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Abstract

Background: RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data

can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses

of gene-level data by developing a user-friendly, interactive web application for exploratory data analysis,

differential expression, and pathway analysis.

Results: iDEP (integrated Differential Expression and Pathway analysis) seamlessly connects 63 R/Bioconductor

packages, 2 web services, and comprehensive annotation and pathway databases for 220 plant and animal species.

The workflow can be reproduced by downloading customized R code and related pathway files. As an example, we

analyzed an RNA-Seq dataset of lung fibroblasts with Hoxa1 knockdown and revealed the possible roles of SP1 and

E2F1 and their target genes, including microRNAs, in blocking G1/S transition. In another example, our analysis

shows that in mouse B cells without functional p53, ionizing radiation activates the MYC pathway and its

downstream genes involved in cell proliferation, ribosome biogenesis, and non-coding RNA metabolism. In

wildtype B cells, radiation induces p53-mediated apoptosis and DNA repair while suppressing the target genes of

MYC and E2F1, and leads to growth and cell cycle arrest. iDEP helps unveil the multifaceted functions of p53 and

the possible involvement of several microRNAs such as miR-92a, miR-504, and miR-30a. In both examples, we

validated known molecular pathways and generated novel, testable hypotheses.

Conclusions: Combining comprehensive analytic functionalities with massive annotation databases, iDEP

(http://ge-lab.org/idep/) enables biologists to easily translate transcriptomic and proteomic data into actionable insights.
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Background
RNA sequencing (RNA-Seq) [1] has become a routine

technique for genome-wide expression analysis. At

increasingly reduced cost, library construction and se-

quencing can often be carried out following standard

protocols. For many researchers, especially those with-

out bioinformatics experience, the bottleneck to fully

leverage the power of the technique is how to translate

expression profiles into actionable insights. A typical

analytic workflow involves many steps, each requiring

different tools. It can be time-consuming to learn, tune

and connect these tools correctly. Another hurdle is the

scattered annotation databases with diverse types of gene

IDs. To mitigate these issues, we aim to develop an ap-

plication that can greatly reduce the time and effort re-

quired for researchers to analyze RNA-Seq data.

RNA-Seq data analysis often starts with quality control,

pre-processing, mapping and summarizing of raw sequen-

cing reads. We assume these steps were completed, using

either the traditional Tuxedo Suite [2, 3] or alternatives

such as the faster, alignment-free quantification methods

[4, 5]. These tools can be used in stand-alone mood or

through platforms like GenePattern [6], Galaxy [7], and

CyVerse [8].

After read mapping, we often obtain a matrix of

gene-level read counts or normalized expression levels

(Fragments Per Kilobase Million, or FPKM). For such

tabular data, like DNA microarray data, R is a powerful
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tool for visualization and statistical analysis. In addition,

many dedicated R and Bioconductor [9] packages have

been developed to identify differentially expressed genes

(DEGs) and altered pathways. Some of the packages,

such as DESeq2 [10], are developed specifically for the

statistical modeling of read counts, and are widely used.

But these packages can be time-consuming, or even out

of reach for researchers without coding experience.

Several web applications have been developed to

analyze summarized expression data (Table 1). START

App (Shiny Transcriptome Analysis Resource Tool) is a

Shiny app that performs hierarchical clustering, principal

component analysis (PCA), gene-level boxplots, and dif-

ferential gene expression [11]. Another similar tool, De-

gust [12] can perform differential expression analysis

using EdgeR [13] or limma-voom [14] and interactively

plot the results. Other tools include Sleuth [15] and Shi-

nyNGS [16]. Non-Shiny applications were also devel-

oped to take advantage of the R code base. This includes

DEIVA [17] and VisRseq [18]. Beyond differential ex-

pression, several tools incorporate some capacity of

pathway analysis. For quantified expression data, ASAP

(Automated Single-cell Analysis Pipeline) [19] can carry

out normalization, filtering, clustering, and enrichment

analysis based on Gene Ontology (GO) [20] and KEGG

[21] databases. With EXPath Tool [22], users can per-

form pathway search, GO enrichment and co-expression

analysis. Several other Shiny-based tools, such as IRIS

[23], are also being developed. The development of these

tools in the last few years facilitated the interpretation of

RNA-Seq data.

In this study, we seek to develop a web application

with substantially enhanced functionality with (1) auto-

matic gene ID conversion with broad coverage, (2) com-

prehensive gene annotation and pathway database for

both plant and animals, (3) several methods for in-depth

EDA and pathway analysis, (4) access to web services

such as KEGG [21] and STRING-db [24] via application

programming interface (API), and (5) improved reprodu-

cibility by generating R scripts for stand-alone analysis.

We used iDEP to analyze two example datasets and gen-

erate all the figures and tables in this paper except Table 1

and Fig. 1. We first extensively analyzed a simple RNA-Seq

dataset involving small interfering RNA (siRNA)-mediated

Hoxa1 knockdown in human lung fibroblasts [3]. We iden-

tified the down-regulation of cell-cycle genes, in agreement

with previous studies. Our analyses also reveal the possible

roles of E2F1 and its target genes, including microRNAs, in

blocking G1/S transition, and the upregulation of genes

related to cytokines, lysosome, and neuronal parts. The sec-

ond dataset was derived from an experiment with a factor-

ial design to study the effect of ionizing radiation (IR) on

mouse B cells with and without functional p53 [25]. In

addition to correctly identifying p53 pathway and the en-

richment of p53 target genes, we also found the

p53-independent effects, including the regulation of ribo-

some biogenesis and non-coding RNA metabolism, and ac-

tivation of c-MYC. These examples show that users can

gain insights into both molecular pathways and gene regu-

latory mechanisms.

Results

We developed an easy-to-use web application for in-depth

analysis of gene expression data. iDEP (integrated Differ-

ential Expression and Pathway analysis) encompasses

many useful R and Bioconductor packages, vast annota-

tion databases, and related web services. The input is a

gene-level expression matrix obtained from RNA-seq,

DNA microarray, or other platforms. Main functionalities

include (1) pre-processing, (2) exploratory data analysis

(EDA), (3) differential expression, and (4) pathway analysis

and visualization.

Table 1 Comparison of applications for analyzing RNA-Seq

START App Degust ShinyNGS DEIVA VisRseq ASAP EXPath Tool IRIS iDEP

Heatmap O O O O O O

PCA/MDS O O O O O O O

Clustering of genes O O O O O

Volcano/MA Plot O O O O O O O

Single gene plot O O O O

Diff. gene expression O O O O O O O

Co-expression O O

Stand-alone R code O O O O

Pathway analysis KEGG KEGG human& mouse O O

Gene ID conversion O

API to KEGG, STRING-db O

Complex models O O

Note: “O” indicates the functionality is included in a tool.
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Leveraging many existing R packages (see Fig. 1) and

the power of the Shiny framework, we developed iDEP

to enable users to easily formulate new hypotheses from

transcriptomic datasets. We also batch downloaded a

massive amount of gene annotation information for 220

species (See Additional file 1: Table S1) from Ensembl

[26, 27] Ensembl Plants [28], and Ensembl Metazoa. In

addition, comprehensive pathway databases for human

(Table 2), mouse [29], and arabidopsis [30] were also

compiled from many sources to support in-depth path-

way analyses.

