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Abstract.  We introduce here the notions of identity and unity as
they have been discussed in Philosophy, and then provide additional
clarifications needed to use these notions as fundamental tools in a
methodology for ontology-driven conceptual analysis. We show
how identity and unity complement each other under a general
notion of individuality, and conclude with an example of how these
tools can be used in analysis to help check the ontological consis-
tency of taxonomies.

1 INTRODUCTION

Identity is one of the most fundamental notions in ontology, yet the
related issues are very subtle, and isolating the most relevant ones is
not an easy task; see [5] for an account of the identity problems of
ordinary objects, and [11] for a collection of philosophical papers in
this area. In particular, the relationship between identity and unity
appears to be crucial for our interest in ontological analysis. These
notions are different, albeit closely related and often confused under
a generic notion of identity. Strictly speaking, identity is related to
the problem of distinguishing a specific instance of a certain class
from other instances by means of a characteristic property, which is
unique for it (that whole instance). Unity, on the other hand, is
related to the problem of distinguishing the parts of an instance
from the rest of the world by means of a unifying relation that binds
them together (not involving anything else).

For example, asking “Is that my dog?” would be a problem of
identity, whereas asking “is the collar part of my dog?” would be a
problem of unity. As we shall see, the two notions are complemen-
tary: when something can be both recognized as a whole and kept
distinct from other wholes then we say that it is an individual, and
can be counted as one.

The actual conditions we use to support our judgements con-
cerning identity and unity for a certain class of things vary from
case to case, depending on the properties holding for these things. If
we find a condition that consistently supports identity or unity
judgements for all instances of a certain property, then we say that
property carries an identity or a unity condition. Of course, decid-
ing this depends on the assumptions resulting from our conceptual-
ization of the world, i.e. on our ontology [3]. For example, the
decision as to whether cats remain the same after they lose their
tails, or whether statues are identical with the marble they are con-
stituted of, are ultimately the result of our sensory system, our cul-
ture, and so on. The aim of the present analysis is to clarify the
formal tools needed to make such assumptions explicit, and to
explore the logical consequences of them. These formal tools will
form the foundation of a rigorous methodology for ontology driven
conceptual modeling. 
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We begin by introducing the notions of identity and unity as they
have been discussed in Philosophy, and then provide additional
clarifications needed for our methodology. We show how identity
and unity complement each other under a general notion of individ-
uality, and conclude with an example of how these tools can be used
in analysis to help check the ontological consistency of taxonomies.

2 PRELIMINARIES

Logically speaking, identity is a primitive equivalence relation,
with the peculiar property of allowing the substitution of terms
within logical formulas (Leibniz’s rule). In the following, we shall
adopt a first order logic with identity. This will be occasionally
extended to a simple temporal logic, where all predicates are tem-
porally indexed by means of an extra argument. If the time argu-
ment is omitted for a certain predicate P, then the predicate is
assumed to be time invariant, that is ∃tP(x,t) → ∀tP(x,t). Note that
the identity relation will be assumed as time invariant: if two things
are identical, they are identical forever. This means that we are
assuming absolute identity, not relative identity, and Leibniz’s rule
holds with no exceptions. 

Our domain of quantification will be that of possibilia. That is,
the extension of predicates will not be limited to what exists in the
actual world, but to what exists in any possible world [7]. For exam-
ple, a predicate like “Unicorn” will not be empty under this account.
The special predicate E(x,t) will be used to express that x has actual
existence at time t. Free variables appearing in formulas are
assumed to be universally quantified. We also assume all properties
to be discriminating properties that are not trivially false nor trivi-
ally true [3].

3 IDENTITY

Before discussing the formal structure of identity conditions (ICs),
some clarifications about their intuitive meaning may be useful. If
we say, “Two persons are the same if they have the same SSN,” we
seem to create a puzzle: how can they be two if they are the same?
The puzzle can be solved by recognizing that two (incomplete)
descriptions of a person (like two records in different databases) can
be different while referring to the same individual. The statement
“two persons are the same” can be therefore rephrased as “two
descriptions of a person refer to the same object”. A description can
be seen as a set of properties that apply to a certain object. Our intu-
ition is that two incomplete descriptions denote the same object if
they have an identifying property in common. 

