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ABSTRACT

We examine a model of lumpy investment wherein establishments face persistent shocks
to common and plant-specific productivity, and nonconvex adjustment costs lead them to
pursue generalized (S,s) investment rules. We allow persistent heterogeneity in both capi-
tal and total factor productivity alongside low-level investments exempt from adjustment
costs to develop the first model consistent with available evidence on establishment-level
investment rates. Reassessing the implications of lumpy investment for aggregate dynamics
in this setting, we find that they remain substantial when factor supply considerations are
ignored, but are quantitatively irrelevant in general equilibrium.

The substantial implications of general equilibrium extend beyond the dynamics of
aggregate series. While the presence of idiosyncratic shocks makes the time-averaged dis-
tribution of plant-level investment rates largely invariant to market-clearing movements
in real wages and interest rates, we show that the dynamics of plants’ investments dif-
fer sharply in their presence. Thus, model-based estimations of capital adjustment costs
involving panel data may be quite sensitive to the assumption about equilibrium. Our
analysis also offers new insights about how nonconvex adjustment costs influence invest-
ment at the plant. When establishments face large and weakly persistent idiosyncratic
productivity shocks consistent with existing estimates, we find that nonconvex costs do
not cause lumpy investments, but act to eliminate them.
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1 Introduction

In recent years, the mechanics of changes in the distribution of capital across estab-

lishments have been emphasized in studies of aggregate investment. An influential body

of research suggests that there are important nonlinearities in aggregate investment origi-

nating from the establishment level. In particular, nonconvex costs of capital adjustment

lead establishments to adjust capital infrequently in the form of lumpy investments. As

explained by Caballero and Engel (1999), a large aggregate shock in such a setting may

lead to a substantial increase in the number of establishments undertaking capital adjust-

ment. This, in turn, implies a time-varying elasticity of aggregate investment demand with

respect to shocks, and it has been argued that such nonlinearities help explain the data.

The substantial heterogeneity that characterizes (S, s) models of capital adjustment

has largely dissuaded researchers from undertaking general equilibrium analysis.1 One ex-

ception is the stochastic dynamic general equilibrium model of Khan and Thomas (2003),

where nonconvex adjustment costs caused plants to adopt optimal (S, s) decision rules

with respect to capital. There, the aggregate nonlinearities predicted by previous par-

tial equilibrium studies were present when real wages and interest rates were held fixed,

but disappeared in general equilibrium. However, an important assumption in this earlier

analysis was that differences in capital were the sole source of heterogeneity across plants.

In abstracting from persistent differences in plant-specific productivity, the theory could

not usefully address a richer set of establishment-level facts that have been recently docu-

mented. Given discrepancies in its microeconomic implications relative to the data, some

researchers have been led to question the relevance of that model’s aggregate predictions.

Moreover, it has been suggested that additional sources of persistent heterogeneity may

reinforce the aggregate effects of lumpy microeconomic adjustment.

We construct an equilibrium model that is quantitatively consistent with the available

evidence on establishment-level capital adjustment. First, we allow for persistent differ-

ences across plants both in their capital stocks and in their total factor productivities.

Next, we further generalize the model to permit plants to undertake low levels of invest-

1Examples of partial equilibrium (S, s) models include Caballero and Engel (1999), Caballero, Engel and

Haltiwanger (1995), Cooper, Haltiwanger and Power (1999) and Cooper and Haltiwanger (2002).
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ment without incurring adjustment costs. The result is, to the best of our knowledge,

the first model to match the average distribution of establishment-level investment rates.

Nonetheless, microeconomic lumpiness continues to have perceptible effects on aggregate

investment dynamics only when equilibrium factor supply considerations are ignored.

Our model offers the first quantitative analysis of plant-level investment in general

equilibrium. We show that intertemporal changes in the cross-sectional distribution of plant

investment rates are sharply dampened by equilibrium movements in relative prices. Thus,

we establish that equilibrium analysis is essential for understanding investment dynamics

not only in the aggregate, but also at the establishment level . This suggests the need for

caution in drawing conclusions from partial-equilibrium model-based estimation of capital

adjustment costs, even when the most disaggregated data is used.2

While idiosyncratic shocks appear essential in explaining plant-level investment, we find

that the microeconomic role of nonconvex capital adjustment costs changes substantially

in their presence. When plant-specific productivity shocks are large and weakly persistent

relative to aggregate shocks, as suggested by the data, nonconvex costs no longer cause

the plant-level investment spikes that are the hallmark of lumpy investment. Rather, their

primary role shifts to one of removing investment spikes, while they take on a secondary role

in yielding a stark asymmetry in the occurrence of positive versus negative spikes. Noting

that each of these effects also arises in the presence of investment irreversibilities, and

under combinations of irreversibilities and convex capital adjustment costs, this finding

suggests that it may be extremely difficult to disentangle the importance of nonconvex

costs, relative to other adjustment frictions, from the establishment-level data.

Examining the aggregate implications of plant-level nonconvexities, we find that the

introduction of additional heterogeneity reduces the aggregate nonlinearities that exist in

partial equilibrium. This result that idiosyncratic shocks reduce the aggregate effects of

(S, s) policies was first established by Bertola and Caballero (1994) in a model of irre-

versibilities. Here, we show that such additional risk can sufficiently dampen the changes

in the numbers of establishments undertaking capital adjustment as to reverse the amplifi-

cation of aggregate investment that is commonly associated with partial equilibrium lumpy

investment models.3 One long-standing challenge for the empirical investment literature

2An influential example of this approach is Cooper and Haltiwanger (2002), where a partial equilibrium

model is solved to estimate capital adjustment costs from panel data.
3As explained by Caballero (1999), models with investment irreversibilities, such as Bertola and Caballero
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has been explaining the persistence of aggregate investment rates. Our second aggregate

result is that, in partial equilibrium, aggregate investment rates are less volatile and far

more persistent in the presence of nonconvex adjustment costs, irrespective of idiosyncratic

productivity shocks. By delaying capital adjustment for some establishments, these costs

deliver gradual changes in aggregate investment. Thus, partial equilibrium estimation may

tend to emphasize these costs because, like convex adjustment costs, they deliver persis-

tence in aggregate investment rates that would otherwise be absent, bringing them closer

to the data.

General equilibrium remains fundamental in evaluating the aggregate implications of

nonconvexities. Changes in real wages and interest rates imply dramatic reductions in the

volatility of aggregate investment and large increases in its persistence sufficient to match

the data, irrespective of capital adjustment costs. Moreover, in general equilibrium, the

skewness and kurtosis of aggregate investment rates are essentially unaffected by nonconvex

costs. As a result, lumpy investment does not lead to aggregate nonlinearities, a finding

that is entirely robust to the inclusion of persistent differences in plant-level productivity.

2 Model

In our model economy, there are both fixed costs of capital adjustment and persistent

differences in plant-specific productivity, which together lead to substantial heterogeneity in

production. In this section, we describe the economy beginning with production units, then

follow with households and equilibrium. Next, using a simple implication of equilibrium, we

characterize the capital adjustment decisions of production units as a two-sided generalized

(S, s) policy. This decision rule for investment is what distinguishes the model from the

stochastic neoclassical growth model.

2.1 Production and capital adjustment

We assume a large number of production units. Each establishment produces its

output using predetermined capital stock k and labor n, via an increasing and concave

(1994) and Veracierto (2002), do not generate lumpy plant investment nor the corresponding amplification

of aggregate investment demand.
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production function, F :

y = zεF (k, n) .

Here, z reflects stochastic total factor productivity common across plants, while ε is

plant-specific productivity. For convenience, we assume that z is a Markov chain, z ∈
{z1, . . . , zNz}, where

Pr
¡
z0 = zj | z = zi

¢
≡ πij ≥ 0,

and
PNz

j=1 πij = 1 for each i = 1, . . . , Nz. Similarly, we assume that ε ∈ {ε1, . . . , εNε},

where

Pr
¡
ε0 = εl | ε = εk

¢
≡ πε

kl ≥ 0,

and
PNε

l=1 π
ε
kl = 1 for each k = 1, . . . , Nε.

In each period, a plant is defined by its predetermined stock of capital, k, its idiosyn-

cratic productivity level, ε, and its current cost of capital adjustment, ξ ≥ 0, denominated
in units of labor. Given the current aggregate state of the economy, it decides its current

level of employment, n, production occurs, and its workers are paid. After production, the

plant determines whether to pay its fixed cost and undertake an active capital adjustment.

It may alternatively avoid the cost by setting investment to 0 and passively allowing its

capital to depreciate. We summarize the salient features of this choice below, denoting the

plant’s investment by i and the depreciation rate by δ, and measuring the adjustment cost

in units of output using the real wage rate, ω.4

i 6= 0 fixed cost = ωξ γk0 = (1− δ) k + i

i = 0 fixed cost = 0 γk0 = (1− δ) k

For the plant, capital adjustment involves a nonconvexity, since the cost ξ is independent

of the scale of adjustment. At the same time, we assume that ξ varies across plants and over

time for any given plant. Each period, every plant draws a cost from the time-invariant

distribution G :
£
0, ξ
¤
→ [0, 1]. As a result, given its end-of-period stock of capital, a plant’s

current adjustment cost has no implication for its future adjustment. Thus, it is sufficient

to describe differences across plants by their idiosyncratic productivity, ε, and capital, k.

We summarize the distribution of plants over (ε, k), where ε ∈ E ≡ {ε1, . . . , εNe} and

k ∈ K ⊆ R+, using the Borel probability measure μ defined on the σ−algebra generated
4Throughout the paper, primes indicate one-period-ahead values, and all variables measured in units of

output are deflated by the level of labor-augmenting technological progress, which grows at the rate γ − 1.
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by the open subsets of the product space S = E × K. The aggregate state of the economy

is then described by (z, μ), and the distribution of plants evolves over time according to a

mapping, Γ, from the current aggregate state, μ0 = Γ (z, μ). We will define this mapping

below.

Let v1 (εk, k, ξ; zi, μ) represent the expected discounted value of a plant entering the

period with (εk, k) and drawing an adjustment cost ξ, when the aggregate state of the

economy is (zi, μ). We state the dynamic optimization problem for the typical plant using

a functional equation defined by (1) and (2). First we define the beginning of period

expected value of a plant, prior to the realization of its fixed cost draw, but after the

determination of (εk, k; zi, μ):

v0 (εk, k; zi, μ) ≡
Z ξ

0
v1 (εk, k, ξ; zi, μ)G (dξ) . (1)

Assume that dj (zi, μ) is the discount factor applied by plants to their next-period ex-

pected value if aggregate productivity at that time is zj and current productivity is zi.