Our goal was to develop an intuitive, graphical, and

robust tool so that researchers without bioinformatics

experience can routinely and quickly translate expres-

sion data into novel hypotheses. We also wanted to

make an open system where users can download inter-

mediate results so that other tools can be used. Also,

users can upload custom pathway databases for unanno-

tated species. For experienced bioinformaticians, it can

serve as a tool for preliminary analysis as it circumcises

the need for many tedious tasks such as converting gene

IDs and downloading software packages and annota-

tions. These users can also download customized R

scripts and related data files so that the analysis can be

reproduced and extended.

Use case 1: A simple experiment on Hoxa1 knockdown

We first analyzed a simple dataset studying the effect of

Hoxa1 knockdown by siRNA in human lung fibroblasts

[3]. With 3 replicates for each of the two biological sam-

ples, this RNA-Seq dataset was used as example data for

the Cuffdiff2 paper [3]. Available as Additional file 2, the

read count data was previously used in a tutorial for

pathway analysis [31]. A flowchart for the analysis can

be found in Additional file 3: Figure S1.

Pre-processing and EDA

After uploading the read count data, iDEP correctly recog-

nized Homo sapiens as the likely species, based on the

number of matched genes IDs. After ID conversion and

the default filter (0.5 counts per million, or CPM, in at

least one sample), 13,819 genes left. A bar plot of total

read counts per library is generated (Fig. 2a), showing

some small variation in library sizes. We chose the regu-

larized log (rlog) transformation implemented in the

DESeq2 package, as it effectively reduces mean-dependent

variance (Additional file 3: Figure S2). Distribution of the

transformed data is shown in Fig. 2b-c. Variation among

replicates is small (Fig. 2d).

iDEP also enables users to examine the expression

level of one or more genes. Using “Hoxa” as a keyword,

we obtained Fig. 3a, which shows that Hoxa1 expression

level is reduced, but not abolished, in response to

siRNA-mediated knockdown of Hoxa1. Noticeably, ex-

pression of other family members, especially Hoxa2, 4,

and 5, also decrease. As these genes have similar mRNA

sequences, it is unclear whether this is caused by

off-target effects of the siRNA or ambiguous mapping of

RNA-Seq reads. Figure 3b, obtained by using “E2F” as a

keyword, shows the down-regulation of E2F1.

We rank genes by their standard deviation across all sam-

ples and use the top 1000 genes in hierarchical clustering.

The result in Fig. 4a suggests that Hoxa1 knockdown in lung

fibroblast cells induce a drastic change in the expression of

hundreds of genes. Variations among technical replicates are

minimal. These observations can also be confirmed by the

correlation matrix (Additional file 3: Figure S3) and k-means

clustering (Additional file 3: Figure S4).

PCA plot using the first and second principal compo-

nents is shown in Fig. 4b. There is a clear difference be-

tween the Hoxa1 knockdown and the control samples,

along the first principal component that explains 93% of

Fig. 1 iDEP workflow and functional modules
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Table 2 Gene set databases collected for enrichment analysis in human. The last column gives the version of the database,

secondary source, or the date of access

Type Subtype/Database name Ref. # Gene Sets Source & Version

Gene Ontology Biological Process (BP) [100] 15,796 Ensembl 92

Cellular Component (CC) 1916 Ensembl 92

Molecular Function (MF) 4605 Ensembl 92

KEGG KEGG [101] 327 Release 86.1

Curated Biocarta [102] 249 Whichgenes 1.5 [103]

EHMN [104] 55 GeneSetDB [89]

Panther [105] 168 1.0.4

HumanCyc [106] 240 Pathway Commons V9 [107]

INOH [108] 576 Pathway Commons V9

NetPath [109] 27 Pathway Commons V9

PID [110] 223 Pathway Commons V9

PSP [111] 327 Pathway Commons V9

Recon X [112] 2339 Pathway Commons V9

Reactome [113] 2010 V64

WikiPathways [114] 457 June 10, 2018

TF.Target CircuitsDB [115] 829 V2012

ENCODE [116] 181 V70.0

Marbach2016 [117] 628 V 1.0

RegNetwork [118] 1400 July 1, 2017

TFacts [119] 428 Feb. 2012

ITFP [120] 1926 tftargets May,2017

Neph2012 [121] 16,476 tftargets May,2017

TRED [122] 131 tftargets May,2017

TRRUST [123] 793 V2

miRNA.Targets CircuitsDB [115] 140 V. 2012

MicroCosm [124] 44 GeneSetDB

miRDB [125] 2588 V 5.0

miRTarBase [126] 2599 V 7.0

RegNetwork [118] 618 V. 2015

TargetScan [127] 219 V7.2

MSigDB.Computational Computational gene set [128] 858 MSigDB 6.1

MSigDB.Curated Literature [86] 3465 MSigDB 6.1

MSigDB.Hallmark hallmark [39] 50 MSigDB 6.1

MSigDB.Immune Immune system [129] 4872 MSigDB 6.1

MSigDB.Location Cytogenetic band [86] 326 MSigDB 6.1

MSigDB.Motif TF and miRNA Motifs [49] 836 MSigDB 6.1

MSigDB.Oncogenic Oncogenic signatures [86] 189 MSigDB 6.1

PPI BioGRID [130] 15,542 3.4.160

CORUM [131] 2178 Feb. 17, 2017

BIND [132] 3807 Pathway Commons V9

DIP [133] 2630 Pathway Commons V9

HPRD [134] 7141 Pathway Commons V9

IntAct [135] 11,991 Pathway Commons V9

Ge et al. BMC Bioinformatics          (2018) 19:534 Page 4 of 24



Table 2 Gene set databases collected for enrichment analysis in human. The last column gives the version of the database,

secondary source, or the date of access (Continued)

Type Subtype/Database name Ref. # Gene Sets Source & Version

Drug MATADOR [136] 266 GeneSetDB

SIDER [137] 473 GeneSetDB

STITCH [138] 4616 GeneSetDB

T3DB [139] 846 GeneSetDB

SMPDB [140] 699 Pathway Commons V9

CTD [141] 8758 Pathway Commons V9

Drugbank [142] 2563 Pathway Commons V9

Other CancerGenes [143] 23 GeneSetDB

MethCancerDB [144] 21 GeneSetDB

MethyCancer [145] 54 GeneSetDB

MPO [146] 3134 GeneSetDB

HPO [147] 6785 May, 2018

Total: 140,438
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the variance. Plot using multidimensional scaling (MDS),

and t-SNE [32] also show a similar distribution of the

samples (Additional file 3: Figure S5). We can choose to

conduct pathway analysis using PGSEA [33, 34] by treat-

ing the loadings of the principal components as expres-

sion values. As suggested by Additional file 3: Figure S6,

the first two components are related to cell cycle

regulation.

Differentially expressed genes (DEGs)

With the DESeq2 package, we identified 907 upregulated

and 1097 downregulated genes (see Additional file 1:

Table S3) using a threshold of false discovery rate (FDR)

< 0.1 and fold-change > 2. The volcano plot (Fig. 5a) and

the MA plot (Fig. 5b) show that Hoxa1 knockdown leads

to a massive transcriptomic response. Plotly-based inter-

active versions of these plots are also available, where

users can zoom in and mouse over to see individual

genes (Fig. 5c). A quick scan at the top genes ranked by

the absolute values of fold-change (FCs) tells us that

Hoxa1 knockdown induces cytokines (IL1B, IL24).

The up and down-regulated genes are then subjected

to enrichment analysis based on the hypergeometric dis-

tribution. Many different types of genes sets listed in
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Table 2 can be used to test various hypotheses. The GO

Biological Process terms enriched in DEGs are shown in

Table 3. Upregulated genes are related to regulation of cell

proliferation, locomotion, and response to endogenous stim-

uli. This is perhaps the cell’s response to injected siRNAs.