Depending on whether the two descriptions hold at the same
time, we distinguish between synchronic and diachronic ICs. The
former are needed to tell, e.g., whether the statue is identical with
the marble it is made of, or whether a hole is identical with its filler



[1], while the latter allow us to re-identify things over time.
In the philosophical literature, an identity criterion  is generally

defined as a condition that is both necessary and sufficient for iden-
tity. According to [8], a property φ carries an identity criterion iff
the following formula holds for a suitable ρ:

φ(x) ∧ φ(y) → (ρ(x,y) ↔ x=y) (1)

Since identity is an equivalence relation, it follows that ρ
restricted to φ must also be an equivalence relation. 

The above formulation has two main problems, in our opinion.
First, the nature of the ρ relation remains mysterious: what makes it
an IC, and how can we index it with respect to time to account for
the difference between synchronic and diachronic identity? Second,
deciding whether a property carries an identity criterion may be dif-
ficult, since finding a ρ that is both necessary and sufficient for
identity is often hard, especially for natural kinds and artifacts.

3.1 A framework for identity

Our intuition is that the nature of the ρ relation in (1) is based on
the “sameness” of a certain property, which is unique to a specific
instance. Suppose we stipulate, e.g., that two persons are the same
iff they have the same fingerprint: the reason why this relation can
be used as an IC for persons lies in the fact that a property like
“having this particular fingerprint” is an identifying property, since
it holds exactly for one person. Fingerprints are then identifying
characteristics of persons.

Identifying properties can be seen as relational properties,
involving a characteristic relation  between a class of individuals
and their identifying characteristics. Such characteristics can be
internal to individuals themselves (parts or qualities) or external to
them (other “reference” entities). So two things can be the same
because they have some parts or qualities in common, or because
they are related in the same way to something else (for instance, we
may say that two material objects are the same if they occupy the
same spatial region). This means that, if χ denotes a suitable char-
acteristic relation for φ, we can assume:

ρ(x,y)=∀z(χ(x,z) ↔ χ(y,z)) (2)

The scheme (1) becomes therefore:

φ(x) ∧ φ(y) → (∀z(χ(x,z) ↔ χ(y,z)) ↔ x=y) (3)

For instance, if we take φ as the property of being a set, and χ as
the relation “has-member”, this scheme tells us that two sets are
identical iff they have the same members.

An important advantage of (3) over (1) is that it is based on a
characteristic relation χ holding separately for x and y, rather than
on a relation ρ holding between them. This allows us to take time
into account more easily, clarifying the distinction between syn-
chronic and diachronic identity:

E(x,t)∧φ(x,t)∧E(y,t')∧φ(y,t')→(∀z(χ(x,z,t)↔χ(y,z,t'))↔x=y) (4)

We shall have a synchronic criterion if t=t', and a diachronic cri-
terion otherwise. For the sake of simplicity, we are restricting our
criteria to the times where the entities to be identified actually exist.
Note that accounting for the difference between synchronic and
diachronic identity would be difficult with (1): we may think of
adding two temporal arguments to the ρ relation, but in this case its
semantics would become quite unclear, being a relation that binds
together two entities at different times. Note also that synchronic

identity criteria are weaker than diachronic ones. For instance, the
sameness of spatial location is usually adopted as a synchronic
identity criterion for material objects, but of course it does not work
as a diachronic criterion.

A possible criticism of (4) is that it looks circular, since it
defines the identity between x and y in terms of the identity between
something else (in this case, the identifying characteristics z com-
mon to x and y). However, as observed by Lowe ([9], p. 45), we
must take in mind that ICs are not definitions, as identity is a primi-
tive.This means that the circularity of identity criteria with respect
to the very notion of identity is just a fact of life: identity can’t be
defined. Rather, we may ask ICs to be informative, in the sense that
identity conditions must be non-circular with respect to the proper-
ties involved in their definition. For instance, Lowe points out that
Davidson’s identity criterion for events, stating that two events are
the same if they have the same causes and they are originated by the
same causes [2], is circular in this sense since it presupposes the
identity of causes, which are themselves events. In many cases,
however, even this requirement cannot easily be met, and we must
regard ICs as simple constraints.