(Except where necessary for clarity, we suppress the indices for current aggregate and

plant productivity below.) The plant’s profit maximization problem, which takes as given

the evolution of the plant distribution, μ0 = Γ (z, μ), is then described by the following

functional equation:

v1(ε, k, ξ; z, μ) = max
n

"
zεF (k, n)− ω (z, μ)n+ (1− δ) k (2)

+max

⎧
⎨
⎩−ξω (z, μ) + maxk0

⎛
⎝−γk0 +

NzX

j=1

πijdj (z, μ)
NeX

l=1

πε
klv

0
¡
εl, k

0; zj , μ
0
¢
⎞
⎠ ,

− (1− δ) k +
NzX

j=1

πijdj (z, μ)
NeX

l=1

πε
klv

0

µ
εl,
(1− δ)

γ
k; zj , μ

0

¶⎫⎬
⎭

#
.

Given (ε, k, ξ) and the equilibrium wage rate ω (z, μ), the plant chooses current em-

ployment n. Next it selects whether to adjust capital, the value of which is represented

by the first term in the internal binary maximum choice above, or avoid its current fixed

cost by setting investment to 0. Rather than subtracting investment from current profits,

we adopt an equivalent but notationally more convenient approach in (2); there, the value

of nondepreciated capital augments current profits, and the plant is seen to repurchase its
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entire capital stock each period. Since adjustment costs do not affect the choice of current

employment, we denote the common employment selected by all type (ε, k) plants using

N (ε, k; z, μ). Further, let K (ε, k, ξ; z, μ) represent the choice of capital for the next period

by plants of type (ε, k) with adjustment cost ξ.

2.2 Households

The economy is populated by a unit measure of identical households. Household

wealth is held as one-period shares in plants, which we denote using the measure λ.5 They

determine their current consumption, c, hours worked, nh, as well as the number of new

shares, λ0 (ε0, k0), to purchase at price ρ1 (ε
0, k0; z, μ). Households receive prices ρ0 (ε, k; z, μ)

for their current shares and real wage ω (z, μ) for their labor effort. Their lifetime expected

utility maximization problem is listed below.

W (λ; z, μ) = max
c,nh,λ

0

h
U
³
c, 1− nh

´
+ β

NzX

j=1

πijW
¡
λ0; zj , μ

0
¢i

(3)

subject to

c+

Z

S
ρ1
¡
ε0, k0; z, μ

¢
λ0
¡
d
£
ε0 × k0

¤¢
≤ ω (z, μ)nh +

Z

S
ρ0 (ε, k; z, μ)λ (d [ε× k]) .

Let C (λ; z, μ) describe the household choice of current consumption, Nh (λ; z, μ) the

current allocation of time to working, and Λ (ε0, k0, λ; z, μ) the quantity of shares purchased

in plants that begin the next period with productivity ε0 and k0 units of capital.

2.3 Recursive equilibrium

A recursive competitive equilibrium is a set of functions

³
ω, (dj)

Nz

j=1 , ρ0, ρ1, v
1, N,K,W,C,Nh,Λ

´

such that plants and households maximize their expected values, and the markets for assets,

labor and output clear:

1. v1 satisfies (1) - (2), and (N,K) are the associated policy functions for plants.

5Households also have access to a complete set of state-contingent claims. However, as there is no

heterogeneity across households, these assets are in zero net supply in equilibrium. Thus, for brevity, we

do not explicitly model them.
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2. W satisfies (3), and
¡
C,Nh,Λ

¢
are the associated policy functions for households.

3. Λ (εl, k
0, μ; z, μ) = μ0 (εl, k

0).

4. Nh (μ; z, μ) =
R
S

µ
N (ε, k; z, μ)+

R ξ
0 ξJ

³
(1−δ)

γ k −K (ε, k, ξ; z, μ)
´
G (dξ)

¶
μ(d [ε× k]),

where J (x) = 0 if x = 0; J (x) = 1 if x 6= 0.

5. C (μ; z, μ) =
R
S

³
zεF (k,N (ε, k; z, μ))−

R ξ
0 [γK (ε, k, ξ; z, μ)−(1− δ) k]G(dξ)

´
μ(d [ε× k]).

6. μ0 (εl, B) =
R
{(εk,k,ξ) |K(εk,k,ξ;z,μ)∈B} π

ε
klG (dξ)μ (d [εk × k]) defines Γ.

2.4 (S, s) decision rules

Using C and N , as given by (4) and (5), to describe the market-clearing values of con-

sumption and hours worked by the household, it is straightforward to show that equilibrium

requires ω (z, μ) = D2U(C,1−N)
D1U(C,1−N) and that dj (z, μ) =

βD1U(C0

j ,1−N 0

j)
D1U(C,1−N) . We may then compute

equilibrium by solving a single Bellman equation that combines the plant-level profit maxi-

mization problem with the equilibrium implications of household utility maximization. Let

p denote the price plants use to value current output, where

p (z, μ) = D1U (C, 1−N) , (4)

ω (z, μ) =
D2U (C, 1−N)

p (z, μ)
. (5)

A reformulation of (2) then yields an equivalent description of a plant’s dynamic problem.

Suppressing the arguments of the price functions,

V 1(ε, k, ξ; z, μ) = max
n

µ
[zεF (k, n)− ωn+ (1− δ) k] p (6)

+max

⎧
⎨
⎩−ξωp+maxk0

⎛
⎝−γk0p+ β

NzX

j=1

πij

NeX

l=1

πε
klV

0
³
εl, k

0

; zj , μ
0
´
⎞
⎠ ,

− (1− δ) kp+ β
NzX

j=1

πij

NeX

l=1

πε
klV

0

µ
εl,
(1− δ)

γ
k; zj , μ

0

¶⎫⎬
⎭

¶
,

where

V 0 (ε, k; z, μ) ≡
Z ξ

0
V 1 (ε, k, ξ; z, μ)G (dξ) . (7)
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Equations (6) and (7) will be the basis of our numerical solution of the economy. This

solution exploits several results that we now derive. First, note that plants choose labor

n = N (ε, k; z, μ) to solve

zεD2F (k, n) = ω (z, μ) .

Next, we examine the capital choice of establishments undertaking active adjustment de-

cisions. Define the gross value of undertaking adjustment as that arising in the first term

of the internal binary maximum within (6):

E (ε, z, μ) ≡ max
k
0

⎛
⎝−γk0p (z, μ) + β

NzX

j=1

πij

NeX

l=1

πε
klV

0
³
εl, k

0

; zj , μ
0
´
⎞
⎠ . (8)

Note that the target capital stock solving this maximization problem is independent of

both k and ξ, but not ε, given persistence in plant-specific productivity. As a result,

all plants sharing the same current productivity ε that actively adjust their capital stock

choose a common target level of capital for the next period, k0 = k∗ (ε, z, μ), which solves

the right-hand side of (8). This independence of target capital from current capital implies

that the gross value of adjustment, E (ε, z, μ), is itself independent of current capital.

Referring again to the functional equation in (6), it is now clear that a plant will absorb

its fixed cost and adjust if the net value of achieving the target capital, E (ε, z, μ) − ξωp,

is at least as great as its continuation value under nonadjustment (line three). It follows

immediately that a plant of type (ε, k) will undertake active capital adjustment if its fixed

adjustment cost, ξ, lies at or below some (ε, k)-specific threshold value. Let bξ (ε, k; z, μ)
describe the level of ξ that leaves a type (ε, k) plant indifferent between active capital

adjustment and inaction (simply allowing its capital to depreciate):

−p (z, μ)bξ (ε, k; z, μ)ω (z, μ) +E (ε, z, μ) (9)

= −p (z, μ) (1− δ) k + β
NzX

j=1

πij

NeX

l=1

πε
klV

0

µ
εl,
(1− δ)

γ
k; zj , μ

0

¶
.

Next, define ξT (ε, k; z, μ) ≡ min
n
ξ,max

n
0,bξ (ε, k; z, μ)

oo
, so that 0 ≤ ξT (ε, k; z, μ) ≤ ξ.

Plants with adjustment costs at or below ξT (ε, k; z, μ) will adjust their capital stock.

Using the target capitals and threshold adjustment costs identified above, the plant-

level decision rule for capital may be conveniently summarized; any establishment identified
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by the plant-level state vector (ε, k, ξ; z, μ) will begin the subsequent period with a capital

stock given by

k0 = K (ε, k, ξ; z, μ) =

(
k∗ (ε, z, μ) if ξ ≤ ξT (ε, k; z, μ),
(1−δ)k

γ if ξ > ξT (ε, k; z, μ).
(10)

Based on (10), we now explicitly define the evolution of the plant distribution, μ0 = Γ (z, μ).

For all (εl, k) ∈ S,

μ0 (εl, k) =
NεX

k=1

πε
kl

"³
1− J (k − k∗ (εk, z, μ))

´Z

S
G
¡
ξT (εk, k; z, μ)

¢
μ (d [εk × k])(11)

+

∙
1−G

µ
ξT
µ
εk,

γ

1− δ
k; z, μ

¶¶¸
μ

µ
εk,

γ

1− δ
k

¶#
.

It then follows that the market-clearing levels of consumption and hours required to deter-

mine p and ω using (4) and (5) are given by

C =

Z

S

³
zεF (k,N (ε, k; z, μ))−G

¡
ξT (ε, k; z, μ)

¢ h
γk∗ (ε, z, μ)

− (1− δ) k
i´
μ (d [ε× k]) (12)

N =

Z

S

"
N (ε, k; z, μ) +

Z ξT (ε,k;z,μ)

0
ξG (dξ)

#
μ (d [ε× k]) . (13)

3 Model solution

We evaluate the plant-level and aggregate implications of nonconvex capital adjust-

ment costs using several numerical experiments across which we vary the stochastic process

for idiosyncratic shocks to plants’ total factor productivity and the parameterization of cap-

ital adjustment costs. All other production parameters, as well as preferences, are held

constant throughout. Each experiment is based on a 5000-period model simulation, and

the same random draw of aggregate productivity is used in each. In the next section,

we discuss functional forms and parameter values for technology and preferences that are

identical across models. In section 3.2, we explain the choice of idiosyncratic shocks, and,

in section 3.3, we specify the distribution of capital adjustment costs.
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3.1 Common parameters

Across all our model economies, we assume that the representative household’s pe-

riod utility is the result of indivisible labor (Hansen (1985), Rogerson (1988)): u(c, L) =

log c + ϕL, and the establishment-level production function takes a Cobb-Douglas form,

zεF (k,N) = zεkθNν . We fix the length of a period to correspond to one year, allowing

us to use evidence on establishment-level investment in the parameterization of the adjust-

ment cost distribution below. Model parameters are selected to ensure agreement with

observed long-run values for key postwar U.S. aggregates in a version of the model without

capital adjustment costs described in the appendix. However, the aggregate first moments

in all model economies are extremely similar.