The downregulated genes are significantly enriched with cell

cycle-related genes (FDR < 2.6 × 10− 47). The effect of Hoxa1

knockdown on cell cycle was reported and experimentally

confirmed in the original study [3]. Cell cycle analysis re-

vealed that loss of Hoxa1 leads to a block in G1 phase [3].

As many GO terms are related or redundant (i.e., cell cycle

and cell cycle process), we provide two plots to summarize

such correlation [35]. We first measure the distance among

the terms by the percentage of overlapped genes. Then this

distance is used to construct a hierarchical clustering tree

(Fig. 6a) and a network of GO terms (Fig. 6b). Both plots

show that the enriched terms are distinct in the two gene

lists. The down-regulated genes are overwhelmingly in-

volved in cell cycle. The upregulated genes are related to 4

related themes: cell proliferation, signaling, response to or-

ganic substance, and cell migration, possibly in reaction to

the injected siRNAs.

Choosing GO cellular component, we find that Hoxa1

knockdown suppresses genes that code for the spindle,

cytoskeleton and chromosomal parts (Additional file 3:

Figure S7). As Hoxa1 knockdown blocks G1/S transition

[3], a smaller number of cells are in the S (synthesis)

phase, leading to the reduction of proteins related to the

spindle and chromosomal parts. Hoxa1 knockdown also

induces genes related to plasma membrane, neurons and

synapses (Additional file 3: Figure S7). This unexpected

result is consistent with Hoxa1’s role in neuronal differ-

entiation [36, 37]. Polymorphisms of this gene are asso-

ciated with cerebellar volume in humans [38]. Hoxa1

may have different functions in various organs across de-

velopmental stages.

Choosing KEGG pathway, we confirm the overrepre-

sentation of cell cycle-related genes in downregulated

genes (Additional file 3: Figure S8). For up-regulated

genes, we detect cytokine-cytokine receptor interaction

(CCRI) pathway (FDR < 1.3 × 10− 10). “MSigDB.Curated”

gene sets contain pathways from various databases as

well as published lists of DEGs from previous expression

studies [39]. As shown in Additional file 3: Figure S9,

the most significant are oligodendrocyte differentiation

and several cell-cycle related gene sets. As suggested by

a meta-analysis of published gene lists [40], cell-cycle re-

lated expression signature is frequently triggered by diverse

cellular perturbations [41]. We uncovered similarity of our

expression signature with previously published ones.

Using the STRINGdb package, iDEP can analyze the lists

of DEGs via the STRING API [24] for enrichment analysis

and the retrieval of PPI networks. The enrichment analysis

led to similar results (Additional file 1: Table S4) to those

obtained using the internal iDEP gene sets. In addition,

STRING detected that the Helix-loop-helix DNA-binding

domain is overrepresented in proteins coded by the 907 up-

regulated genes, while the Tubulin/FtsZ family, GTPase do-

main is enriched in the 1097 down-regulated genes

(Additional file 1: Table S5). Figure 7 is the network of PPIs

among the top 20 upregulated genes. The highly connected

network includes chemokine ligands 1 and 3 (CXCL1 and

CXCL3), as well as interleukin 24 (IL24), suggesting the im-

mune response caused by injected siRNA. A link to an

interactive, richly annotated version of this network on the

STRING website is also available.

iDEP can also reveal gene regulatory mechanisms.

Using the transcription factor (TF) target gene sets in

enrichment analyses, we can obtain Table 4, which sug-

gest that target genes of SP1 (FDR < 9.80 × 10− 23) and

E2F factors (FDR < 1.1 × 10− 16) are overrepresented in

down-regulated genes. E2F factors are regulators of cell

cycle [42]. E2F1 promotes G1/S transition [43] by regula-

tion many genes, including itself. SP1 binding sites were

identified in cell-cycle related genes such as Cyclin D1

(CCD1) [44]. SP1 is a G1 phase specific TF [45]. The

CBA
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interaction of E2F1 and SP1 proteins mediate cell cycle

regulation [46]. The upregulated genes are enriched with

target genes of NF-κB (FDR < 4.9 × 10− 9) and FOXO3

(FDR < 4.9 × 10− 9), known regulators of the immune re-

sponse [47, 48].

The Motif gene sets from MSigDB are derived from [49]

and contain sets of genes sharing TF binding motifs in gene

promoters and microRNA target motifs in 3′ untranslated

regions (UTRs). Using this gene set, we again detect the en-

richment of E2F motifs in promoters of downregulated

genes (Additional file 1: Table S16). We also detected over-

representation of a “GCACTTT”motif in 3’ UTRs of upreg-

ulated genes. This motif is targeted by several microRNAs,

namely miR-17-5P, miR-20a, miR-106a. Cloonan et al.

showed that miR-17-5P targets more than 20 genes involved

in the G1/S transition [30]. Trompeter et al. provided

evidence that miR-17, miR-20a, and miR-106b enhance the

activities of E2F factors to influence G1/S transition [50].

miR-106b resides in the intron of Mcm7 along the sense

direction. Mcm7 is an E2F1 target gene that is also down-

regulated by Hoxa1 knockdown (see Fig. 8a). Petrocca et al.

showed that E2F1 regulates miR-106b, which can conversely

control E2F1 expression [51]. Thus, it is possible that Hoxa1

knockdown reduces E2F1 expression (see Fig. 3b) and its

target genes, including Mcm7, which hosts miR-106b. We

can speculate that downregulated miR-106b, in turn, causes

the increases in the expression of its target genes. Leveraging

the comprehensive pathway databases, iDEP enables re-

searchers to develop new hypotheses that could be further

investigated.

For many species, predicted TF target genes are not

available. We downloaded 300 bp and 600 bp promoter

Table 3 Enriched GO terms in up and down-regulated genes

Direction Pathways nGenes adj.Pval

Down
Regulated

Cell cycle 259 4.50E-46

Cell cycle process 207 1.70E-42

Mitotic cell cycle 169 5.60E-38

Chromosome segregation 92 2.80E-35

Mitotic cell cycle process 145 2.00E-33

Sister chromatid segregation 72 5.20E-33

Cell division 118 5.20E-33

Nuclear chromosome segregation 80 2.20E-30

Nuclear division 86 5.60E-26

Organelle organization 350 1.20E-24

Mitotic nuclear division 65 3.50E-24

Organelle fission 88 5.80E-24

Cytoskeleton organization 159 1.70E-23

Cell cycle phase transition 98 2.60E-21

Mitotic sister chromatid segregation 45 4.00E-21

Up
Regulated

Cell surface receptor signaling pathway 258 3.40E-25

Regulation of cell proliferation 171 8.20E-23

Cell proliferation 195 7.40E-22

Regulation of signaling 265 3.80E-21

Response to organic substance 259 1.20E-20

Regulation of cell communication 260 1.20E-20

Locomotion 165 1.20E-19

Regulation of signal transduction 239 1.30E-19

System development 332 1.00E-18

Regulation of cellular component movement 100 3.70E-17

Regulation of response to stimulus 291 8.20E-17

Response to endogenous stimulus 143 1.20E-16

Response to chemical 319 1.70E-16

Cellular response to organic substance 211 1.80E-16

Cell migration 131 2.10E-16
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sequences from ENSEMBL and scanned them with a

large collection of TF binding motifs [52]. As shown in

Table 5, the promoters of DEGs are overrepresented

with many G-rich motifs bound by E2F and other factors

such as TCFL5 and SP2. We compared the best possible

scores for each TF and promoter pair and run t-tests to

compare these scores. Further study is needed to valid-

ate this approach.