There is another objection we can raise against (4), namely that
it is not general enough. In particular, the notion of “sameness” of
characterizing properties does not capture the case where spatio-
temporal continuity is taken as a criterion for diachronic identity.
This criterion is of course not valid in general [5], although we
believe it may hold for certain entities, like atoms of matter. If we
want to state a general scheme for identity criteria, overcoming the
problems of (1) and the restrictions of (4), we generalize the rela-
tion ρ into a generic formula containing x, y, t, t' as the only free
variables, of course excluding the trivial cases (as discussed in sec-
tion 3.2):

E(x,t) ∧ φ(x,t) ∧ E(y,t') ∧ φ(y,t') → (Ψ(x,y,t,t') ↔ x=y) (5)

3.2 Weak identity conditions

In the philosophical literature, properties carrying an IC are called
sortals [14]. In general, their linguistic counterparts are nouns (e.g.,
Apple), while non-sortals correspond to adjectives (e.g., Red). Dis-
tinguishing sortals from non-sortals is of high practical relevance
for conceptual modeling, as we tend to naturally organize knowl-
edge around nouns. Unfortunately, recognizing that a property car-
ries a specific IC is often difficult in practice. However, in many
cases it suffices to recognize that a property carries some (kind of)
IC, without telling exactly which IC it is. To achieve this goal, we
can introduce weak ICs, which are (only) necessary or (only) suffi-
cient for identity. In other words, assuming that an unknown ρ sat-
isfying (1) exists, we can look for generic relations γ, not
necessarily equivalence relations, satisfying either:

γ(x,y)→ρ(x,y) (6)

ρ(x,y)→γ(x,y) (7)

in a non-trivial way [15]. γ will correspond to a sufficient IC in (6),
and to a necessary IC in (7). We shall say that a property is a sortal
if we find a γ such that at least one of these two conditions is satis-
fied.

In the same way we generalized ρ into Ψ in the previous sec-
tion, we generalize the relation γ into a formula Γ (depending in
general on φ) containing x, y, t, t' as the only free variables, and
define the sufficient and necessary cases as follows:



Definition 1 A sufficient identity condition for a property φ is a for-
mula Γ, such that:

E(x,t) ∧ φ(x,t) ∧ E(y,t' ) ∧ φ(y,t' ) ∧ Γ(x,y,t,t' ) → x=y (8)

¬∀xy(Γ(x,y,t,t' ) ↔ x=y) (9)

∃xytt' Γ(x,y,t,t' ) (10)

Definition 2 A necessary identity condition for a property φ is a
formula Γ, such that:

E(x,t) ∧ φ(x,t) ∧ E(y,t' ) ∧  φ(y,t' ) ∧ x=y → Γ(x,y,t,t' ) (11)

¬∀xy(E(x,t) ∧ φ(x,t) ∧ E(y,t' ) ∧  φ(y,t' ) → Γ(x,y,t,t' )) (12)

¬∀xy(Γ(x,y,t,t' ) ↔ x=y) (13)

(8) and (11) come from (5), each considering only one sense of the
double implication. (9) and (13) guarantee that Γ is bound to iden-
tity under a certain sortal (φ), and not to arbitrary identity. (10)
ensures that Γ is not trivially false. (12) is needed to guarantee that
the last conjunct in (11) is relevant and not tautological.

4 UNITY

The notion of unity is closely tied to that of parthood, and our for-
malization requires some basic definitions. We adopt a time-
indexed mereological relation P(x,y,t), meaning that x is a (proper
or improper) part of y at time t, satisfying the minimal set of axioms
and definitions (adapted from [13], p. 362) shown in Table 1. Dif-
ferently from Simons, this mereological relation will be taken as
completely general, holding on a domain which includes individu-
als, collections, and amounts of matter. Based on these definitions,
it should be clear that our definitions of unity below are synchronic,
and therefore hold only at one time. The notion of what parts can

change over time is tied to identity, not to unity.

