.
Such an app typically gives turn-by-turn voice guidance. During
this process, a zero-permission app that continuously invokes the
isMusicActive API can observe when the voice is being played
and when it is off. In this way, it can get a sequence of speech lengths

for voice direction elements, such as “turn left onto the Broadway
avenue”, which are typically individual sentences. The content of
such directions is boilerplate but still diverse, depending on the
names of street/avenues, and one driving route typically contains
many such direction elements. These features make the length
sequence a high dimensional vector that can be used to fingerprint a
driving route, as discovered in our research.

Audio status logger. To collect such speech-length sequences,
we implemented an audio-state logger into our zero-permission
app. Similar to the data-usage monitor, this component is
invoked only when the target app is found to be running
(Section 3.1). In this case, we are looking for the pro-
cess com.google.android.apps.maps, Google’s naviga-
tion app. Once the process is discovered, our app runs the logger
to continuously call isMusicActive, with a sampling rate of 50
per second. Whenever a change to the speaker status is detected,
it records the new status and the timestamp of this event. At the
end of the navigation, the app sneaks out this sequence (see Sec-
tion 2.2), which is then used to reconstruct individual elements in
the speech-length sequence through looking for the timestamp of an
“on” speaker state with its preceding state being “off”, and the timing
for its subsequent state change that goes the other way around.

Route fingerprinting simulator. Using the audio-status logger, we
recorded the speech length sequences when we drove from home to
office three times at Bloomington. Figure 3 shows the comparisons
among those sequences. Here we consider that two speech-length
elements match if their difference is below 0.05 second, which is
the error margin of the speaker status sampling. As we can see from
the figure, those sequences all match well, except a spike caused by
an incoming call in one trip.

To understand whether such sequences are sufficiently differen-
tiable for fingerprinting a route, we further built an app that simulates
the navigation process during driving. The app queries the Google
Maps API [9] to get a route between a pair of addresses, which
is in the form of a polyline, that is, a list of nodes (positions with
GPS coordinates) and line segments between the consecutive nodes.
Specifically, we turn on the “allow mock gps” option of an Android
phone. This replaces the physical GPS with a simulator, which
replays the gps coordinates of the route to Google Navigator and
records the voice guidance along the route to measure the lengths of
its speech elements.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

overlap ratio

p
ro

b
a

b
ili

ty

true

false

Figure 4: Audio length sequence dis-
tinguishability

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5
signature length vs false positive rate

number of audio elements

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

false positive rate

Figure 5: False positive rate vs num-
ber of audio elements

In our research, we randomly chose 1000 test routes in Blooming-
ton with the similar driving time and number of elements as those of
the routes for 10 real drives to get their speechlength sequences us-
ing our simulator. These sequences were compared with the length
sequences recorded from the real routes, as illustrated in Figure 4.
Here we use a variant of Jaccard index, called overlap ratio, to
measure the similarity of two length sequences in a normalized way:
given sequences s and s′ and their longest common subsequence

s̄, their overlap ratio is defined as R(s, s′) = |s̄|
|s|+|s′|−|s̄|

. Figure 4

shows the distribution of the ratios between the sequences in real and
test sets (which are associated with different routes) together with
the distribution of the ratios between the speech-length sequences
of real drives and the simulated drives on the same routes. As we
can see here, for two different routes, their speech-length sequences
are very different (mean: 0.1827, standard deviation: 0.0817), while
two identical routes always have highly similar length sequences
(mean: 0.6146, standard deviation: 0.0876). Based on these two
distributions, we set a threshold of 0.5 for determining when two
sequences “match”: that is, they are considered to be related to the
same route.

Figure 4 shows that speech-length sequences can effectively fin-
gerprint their driving routes. A caveat here is that such a sequence
should not be too short. Figure 5 illustrates what happens when
comparing short sequences extracted from real driving routes with
those of the same lengths randomly sampled from the 1000 test
sequences. We can see here that false positives (i.e., matches be-
tween the sequences from different routes) begin to show up when
sequence lengths go below 9.