As proven in lemma 2 of the appendix, macroeconomic aggregates are insensitive to the

presence of idiosyncratic productivity differences in the models we study that do not involve

capital adjustment costs, (one with plant-level productivity shocks and one without). We

use this pair of frictionless models to derive parameter values for technology and preferences

that are consistent with empirical counterparts. Next, we apply the same values to the

lumpy investment models. The mean growth rate of technological progress is chosen to

imply a 1.6 percent average annual growth rate of real per capita output, and the discount

factor, β, is then set to imply an average real interest rate of 4 percent. Given the rate of

technological progress, the depreciation rate, δ, is selected to match an average investment-

to-capital ratio of 10 percent, corresponding to the average value for the private capital

stock between 1954 and 2002 in the U.S. Fixed Asset Tables. Labor’s share is then set

to 0.64 as in Prescott (1986); given this value, capital’s share of output is determined by

targeting an average capital-to-output ratio of 2.353 as in the data. Finally, the parameter

governing the preference for leisure, ϕ, is taken to imply an average of one-third of available

time spent in market work. Table 1 summarizes the resulting parameter values.

We determine the stochastic process for total factor productivity using the Crucini

residual approach described in King and Rebelo (1999). A continuous shock version of

the frictionless model, assuming log z0 = ρz log z + ε0z with ε0z ∼ N
¡
0, σ2εz

¢
, is solved

using an approximating system of stochastic linear difference equations, given an arbitrary

initial value of ρz. This linear method isolates a decision rule for output of the form

Y = πz (ρz)ψ (z) + πk (ρz) k, where the coefficients associated with z and k are functions

of ρz. Rearranging this solution, data on GDP and capital are then used to infer an
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implied set of values for the technology shock series. Maintaining the assumption that

these realizations are generated by a first-order autoregressive process, the persistence and

variance of this implied series yield new estimates of
¡
ρz, σ

2
εz

¢
, and the process is repeated

until these estimates converge. The resulting values for the persistence and variance of

the technology shock process are not uncommon; ρz = 0.8254 and σεz = 0.0124. Next, we

discretize this productivity process using a grid of 5 possible shock realizations; Nz = 5.

3.2 Plant-specific shocks

Given the parameter selection above, we consider two distinct stochastic processes for

idiosyncratic productivity. These identify our full and common productivity models. The

full models, with and without fixed costs of capital adjustment, have persistent idiosyn-

cratic shocks. We introduce these using the estimated persistence and variability from

Cooper and Haltiwanger (2002). In particular, the idiosyncratic component of a plant’s

total factor productivity is assumed to follow a log-normal process log ε0 = ρε log ε + ηε

where ρε = 0.53, and the standard deviation of the white noise innovation ηε is 0.0785.

This implies that idiosyncratic shocks have a standard deviation relative to the aggregate

shock of 83 , as in Cooper and Haltiwanger (2002). As in that paper, we use an 11-value

discretization of this log-normal process; Nε = 11. The common productivity models elim-

inate differences in plants’ total factor productivity, setting σηε = 0. We use these models

as controls to isolate the effect of persistent differences in plant-specific productivity for

the role of nonconvex costs in investment dynamics.

3.3 Capital adjustment costs

The parameters above fully specify the frictionless models without capital adjustment

costs. All that remains now is to determine the distribution of adjustment costs that distin-

guish the lumpy investment models. We assume that these costs are uniformly distributed,

with cumulative distribution function G(ξ) = ξ/ξ. We then select ξ so that the full lumpy

investment model matches the fraction of plants experiencing positive investment spikes

reported by Cooper and Haltiwanger (2002).

Constructing their own plant capital series using data on both retirements and invest-

ment from the Longitudinal Research Database, Cooper and Haltiwanger (2002) provide

a detailed set of time-averaged moments on plants’ investment rates, which are summa-
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rized in table 2. They define any plant with an investment rate (ratio of investment to

capital) less than 1 percent in absolute value as inactive. Positive investment rates are

those exceeding 1 percent, while negative investment rates are those falling below −0.01.
Finally, they define positive spikes as positive investment rates exceeding 0.2, and negative

spikes as observations of i
k < −0.2. As seen in table 9 (panel B, row 1), the selection

of ξ = 0.011 implies that, on average, roughly 18.6 percent of establishments invest more

than 20 percent of their existing stock of capital in our full model.6 This upper bound for

the fixed costs also implies a very close match to the average fraction of establishments

experiencing a negative investment spike, which is 1.4 percent in both model and data.

The cost of matching the empirical observations on positive and negative spikes in

our basic model of lumpy investment is that it requires plant-level investments to be, on

average, quite infrequent. The fraction of inactive observations is markedly larger in the

model than apparent in the data, 77.8 percent versus 8.1 percent. This is a common

difficulty with quantitative models of lumpy investment, as is reflected in the results of

Cooper and Haltiwanger (2002).7 It appears that idiosyncratic shocks and fixed costs are

in themselves insufficient to reproduce the average distribution of plant investment rates

in the data. One possible explanation is that fixed costs do not apply to investments when

they are sufficiently minor relative to a plant’s existing capital. In section 5, we develop

an extension to the model along these lines. We show that this resolves the inconsistencies

between model and data without altering any of our remaining results.

3.4 Forecasting rules

Solving the frictionless models is fairly straightforward, even in the presence of persis-

tent plant-level shocks. Despite a distribution of plants over capital and productivities, the

endogenous aggregate state vector is fully described by total capital and a time-invariant

6Note that the total time actually devoted to costly adjustments averages less than 0.15 percent of hours

worked.
7Cooper and Haltiwanger (2002) allow for three separate capital adjustment costs in their model: fixed

costs, irreversibilities and convex costs. The last of these facilitates their model’s match to plant investment

persistence for reasons that are well understood. However, along all other margins of the data reported

in table 10, the model performs poorly, generating a fraction of observations that are inactive: 0.60,

positive spikes: 0.03, negative spikes: 0.00, positive investment: 0.40, and negative investment: 0.00.

These difficulties may result from the selection of cost parameters to match regression coefficients in partial

equilibrium estimation. We will return to this discussion in section 4.3.3 below.
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distribution of plants’ shares of the aggregate capital stock as a function of their idiosyn-

cratic productivity level (as shown in the appendix). Given the invariance in the distribu-

tion of relative capital, the aggregate state vector contains only two time-varying elements,

total capital and aggregate productivity, and standard methods may be used to solve the

model. The one novelty in our approach is that we apply a nonlinear solution method

using piecewise polynomial cubic spline interpolation of the planner’s value function. This

method, which to our knowledge is not often used in macroeconomics, is described briefly

in Khan and Thomas (2003) and, in more detail, in Thomas (2004). In partial equilib-

rium, the same nonlinear approach is applied to solving plants’ value functions for the

lumpy investment models. The distribution of adjustment costs implies that value func-

tions are smoother objects than decision rules, and the splines are robust interpolants for

such discrete choice problems.

General equilibrium solution of the lumpy investment models requires the determina-

tion of market-clearing real wages and interest rates which, in turn, depend on agents’

expectations of future wages and interest rates. We adapt the solution method described

in Khan and Thomas (2003) to allow for a two-dimensional distribution of plants over

capital and idiosyncratic productivity. The upper bound on the distribution of capital

adjustment costs implies that all plants adjust in finite time and the economy has, in this

sense, finite memory. Thus, at each productivity, the distribution of plants over capital

may be described using a finite vector of capital levels and the associated number of plants

holding each such level.

While not high-dimensional, our aggregate state vector is still large. In the common

productivity model with lumpy investment, it involves 31 variables. The nonlinear solu-

tion method predicated by our focus on aggregate nonlinearities makes this numerically

intractable, so we use selected moments as a proxy for the distribution in the aggregate

state vector, following the method of Krusell and Smith (1997). Specifically, we solve

for equilibrium under the assumption that plants and households use only these moments

in forming expectations of future wages and interest rates. This allows us to tractably

approximate rational expectations equilibrium and evaluate the aggregate business cycle

implications arising from nonconvex costs of capital adjustment at the plant level.

Table 3 presents agents’ forecasting rules for the common productivity model. In de-

termining their current decisions, agents forecast the future proxy state, m0
1, assumed to

be the first moment of the distribution of plants over capital, using the mean of the current
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distribution, m1 (and current aggregate productivity). Similarly, when solving for agents’

value functions, we have them assume that the valuation of current output, p, is a log-linear

function of this mean.8 Note that adjusted R-squares are very high, and standard errors

are small; almost all the true variation in the mean of the distribution, and in the relative

price of output, may be explained using these simple forecasting rules.

In the full lumpy investment model, there is a two-dimensional distribution of plants

over capital and idiosyncratic productivity. Here, the 11-point discretization of the per-

sistent plant productivity process implies an aggregate state vector with 551 variables.

Nonetheless, we find that the solution method described above is robust to this additional

source of heterogeneity. The equilibrium forecasting rules are presented in table 4. Note

that there is no loss of accuracy in the forecasting rules with the introduction of persistent

differences in plant-specific productivity, though we continue to use only the unconditional

mean of the distribution of capital as a proxy for the aggregate endogenous state. This

suggests that our general equilibrium solution method may be applied to a broad class of

models currently studied in partial equilibrium.

4 Results

As indicated above, our results are based upon comparisons of four models differ-

entiated by their capital adjustment costs and idiosyncratic productivity processes. We

review these models here. First, as we are interested in assessing the effects of plant-level

nonconvexities, we compare results for frictionless equilibrium business cycle models with

corresponding results for models where plants are subject to nonconvex capital adjustment

costs; we label the latter group lumpy (investment) models. Second, we explore the effect of

introducing persistent changes in plant-specific productivity in both frictionless and lumpy

models. We do this by contrasting the results for full models, where such changes exist,

with those for common productivity models, where there are no differences in total factor

productivity across plants. A central focus of this exploration is the impact of general equi-

librium changes in prices on both aggregate and plant-level investment dynamics. Thus,

8Our solution algorithm iterates between an inner loop and an outer loop, as in Krusell and Smith (1997).

In the inner loop, agents’ value functions are solved based upon a given set of forecasting rules. Given these

value functions, the economy is simulated in the outer loop, where p is endogenously determined in each

date. Next, the resulting simulation data are used to update the forecasting rules for the inner loop.
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all four models are solved both in partial equilibrium, by which we mean that real wages

and interest rates are held constant at their steady state values, and in general equilib-

rium. We begin with a study of the aggregate implications of lumpy investment, with and

without plant-specific variation in total factor productivity, under partial, then general,

equilibrium.