4.1 Contingent unity

Before addressing what it means for a certain property to carry a
unity condition (UC), we must first clarify what it means for a cer-
tain object to have a UC, that is to be a whole. A general and infor-
mal definition for wholeness was proposed by Peter Simons [13]:

“Every member of some division of the object stands in a certain
relation to every other member, and no member bears this relation to
anything other than members of the division.” (p. 327)

Here, a division of a certain object is assumed to be a class of
parts (not necessarily disjoint from each other) completely exhaust-
ing it. The “unifying” relation binding the members of a division
together must be an equivalence relation. An example could be
“sharing both parents”.

In his discussion, Simons emphasizes two aspects. First, the uni-
fying relation may not hold between arbitrary parts of the whole,
but just between those parts that are members of a division: “shar-
ing both parents” does not involve parts of persons (at least not

directly). Second, such a unifying relation can be constructed from
an arbitrary “base” relation R by taking the transitive closure of the

union of R with its converse (R ∪ R-)*, forming an equivalence
relation. For example, starting with the base relation “being parent
of”, we can form an equivalence relation that binds together all ele-
ments of a biological species, say all humans. 

From these general intuitions, Simons presents two definitions,
which we have adapted to our terminology:

Definition 3 A class a is a closed system under R if 

x∈a → (y∈a ↔ R(x,y) ∨ R(y,x)) (14)

Definition 4 An object w is a (contingent) R-integrated whole if
there exists a division a of w such that a is a closed system under (R

∪ R-)*. R will be called a base unifying relation for w.

We now generalize Simons’ definition by saying that an object
is an integrated whole if it has a division that is a closed system
under a suitable equivalence relation, which will be called its unify-
ing relation. As we have underlined, such a relation (let’s call it υ)
holds between the elements of a certain division, not between all
the parts of an object. However, if υ is a unifying relation for a cer-
tain object, we can always construct a deep unifying relation ω that
binds together its parts, by assuming

ω(x,y,t) =def ∃zz' (P(x,z,t) ∧ P(y,z',t) ∧ υ(z,z',t)) (15)

We can easily check that, since υ is an equivalence relation, ω
will also be an equivalence relation. We are therefore in the position
to state the following (still preliminary) general definition, which
avoids mentioning a suitable division:

Definition 5 Let ω be an equivalence relation. At a given time t, an
object x is a contingent whole under ω if:

∀y(P(y,x,t) → ∀z(P(z,x,t) ↔ ω(z, y,t))) (16)

(17)

We can read the above definition as follows: at time t, each part
of x must be bound by ω to all other parts and to nothing else. (17)
is a non-triviality condition on ω, that avoids considering any mere-
ological sum as a contingent whole. (16) expresses a condition of
maximal self-connectedness according to a suitable relation of
“generalized connection,” ω. The intuition is to exclude connection
relations that are trivially constructed from the part-of relation.

Depending on the ontological nature of this relation, we may
have different kinds of unity. For example, we may distinguish
topological unity  (a piece of coal, a lump of coal), morphological
unity (a ball, a constellation), functional unity (a hammer, a bikini).
As these examples show, nothing prevents a whole from having
parts that are themselves wholes (with a different UC). Indeed, a
plural whole can be defined as a whole which is a sum of wholes.

4.2 Essential Unity

Simons touches only briefly on the temporal issues related to integ-
rity. Nothing prevents a physical object from having a certain UC
only at a single time, being therefore only a contingent whole. Con-
sider for instance an isolated piece of clay; which certainly has a
certain topological unity; what happens if it is attached to a much
larger piece? We can hardly say it is still a topological whole. Yet
we may invent another relation: supposing that our piece occupies a
certain spatial region r within the larger piece, a relation like being-
materially-connected-but-confined-within-r could do. Our piece of

Table 1. Axioms and definitions for the part-of relation.

PP(x,y,t) =def P(x,y,t) ∧ ¬x=y (proper part)

O(x,y,t) =def ∃z(P(z,x,t) ∧ P(z,y,t)) (overlap)

P(x,y,t) → E(x,t) ∧ E(y,t) (actual existence of parts)

P(x,y,t) ∧ P(y,x,t) → x=y (antisymmetry)

P(x,y,t) ∧ P(y,z,t) → P(x,z,t) (transitivity)

PP(x,y,t) → ∃z(PP(z,y,t) ∧ ¬O(z,x,t)) (weak supplementation)

xyztP y x t, ,( ) P z y t, ,( ) ω y z t, ,( )↔∧∀¬



clay will again be a whole, but only in a contingent way, as its spa-
tial location may change as soon as the object moves.