5.2 Attack Methodology
Given a speech-length sequence, we want to identify its route on

the map. To this end, we developed a suite of techniques for the
following attacks: (1) fingerprinting a few “Points of interest” (PoI)
the user might go, such as hospitals, airport and others, to find out
whether the user indeed goes there and when she goes; (2) collecting
a large number of possible routes the user might use (based on some
background information) and searching these routes for the target
speech-length sequence.

Location fingerprinting. To fingerprint a PoI, we first find a set of
start addresses surrounding it from Google Maps and then run our
driving-simulation app from these addresses to the target. This gives
us a set of speech-length sequences for the driving routes to the PoI,
which we treat as a signature for the location. To ensure that such a
signature is unlikely to have false positives, the start addresses are
selected in a way that their routes to the PoI have at least 10 speech
elements (Figure 5).

For each speech length sequence received from our zero permis-
sion app, our approach extracts a substring at the end of the sequence
according to the lengths of a target PoI’s signature sequences. On
such a substring are the last steps of the route our app observes,

which are used to compare with the signature. If the substring
matches any signature sequences (i.e., with an overlap ratio above
the threshold), we get strong evidence that the smartphone user has
been to the fingerprinted location.

Scalable sequence matching. More challenging here is to locate
a user’s driving route on the map. For this purpose, we need some
background knowledge to roughly determine the area that covers
the route. As discussed before (Section 3.2 and 4), we can geo-
locate the user’s home and other places she frequently visits when
her phone is set to auto connect. At the very least, finding the
city one is currently in can be easily done in the presence of Wi-Fi
connection. Therefore, in our research, we assume that we know the
user’s start location or a place on her route and the rough area (e.g.,
city) she goes. Note that simply knowing one’s start and destination
cities can be enough for getting such information: driving between
two cities typically goes through a common route segment, whose
speech-length sequence can be used to locate the entrance point of
the destination city (e.g., a highway exit) on the length sequence
recorded during the victim’s driving. Furthermore, since we can
calculate from the timestamps on the sequence the driving time
between the known location and the destination, the possible areas
of the target can be roughly determined.

However, even under these constraints, collecting speech-length
sequences in a large scale is still difficult: our driving simulator
takes 2 to 5 minutes to complete a 10-mile route in Bloomington
(necessary for getting all the speech elements on the route), which is
much faster than a real drive, but still too slow to handle thousands
(or more) of possible routes we need to inspect. Here we show how
to make such a large-scale search possible.

Given a known point on the route and a target area, we developed
a crawler using Google API to download the routes from the point
to the residential addresses in the target area [10]. Each route here
comes with a set of driving directions (e.g. html_instructions) in
text and an estimated driving time. Such text directions are roughly
a subset of the audio directions used by Google Navigator for the
same route, with some standard road name abbreviations (“Rd”,
“Dr”, etc.).

For each route with text directions, our approach replaces their
abbreviations with the full names [13], calls the Google text-to-
speech (TTS) engine to synthesize the audio for each sentence, and
then measures the length of each audio element. This produces a
sequence of speech lengths, which we call a TTS sequence. Compar-
ing a TTS sequence with its corresponding speech-length sequence
from a real drive (the real sequence), the former is typically a subset
of the latter. An example is illustrated in Table 4. Based on this
observation, we come up with a method to search a large number of
TTS sequences, as follows.

We first extract all the subsequences on a real sequence under
the constraint that two neighboring elements on a subsequence
must be within a distance of 3 on the original sequence: that is, on
the real sequence, there must be no more than 2 elements sitting
in between these two elements. These subsequences are used to
search TTS sequences for those with substrings that match them.
The example in Table 4 shows a TTS sequence that matches a
subsequence on the real sequence. As a result of the search, we get
a list of TTS sequences ranked in a descending order according to
each sequence’s overlap ratio with the real sequence calculated with
the longest subsequence (under the above constraint) shared between
them. We then pick up top TTS sequences, run our simulator on
their source and destination addresses to generate their full speech-
length sequences, and compare them with the real sequence to find
its route.