For human (Table 2), mouse [29] and Arabidopsis

[53], we also include predicted target genes for many

miRNAs from multiple sources. Using these gene sets,

we detected significant enrichment (Table 6) of

miRNA-193b, miR-192, and miR-215 target genes

among the down-regulated genes. miR-193b was shown

to suppress cell proliferation and down-regulate CCND1

[54]. Proposed as biomarkers of several cancers,

miR-192 also inhibit proliferation and can cause cell

cycle arrest when overexpressed [55]. miR-215 shares

many target genes with miR-192 and are also downregu-

lated in cancer tissues [56]. These miRNAs may play a

BA

Fig. 6 Visualization of the relationship among enriched GO terms using (a) hierarchical clustering tree and (b) network

Fig. 7 Protein-protein interactions (PPI) among top 20 up-regulated genes. This is retrieved via API access to the STRING database. There is also

an enrichment of PPIs compared with background. An interactive, annotated version of this network is also available through a link to the

STRING website
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role in the regulation of cell cycle upon Hoxa1

knockdown.

Pathway analysis

Instead of using selected DEGs that are sensitive to arbi-

trary cutoffs, pathway analysis can use fold-change

values of all genes to identify coherently altered path-

ways. We used the GAGE (generally applicable gene set

enrichment) [57] as a method and KEGG as gene sets.

The results (Additional file 1: Table S6) is similar to

those from a previous analysis by Turner in an online

tutorial [31] and also agrees with our enrichment ana-

lysis based on DEGs. For each of the significant KEGG

pathways, we can view the fold-changes of related genes

on a pathway diagram using the Pathview Bioconductor

package [58]. Many cell cycle genes are marked as green in

Fig. 8, indicating reduced expression in Hoxa1-knockdown

samples. We also detected upregulation of genes related to

CCRI, arthritis, and lysosome. Many CCRI related genes

are up-regulated (Additional file 3: Figure S10). Not de-

tected using DEGs, lysosome-related genes are mostly up-

regulated (Additional file 3: Figure S11). Injected siRNAs

might be degraded in the lysosome.

By changing the gene sets database for pathway ana-

lysis, we can gain further insights. Using MSigDB.Motif

gene sets, we can verify the enrichment of E2F binding

motifs (Additional file 1: Table S7). For non-KEGG gene

sets, heatmaps are created to show the expression of

genes in significant gene sets. Figure 9a shows part of

such a plot, highlighting genes that share the

“SGCGSSAAA” motif bound by E2F1. Note that E2F1

gene itself is included in the figure, as it binds to its own

promoter and forms a positive feedback loop [43]. The

downloaded expression data indicate that E2F1 is down-

regulated by more than 3-fold in Hoxa1 knockdown

samples (see Fig. 3b). Upon Hoxa1 knockdown, down-

regulation of E2F1 and downstream genes, including

microRNAs, may be part of the transcription program

that blocks G1/S transition.

Users can use many combinations of methods and

gene sets to conduct pathway analysis. For example,

using PGSEA on KEGG pathways yielded Fig. 9a and b,

again confirming previous results on suppressed cell

cycle genes and induced lysosome and CCRI related

genes. Using the MSigDB.Motif gene sets, we can also

confirm the E2F1 binding motifs (Fig. 9). The most

highly activated gene sets are related to miR-17-5p,

miR-20a, miR106a,b and so on (Fig. 9c), which agrees

with enrichment analysis using just gene lists.

Some pathways can be attenuated by upregulating

some of its associated genes while downregulating

others. To detect such pathways, we can use the ab-

solute values of fold changes in pathway analysis. This

is achieved by checking the box labeled “Use absolute

values of fold changes for GSEA and GAGE.” Instead

of detecting up or down-regulated pathways, the re-

sults show which pathways are more regulated. As

shown in Additional file 1: Table S8, while the ex-

pression of ribosome related genes is less variable

upon Hoxa1 knockdown, genes related to CCRI are

highly regulated.

The expression of neighboring genes can be correlated

due to mechanisms such as super-enhancers [59], 3D chro-

matin structure [60], or genomic gain or loss in cancer. To

help users detect such correlation, we use ggplot2 [61] and

Plotly to interactively visualize fold-changes on all the chro-

mosomes (Fig. 10a). Based on regression analysis, the

PREDA package [62] can detect statistically significant

chromosomal regions with coherent expression change

among neighboring genes. Figure 10b shows many such

Table 4 Enriched transcription factor (TF) binding motifs

Direction Pathways nGenes adj.Pval

Down
Regulated

Tftargets:TF Target SP1 475 9.80E-23

Tftargets:TF Target E2F-4 65 9.80E-23

TFactS E2F1 43 1.10E-16

TRRUST:TF Target E2F1 37 9.70E-15

RegNetwork:TF Target E2F4 127 1.20E-14

RegNetwork:TF Target E2F1 208 1.00E-13

TFactS E2F4 20 1.30E-12

RegNetwork:TF Target NFYA 154 4.60E-09

TFactS E2F3 15 1.80E-08

Tftargets:TF Target TEAD1 33 1.90E-08

Tftargets:TF Target AP1 74 2.30E-08

TFactS E2F2 14 2.60E-08

Tftargets:TF Target TGIF1 34 3.30E-08

Tftargets:TF Target ZNF219 60 4.50E-08

Tftargets:TF Target HF1H3B 101 5.00E-08

Up
Regulated

Tftargets:TF Target NFKB 54 4.90E-09

TFactS FOXO3 21 4.90E-09

Tftargets:TF Target NFKB1 34 7.30E-09

TRRUST:TF Target NFKB1 42 7.30E-09

TFactS CTNNB1 40 4.40E-08

Tftargets:TF Target FOXJ1 22 2.00E-07

Tftargets:TF Target POU3F2 35 4.00E-07

TRRUST:TF Target RELA 38 4.20E-07

Tftargets:TF Target FOXO3 28 4.80E-07

TRRUST:TF Target SP1 50 4.80E-07

TRRUST:TF Target JUN 25 5.20E-07

TRRUST:TF Target EGR1 19 6.10E-07

Tftargets:TF Target SP1 39 1.20E-06

Tftargets:TF Target FOXJ3 25 1.20E-06

Tftargets:TF Target FOXL1 24 1.20E-06
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regions in response to Hoxa1 knockdown. Detailed infor-

mation obtained from downloaded files (Additional file 1:

Table S9) suggests, for example, a 4.3 Mbps region on

Chr.1q31 contains 6 upregulated genes (PRG4, TPR,

C1orf27, PTGS2, PLA2G4A, and BRINP3).

To further validate our parameterization of PREDA,

we analyzed DNA microarray data (Additional file 4) of

thymus tissues from patients with Down syndrome [63].

We detected large, upregulated regions on chromosome

21 (Additional file 3: Figure S12), as expected. Even

though PREDA analysis is slow and has low-resolution

due to the use of gene-level expression score, it might be

useful in cancer studies where localized expression

change on the chromosome can happen.

To improve reproducibility, iDEP generates custom R

code and R Markdown code based on user data and

choices of parameters (Additional files 5, 6 and 7). Users

with some R coding experience should be able to re-run

most analyses by downloading the related annotation and

gene sets used by iDEP. An example is shown here [64].