4.1 Aggregate investment in partial equilibrium

The empirical investment literature has focused on changes in investment rates - that

is, movements in the ratio of investment to capital. Across a broad variety of empiri-

cal studies, capital adjustment costs have been found to be important in matching the

persistence of investment rates (Caballero (1999)). Finally, almost all of the analysis of

nonconvex capital adjustment costs has been done in partial equilibrium. Here, we ex-

plore the aggregate effects of lumpy investment on investment rates in partial equilibrium

versions of both the full and common productivity models.

4.1.1 Persistence

Table 5 reports the first four moments of aggregate investment rates for the fric-

tionless and lumpy models, in both full and common productivity variants, under partial

equilibrium. Beginning with the frictionless models, where there are no nonconvex costs

of capital adjustment, note that aggregate investment rates are negatively autocorrelated

and very volatile. In partial equilibrium, and without capital adjustment costs, investment

responds immediately to changes in aggregate productivity. Thus, while productivity may

be persistent, investment is not. (Capital stocks are of course persistent, since they track

productivity with a one-period lag.)

Our first result is that, in partial equilibrium, capital adjustment costs not only reduce

the volatility of aggregate investment rates, but also increase their persistence. The reason

for this increased persistence is straightforward. Fixed costs of capital adjustment induce

inaction among plants with relatively high current costs or capital close to their target

value. Thus, in the aggregate, investment initially responds less to a change in aggregate

productivity than in the frictionless model without adjustment costs. However, aggregate

productivity changes are very persistent and, as a result, in subsequent periods many of

those initially inactive plants undertake capital adjustments. Thus, in partial equilibrium,
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investment is both less variable and more persistent with capital adjustment costs. A

similar result holds for models with convex adjustment costs; such costs induce all plants

to undertake concurrent but gradual capital adjustment. In our lumpy investment models,

by contrast, aggregate investment is more gradual because nonconvex costs give rise to an

extensive margin, which in turn implies that only a fraction of plants adjust each period.

4.1.2 Nonlinearities

The lumpy investment models exhibit considerable skewness and excess kurtosis in

partial equilibrium aggregate investment rates, a feature not shared by the corresponding

frictionless models. It is this central and well-known feature of lumpy investment that has

motivated much interest in its empirical usefulness.9 Interestingly, when comparing the

lumpy investment models in panels A and B of table 5, we see that there is much less

skewness and excess kurtosis in the distribution of aggregate investment rates in the full

model. In partial equilibrium, plant-level productivity shocks sharply reduce the skewness

and kurtosis in aggregate investment rates. This is our second result.

To explain both the skewness of investment rates and why it is reduced by the presence

of plant-specific productivity shocks in the full model, we study the response of plants

to a 2 standard deviation rise in aggregate total factor productivity versus a 2 standard

deviation fall. Consider first the common productivity model, which is characterized by a

one-dimensional distribution of plants over capital. The first column of figure 1 shows a

typical period, aggregate productivity having been at its mean level for 19 periods. In the

top panel, we show the distribution of plants over capital; there, the highest value with

positive mass is the target capital adopted by all adjusting plants absent any changes in

aggregate productivity, which is just over 1.41. The dashed curve shows adjustment rates

as a function of capital. Here, we see a rising adjustment hazard, as plants with capital

further from the target are willing to suffer larger costs and thus have a higher probability

of capital adjustment. The lowest capital level held by any plant is 0.64, and such plants

adjust with full probability. The lower panel of the column shows the actual number of

plants that adjust to the target capital stock from each existing level. The total adjusting

each period is 0.22.

9See, for example, Caballero and Engel (1999), Caballero, Engel and Haltiwanger (1995) and Cooper,

Haltiwanger and Power (1999).
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The second column of figure 1 illustrates the partial equilibrium response to a rise in

aggregate total factor productivity. Since changes in aggregate productivity are expected

to persist, plants’ target capital stock rises to 1.88, increasing the gap between actual and

target capital for each type of plant. With plants of each type now willing to pay larger

fixed costs, adjustment rates increase sharply, and the total number of adjusting plants

jumps to 0.78. This rise in the extensive margin, total plants adjusting capital, reinforces

the rise in the intensive margin, the average investment undertaken by each adjusting plant.

As a result, aggregate capital rises by far more than it would in the absence of an increase

in adjustment rates.

By contrast, the final column of figure 1 reveals that an equivalent fall in aggregate

productivity leads to a sharp decrease in adjustment rates. The fall reduces plants’ target

capital stock for next period to 1.05, which is lower than the capital stock actually held

by more than a fifth of plants. As a result, the fraction of plants for which adjustment is

sufficiently valuable to offset the associated fixed costs declines markedly. This fall is most

pronounced near the middle of the distribution, where current capital, once adjusted for

depreciation and exogenous technological progress, is closest to the target capital stock for

next period. As a result, the adjustment hazard takes on a U shape over the mass of plants

and, overall, the number of adjusting plants falls from its average level of 0.22 to a low of

0.07.

We have seen that adjustment rates rise in response to a positive productivity shock, but

fall in the face of a negative productivity shock. As illustrated in figure 2A, this asymmetry

reinforces the rise in aggregate capital when productivity increases and dampens the fall

associated with a reduction in productivity.10 This is the key nonlinearity of the lumpy

investment model that generates skewed investment rates. The graph also shows that this

asymmetry is dampened for the full model, where plants face not only common, but also

idiosyncratic, changes to their total factor productivity.

The second and third panels of figure 2 compare the common productivity and full

lumpy investment models to the frictionless model without capital adjustment costs. For

the latter, changes in aggregate capital are unaffected by idiosyncratic shocks. From fig-

ure 2B, we see that the percentage increase in aggregate capital demand in the common

productivity lumpy investment model exceeds that of the frictionless model. In contrast,

10Of course, as was seen in figure 1, the distribution of adjustment over plant types shifts with aggregate

shocks, which changes the average investment per adjusting plant.
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the full lumpy investment model exhibits a lesser rise relative to the frictionless model, as

seen in figure 2C. Thus, large and weakly persistent idiosyncratic shocks actually reverse

the amplification possible under lumpy investment. Nonetheless, in contrast to the fric-

tionless model, both lumpy investment models continue to exhibit an asymmetric response

in capital to positive versus negative shocks. In the common productivity lumpy invest-

ment model, the percentage rise in total capital is more than five times larger than the

subsequent percentage fall. For the full lumpy investment model, the asymmetry is halved.

In an effort to understand the response of aggregate capital for the full model with

lumpy investment under partial equilibrium in figure 2, we now turn to examine plant level

adjustment for this model. The top panel of figure 3 illustrates the stationary distribution

of plants over capital and idiosyncratic productivity in our full lumpy investment model.

The presence of large plant-level differences in total factor productivity implies considerably

greater dispersion in capital than in the common productivity model. Mean reversion in

idiosyncratic productivity delivers a distribution that is concentrated around the mean

level of productivity. Nonetheless, persistence in this productivity process leads plants

with higher productivity levels to have, on average, higher capital stocks. In the lower

panel, we see that adjustment rates (in the region of positive mass) are U shaped. As

target capital stocks rise with plant productivity, the lowest adjustment rate for any given

productivity level, that associated with a (depreciation-adjusted) current capital closest to

the target for the next period, is increasing in plant productivity, as is the threshold value

of capital below which adjustment rates are one.

In response to the rise in aggregate total factor productivity examined in figure 1 for

the common productivity model, the adjustment hazards associated with each productivity

in the full model shift leftward (into a higher capital range). As the target capital stock

associated with each idiosyncratic productivity level rises, most plant are willing to accept

higher adjustment costs. The top panel of figure 4 shows the total adjustors from each

plant type after the rise in aggregate productivity. Relative to the stationary state, there

is increased adjustment among plants with both high and low capital stocks. The lower

panel of figure 4 shows the total adjusting from each plant type after a fall in aggregate

productivity. In this case, target capital stocks are reduced at each idiosyncratic produc-

tivity. As the gap between actual and target capital now becomes largest for plants with

relatively high capital stocks, most adjustment is concentrated among such plants. Clearly,

the asymmetry discussed above in the context of the common productivity model is still
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present. However, it is less acute. A rise in common aggregate productivity increases total

adjustors from its average value of 0.22 to 0.58, while a fall reduces adjusters to 0.21, only

slightly below the stationary state level.

The asymmetry is dampened in the presence of idiosyncratic shocks because such shocks

lead to greater dispersion and greater symmetry in the distribution of plants over capital

than exists in the common productivity model. In figure 1, we saw that the distribution

of plants in the common productivity model was monotonically rising in capital. This

implied that leftward versus rightward shifts in the adjustment hazard had very different

effects on the overall number adjusting. In the full model, by contrast, the distribution of

plants over capital has less concentration at the highest levels of capital; the most common

levels of capital lie below them. This immediately implies less asymmetry in adjustment.

Moreover, as the single adjustment hazard is now replaced by many hazards across which

plants shift over time with changes in their individual productivities, the typical adjustment

hazard is associated with a more even distribution of plants below and above the capital

stock at which it is centered. Thus, extensive margin responses to aggregate shocks are

necessarily reduced.11 This explains why the inclusion of large plant-specific idiosyncratic

shocks reduces the skewness in the distribution of aggregate investment rates that otherwise

characterizes models of lumpy investment under partial equilibrium (above in table 5).

4.2 General equilibrium

In general equilibrium, the aggregate differences between the lumpy investment mod-

els and the frictionless models are largely eliminated. Table 6 shows that the standard

deviation of aggregate investment rates is identical across the frictionless and lumpy in-

vestment models, whether or not there are idiosyncratic variations in plant productivity.

Moreover, there are virtually no differences in the persistence of aggregate investment

rates, which are far higher than their partial equilibrium counterparts, and very close to

the private investment-to-capital ratio observed in the postwar U.S. data (row 1). Per-

sistence in aggregate investment rates is an immediate result of consumption smoothing

by the representative household in general equilibrium. The omission of this channel in

partial equilibrium places an emphasis on capital adjustment costs to generate some of this

11This dampening of changes in extensive-margin adjustment is similar to the result of Bertola and

Caballero (1994).
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persistence that is otherwise lost.