Table 4: Comparison between a Navigation Sequence and a Text Direction/TTS Sequence

Google Navigator Real Length Google Direction API Synthesis Audio Length

Turn left onto south xxx street, then turn right onto west xxx road 4.21 N/A N/A

Turn right onto west xxx road 2.05 Turn right onto west xxx Road 2.15

Continue onto west xxx Road for a mile 2.53 N/A N/A

In one thousand feet, turn right onto xxxxx ** north 4.07 N/A N/A

Turn right onto xxxxx ** north 2.74 Turn right onto xxxxx ** north 2.72

Table 5: Route Identification Result. The third column is the highest overlap
ratio of a wrong route within the top 10 TTS sequences. FP indicates false
positive. All FP routes (actually similar routes) are marked out in Figure 6.

Route
No.

result(ratio) Top ratio of a wrong route Notes(error)

1 found (0.813) 0.579 (FP) similar route (0.2mi)

2 found (1.0) 0.846 (FP) similar route (0.5mi)

3 found (0.615) 0.462

4 missed 0.412

5 missed 0.32

6 found (0.846) 0.667 (FP) similar route (0.3mi)

7 found (0.714) 0.415

8 found (0.5) 0.345

9 found (0.588) 0.261

10 found (0.6) 0.292

5.3 Attack Evaluation
Location determination. We fingerprinted two PoIs in Blooming-
ton, i.e Bloomington Hospital and Indianapolis International Airport
(IND) using our driving simulator. For the hospital, 19 routes with
at least 10 audio elements on their speech-length sequences were
selected from Google Maps, which cover all the paths to the place.
The airport has only 4 paths to get in and get out, each having at
least 10 audio elements. We first evaluated the false positives of
these signatures with 200 routes with similar lengths, and did not
observe any false match. Then we compared the signatures with 4
real driving sequences collected by our zero-permission app from
the trips to these PoIs (2 for each PoI), they all matched the right
routes in the signatures.

Driving-route identification. We further tried to locate 10 speech-
length sequences our zero-permission app collected from real drives
from a highway exit to 10 random locations in Bloomington. To
this end, we randomly selected 1000 residential addresses from
each of the 5 ZIP code areas in the town using the local family
website [10] and called the Google Direction API to get the routes
from the highway exit (which was supposed to be known) to these
5000 addresses, together with the Google driving routes for the 10
real sequences. Then, the TTS sequences of those 5010 routes were
compared with the 10 real-drive speech length sequences collected
by our malicious app. For each real sequence, 10 TTS sequences
with the highest overlap ratios as described in Section 5.2 were
picked out for a validation that involves simulating drives on these
TTS sequences’ routes, measuring their speech-length sequences
and comparing them with the length sequences of the real drives.
In the end, we identified 11 routes using the 0.5 threshold for the
overlap ratio (see Table 5). Among them, 8 are true positives, the
real routes we drove.

Also, the 3 false positives are actually the routes that come very
close to the routes of 3 real-drive sequences (see Figure 6), with two
within 0.3 miles of the real targets and one within 0.5 miles. Note
that in all these cases, the real routes were also found and ranked
higher than those false positives. This actually indicates that our
approach works very well: even when the real-drive routes were
not among the routes we randomly sampled on the map (from the
highway exit to 5000 random addresses), the approach could still
identify those very close to the real routes, thereby locating the
smartphone user to the neighborhood of the places she went.

Figure 6: Three FP Routes and Their Corresponding TP Routes. Each
FP/TP pair has most of their routes overlapped.

6. MITIGATION AND DISCUSSION
Given the various public resources on Android, the information

leaks we found are very likely to be just a tip of the iceberg. Finding
an effective solution to this problem is especially challenging with
rich background information of users or apps gratuitously available
on the web. To mitigate such threats, we first take a closer look at
the attacks discovered in our research. The ARP data has not been
extensively utilized by apps and can therefore be kept away from
unauthorized parties by changing the related file’s access privilege
to system. A simple solution to control the audio channel can be
to restrict the access to its related APIs, such as isMusicActive,
only to system processes whenever sensitive apps (e.g. navigation
related) are running in the foreground. The most challenging facet
of such a mitigation venture is to address the availability mecha-
nism of the data usage statistics, which have already been used by
hundreds of apps to help Android users keep track of their mobile
data consumption. Merely removing them from the list of public
resources is not an option. In this section, we report our approach on
mitigating the threat deriving from the statistics availability, while
maintaining their utility.