Use case 2: p53’s role in response to ionizing radiation

Tonelli et al. [25] used RNA-Seq to study the effect of

whole-body ionizing radiation (IR) on the mouse with or

without p53. B cells and non-B cells were isolated from

mouse spleen after treatment. We analyzed the B cell data

involving two genotypes (p53 wildtype and p53 null) with

mock or IR treatment, a typical 2 × 2 factorial design. The

read count and experimental design files are available as

Additional files 8 and 9. A converted, filtered version of

this dataset is incorporated into iDEP as a demo data.

With this dataset, we demonstrate how users can eas-

ily generate hypothesis on molecular pathways and gene

regulatory mechanisms through three steps: (1) enrich-

ment analysis of k-means clusters, (2) enrichment

Fig. 8 Expression profiles of cell-cycle related genes visualized on an KEGG pathway diagram using the Pathview package. Red and green indicate

genes induced or suppressed by Hoxa1 knockdown, respectively
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analysis of the lists of DEGs, and (3) pathway analysis

using fold-changes values of all genes.

Pre-process and EDA of p53 dataset

We noticed reduced total reads for wildtype samples

treated with IR (Fig. 11a). While this may be caused by

biology, but biased sequencing depth presents a confound-

ing factor, that has not been discussed widely. To quantify

such biases, iDEP routinely performs ANOVA analysis of

total read counts across sample groups. For this example,

uneven read counts are detected (P = 0.047) and a warn-

ing is produced.

EDA shows that IR treatment led to the changes in

thousands of genes. Based on the distribution of vari-

ances (Fig. 11b), we choose the top 2500 genes for clus-

tering analysis. Hierarchical clustering (Additional file 3:

Figure S13) shows the substantial differences between

treated and untreated samples. It also shows the patterns

of different groups of genes and the variations among

some replicates of treated wild-type cells (wt_IR).

We then used k-means clustering to divide the top

2500 genes into groups. Based on the within-group sum

of squares plot (Additional file 3: Figure S14) as a refer-

ence, we chose a slightly larger k = 9. Figure 12 shows

the 9 gene clusters and the enriched GO terms. Details

are available in Additional file 1: Tables S10 and S11.

Table 5 TF motifs enriched in gene promoters (300 bp) of up- or

down-regulated genes

List Motif TF TF family FDR

Down
Regulated

GGCGGGAA E2F4 E2F 3.40E-14

GGCCGGAG MBD2 MBD 7.70E-14

CACGTG TCFL5 bHLH 2.30E-11

GGGGGCGGGGC SP2 C2H2 ZF 3.40E-11

GGGCGGGAA E2F6 E2F 8.60E-10

GTGGGCGTGGC SP6 C2H2 ZF 2.10E-09

TGCGGG ZBTB1 C2H2 ZF 2.20E-08

GGGCGTG KLF7 C2H2 ZF 2.90E-08

ATGCGTGGGCGG EGR4 C2H2 ZF 1.50E-07

CACAGCGGGGGGTC ZIC4 C2H2 ZF 1.80E-07

Up
Regulated

GGGGGCGGGGC SP2 C2H2 ZF 2.20E-06

GGGGGGGGGCC PATZ1 C2H2 ZF 2.40E-06

TGCGGG ZBTB1 C2H2 ZF 2.60E-06

GGGGGGT ZIC5 C2H2 ZF 1.40E-04

GGCCGGAG MBD2 MBD 1.50E-04

CACGTG TCFL5 bHLH 1.50E-04

CACAGCGGGGGGTC ZIC4 C2H2 ZF 1.10E-03

GGGGCCCAAGGGGG PLAG1 C2H2 ZF 1.10E-03

GTGGGCGTGG SP8 C2H2 ZF 1.40E-03

GTGGGCGTGGC SP6 C2H2 ZF 2.30E-03

Table 6 Enriched miRNA target gene sets

Direction adj.Pval nGenes Pathways

Down
Regulated

3.40E-45 162 MiRTarBase:miRNA Target hsa-miR-193b-3p

1.50E-41 170 MiRTarBase:miRNA Target hsa-miR-192-5p

4.20E-41 145 MiRTarBase:miRNA Target hsa-miR-215-5p

6.20E-18 162 MiRTarBase:miRNA Target hsa-miR-124-3p

3.30E-08 82 MiRTarBase:miRNA Target hsa-miR-34a-5p

9.40E-07 66 MiRTarBase:miRNA Target hsa-miR-7-5p

9.40E-07 58 MiRTarBase:miRNA Target hsa-miR-375

3.00E-06 85 MiRTarBase:miRNA Target hsa-miR-24-3p

4.60E-06 89 MiRTarBase:miRNA Target hsa-miR-1-3p

6.80E-05 84 MiRTarBase:miRNA Target hsa-miR-155-5p

Up
Regulated

6.00E-16 206 MiRTarBase:miRNA Target hsa-miR-335-5p

2.30E-12 99 RegNetwork:miRNA Target hsa-miR-144

1.50E-10 81 RegNetwork:miRNA Target hsa-miR-29c

3.30E-10 81 RegNetwork:miRNA Target hsa-miR-29b

3.30E-10 100 RegNetwork:miRNA Target hsa-miR-93

3.90E-09 72 RegNetwork:miRNA Target hsa-miR-29a

6.20E-09 94 RegNetwork:miRNA Target hsa-miR-30e

6.20E-09 101 RegNetwork:miRNA Target hsa-miR-340

6.20E-09 67 RegNetwork:miRNA Target hsa-miR-519d

5.70E-08 46 RegNetwork:miRNA Target hsa-miR-17-5p
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Genes in clusters B and I show similar responses to

IR across genotypes. Strongly enriched in genes re-

lated to the immune system (FDR < 3.65 × 10− 18),

cluster B are downregulated by IR in both cell types.

The immune-suppressive effects of radiation [65] are

clearly p53-independent. Induced by IR in both wild-

type and Trp53−/− cells, cluster I genes are enriched

in ribosome biogenesis but with much lower level of

significance (FDR < 2.25 × 10− 5).

On the other hand, genes in clusters A, C, and D are

specific to the wild-type cells. Cluster A contains 13 genes

that code for histone proteins and are involved in nucleo-

some assembly (FDR < 1.66 × 10− 11). Genes in Clusters C

and D are induced by IR only in B cells with p53, but the

former is more strongly upregulated. As expected, cluster

C is related to the p53 pathway (FDR < 1.38 × 10− 10) and

apoptosis (FDR < 3.59 × 10− 6). It is enriched with 15 p53

target genes like Mdm2 (FDR < 3.53 × 10− 18). Cluster D

genes are related to the regulation of cell proliferation and

cell cycle arrest, representing further downstream of the

transcriptional cascade of p53 signaling.

Genes in cluster H are more highly upregulated in

Trp53−/− B cells than wildtype cells. It is overrepresented

with non-coding RNA (ncRNA) processing (FDR < 3.25 ×

10− 36), ribosome biogenesis (FDR < 5.53 × 10− 43), and pro-

tein folding (FDR < 2.23 × 10− 16). Many of these genes code

for proteins in the nucleus and mitochondrion. Signifi-

cant enrichment of 7 c-Myc target genes is observed

(FDR < 5.09 × 10− 7). Many of these enrichment results

will be further validated in enrichment analysis of

DEGs and pathway analysis. Enrichment analysis of the

k-Means clusters provides an opportunity to gain

insight into the molecular pathways underlying differ-

ent patterns of gene expression.