General equilibrium also eliminates most of the differences in skewness and excess kur-

tosis across models. Moreover, comparing each model to its partial equilibrium counterpart

in table 5, we see that equilibrium dramatically reduces the skewness and excess kurtosis

in the distribution of aggregate investment rates, which also improves the match with the

aggregate data.12 This is our third result. As discussed above, the skewness exhibited

by lumpy investment models in partial equilibrium arises because changes in aggregate

productivity are followed by large movements in target capital that cause sharp, concur-

rent changes in the fraction of plants undertaking capital adjustment. When we impose

market-clearing, however, such aggregate investment spikes would imply large movements

in consumption. This consumption volatility is sharply restrained by procyclical real in-

terest rates, which dampen the changes in target capital arising from aggregate shocks.

Table 7 illustrates how effectively general equilibrium eliminates the extensive margin

changes that distinguish lumpy investment models. Here, we return to our earlier examples

of a 2 standard deviation rise and fall in aggregate productivity (from figures 1 - 4) and

present the impact date effects of these shocks with and without general equilibrium. In

each panel, changes in target capital are dramatically reduced when relative prices are

permitted to clear the markets for labor and goods. For example, the rise in aggregate

productivity that caused a 35.9 percent average increase in target capital in the partial

equilibrium full lumpy investment model (weighting the 11 productivity-specific targets by

the ergodic distribution over productivities) now induces only a 3.6 percent increase. This

is a standard result of households’ preference for smooth consumption profiles, as familiar

from the optimal growth model. As real interest rates rise with an increase in aggregate

productivity, plants’ incentive to increase capital is mitigated. As a result, adjustment

hazards shift far less in general equilibrium. Large shifts in hazards, which interact with the

underlying distribution of plants, are a prerequisite for significant variation in the number

of adjusting plants. In the absence of such large shifts, the fraction of plants adjusting

changes relatively little with aggregate shocks. Consequently, there is little variation in

extensive margin adjustment, precluding aggregate nonlinearities. As seen in the final

column, the rise and fall in the aggregate investment rate following these shocks is much

12These moments from the data depend upon the level of aggregation. Examining sectoral investment

rates from U.S. manufacturing, Caballero and Engel (1999) find skewness and kurtosis of 0.61 and 0.74,

respectively, for equipment and 0.76 and 0.87 for structures.
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smaller in equilibrium and almost perfectly symmetric.

Tables 8 and 9 confirm this finding through an examination of second moments from

each model over the same 5000 period simulation. While partial equilibrium suggests

that there are pronounced differences in the variability of output and investment when

either lumpy model is compared to its frictionless counterpart, these differences disappear

in general equilibrium. Examining the variabilities and contemporaneous correlations of

output, investment share, employment and capital, we see that the aggregate business cycle

is essentially unaffected by lumpy investment and by idiosyncratic shocks to plants.13

4.3 Plant-level investment

Tables 10 and 11 examine investment dynamics at the plant level in both the full and

the common productivity models. Using these tables, we will focus on three particular

aspects of plant investment in this section: persistence, the effects of equilibrium and the

role of nonconvex costs. We will also examine how each of these aspects is affected by the

presence of large idiosyncratic shocks to productivity.

4.3.1 Persistence in the frictionless models

One striking feature of tables 10 and 11 is that, in most cases, there is a negative

autocorrelation in plant investment rates. In fact, across these tables, the only case of

persistent plant investment is that in table 10 corresponding to the frictionless common

productivity model in general equilibrium.

Consider first the frictionless model under common productivity, where there is a rep-

resentative firm and no difference between plant and aggregate investment. In general

equilibrium, capital adjusts gradually to changes in aggregate productivity, due to equi-

librium movements in wages and interest rates; thus, investment is persistent. In partial

equilibrium, by contrast, capital adjustment is completed immediately following a change

in aggregate productivity, and, as a result, we see no persistence in investment.

Continuing to examine the frictionless model, we next consider the effect of idiosyn-

cratic productivity differences on establishment-level investment. In the frictionless full

13Here, we report moments for investment’s share of output rather than investment, since investment is

at times negative in the partial equilibrium simulation. We do not report the moments for consumption’s

share, as they are immediate from C
Y
= 1− I

Y
.
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model, plants’ decision rules for capital are independent of their existing stocks, as proven

in lemma 1 of the appendix. Holding the aggregate state constant, and absent adjustment

costs, capital at the plant tracks idiosyncratic productivity with a one-period lag; a change

in plant productivity this period causes an immediate and complete adjustment in capital

for the next period. As a result, while plants’ capital stocks inherit the persistence of the

idiosyncratic shock process, their investments lack persistence. This tends to generate neg-

ative autocorrelation in plant investment rates in the full model, where plants experience

large and mildly persistent movements in their productivities. Moreover, the partial equi-

librium dynamics of the common productivity model, discussed in the paragraph above,

imply that changes in aggregate productivity only reinforce this tendency. Thus, invest-

ment rates are negatively autocorrelated in the full frictionless model in partial equilibrium,

as seen in the first row of table 11A.

As we have already noted, general equilibrium introduces gradual changes in the total

capital stock of the common productivity frictionless model. The same holds for the full

frictionless model, since lemma 2 of the appendix implies that its aggregate dynamics are

fully recoverable using a representative firm approach. However, comparing the first row

of tables 10A and 11A, we see that changes in the equilibrium aggregate state fail to have

significant impact on the persistence, or indeed the average distribution, of plant-level

investment rates. The same is true for both the common productivity and full lumpy

investment models. We will return to this issue in section 4.3.3.

4.3.2 Persistence in the lumpy investment models

In the lumpy investment models, fixed costs of capital adjustment lead to a large

number of inactive plants on average, as seen in both rows of tables 10B and 11B. In partial

equilibrium, this inaction makes adjustments in the total capital stock more gradual, and

thereby increases the persistence of aggregate investment rates, as we discussed in section

4.1.1. However, when we examine the common productivity models, we see that this is

not the case at the establishment level. First, recall from equation (10) that the target

capital stock for any plant is independent of its current capital. Thus, active changes at

the plant are not gradual, leading investment to lack persistence. Moreover, in the absence

of idiosyncratic shocks, an active adjustment by the typical plant in any given period

is generally followed by one or more periods of zero investment, given rising adjustment
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hazards. This also tends to generate a negative autocorrelation in plant investment rates,

and we see a sharp difference relative to the persistent investment undertaken by the

representative plant in the corresponding equilibrium frictionless model.

In the presence of large idiosyncratic shocks, the effect of nonconvex costs on plant-level

investment persistence is reversed; that is, the full lumpy investment model exhibits more

persistence in investment rates (a less negative autocorrelation) than does the correspond-

ing frictionless model. As was the case with the full frictionless model, the plant-specific

productivity shocks cause a negative autocorrelation in plant investment. However, this is

mitigated by nonconvex adjustment costs for two reasons. First, following a shock to its

productivity, an adjusting plant is cautious in selecting the size of its capital adjustment

in an effort to avoid readjusting, and hence paying another fixed cost, in the near future

when its productivity may change again. Moreover, the resulting reduction in the distances

between target capitals associated with differing plant-specific productivity levels implies

that fewer plants find it worthwhile to undertake an active adjustment in response to such

a shock. Thus, in the full model, we see substantially more inaction and a less negative

autocorrelation in investment rates when adjustment costs are present. Overall, plant-level

investment becomes less volatile.

4.3.3 Effects of equilibrium

As noted above, market-clearing changes in real wages and interest rates lead to sharp

changes in plant investment behavior in the common productivity frictionless model. How-

ever, when we compare row 2 of tables 10B and 11B, this does not appear true for the

common productivity lumpy investment model. Much of plant-level investment there rep-

resents a reallocation of the investment good from nonadjusting to adjusting plants. As

such reallocation has no implication for aggregate investment, it is unaffected by equi-

librium movements in real wages and interest rates. We also find little effect of general

equilibrium in the results for both the full frictionless and full lumpy investment models.

The average fraction of plants exhibiting inaction is largely unaffected, as are the average

fractions exhibiting spikes and positive and negative investment rates, and the negative

autocorrelation in investment rates remains.

In the presence of either nonconvex capital adjustment costs or large idiosyncratic pro-

ductivity differences, equilibrium has relatively little impact on the average cross-sectional
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distribution of plant investment rates. Both nonconvex costs and idiosyncratic shocks lead

to a nontrivial distribution of plants over individual states. Each plant responds to its

capital stock and its current productivity and/or fixed cost, so investment differs across

plants, and the investment of any given plant relative to others’ changes over time. In each

period, there is a reallocation of investment across plants that does not affect total invest-

ment demand and, hence, is not affected by changes in the relative price of consumption.

Moreover, given that the calibrated aggregate shock to total factor productivity has rela-

tively low variance, much of an individual plant’s investment, on average, results from such

reallocation. Thus, irrespective of equilibrium price movements, the average cross-sectional

distribution for the stochastic economy closely resembles that of the deterministic steady

state.14 This suggests that model-based estimation of capital adjustment costs may not be

very sensitive to equilibrium analysis if only such average moments are used.

There is, however, an important caveat to this finding. The distribution of plant in-

vestment rates changes over time with the aggregate state, and such changes can be very

sensitive to movements in relative prices. Table 12 illustrates this point. For example,

consider the common productivity lumpy investment model. While the average fraction

of plants exhibiting positive investment spikes is roughly 0.19 in both partial and general

equilibrium, the standard deviation of this fraction is 0.12 when real wages and interest

rates are held fixed at their steady state values versus 0.02 in general equilibrium. More-

over, the standard deviation of the size of such spikes in partial equilibrium is five times

that with market-clearing changes in relative prices.15 Analogous results hold with regard

to variations in the remaining cross-sectional moments of table 10 versus 11, both for this

model and for the full model with idiosyncratic productivity differences. Based on this, we

conclude that equilibrium analysis is essential in understanding the dynamics of plant-level

investment. Thus, partial-equilibrium model-based estimation of adjustment costs may be

inappropriate in cases where time-series variation in plant investment is involved.16

14By contrast, the average distribution of investment rates in the frictionless common productivity model

merely represents the time-averaged observations of a single representative plant’s investment across dates.

There, equilibrium price determination is essential.
15This higher variability in partial equilibrium is caused by large changes in target capital that, in turn,

cause big swings in adjustment rates, as was seen in the example of section 4.1.2.
16This may explain the relatively poor plant-level results obtained in the Cooper and Haltiwanger (2002)

indirect inference model, despite its inclusion of 3 distinct capital adjustment costs. There, model para-

meters are selected to match the coefficients of a plant-level investment regression on panel data, which
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4.3.4 Role of nonconvex costs

Examining the lumpy investment models in panel B of table 10, we find that idiosyn-

cratic shocks allow a better fit to the data, in that they imply both negative investment

rates and negative spikes. However, comparing each row of panel B to its frictionless

model counterpart in panel A reveals another aspect of these shocks, bringing us to our

fifth result. The presence of plant-specific productivity shocks completely changes the role

of nonconvex adjustment costs in shaping investment at the plant.