6.1 Mitigation Strategies
To suppress information leaks from the statistics available through

tcp_rcv and tcp_snd, we can release less accurate information.
Here we analyze a few strategies designed for this purpose.

Round up and round down. One strategy is to reduce the accuracy
of the available information by rounding up or down the actual
number of bytes sent or received by an app to a multiple of a given
integer before disclosing that value to the querying process. This
approach is reminiscent of a predominant defense strategy against
traffic analysis, namely packet padding [20, 36]. The difference
between that and our approach is that we can not only round up but
also round down to a target number and also work on accumulated
payload lengths rather than the size of an individual packet. This
enables us to control the information leaks at a low cost, in terms of
impact on data utility.

Specifically, let d be the content of a data usage counter (tcp_rcv
or tcp_snd) and α an integer given to our enforcement frame-
work implemented on Android (Section 6.2). When the counter is
queried by an app, our approach first finds a number k such that

kα ≤ d ≤ (k+1)α and reports kα to the app when d−kα < 0.5α
and (k + 1)α otherwise.

Aggregation. A limitation of the simple rounding strategy results
from the fact that it still gives away the payload size of each packet,
even though the information is perturbed. As a result, it cannot hide
packets with exceedingly large payloads. To address this issue, we
can accumulate the data usage information of multiple queries, for
example, conditions on WebMD the user looks at, and only release
the cumulative result when a time interval expires. This can be
done, for example, by updating an app’s data usage to the querying
app once every week, which prevents the adversary from observing
individual packets.

6.2 Enforcement Framework
To enforce the aforementioned policies, we designed and imple-

mented a preliminary framework, which is elaborated below.

Permission Design. A naive idea would be adding yet another
permission to Android’s already complex permission system and
have any data monitoring app requesting this permission in An-
droidManifest.xml. However, prior research shows that the users
do not pay too much attention to the permission list when installing
apps, and the developers tend to declare more permissions than
needed [25]. On the other hand, the traffic usage data generated by
some applications (e.g banking applications) is exceptionally sensi-
tive, at a degree that the app developer might not want to divulge
them even to the legitimate data monitoring apps. To address this
problem, our solution is to let an app specify special “permissions”
to Android, which defines how its network usage statistics should
be released. Such permissions, which are essentially a security pol-
icy, was built into the Android permission system in our research.
Using the usage counters as an example, our framework supports
four policies: NO_ACCESS, ROUNDING, AGGREGATION and
NO_PROTECTION. These policies determine whether to release an
app’s usage data to a querying app, how to release this information
and when to do that. They are enforced at a UsageService, a
policy enforcement mechanism we added to Android, by holding
back the answer, adding noise to it (as described in Section 6.1) or
periodically updating the information.

Enforcement mechanism. Under our framework, public resources
on the Linux layer, such as the data usage counters, are set to
be accessible only by system or root users. Specifically, for the
/proc/uid_stat/ resources, we modified the create_stat
file in drivers/mis/uid_stat.c of the Android Linux ker-
nel and changed the mode of entry to disable direct access to
the proc entries by any app. With direct access turned off, the app
will have to call the APIs exposed in TrafficStats.java and
NetworkStats.java such as getUidTxBytes() to gain ac-
cess to that information. In our research, we modified these APIs
so that whenever they are invoked by a query app that requests a
target app’s statistics, they pass the parameters such as the target’s
uid through IPC to the UsageService, which checks how the
target app (uid) wants to release its data before responding to the
query app with the data (which can be perturbed according to the
target’s policy). In our implementation, we deliberately kept the
API interface unchanged so existing data monitor apps can still run.