Identifying DEGs in the p53 dataset

To identify genes induced by IR in both cell types, users

can use pair-wise comparisons among the 4 sample

groups. Alternatively, we can construct linear models

through the GUI. Here we use the following model:

Expression ~ p53 + Treatment + p53:Treatment,

where the last term represents the interaction between

genotype and treatment, capturing the additional effects

of p53 in IR response. It is important to set the reference

levels for factors in a model. Here we set the null

(Trp53−/−) as a reference level for the factor “p53” and

mock for the factor “Treatment”. More details about

statistical models is available [66].

With FDR < 0.01 and fold-change > 2 as cutoffs, we

used DESeq2 to identify DEGs (Fig. 13a and b). Without

treatment, the two cell types have similar transcription

profiles, with few DEGs. But even in Trp53−/− cells, IR

caused the upregulation of 1570 genes, 469 of which is

also upregulated in p53 wildtype B cells (see Venn dia-

gram in Fig. 13c). PPI networks for the top up- and

down-regulated genes in wildtype cells are shown in

Additional file 3: Figures S15 and S16, respectively.

To further understand the molecular pathways, we

perform enrichment analysis of the 10 gene lists

(Additional file 1: Table S12) associated with 5 compari-

sons. We focus on two comparisons (1) “IR-mock”

representing the baseline response of IR in mutant cells

without p53, and (2) “I:p53_wt-Treatment_IR”, the inter-

action term capturing the additional effect of p53 com-

pared to the baseline response.

For the first comparison, Additional file 3: Figure S17

shows IR induced DEGs in mutant cells. The 1570

A B C

, , ,

Fig. 9 Pathway analysis results using different options. a expression patterns of genes with E2F1 binding motifs. E2F1 gene itself is also downregulated in

Hoxa1 knockdown. So is the Mcm7 gene, whose intron host miR-106b-25 clusters. b Results from running PGSEA on KEGG gene sets. c PGSEA applied on

MSigDB.Motif gene sets
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upregulated genes are related to non-coding RNA (ncRNA)

metabolic process (FDR < 1.33 × 10− 79), ribosome biogenesis

(FDR < 2.54 × 10− 67), and translation (FDR < 3.03 × 10− 32).

This enrichment profile is similar to cluster H derived from

the k-Means clustering, as the two lists capture the same

group of genes. The upregulated genes are surprisingly co-

herent in function. For example, 219 (14%) can be found in

the nucleus, 286 (18%) is related to the mitochondrion, and,

most significantly, 407 (26%) is RNA-binding (FDR < 3.54 ×

10− 138). The 1570 upregulated genes contain 7 MYC target

genes (FDR < 4.22 × 10− 7), consistent with the fact that

MYC is a direct regulator of ribosome biogenesis [67]. This

agrees with reports of the involvement of MYC in radiation

treatment [68, 69], suggesting MYC may trigger proliferation

pathways upon genotoxic stress, in the absence of p53.

Genes downregulated by IR in Trp53−/− B cells are related

to immune system (FDR< 4.22 × 10− 8), GTPase activity

(FDR< 3.75 × 10− 6), and actin cytoskeleton (FDR< 2.06 ×

10− 5). As shown in Additional file 1: Table S13, we can also

detect the enrichment of the target genes of miR-124

(FDR < 4.56 × 10− 12), an important modulator of immunity

[70]. Others associated miRNAs, including miR-6931-5p,

Mir-4321, and miR-576-5p, may also be involved.

For the second comparison, the expression profiles of

DEGs associated with the interaction term is shown in

Fig. 14. This is the p53 mediated IR response, compared

to the baseline response without p53. The 676 genes

that are upregulated in wild-type B cells following IR,

but not in Trp53−/− B cells. As expected, these genes

are enriched in p53-mediated response to DNA damage

A

B

Fig. 10 Visualizing expression profiles on chromosomes. a Zoom-in on Chr. 1 using the dynamic graphics, showing the upregulation of RUX3

gene. b Statistically significant genomic regions identified by PREDA
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(FDR < 1.43 × 10− 6), and apoptosis (FDR < 9.72 × 10− 6).

As shown in Additional file 1: Table S13, these genes

are overrepresented with 25 target genes of p53

(FDR < 1.34 × 10− 13) and 76 target genes of miR-92a

(FDR < 2.79 × 10− 11). Part of the miR-17/92 cluster,

miR-92a is related to tumorigenesis and is regulated

by p53 [71, 72]. Another miRNA with overrepresented

target genes is miR-504 (FDR < 3.25 × 10− 8), which has

been shown to binds to 3’ UTR of Trp53 and negatively

regulate its expression [73]. Located in the introns of the

BA

Fig. 11 a Total read counts are smaller in the WT samples treated with IR. b Distribution of standard deviations for all genes

Fig. 12 K-means clustering and enrichment analysis of the ionization dataset
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fibroblast growth factor 13 (FGF13) gene, miR-504 is tran-

scriptionally suppressed by p53, forming a negative feed-

back loop [74]. Following radiation, the expression of both

miR-92a and miR-504 in wild-type B cells may be reduced,

leading to the upregulation of their target genes. Further

study is needed to verify this hypothesis.

As shown in Fig. 14, the 584 genes downregulated ac-

cording to the interaction term are those that are in-

duced in the Trp53−/− B cells, but not in wild-type B

cells. These genes are overrepresented with ncRNA pro-

cessing, ribosome biogenesis, cell cycle, and RNA trans-

port (Additional file 1: Table S14). Most (411) of the 584

genes are included in the genes upregulated by IR in

Trp53−/− B cells, as suggested by the Venn diagram in

Additional file 3: Figure S18. MYC target genes are also

downregulated by p53 upon IR. In wildtype B cells, p53

suppresses the MYC oncogenic pathway compared to

Trp53−/− B cells. The most significant shared TF binding

motif is E2F1 (FDR < 7.73 × 10− 11). This agrees with the

role of p53 in cell cycle arrest through p21-mediated

control of E2F factors [75].

Pathway analysis of p53 data

Many of the above observations can be confirmed by

using pathway analysis based on the fold-change values

of all genes. The results of GSEA on the interaction term

can be found in Additional file 1: Table S15. The PGSEA

package offers a convenient way to visualize the activities of

pathways across all samples. Additional file 3: Figure S19

clearly shows that p53 signaling pathway, apoptosis, and

positive regulation of cell cycle arrest are uniquely activated

by IR in wild-type B cells. This is again confirmed by TF

target genes (Fig. 15). In addition, the p53-independent up-

regulation of MYC target genes can also be observed in

Fig. 15. Several ETS transcription factors, including SFPI1,

SPI1, and ETS1, are suppressed by IR in both cell types.

These factors may underlie the suppression of immune

response as suggested [76]. Applying PGSEA on miRNA

target genes highlights miRNA-30a (Additional file 3:

Figure S20), whose target genes are specifically activated by

IR in wild-type B cells. miRNA-30a was shown to be in-

volved in response to IR [77] and mutually regulate p53

[78]. Thus, the complex p53 signaling pathways are un-

veiled with remarkable accuracy.

The upregulated p53 target genes can be seen in the

KEGG pathway diagram (Additional file 3: Figure S21).