Notice the differences in the plant investment moments that occur in moving from the

frictionless model to the lumpy investment model under common productivity, and compare

these to the changes that occur in moving from the full frictionless to the full lumpy model.

We have already discussed how large idiosyncratic shocks change the effect of nonconvex

costs for investment persistence at the plant; in the absence of these shocks, nonconvex

costs reduce persistence, while this is reversed in their presence. Perhaps more importantly,

in the common productivity models of table 10, we see that nonconvex costs lead to the

defining features of lumpy investment: positive spikes and inaction. However, comparison

of the two frictionless models in panel A reveals that the idiosyncratic shocks on their own

substantially raise the plant observations of both positive and negative spikes. In fact,

for the full frictionless model, fixed costs are no longer necessary to generate investment

spikes; they are already overstated relative to the data. Instead, in the full models, the

primary role of the adjustment costs now seems to be to induce inaction, reduce spikes,

and increase the asymmetry between the average fractions of plants exhibiting positive

versus negative spikes. In this sense, nonconvex costs have a quite different effect upon

plant-level investment when we assume large and persistent differences in plant-level total

factor productivity.

We emphasize the changed role of nonconvex costs in the presence of idiosyncratic

shocks, because it is essential that we know what these costs actually do if we are to

establish their importance in explaining establishment-level investment. If their role is to

remove investment spikes and cause asymmetry, as it is in our full model results, then the

same effect might be equally well achieved by either irreversibilities or by combinations of

fixed costs, irreversibilities and convex costs. Thus, if idiosyncratic shocks are the primary

force explaining plant investment differences, then it may be virtually impossible to use

necessarily involve period-by-period changes in investment.
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the establishment data to infer the relative importance of nonconvex capital adjustment

costs.

5 Extended model

Thus far, we have examined the interaction of idiosyncratic productivity differences

and nonconvex adjustment costs under the assumption that all nonzero plant-level invest-

ments incur fixed costs. Given that assumption, in order to match the average occurrence

of positive and negative spike episodes in the plant-level data, we found it necessary to

substantially exaggerate inaction. In this section, we work to correct this problem by ex-

tending the model to allow some low-level capital adjustments that are exempt from fixed

costs.

In this extended lumpy model, we assume that plants choosing investment rates satisfy-

ing a ≤ i
k ≤ b, where a ≤ 0 ≤ b, do not incur any adjustment costs. Note that this includes

our previous lumpy investment model as a special case when a = b = 0. However, when

a < 0 < b, a plant not paying its adjustment cost can still undertake some active increase

or reduction in its capital. In this case, unlike the model examined above, investment at

the plant is almost never 0; thus, the frequency of inactive observations may be reduced.

After production, a plant with current capital k and adjustment cost draw ξ can either

pay its fixed cost (ωξ in units of current output) and undertake an unconstrained investment

to reach any chosen k0 ∈ K, or it can avoid the cost by selecting a constrained investment,
i ∈ [ak, bk]. Note that the constrained investment choice set directly implies a set of

possible values for k0. Let Λ (k) ⊆ K represent the set of capital stocks available to a

constrained investor with current capital k:

Λ (k) =
h1− δ + a

γ
k,
1− δ + b

γ
k
i
.

To facilitate our description of the plant’s problem, we define the gross continuation

value associated with any future capital stock, k0, as

q
¡
ε, k0; z, μ0

¢
≡ −γk0 +

NzX

j=1

πijdj (z, μ)
NeX

l=1

πε
klv

0
¡
εl, k

0; zj , μ
0
¢
. (14)

As before, let v1 (εk, k, ξ; zi, μ) represent the expected discounted value of a plant entering

the period with (εk, k) and drawing an adjustment cost ξ when the aggregate state of the
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economy is (zi, μ), where v
0 (εk, k; zi, μ) is the expectation over the adjustment cost defined

in (1). Taking as given the evolution of the plant distribution, μ0 = Γ (z, μ), the plant solves

the following dynamic optimization problem:

v1(ε, k, ξ; z, μ) = max
n

"
zεF (k, n)− ω (z, μ)n+ (1− δ) k (15)

+max

(
−ξω (z, μ) + max

k0∈K
q
¡
ε, k0; z, μ0

¢
, max
k0∈Λ(k)

q
¡
ε, k0; z, μ0

¢
)#
.

Given the equilibrium wage rate ω (z, μ) , a plant of type (ε, k, ξ) first chooses its current

employment n. This choice remains independent of ξ as in our previous model; thus, we con-

tinue to denote the common employment selected by all type (ε, k) plants as N (ε, k; z, μ).

Next, the plant decides upon either an unconstrained or a constrained choice of its capital

stock for next period. The unconstrained choice, in the first term of the binary maximum

above, requires payment of the fixed labor cost of capital adjustment. However, if k0 ∈ Λ (k)
is selected, the second term in the binary maximum applies, and this cost is avoided.

As before, let K (ε, k, ξ; z, μ) represent the capital decision rule for plants of type (ε, k)

with adjustment cost ξ. A recursive competitive equilibrium is then a set of functions,
³
ω, (dj)

Nz

j=1 , ρ0, ρ1, v
1, N,K,W,C,Nh,Λ

´
,

such that plants and households maximize their expected values, and the markets for assets,

labor and output clear:

1. v1 satisfies (1) and (14) - (15), and (N,K) are the associated policy functions for

plants.

2. W satisfies (3), and
¡
C,Nh,Λ

¢
are the associated policy functions for households.

3. Λ (εl, k
0, μ; z, μ) = μ0 (εl, k

0).

4. Nh (μ; z, μ) =
R
S

µ
N (ε, k; z, μ)+

R ξ
0 ξJ

µ
K(ε,k,ξ;z,μ)− (1−δ)

γ
k

k

¶
G (dξ)

¶
μ(d [ε× k]), where

J (x) = 0 if x ∈
h
a
γ ,

b
γ

i
; J (x) = 1 otherwise.

5. C (μ; z, μ) =
R
S

³
zεF (k,N (ε, k; z, μ))−

R ξ
0 [γK (ε, k, ξ; z, μ)−(1− δ) k]G(dξ)

´
μ(d [ε× k]).

6. μ0 (εl, B) =
R
{(εk,k,ξ) |K(εk,k,ξ;z,μ)∈B} π

ε
klG (dξ)μ (d [εk × k]) defines Γ.

27



5.1 Characterizing the extended model

We follow our previous method in reformulating the plant’s dynamic problem. Recall

that p (z, μ) = D1U (C, 1−N) and ω (z, μ) = D2U(C,1−N)
p(z,μ) . Suppressing the arguments of

these price functions,

V 1(ε, k, ξ; z, μ) = max
n

µ
[zεF (k, n)− ωn+ (1− δ) k] p (16)

+max

½
−ξωp+max

k0∈K
Q
¡
ε, k0; z, μ0

¢
, max
k0∈Λ(k)

Q
¡
ε, k0; z, μ0

¢¾¶
,

where

Q
¡
ε, k0; z, μ0

¢
≡ −γk0p+ β

NzX

j=1

πij

NeX

l=1

πε
klV

0
¡
εl, k

0; zj , μ
0
¢

(17)

and

V 0 (ε, k; z, μ) ≡
Z ξ

0
V 1 (ε, k, ξ; z, μ)G (dξ) . (18)

Equations (16) - (18) are the basis of our numerical solution of the extended model economy.

Note that, as before, plants choose labor n = N (ε, k; z, μ) to solve zεD2F (k, n) =

ω (z, μ). In examining the capital choice made by a type (ε, k, ξ) plant, we define the gross

value associated with the unconstrained capital choice, E (ε, z, μ), and the value of the

constrained choice, EC (ε, k, z, μ), as follow:

E (ε, z, μ) ≡ max
k0∈K

Q
¡
ε, k0; z, μ0

¢
(19)

EC (ε, k, z, μ) ≡ max
k0∈Λ(k)

Q
¡
ε, k0; z, μ0

¢
. (20)

As in our previous model, the solution to the unconstrained problem in (19) depends upon

ε, but does not depend upon k or ξ. Thus, defining the capital that solves this problem as

the plant’s target capital, we again have the result that all plants sharing the same current

productivity ε and paying their fixed costs will adjust to a common target capital for the

next period, k0 = k∗ (ε, z, μ). Plants that do not pay adjustment costs, instead undertaking

constrained capital adjustments solving (20), will choose future capital that may depend on

their current capital, k0 = kC (ε, k, z, μ). (The exception occurs for plants with k∗ (ε, z, μ) ∈
Λ (k); for such plants, the constraint in (20) does not bind, and the target capital may be

achieved without an adjustment cost.)
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Examining (16), we see that a plant will absorb its fixed cost to undertake an uncon-

strained capital adjustment if the net value of achieving the target capital, E (ε, z, μ)−ξωp,
is at least as great as its continuation value under constrained adjustment, EC (ε, k, z, μ).

Let bξ (ε, k; z, μ) describe the fixed cost that leaves a type (ε, k) plant indifferent between
these options:

−p (z, μ)bξ (ε, k; z, μ)ω (z, μ) +E (ε, z, μ) = EC (ε, k, z, μ) . (21)

Next define ξT (ε, k; z, μ) ≡ min
n
ξ,max

n
0,bξ (ε, k; z, μ)

oo
, so that 0 ≤ ξT (ε, k; z, μ) ≤ ξ.

Any plant with an adjustment cost at or below its type-specific threshold, ξT (ε, k; z, μ),

will pay the fixed cost and adjust to its target capital.

Using the constrained and unconstrained choices of future capital, alongside the thresh-

old adjustment costs, the plant-level decision rule for capital is as follows. Any establish-

ment identified by the plant-level state vector (ε, k, ξ; z, μ) will begin the subsequent period

with capital given by

k0 = K (ε, k, ξ; z, μ) =

(
k∗ (ε, z, μ) if ξ ≤ ξT (ε, k; z, μ),

kC (ε, k, z, μ) if ξ > ξT (ε, k; z, μ).
(22)

Based on (22), we now explicitly define the evolution of the plant distribution, μ0 =

Γ (z, μ). This law of motion is somewhat involved because we have to account for those

plants that can reach their unconstrained target capital stock without paying fixed costs.