We define a stronger notion of whole by assuming that a UC
must hold for an object throughout its existence, i.e. by assuming
unity as an essential property:

Definition 6 An object x is an intrinsic whole under ω if, at any
time where x exists, it is a contingent whole under ω.

An important remark is that, if an object is always atomic (i.e., it
has no proper parts), then it is an intrinsic whole under the identity
relation. We are now in the position to state the following:

Definition 7 A property φ carries a unity condition if there is a rela-
tion ω such that instances of φ are intrinsic wholes under ω.

It is important to make clear that carrying a UC does not imply
carrying a necessary IC. This is due to the way Definition 2 is for-
mulated. To see that, suppose that φ carries a UC. We may think that
the persistence of such condition across time could be a good candi-
date for a necessary IC for φ, since it satisfies (11). However, it fails
to satisfy (12), and does not qualify as a necessary identity condi-
tion: thus, unity is just a persistence condition.

5 INDIVIDUATION AND COUNTABILITY

We have seen how identity and unity, though related, are indepen-
dent from each other. In fact, properties may carry only identity,
only unity, both, or neither of them. When something is an instance
of a property carrying identity, it can be identified . If something is
an instance of a property that carries unity, it is a whole . If some-
thing can be identified and is a whole, then we say it is an individ-
ual. The notion of individuality can be seen therefore as the sum of
identity plus unity. This is not to say, however, that all individuals
are instances of properties that carry unity and identity, since it is
possible for some instance to be an individual for only part of its
existence (as discussed in section 4.2). Moreover, we must be care-
ful in not confusing individuality with singularity: an individual can
count as one even if it is a plural whole.

With the help of the examples reported in Table 2, we now dis-
cuss various combinations of identity and unity.

Case 1 of Table 2 shows the prototypical example of a countable
property, whose instances are all and always individuals:

Definition 8 A countable property is a property that carries both an
identity and a unity condition.

Countability can be used therefore as a practical test to check
whether a property carries an IC and a UC, even if the specific IC or
UC may be not clearly determined. 

In case 2 we still have countability, at least if we intend a “piece”
as an undetached self-connected part of something (otherwise we
cannot admit unity any more). Notice that in this case the UC is dif-
ferent from before: for the apple we may rely on a notion of biolog-
ical unity, while for the piece we adopt maximal self-

connectedness.
In case 3 we have the classical example of a mass-sortal, which

carries no UCs (assuming that the parts of something that is “apple
food” can be arbitrarily scattered) while carrying an IC. The IC
assumed here is based on the mereological extensionality of food:
two amounts of food are the same iff they have the same parts. 

Case 4 shows an example of a property that trivially carries a
UC without carrying an IC. In general, we may have practical cases
where we want to avoid committing on ICs for a certain property
while admitting UCs. For instance, within a certain application we
may be interested in counting tokens without caring about the pos-
sibility of distinguishing one token from another. Lowe cites elec-
trons as an example of entities that are whole (because of their mass
and charge) that cannot be identified (because of Pauli’s indetermi-
nacy principle). While this example is debatable, it is important to
admit at least in principle this possibility.

Finally, case 5 is an example of a property carrying neither iden-
tity nor unity (assuming that instances of “Red” are material
objects, not particular color patches). Notice that this does not mean
that red objects cannot be identified, since their IC can be supplied
by other properties they are instances of. Indeed, we assume (as per
Quine [12]) that every element of our quantification domain must
be identifiable, although not necessarily a whole and therefore not
every entity is an individual.

6 TAXONOMIC CONSTRAINTS

After the above clarifications, let us see how ICs and UCs may
affect a taxonomic organization. One result of this work, upon
which the methodology we are developing is based, is that the pres-
ence of such conditions imposes some constraints (which are theo-
rems descending immediately from our definitions) on the IS-A
relation. Due to space limitations, we shall avoid logical notation
here, focusing on explaining the relevant concepts.