Defense Evaluation. To understand the effectiveness our technique,
we first evaluated the round up and round down scheme using the
WebMD app. Figure 7 illustrates the results: with α increasing from
16 to 1024, the corresponding number of conditions that can be
uniquely identified drops from 201 to 1. In other words, except a
peculiar condition DEMENTIA IN HEAD INJURY whose total reply

0 500 1000 1500
0

50

100

150

200

250

(16,201)
(32,198)
(64,170)

(128,85)

(256,32)

(512,10)
(1024,1)

round bytes

N
o

.
o

f
id

e
n

ti
fi
a

b
le

 c
o

n
d

it
io

n
s

Figure 7: Effectiveness of round up and round down

payload has 13513 bytes with its condition overview of 11106 bytes
(a huge deviation from the average case), all other conditions can
no longer be determined from the usage statistics when the counter
value is rounded to a multiple of 1024 bytes. Note that the error
incurred by this rounding strategy is no more than 512 bytes, which
is low, considering the fact that the total data usage of the app can
be several megabytes. Therefore its impact on the utility of data
consumption monitoring apps is very small (below 0.05%).

We further measured the delay caused by the modified APIs and
the new UsageService on a Galaxy Nexus, which comes from
permission checking and IPC, to evaluate the overhead incurred
by the enforcement mechanism we implemented. On average, this
mechanism brought in a 22.4ms delay, which is negligible.

Limitations of our Defence. We found that it is challeng-
ing to come up with a bullet proof defense against all those
information leaks for the following reasons. a) Shared re-
sources are present all over the Linux’s file system from
/proc/[pid]/, /proc/uid_stat/[uid], network proto-
cols like /proc/net/arp or /proc/net/wireless and
even some Android OS APIs. b) Public resources are different
across different devices. Some of this information is leaked by
third party drivers like the LCD backlit status which is mounted
in different places in the /sys file system on different phones. c)
Traffic usage is also application related. For the round up and round
down defense strategy to be applied successfully, the OS must be
provided with the traffic patterns of the apps it has to protect before
calculating an appropriate round size capable of both securing them
from malicious apps and introducing sufficiently small noise to the
data legitimate traffic monitoring apps collect. A more systematic
study is needed here to better understand the problem.

7. RELATED WORK
Information leaks have been studied for decades and new dis-

coveries continue to be made in recent years [33, 39, 37]. Among
them, most related to our work is the work on the information
leaks from procfs, which includes using the ESP/EIP data to infer
keystrokes [38] and leveraging memory usages to fingerprint visited
websites [31]. However, it is less clear whether those attacks pose
a credible threat to Android, due to the high non-determinism of
its memory allocation [31] and the challenges in keystroke analy-
sis [38]. In comparison, our work shows that the usage statistics
under procfs can be practically exploited to infer an Android user’s
sensitive information. The attack technique used here is related
to prior work on traffic analysis [20]. However, those approaches
assume the presence of an adversary who sees encrypted packets.
Also, their analysis techniques cannot be directly applied to smart-
phone. Our attack is based upon a different adversary model, in
which an app uses public resources to infer the content of the data
received by a target app on the same device. For this purpose, we
need to build different inference techniques based on the unique
features of mobile computing, particularly the rich background in-

formation (i.e., social network, BSSID databases and Google Maps)
that comes with the target app and the mobile OS.

Information leaks have been discovered on smartphone by both
academia and the hacker community [21, 27, 16]. Most of known
problems are caused by implementation errors, either in Android
or within mobile apps. By comparison, the privacy risks come
from shared resources in the presence of emerging background
information have not been extensively studied on mobile devices.
Up to our knowledge, all prior research on this subject focuses
on the privacy implications of motion sensors or microphones [34,
17, 32, 18, 28]. What has never been done before is a systematic
investigation on what can be inferred from the public resources
exposed by both Linux and Android layers.

New techniques for better protecting user privacy on Android also
continue to pop up [22, 23, 27, 30, 14, 24, 21]. Different from such
research, our work focuses on the new privacy risks emerging from
the fast-evolving smartphone apps, which could render innocuous
public resources related to sensitive user information.

8. CONCLUSION
In this paper, we report our study on information leaks from

Android public resources. The study reveals that highly sensitive
data of a smartphone user, such as her identity, interested disease
conditions, geo-location, driving route and more can actually be
reliably inferred from such resources by analyzing popular apps. Our
findings call into question the design assumption made by Android
developers on public resources and demand new effort to address
such privacy risks. To this end, we further present a preliminary
design for mitigating the threats to selected public resources, while
still maintaining their utility.