This pathway map shows multifaceted roles of p53 in

the regulation of apoptosis, cell cycle, DNA damage

repair, and growth arrest. Many of these functions were

re-discovered in our analyses above. This shows the

A C

B

Fig. 13 Statistics of DEGs identified by DESeq2. a and b shows the numbers of differentially expressed genes for each comparison. c Venn

Diagram shows the overlap between IR induced genes in WT and P53 null samples
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power of comprehensive pathway databases coupled

with broad analytic functionalities accessible via an in-

tuitive user interface. Without iDEP, it can take days or

weeks to write code and collect data to conduct all the

analyses above. With iDEP, biologists can complete such

analyses in as little as 20 min.

Discussions

Taking advantage of the Shiny platform, we were able to

pack many useful functionalities into iDEP, including

high-quality graphics based on ggplot2 and interactive plots

using Plotly. Compared with traditional web applications,

Shiny has its drawbacks and limitations. The interface is not

as flexible as those developed using JavaScript. Nevertheless,

we believe an integrated web application like iDEP is a valu-

able tool to both bench scientists and bioinformaticians.

As an example, we extensively analyzed an RNA-Seq data-

set involving Hoxa1 knockdown by siRNA in lung fibro-

blasts, and identified the down-regulation of cell-cycle genes,

in agreement with previous analyses and experimental con-

firmation. Our analyses also show E2F and SP1 binding mo-

tifs are enriched in the promoters of downregulated genes,

mediating the cell cycle arrest. Furthermore, we also find evi-

dence that microRNAs (miR-17-5P, miR-20a, miR-106a,

miR-192, miRNA-193b, and miR-215) might work with E2F

factors to block the G1/S transition in response to reduced

Hoxa1 expression. Interestingly, miR-106a is located in the

intron of Mcm7, an E2F1 target gene. DEGs are also

enriched with genes related to neuron parts, synapse, as well

as neurodegenerative diseases. This is consistent with reports

of Hoxa1’s role in neuron differentiation [36–38]. Hoxa1

knockdown induces expression of genes associated with the

cytokine-cytokine interaction, lysosome, and cell migration,

probably in response to the injected siRNAs. These genes are

overrepresented with target genes of NF-κB, known to be in-

volved in immune response. By combining both annotation

dataset and analytic functionality, iDEP help biologists to

quickly analyze their data to form new hypotheses (Fig. 16a).

In the second example, our analysis shows that in B cell

without p53, radiation treatment upregulates MYC onco-

genic pathway, triggering downstream genes with highly

coherent functions such as cell proliferation, ribosome bio-

genesis, and ncRNA metabolism. Enriched with target genes

of miR-124 and ETS domain transcription factors, genes

downregulated by IR in p53 null B cells are associated with

immune response, GTPase activity and actin cytoskeleton.

In wildtype B cells, a p53-dependent transcriptional re-

sponse to IR is evidently related to p53-mediated apoptosis

Fig. 14 Additional effect of p53 in IR response. a Expression patterns of selected DEGs. b Upregulated genes are enriched with genes related to

p53 mediated response to DNA damage, especially apoptosis, and negative regulation of cell cycle. These genes are only induced by IR in cells

with wildtype p53. One the other hand, p53 caused the relative downregulation of genes related to ribosome biogenesis, tRNA and rRNA

processing, DNA replication, and protein folding. These genes are only upregulated by IR in Trp53−/−
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and DNA repair, as expected. The target genes of MYC and

E2F1 are suppressed by p53, leading to growth and cell cycle

arrest (Fig. 16b). iDEP helps unveil the multifaceted func-

tions of p53, and also highlight the potential involvement of

several miRNAs (miR-92a, miR-504, and miR-30a).

Users should be cautious when interpreting results

from pathway analysis, which can be obtained through

the many combinations of methods and gene set data-

bases. The biomedical literature is large and heteroge-

neous [79], making it easy to rationalize and make a

story out of any gene. True pathways, like the effect of

Hoxa1 knockdown on cell cycle, should be robustly

identified across different methods and databases. Also,

as demonstrated in the two examples, for each enrich-

ment or pathway analysis, we tried to focus on the most

significant gene sets.

Conclusions

By integrating many Bioconductor packages with com-

prehensive annotation databases, iDEP enables users to

conduct in-depth bioinformatics analysis of transcrip-

tomic data through a GUI. The two use cases demon-

strated that it can help pinpoint molecular pathways

Fig. 15 Differentially regulated TF target gene sets across sample types, identified by PGSEA

A

B

Fig. 16 Bioinformatics analysis using iDEP generates many hypotheses

regarding the molecular pathways underlying (a) Hoxa1 knockdown,

and (b) Ionizing radiation
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from large genomic datasets, thus eliminating some bar-

riers for modern biologists.

Besides RNA-Seq and DNA microarray data, users can

also use iDEP to analyze fold-change and FDR values calcu-

lated by other methods such as cuffdiff [80]. For unanno-

tated genomes, iDEP can be used for EDA and differential

expression analysis. For single-cell RNA-Seq data [81], only

smaller, pre-processed datasets with hundreds of cells can

be analyzed, as iDEP is mostly designed to handle transcrip-

tomic data derived from bulk tissues.

In addition to updating the annotation database from

Ensembl every year, we plan to continue to compile path-

way databases for model organisms, similar to MSigDB

and GSKB. For unsupported species, we will consider

ways to incorporate user-submitted gene annotation.

Based on user request and feedback, we will also add more

functions by including additional Bioconductor packages.

Methods
Figure 1 outlines the iDEP workflow. Expression matrix

is first filtered, transformed and converted to Ensemble

gene IDs, which are used internally to identify genes.

The pre-processed data is then used for EDA, with

methods such as K-means clustering, hierarchical clus-

tering, principal component analysis (PCA), and t-SNE

[32]. Gene clusters identified by K-means are analyzed

by enrichment analysis based on a large gene annotation

and pathway database. The identification of DEGs is

done with either the limma [82] or DESeq2 [10] pack-

ages. This is also followed by enrichment analysis on the

DEGs. The fold-change values are then used in pathway

analysis using several methods.

To enable gene ID conversion, we downloaded all

available gene ID mappings for 220 species from

Ensembl [26, 27] (Additional file 1: Table S1), including

98 from Ensembl (vertebrates, release 91), 53 from

Ensembl Plants (release 37) [28], and 69 from Ensembl

Metazoa (release 37). The final mapping table for the

current iDEP v0.72 release consists of 135,832,098 rows,

mapping various gene IDs (Additional file 1: Table S2)

into Ensembl. For example, 67 types of human gene IDs

can be converted to Ensembl gene IDs. Besides common

ID like gene symbol, Entrez, Refseq, UCSC, UniGene,

and Interpro IDs, the 67 kinds of human gene IDs also

include probe IDs for popular DNA microarray plat-

forms, making it possible to re-analyze thousands of

microarray datasets available at public repositories.

When multiple gene IDs are mapped to the same

ENSEMBL gene, only the one with largest standard devi-

ation is kept. Gene IDs not recognized by iDEP will be

kept in the data using original gene IDs. Users can also

avoid gene ID conversion by checking the “Do not con-

vert gene IDs to Ensembl” checkbox in the “Pre-Process”

page. This is useful when the user’s data is already

Ensembl gene IDs, or the user just wants to conduct

EDA and identify differentially expressed genes (DEGs).

In the pre-processing stage, gene IDs are first com-

pared to all gene IDs in the database for 220 organisms.

This enables automatic ID conversion and species iden-

tification. Genes expressed at very low levels are re-

moved and data are transformed as needed using one of

several methods. iDEP enforces log-transformation when

a highly skewed distribution is detected. This type of

mechanisms can help avoid issues in downstream ana-

lyses. The pre-processing stage also generates diagnostic

and summary plots to guide users to make their choices.