For all
³
εl,bk

´
∈ S, define the indicator function J (x) = 1 for x = 0; J (x) = 0 for x 6= 0,

and we have

μ0
³
εl,bk

´
=

NεX

k=1

πε
kl

"
J
³
bk − k∗ (εk, z, μ)

´ÃZ

S
G
¡
ξT (εk, k; z, μ)

¢
μ (εk, dk)

+

Z

[ γ
1−δ+bk

∗(εk,z,μ),
γ

1−δ+ak
∗(εk,z,μ)]∩K

μ (εk, dk)

!
(23)

+

Z

[0, γ
1−δ+bk

∗(εk,z,μ))∩K

£
1−G

¡
ξT (εk, k; z, μ)

¢¤
J
³
bk − kC (εk, k, z, μ)

´
μ (εk, dk)

+

Z

( γ
1−δ+ak

∗(εk,z,μ), ∞)∩K

£
1−G

¡
ξT (εk, k; z, μ)

¢¤
J
³
bk − kC (εk, k, z, μ)

´
μ (εk, dk)

#
.
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The first two lines in equation (23) apply only when bk = k∗ (εk, z, μ), for each given εk,

k = 1, . . . ,Nε. The first line captures plants that pay fixed costs to adjust to this target.

The second line reflects all plants (εk, k) that achieve this target without paying fixed costs,

because k∗ (εk, z, μ) ∈ Λ (k). The third and fourth lines of the equation apply when bk is
not the target capital stock for the given idiosyncratic shock value. The set of plants in the

third line are those that have drawn adjustment costs above their threshold, ξT (εk, k; z, μ),

and face a binding upper constraint on their capital choice, as k∗ (εk, z, μ) >
γ

1−δ+bk. Of

these plants, those with bk = kC (ε, k, z, μ) adjust to bk. The fourth line represents plants
not paying adjustment costs that have current capital too high to allow them to reach the

unconstrained target; they adopt bk if bk = kC (ε, k, z, μ).

Finally, the market-clearing level of consumption is now given by

C =

Z

S

³
zεF (k,N (ε, k; z, μ))−G

¡
ξT (ε, k; z, μ)

¢ h
γk∗ (ε, z, μ)− (1− δ) k

i
(24)

−
h
1−G

¡
ξT (ε, k; z, μ)

¢ih
γkC (ε, k, z, μ)− (1− δ) k

i´
μ (d [ε× k]) .

This equation, alongside that determining total hours worked in (13), defines the equilib-

rium output price and wage in equations (4) and (5).

5.2 Calibration and model solution

Our goal in extending the lumpy investment model is to provide a better match with

the microeconomic data on establishment-level investment. Recall from table 10 that the

full lumpy model (panel B, row 1) was more successful than its common productivity

counterpart in that it produced some plant-level observations of negative investment and

negative spikes. However, it still dramatically overpredicted the extent of inaction, with

inactive investments representing more than three-quarters of plant-year observations. (By

contrast, the data exhibit such low investment rates only 8 percent of the time.) Conse-

quently, the model had far too few observations of active positive and negative investment.

The extended full lumpy model maintains all parameter values of the original full model

other than those involving the capital adjustment costs. Here we depart from existing quan-

titative (S, s) investment studies (for example, Cooper and Haltiwanger (2002), Thomas

(2002) and Khan and Thomas (2003)) by assuming that plants do not face capital adjust-

ment costs when they undertake nonzero investments that are sufficiently small relative

to their existing capital stocks. To implement this, we assume symmetric bounds for the
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cost-exempted investment rates; −a = b. Next, we select the value of b, alongside the

upper support on adjustment costs, ξ, to best match three moments from the plant-level

investment data: the average fractions of plants exhibiting inaction, positive investment

spikes and negative investment spikes. This leads to a choice of −a = b = 0.015 and

ξ = 0.00975.

We solve the extended model using broadly the same numerical method that we used

in solving the original equilibrium lumpy investment models. However, because plants

that do not pay their fixed costs now typically invest to future capitals that depend upon

both their current stock and their current productivity, the size of the distribution in the

aggregate state vector is dramatically increased.17 In equilibrium, this object involves a

support with 2250 values of capital across the 11 idiosyncratic shock levels. Nonetheless,

when we solve this model in general equilibrium following the approach discussed in section

3.4, no forecasting coefficient changes by more than 0.002 relative to those reported in table

4 for the original full lumpy model. Furthermore, the adjusted R-squares and standard

errors in the forecasting regressions are either unchanged or marginally improved. These

similarities suggest that reducing the incidence of nonconvex adjustment costs has little

effect on the aggregate economy, as will be confirmed in the results below.

5.3 Results

As our motive for developing this extension was to improve the lumpy investment

model’s predictions for average plant-level investment rates, we begin by discussing the

plant results under partial and general equilibrium in table 13. The most notable feature

of the table is that the distance between model and data is now largely eliminated. The

average fraction of plants exhibiting inaction, at 0.048, is just 3 percentage points below its

empirical value of 0.081, while it is 73 percentage points below its exaggerated counterpart

from the original full lumpy model.

Consider a plant with current capital sufficiently far from its target capital that it

cannot reach this target without incurring a fixed adjustment cost. If it chooses not to pay

its fixed cost, it can nonetheless undertake an adjustment of up to 1.5 percent of its current

stock toward the target. When this plant undertakes such a constrained investment, it is

17By contrast, in the original model where all nonzero investments incurred fixed costs, the future capital

of any plant not paying its fixed cost was simply 1−δ
γ
times its current stock, regardless of its productivity.
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inactive only if the bounds on its constrained adjustment choice do not bind, and the

investment rate that achieves its target is below 1 percent in absolute value. By contrast,

in the original lumpy model, any plant not paying its fixed cost was necessarily inactive.

Indeed, when we compare the plant-level moments of the full lumpy model of table10

with those of its extended counterpart in table 13, we see that the majority of plants

that were previously inactive are now engaged in positive investment. Such plants are

partly offsetting the effects of depreciation in periods when they choose not to engage

in large investments that would attain their target but incur a fixed cost. As a result,

the average fraction of plant-year observations that have positive investment rates, at

0.72, is now close to its empirical counterpart. At the same time, plants can now also

undertake small negative adjustments while avoiding their fixed costs. Moreover, the ability

to undertake small positive investments exempt from adjustment costs in the future reduces

their reluctance to disinvest after a fall in productivity. Consequently, the observation of

negative investment rates has also risen substantially, and now exceeds the data by 13

percentage points.

Aside from its better ability to explain the average establishment-level moments, the

extended model changes little in our main findings about idiosyncratic shocks. In section

4.3.3, we saw that market-clearing movements in real wages and interest rates have little

effect on either the average distribution of plant-level investment rates or their persistence.

The second and third rows of table 13 reveal that this is still very much the case. However,

as before, time-series variations in the plant investment distribution are quite sensitive to

equilibrium.18 Moreover, the role of nonconvex adjustment costs under idiosyncratic shocks

is unaltered in the extended model. Comparing table 13 to the full frictionless model in

panel A of table 10, we see that adjustment costs continue to reduce the occurrence of

investment spikes and drive an asymmetry in the observation of positive versus negative

spikes.

The extended model does not alter our findings regarding aggregate investment dy-

namics; its aggregate moments are largely indistinguishable from those of the original full

lumpy model. Examining row 2 of table 14, note that the extended lumpy model continues

to exhibit more persistence, lower volatility, and more skewness and kurtosis in its partial

18Standard deviations of these time-averaged cross-sectional moments under partial versus general equi-

librium are available on request. As was the case in table 12 for the baseline lumpy investment models,

these show that changes in the plant investment distribution are sharply reduced in general equilibrium.
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equilibrium aggregate investment rates than does the full frictionless model without adjust-

ment costs (table 5A, row 1). As before, market-clearing changes in real wages and interest

rate induce a sharp rise in persistence and a sharp reduction in volatility and nonlinear-

ities. Indeed, the extended model’s general equilibrium results for aggregate investment

rates match those in the rows of table 6 very closely. Finally, in table 15, we see that,

under both partial and general equilibrium, the business cycle behavior of output, invest-

ment’s share, employment and capital are all unchanged relative to their lumpy investment

counterparts in rows 2 and 4 of table 8.

6 Concluding Remarks

We have studied partial and general equilibrium models of lumpy investment with and

without persistent differences in plants’ total factor productivity. In partial equilibrium, we

found that lumpy investment caused increased persistence and nonlinearities in aggregate

investment, although nonlinearities were reduced in the presence of persistent idiosyncratic

shocks. Across all models, investment persistence rose substantially with the inclusion

of general equilibrium changes in relative prices, and this persistence was quantitatively

unaffected by the presence of either capital adjustment costs or idiosyncratic productivity

differences. Finally, our equilibrium models of lumpy investment exhibited little aggregate

nonlinearity relative to the corresponding models without adjustment costs.

Examining investment at the plant, we found that the lumpy investment model suc-

ceeded in matching the average distribution of investment rates in the establishment data

only when it was extended to allow for both persistent idiosyncratic productivity shocks

and some low-level investment rates not subject to adjustment costs. Across models, we

found that this average cross-sectional distribution was relatively unchanged by equilibrium

if either fixed adjustment costs or plant-specific productivities were present. However, ir-

respective of these idiosyncratic variables, we saw that market-clearing changes in real

wages and interest rates had important consequences for the higher moments of the plant

investment distribution. Most notably, they reduced variability in the fractions of plants

undertaking large capital adjustments, as well as the size of these investments, thus elimi-

nating the potentially large distributional changes associated with aggregate nonlinearities.

Finally, when present, idiosyncratic productivity shocks appeared to play a leading role in

explaining investment at the plant, and they completely overturned the conventionally
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understood role of fixed capital adjustment costs, particularly with regard to investment

spikes.

In concluding, it may be useful to reiterate why the heterogeneity caused by idiosyn-

cratic shocks or nonconvex adjustment costs makes the time-averaged distribution of plant

investment rates so insensitive to equilibrium. While endogenous changes in interest rates

dampen movements in aggregate investment demand to deliver a smooth household con-

sumption path, consumption is almost entirely unaffected by the reallocation of capital

from one plant to another at a point in time in response to idiosyncratic variables. In-

deed, when plants’ output is perfectly substitutable, as it is in all of the models examined

here, this reallocation of resources across plants is optimal from the perspective of house-

holds. Nonetheless, period-by-period movements in the distribution of plant investment

rates arise not as the reallocative effects of idiosyncratic variables, but rather from changes

in the economy’s aggregate state. Such changes do affect consumption; thus, they imply

relative price adjustments that, in turn, influence establishment-level decisions. It is for

this reason that equilibrium analysis is vital in understanding the dynamics of investment

at every level of aggregation.
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Appendix: Idiosyncratic shocks in the frictionless model

In this appendix, we derive several analytical results for the full frictionless model char-

acterized by persistent plant-specific total factor productivity shocks and no nonconvex

costs of capital adjustment. In lemma 1, under the assumption of Cobb-Douglas pro-

duction, we establish that the plant decision rule for next period’s capital stock may be

expressed as the product of two functions whose arguments are the current plant-specific

productivity term and the aggregate state, respectively. Thus, in the absence of capital

adjustment costs, a plant’s decision rule for future capital is independent of its current

capital. Moreover, this decision rule is separable in plant-level and aggregate variables.