In the case of ICs, the following principle has been proposed by
Lowe:

“No individual can instantiate both of two sorts if they have different
criteria of identity associated with them.” ([8] p. 19)

We believe that this principle is illuminating, but its formulation
is not accurate enough. Consider the domain of abstract geometrical
figures, for example, where the property “Polygon” subsumes “Tri-
angle”. A necessary and sufficient IC for polygons is “Having the
same edges and the same angles”. On the other hand, an additional
necessary and sufficient IC for triangles is “Having two edges and
their internal angle in common” (note that this condition is only-
necessary for polygons). So the two properties have different ICs
(although they have one IC in common), but their extensions are
not disjoint. The point, then, is not having different ICs, but having
incompatible ICs. For example, “Amount of matter” must be dis-
joint from “Person” if we admit mereological extensionality for the
former but not for the latter (since persons can replace their parts).

In the case of UCs, an obvious constraint is that a property car-
rying a UC cannot subsume one carrying no UCs. A more compli-
cated situation arises when a property carrying no unity subsumes
one that does. Suppose for instance we wonder if “Vase” is sub-
sumed by “Amount of clay”. We may think of a vase as an amount
of clay c that has the property of being a whole, satisfying a suitable
UC for vases. This is no problem at first, however since the vase
must be an intrinsic whole for the corresponding property to carry a
UC, we must verify whether this is compatible with our ontological

Table 2. Examples of properties carrying different IC/UC combinations.

Property Identity Unity

1 Apple √ √
2 Apple piece √ √
3 Apple food √ —
4 Intrinsic whole — √
5 Red — —



assumptions for amounts of clay. This forces a modeler to consider
what they mean by “an amount of clay.” In one account, certainly
all amounts of clay must have the possibility of not forming a
whole, therefore the subsumption is not valid. This analysis of UCs
brings to light a very common misuse of the subsumption relation,
the fact is that vases are constituted of amounts of clay, not sub-
sumed by them.

7 A MOTIVATING EXAMPLE

We shall briefly discuss now how the notions we have defined can
help in the task of ontological analysis. The scenario we are consid-
ering for our motivating example is that of a simple taxonomy of
concepts, resulting from a preliminary study of a certain domain.
We focus on a deceptively simple example, concerning the sub-
sumption relationship between two concepts: physical objects and
amounts of matter. Assuming that such concepts are not co-exten-
sional, two well-known ontologies take opposite positions:

• A physical object is an amount of matter (Pangloss) [6]
• An amount of matter is a physical object (WordNet) [10]

This example illustrates how the lack of rigorous formal tools
can lead to drastic inconsistencies even for experienced modelers.

Applying our analysis to these properties, we see that the usual
account of amounts of matter is that they have an extensional IC
(two amounts of matter are the same iff they have the same parts),
and no UC. The usual account of physical objects is that they are
not extensional, since two physical objects may be the same while
having different parts (e.g. a car with new tires). In a another
account, physical objects may be extensional. In either case, physi-
cal objects are normally considered to have unity (because they are
countable). 

Turning to our taxonomic choices, the presence of a UC on
physical objects prevents them from subsuming amounts of matter.
The normal account of physical objects (as non-extensional) pre-
vents them from being subsumed by amounts of matter. We are left
with the case where extensional physical objects may be subsumed
by amounts of matter, however considering the analysis of clay and
vases in the previous section, this also violates the essentiality of
the lack of unity for amounts of matter.

This analysis tells us that, in the normal account of these con-
cepts, amounts of matter and physical objects are disjoint.

8 CONCLUSION

We have attempted a compact and rigorous formalization of the
subtle notions behind identity, by assembling, clarifying, and adapt-
ing philosophical insights in a way useful for practical knowledge
engineering. We have clarified in particular the importance of deal-
ing with separate only-sufficient and only-necessary identity condi-
tions, and the constraints they impose on a taxonomy. We have
shown how the mix of unity and identity can help formalizing the
notion of a countable property, improving previous accounts such
as [3]. 

Our claim is that a rigorous analysis of identity and unity
assumptions can offer two main advantages to the knowledge engi-
neer:

• It results in a cleaner taxonomy, due to the semantic constraints
imposed on the IS-A relation;

• It forces the analyst to make ontological commitments explicit,
clarifying the intended meaning of the concepts used, exposing

hidden assumptions, and producing therefore a more reusable
ontology.
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