EDA enables the users to explore variations and pat-

terns in the dataset as a whole [83]. The main methods

include hierarchical clustering with heatmap, k-means

clustering, and PCA. Enrichment analysis of genes de-

rived from k-means clustering is conducted to gain in-

sights into the functions of co-expressed genes. Initial

attempts of pathway analysis are carried out using the

PCA loadings on each gene. This can tell us the bio-

logical processes underlying each direction of expression

change defined by the principal components.

Differential expression analysis relies on two Bioconduc-

tor packages, limma [82] and DESeq2 [10]. These pack-

ages can meet the needs for most studies, including those

involving multiple biological samples and factorial design.

See [84] for detailed review of other methods and consid-

eration of sample size and variance. Normalized expres-

sion data is analyzed using limma. Read counts data can

be analyzed using three methods, namely limma-trend

[14], limma-voom [14, 85], and DESeq2. Other methods

such as edgeR [13] may be incorporated in the future.

For simple study designs, iDEP runs differential gene

expression analysis on all pairs of sample groups, which

are defined by parsing sample names. For complex stud-

ies, users can upload a file with experiment design infor-

mation and then build statistical models that can involve

up to 6 factors. This also enables users to control for

batch effects or dealing with paired samples.

Fold-change values for all genes returned by limma or

DESeq2 are used in pathway analysis using GSEA [86],

PAGE [33, 34], GAGE [57] or ReactomePA [87]. Taking

advantage of centralized annotation databases for 98

species at Ensembl (release 92), 53 in Ensembl Plants

(release 40), and 69 in Ensembl Metazoa (release 40), we

downloaded not only GO functional categorizations, but

also promoter sequences for defining transcription factor

(TF) binding motifs for most species. Metabolic path-

ways were downloaded directly from KEGG [21] for 131

species (Additional file 1: Table S1). Also, we incorpo-

rated Pathview package [58] to show gene expression on

KEGG pathway diagrams downloaded via API. In

addition, we also included many species-specific pathway

knowledgebases, such as Reactome [87, 88], GeneSetDB
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[89] and MSigDB [39] for human, GSKB for mouse [29],

and araPath for Arabidopsis [53]. These databases con-

tain diverse types of gene sets, ranging from TF and

microRNA target genes, protein-protein interactions, to

manually curated lists of published DEGs. For the hu-

man genome, we collected 140, 438 gene sets (Table 2).

Such large, diverse databases enable in-depth analysis of

expression data from different perspectives. Table 2 con-

tains databases that we deemed useful. For human path-

ways, many other databases and tools exists [90–92].

The PGSEA package [33] implements the Parametric

Analysis of Gene Set Enrichment (PAGE) algorithm [34]

to display the activities of pathways in individual samples

in terms of Z scores, which characterize how much the

mean of the fold-changes for genes in a certain pathway

deviates from the mean observed in all the genes. We

modified the PGSEA code by adding an analysis of vari-

ance (ANOVA) on the Z scores across sample groups.

Also, after cutoff with FDR, pathways are ranked by the

standard deviation. This modification yields meaningful,

intuitive display of differentially regulated pathways

across sample groups.

PCA enables us to project samples into two-dimensional

space. We also treated the PCA loadings onto each of the

genes as expression data to run pathway analysis with the

PGSEA package. For each pathway, this runs the PAGE

algorithm which performs one-sample t-test on each gene

set.The adjusted P-values are used to rank the pathways for

each of the first 5 principal components. The pathways are

labeled with FDR first, followed by the principal components

(PC1, PC2 and so on). Only 5 pathways for each principal

component are shown, but duplicated ones are skipped.

iDEP also enables users to retrieve protein-protein inter-

action (PPI) networks among top DEGs via an API access

to STRING [24]. These networks can be rendered both as

static images and as richly annotated, interactive graphs

on the STRING website. The API access also provides en-

richment analysis (GO, KEGG, and protein domains) for

115 archaeal, 1678 bacterial, and 238 eukaryotic species,

thus greatly expanding the species coverage of iDEP.

Based on their chromosomal location obtained from

Ensembl, we visualize fold-changes of genes on all the chro-

mosomes as an interactive graph based on Plotly. iDEP can

also use the PREDA package [62] to detect chromosomal

regions overrepresented with up- or down-regulated genes.

This is useful for studies such as cancer that might involve

chromosomal deletion or amplification.

For larger datasets, users can use bi-clustering algorithms

to identify genes with correlated expression among a subset

of samples, using the 8 methods implemented in 3 Biocon-

ductor packages biclust [93], QUBIC [94], and runibic [95].

Gene co-expression networks can also be constructed with

the WGCNA package [96]. Enrichment analysis is routinely

conducted on gene clusters derived from these methods.

To identify enriched TF binding motifs, transcript an-

notation and promoter sequences are retrieved from

Ensembl. For genes with multiple transcripts, the tran-

scription start site (TSS) with multiple transcripts is

used. If multiple TSS locations have the same number of

transcripts, then the most upstream TSS is used. Pro-

moters are pre-scanned using TF binding motifs in

CIS-BP [52]. Instead of defining a binary outcome of

binding or not binding, which depends on arbitrary cut-

offs, we recorded the best score for each of the TFs in

every promoter sequence. Then student’s t-test is used

to compare the scores observed in a group of genes

against the rest of genes. The P-values are corrected for

multiple testing using false discovery rate (FDR).

To enhance reproducibility in research, we will make

older versions of iDEP software and database for each

significant upgrade. iDEP also produces an R and R

Markdown file which captures users’ parameterization

during the analysis. These files could be downloaded,

alongside related database files, to reproduce their

analysis.

The Shiny package by RStudio provides a powerful

web framework for developing applications using R. We

used docker containers to configure and manage the

Shiny server. Containerization also enables us to easily

deploy the service and scale up to take advantage of

multiple cores. Load balanced with Nginx, our web ser-

ver can handle hundreds of concurrent users by distrib-

uting jobs to dozens of R processes. The source code for

iDEP and our server configuration files are available at

our GitHub repository [97]. Detailed documentation of

iDEP, including video tutorial and a full list of supported

species, is available at [98].

Additional files

Additional file 1: Tables S1-S16. Table S1. contains list of 220 species

covered by current version of iDEP. Table S2. include the 2196 types of

gene IDs that can be recognized. Tables S3-S16. are results from the

analyses of two example datasets. (XLSX 1970 kb)

Additional file 2: Read count file for Hoxd1 knockdown example. This file is

derived from short read archive (SRA) SRP012607 using Sailfish. (CSV 718 kb)

Additional file 3: Figures S1-S21. Results from the two example

datasets. (PDF 2973 kb)

Additional file 4: DNA microarray data of thymic tissue of down

syndrome infants. Data is from GSE69210 from NCBI. (CSV 4745 kb)

Additional file 5: An example of customized R code generated by iDEP.

This code is generated for the analysis of the Hoxa1 dataset. (R 11 kb)

Additional file 6: An example of R Markdown file generated by iDEP.

This code is generated for the analysis of the Hoxa1 dataset. (RMD 15 kb)

Additional file 7: Core R functions in iDEP. This code is generated for

the analysis of the Hoxa1 dataset. (R 172 kb)

Additional file 8: Read count file for the mouse ionization/p53 dataset.

This file was used in our analysis. (CSV 1513 kb)

Additional file 9: Experiment design file for the mouse ionization/p53

dataset. This file was used in our analysis. (CSV 226 bytes)
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