9. ACKNOWLEDGMENTS
The authors at Indiana University are supported in part by Na-

tional Science Foundation CNS-1017782 and CNS-1117106. We
also acknowledge the grant HHS-90TR0003/01 from the Office of
the National Coordinator for Health Information Technology at the
Department of Health and Human Services (HHS). The views in
this paper represent opinions of the authors only.

10. REFERENCES

[1] ReadWrite A Tech Blog.
http://readwrite.com/2011/05/10/doctor_
in_your_pocket_webmd_comes_to_android.
Accessed: 13/02/2013.

[2] Wifi coverage map. http://www.navizon.com/
navizon_coverage_wifi.htm. Accessed: 13/02/2013.

[3] Fbi issues android smartphone malware warning.
http://www.forbes.com/sites/billsinger/
2012/10/15/fbi-issues-android-
smartphone-malware-warning/, 2012.

[4] Get search, twitter api. https:
//dev.twitter.com/docs/api/1/get/search,
2012.

[5] Google play. https://play.google.com/store/
search?q=traffic+monitor&c=apps, 2012.

[6] Google play: Webmd for android.
http://www.webmd.com/webmdapp, 2012.

[7] Smart phone malware: The six worst offenders.
http://www.nbcnews.com/technology/
technolog/smart-phone-malware-six-worst-
offenders-125248, 2012.

[8] Antutu benchmark.
https://play.google.com/store/apps/
details?id=com.antutu.ABenchMark, 2013.

[9] The google directions api.
https://developers.google.com/maps/
documentation/directions/, 2013.

[10] Locate family. http://www.locatefamily.com/,
2013.

[11] Lookup ip address location.
http://whatismyipaddress.com/ip-lookup,
2013.

[12] Online demo.
https://sites.google.com/site/sidedroid/,
2013.

[13] Standard address abbreviations.
http://www.kutztown.edu/admin/adminserv/
mailfile/guide/abbrev.html, 2013.

[14] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
Mockdroid: trading privacy for application functionality on
smartphones. In Proceedings of the 12th Workshop on Mobile
Computing Systems and Applications, HotMobile ’11, pages
49–54, New York, NY, USA, 2011. ACM.

[15] H. Berghel. Identity theft, social security numbers, and the
web. Commun. ACM, 43(2):17–21, Feb. 2000.

[16] P. Brodley and leviathan Security Group. Zero Permission
Android Applications. http://leviathansecurity.
com/blog/archives/17-Zero-Permission-
Android-Applications.html. Accessed: 13/02/2013.

[17] L. Cai and H. Chen. Touchlogger: inferring keystrokes on
touch screen from smartphone motion. In Proceedings of the
6th USENIX conference on Hot topics in security, HotSec’11,
pages 9–9, Berkeley, CA, USA, 2011. USENIX Association.

[18] L. Cai and H. Chen. On the practicality of motion based
keystroke inference attack. In Proceedings of the 5th
international conference on Trust and Trustworthy Computing,
TRUST’12, pages 273–290, Berlin, Heidelberg, 2012.
Springer-Verlag.

[19] J. Camenisch, a. shelat, D. Sommer, S. Fischer-Hübner,
M. Hansen, H. Krasemann, G. Lacoste, R. Leenes, and
J. Tseng. Privacy and identity management for everyone. In
Proceedings of the 2005 workshop on Digital identity
management, DIM ’05, pages 20–27, New York, NY, USA,
2005. ACM.

[20] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel
leaks in web applications: A reality today, a challenge
tomorrow. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 191 –206, may 2010.

[21] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.
Quire: Lightweight provenance for smart phone operating
systems. In 20th USENIX Security Symposium, San Francisco,
CA, Aug. 2011.

[22] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation, OSDI’10,
pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[23] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. In Proceedings of the 20th
USENIX conference on Security, SEC’11, pages 21–21,
Berkeley, CA, USA, 2011. USENIX Association.

[24] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In Proceedings of the
16th ACM CCS, CCS ’09, pages 235–245, New York, NY,
USA, 2009. ACM.

[25] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proceedings of the 18th
ACM conference on Computer and communications security,
CCS ’11, pages 627–638, New York, NY, USA, 2011. ACM.

[26] T. Govani and H. Pashley. Student awareness of the privacy
implications when using facebook. unpublished paper
presented at the "Privacy Poster Fair" at the Carnegie Mellon
University School of Library and Information Science, 9,
2005.

http://readwrite.com/2011/05/10/doctor_in_your_pocket_webmd_comes_to_android
http://readwrite.com/2011/05/10/doctor_in_your_pocket_webmd_comes_to_android
http://www.navizon.com/navizon_coverage_wifi.htm
http://www.navizon.com/navizon_coverage_wifi.htm
http://www.forbes.com/sites/billsinger/2012/10/15/fbi-issues-android-smartphone-malware-warning/
http://www.forbes.com/sites/billsinger/2012/10/15/fbi-issues-android-smartphone-malware-warning/
http://www.forbes.com/sites/billsinger/2012/10/15/fbi-issues-android-smartphone-malware-warning/
https://dev.twitter.com/docs/api/1/get/search
https://dev.twitter.com/docs/api/1/get/search
https://play.google.com/store/search?q=traffic+monitor&c=apps
https://play.google.com/store/search?q=traffic+monitor&c=apps
http://www.webmd.com/webmdapp
http://www.nbcnews.com/technology/technolog/smart-phone-malware-six-worst-offenders-125248
http://www.nbcnews.com/technology/technolog/smart-phone-malware-six-worst-offenders-125248
http://www.nbcnews.com/technology/technolog/smart-phone-malware-six-worst-offenders-125248
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/
http://www.locatefamily.com/
http://whatismyipaddress.com/ip-lookup
https://sites.google.com/site/sidedroid/
http://www.kutztown.edu/admin/adminserv/mailfile/guide/abbrev.html
http://www.kutztown.edu/admin/adminserv/mailfile/guide/abbrev.html
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html

[27] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
detection of capability leaks in stock Android smartphones. In
Proceedings of the 19th Network and Distributed System
Security Symposium (NDSS), Feb. 2012.

[28] J. Han, E. Owusu, T.-L. Nguyen, A. Perrig, and J. Zhang.
Accomplice: Location inference using accelerometers on
smartphones. In Proceedings of the 4th International
Conference on Communication Systems and Networks,
Bangalore, India, 2012.

[29] S. B. Hoar. Identity Theft: The Crime of the New Millennium.
Oregon Law Review, 80:1423–1448, 2001.

[30] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These aren’t the droids you’re looking for: retrofitting android
to protect data from imperious applications. In Proceedings of
the 18th ACM CCS, CCS ’11, pages 639–652, New York, NY,
USA, 2011. ACM.

[31] S. Jana and V. Shmatikov. Memento: Learning secrets from
process footprints. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, SP ’12, pages 143–157,
Washington, DC, USA, 2012. IEEE Computer Society.

[32] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang. Accessory:
password inference using accelerometers on smartphones. In
Proceedings of the 12th Workshop on Mobile Computing
Systems Applications, HotMobile ’12, pages 9:1–9:6, New
York, NY, USA, 2012. ACM.

[33] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th ACM
CCS, pages 199–212, New York, NY, USA, 2009. ACM.

[34] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapadia,
and X. Wang. Soundcomber: A stealthy and context-aware
sound trojan for smartphones. In NDSS. The Internet Society,
2011.

[35] D. J. Solove. Identity Theft, Privacy, and the Architecture of
Vulnerability. Hastings Law Journal, 54:1227 – 1276,
2002-2003.

[36] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N.
Padmanabhan, and L. Qiu. Statistical identification of
encrypted web browsing traffic. In IEEE Symposium on
Security and Privacy. Society Press, 2002.

[37] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson. Uncovering spoken phrases in encrypted voice over
ip conversations. ACM Trans. Inf. Syst. Secur.,
13(4):35:1–35:30, Dec. 2010.

[38] K. Zhang and X. Wang. Peeping tom in the neighborhood:
keystroke eavesdropping on multi-user systems. analysis,
20:23, 2010.

[39] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-vm
side channels and their use to extract private keys. In
Proceedings of the 2012 ACM conference on Computer and
communications security, CCS ’12, pages 305–316, New
York, NY, USA, 2012. ACM.

APPENDIX

A. USER-AGENT CONSTRUCTION
Many mobile apps use HTTP for data exchange and the traffic

generated during this process always involves a User-Agent field.
User-Agent is related to the phone’s type, brand and Android OS
version. For example, the User-Agent of the Yahoo! Finance
app on a Nexus S phone is User-Agent: YahooMobile/1.0

(finance; 1.1.8.1187014079); (Linux; U; Android

4.1.1; sojus Build/JELLY_BEAN);. Given that the format
of this field is known, all we need here is a set of parameters
(type, brand, OS version etc.) for building up the field, which is
important for estimating the length of the field and the payload
that carries the field. Such information can be easily obtained by
our app, without any permission, from android.os.Build and
System.getProperty("http agent").

B. PERSONAL INVESTMENT INFERENCE

Knowing your personal investment. A person’s investment infor-
mation is private and highly sensitive. Here we demonstrate how
an adversary can infer her financial interest from the network data
usage of Yahoo! Finance, a popular finance app on Google Play
with nearly one million users. We discover that Yahoo! Finance
discloses a unique network data signature when the user is adding
or clicking on a stock.

Stock search autocomplete. Similar to all aforementioned attacks,
here we consider that a zero-permission app running in the back-
ground collects network data usage related to Yahoo! Finance and
sends it to a remote attacker when the device’s screen dims out.
Searching for a stock in Yahoo! Finance generates a unique network
data signature, which can be attributed to its network-based auto-
complete feature (i.e., suggestion list) that returns suggested stocks
according to the user’s input. Consider for example the case when a
user looks for Google’s stock (GOOG). In response to each letter
she enters, the Yahoo! Finance app continuously updates a list of
possible autocomplete options from the Internet, which is character-
ized by a sequence of unique payload lengths. For example, typing
“G” in the search box produces 281 bytes outgoing and 1361 to 2631
bytes incoming traffic. We found that each time the user enters an
additional character, the outbound HTTP GET packet increases by
one byte. In its HTTP response, a set of stocks related to the letters
the user types will be returned, whose packet size depends on the
user’s input and is unique for each character combination.

Stock news signature. From the dynamics of mobile data usage
produced by the suggestion lists, we can identify a set of candidate
stocks. To narrow it down, we further studied the signature when a
stock code is clicked upon. We found that when this happens, two
types of HTTP GET requests will be generated, one for a chart and
the other for related news. The HTTP response for news has more
salient features, which can be used to build a signature. Whenever
a user clicks on a stock, Yahoo! Finance will refresh the news
associated with that stock, which increases the tcp_rcv count.
This count is then used to compare with the payload sizes of the
HTTP packets for downloading stock news from Yahoo! so as to
identify the stock chosen by the user. Also note that since the size of
the HTTP GET for the news is stable, 352 bytes, our app can always
determine when a news request is sent.

Attack evaluation. In our study, we ran our zero-permission app to
monitor the Yahoo! Finance app on a Nexus S 4G smartphone. From
the data-usage statistics collected while the suggestion list was being
used to add 10 random stocks onto the stock watch list, we managed
to narrow down the candidate list to 85 possible stocks that matched
the data-usage features of these 10 stocks. Further analyzing the
increment sequence when the user clicked on a particular stock
code, which downloaded related news to the phone, we were able to
uniquely identify each of the ten stocks the user selected among the
85 candidates.

	Introduction
	Threats to Public Resources
	Leaks from Public Resources
	Zero-Permission Adversary

	Getting Your Identity, Health and Investment Information
	Usage Monitoring and Analysis
	Identity Inference
	Health and Investment

	Finding Where You Are
	Location Inference
	Attack Evaluation

	Knowing Where You Go
	Driving Route Inference
	Attack Methodology
	Attack Evaluation

	Mitigation and Discussion
	Mitigation Strategies
	Enforcement Framework

	Related Work
	Conclusion
	Acknowledgments
	References
	User-Agent Construction
	Personal Investment Inference