It is then immediate that, given any initial distribution of plants, future distributions

involve only Nε time-varying values of capital with positive mass. The separability of

plants’ capital stock decision rules into a plant-specific and an aggregate component implies

that the shares of the aggregate capital stock across plant types are time-invariant. In other

words, the distribution of capital across plants, once normalized, satisfies a time-invariance

property. This time-invariance property implies that in any period the entire distribution

of capital, and thus production, may be described using a time-invariant share distribution

and the aggregate capital stock, as established in lemma 2. As a result, the aggregate capital

stock is sufficient to fully characterize variation in the endogenous state vector of the full

version of the frictionless model, just as under common productivity. Moreover, it follows

that all aggregate dynamics of the full model may be recovered using a representative firm

approach, although for brevity we omit the details of this analysis.

We begin our analysis of the frictionless model by describing the problem of a plant.

In the absence of capital adjustment costs, the value of any plant of type (εk, k) will solve

the following functional equation:

v1 (εk, k; zi, μ) = max
n,k0

µ
ziεkF (k, n)− ω (zi, μ)n− γk0 + (1− δ) k

¶
(25)

+
NzX

j=1

πz
ijdj (zi, μ)

NεX

l=1

πklv
1
¡
εl, k

0; zj , μ
0
¢
,

subject to μ0 = Γ (zi, μ). Let N (εk, k; zi, μ) describe the plant’s employment choice and

K (εk, k; zi, μ) its decision rule for next period’s capital stock. The description of house-

holds in section 2.2 of the text is unchanged.
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A recursive competitive equilibrium is a set of functions
³
ω, (dj)

Nz

j=1 , ρ1, ρ0, v
1,N,K,W,C,Nh,Λ,Γ

´

such that plants and households maximize their expected values and the markets for assets,

labor and output clear:

1. v1 satisfies (25) and (N,K) are the associated policy functions for plants.

2. W satisfies (3) and
¡
C,Nh,Λ

¢
are the associated policy functions for households.

3. Λ (εl, k
0, μ; z, μ) = μ0 (εl, k

0).

4. Nh (μ; z, μ) =
R
S N (ε, k; z, μ)μ(d [ε× k]).

5. C (μ; z, μ) =
R
S

³
zεF (k,N (ε, k; z, μ))− γK (ε, k, ξ; z, μ) + (1− δ) k

´
μ(d [ε× k]).

6. μ0 (εl, B) =
R
{(εk,k) |K(εk,k;z,μ)∈B} π

ε
klμ (d [εk × k]) defines Γ.

A Plant’s capital decision rule

Let α ∈ (0, 1) represent capital’s share of production and ν ∈ (0, 1) be labor’s share,
where α+ ν < 1. The choice of employment, n, solves maxn (sk

αnν − ωn), where s = zε

and ω is the real wage. This yields the employment decision rule n =
¡
νskα

ω

¢ 1
1−ν , allowing

us to express production as y = s
1

1−ν k
α
1−ν

¡
ν
ω

¢ ν
1−ν . Production net of labor costs is then

given by the following:

y − ωn = (1− ν) s
1

1−ν k
α
1−ν

³ ν
ω

´ ν
1−ν

. (26)

Substituting (26) into (25), we remove the static employment decision:

v1 (εk, k; zi, μ) = max
k0

µ
(1− ν) [ziεk]

1
1−ν k

α
1−ν

µ
ν

ω (zi, μ)

¶ ν
1−ν

(27)

−γk0 + (1− δ) k

¶
+ β

NzX

j=1

πz
ijdj (zi, μ)

NεX

l=1

πklv
1
¡
εl, k

0; zj , μ
0
¢
.

The first-order condition is

−γ + β
NzX

j=1

πz
ijdj (zi, μ)

NεX

l=1

πε
klD2v

1
¡
εl, k

0; zj , μ
0
¢
= 0.
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Combining this with the Benveniste-Scheinkman condition below,

D2v
1 (εk, k; zi, μ) =

µ
α [ziεk]

1
1−ν k

α
1−ν−1

µ
ν

ω (zi, μ)

¶ ν
1−ν

+ (1− δ)

¶
,

we have a stochastic Euler equation for capital:

γ =
NzX

j=1

πz
ijdj (zi, μ)

NεX

l=1

πε
kl

µ
α [zjεl]

1
1−ν

¡
k0
¢ α
1−ν−1

µ
ν

ω (zj , μ0)

¶ ν
1−ν

+ (1− δ)

¶
. (28)

Define the following terms:

L0 (εk) =

Ã
NεX

l=1

πε
kl (εl)

1
1−ν

! 1−ν
1−(α+ν)

(29)

L1 (zi, μ) =

⎛
⎜⎜⎝
γ −PNz

j=1 π
z
ijdj (zi, μ)

µ
αz

1
1−ν
j

³
ν

ω(zj ,μ0)

´ ν
1−ν

PNz
j=1 π

z
ijdj (zi, μ)

µ
1− δ

¶

⎞
⎟⎟⎠

1−ν
α+ν−1

. (30)

Simplification of (28) and use of the definitions in equations (29) - (30) proves the

following.

Lemma 1 The capital decision rule for a plant, K (εl, k; zi, μ), is independent of k and

takes the form L0 (εl)L1 (zi, μ).

B Aggregation

The result that plants’ future capital stocks are independent of their current capital

stocks is the central mechanism behind our aggregation result. This result is not shared

by the lumpy investment model because of the inaction arising from its fixed adjustment

costs.

We next exploit the result that the ratio of capital across any two plants depends only

on their lagged productivity levels to describe how the dynamics of this economy may be

solved as a standard optimal growth model, with the aggregate state vector effectively

reduced to simply the aggregate capital stock and exogenous productivity.

39



Let H = (h1, . . . , hNε)
T be the vector representing the time-invariant distribution of

idiosyncratic shock values solving

H =

¯̄
¯̄
¯̄
¯̄
¯̄
¯

πε
1,1 πε

1,2 · · · πε
1,Nε

πε
2,1 πε

2,2 · · · πε
2,Nε

...
...

...

πε
Nε,1

πε
Nε,2

· · · πε
Nε,Nε

¯̄
¯̄
¯̄
¯̄
¯̄
¯

H.

Since lemma 1 proves that capital decision rules are independent of current capital, it

follows that all plants with the same current idiosyncratic shock value, εl, will choose the

same capital stock for next period, kl = L0 (εl)L1 (zi, μ), l = 1, . . . , Nε. Thus, there will be

Nε capitals stock values with positive mass next period, and hl plants, all currently having

the idiosyncratic shock value εl, will begin the next period with kl. Define the mean of

this distribution of capital K 0 =
PNε

l=1 hlk
0
l. Using lemma 1, we know

K 0 =
NεX

l=1

hlL0 (εl)L1 (zi, μ) . (31)

Toward establishing a time-invariant relative distribution of plants over capital, it is useful

to define the following share terms:

χm ≡
L0 (εm)PNε

l=1 hlL0 (εl)
, m = 1, . . . , Nε. (32)

Define the vector of these share terms as χ ≡
¡
χ1, . . . , χNε

¢
.

While all plants with the same current idiosyncratic shock value will choose a common

capital stock for next period, their subsequent idiosyncratic productivities will differ. Let
eH describe the two-dimensional distribution of plants over εt−1 and εt. An element of this

Nε ×Nε matrix, ehlm, represents the number of plants that had εt−1 = εl and εt = εm:

ehl,m = πl,mhl, for l = 1, . . . ,Nε and m = 1, . . . , Nε. (33)

In any period t+1, where t ≥ 0, the distribution of plants is then completely characterized
by eH and χ together with the aggregate capital stock, Kt+1. This establishes lemma 2

below.

Lemma 2 Let K be the aggregate capital stock, and define kl ≡ χlK, l = 1, . . . , Nε. For

each εm, m = 1, . . . , Nε, μ (εm, kl) = ehl,m ≥ 0, and elsewhere μ = 0.

40



Thus, the distribution of plants over both idiosyncratic productivity levels and capital

stocks has N2
ε elements in all. More importantly, this distribution is completely character-

ized by two time-invariant objects, eH and χ, and the aggregate capital stock. It follows,

then, that the aggregate state vector of the full frictionless model has only two time-varying

elements, aggregate capital and exogenous aggregate productivity.
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 Figure 1: Adjustment responses in common productivity lumpy model
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 Figure 2: Asymmetries and amplification



Figure 3: Stationary state distribution and hazard in full lumpy model



Figure 4: Adjustment responses to aggregate shocks in the full model



Table 1.  Common parameter choices 

γ β δ α ν Α ρz σ 

1.016 0. 977 0.069 0.256 0.640 2.400 0.8254 0.0124

 
 
 

Table 2.  Plant-level investment rate data 

Inaction Active Positive Active Negative Positive Spike Negative Spike

0.081 0.800 0.104 0.180 0.014 
 

NOTE. – Moments based on the Longitudinal Research Database derived by Cooper and Haltiwanger (2002).  Plant-level 

investment-to-capital ratio, i/k, moments are as follow.  Inaction: fraction of plant-year obs. with |i/k| < 0.01; Active 

Positive: fraction of obs. with i/k ≥ 0.01; Active Negative: fraction of obs. with i/k ≤ - 0.01; Positive Spike: fraction of 

obs. with i/k > 0.20; Negative Spike: fraction of obs. with i/k < - 0.20. 

 
 

Table 3.  Forecasting rules in common productivity lumpy investment model  

 z1  (302 obs.) β1 β2 S.E. R2 

  m1’
 0.019  0.797 0.24 e-3 0.99990 

p  0.981 -0.396 0.15 e-3 0.99985 

     

 z2  (1158 obs.) β1 β2 S.E.   R2 

  m1’
 0.029  0.798 0.25 e-3 0.99989 

p  0.967 -0.391 0.15 e-3 0.99985 

     

 z3  (1894 obs.) β1 β2 S.E.   R2 

m1’
  0.040  0.798 0.25 e-3 0.99990 

p  0.953 -0.387 0.13 e-3 0.99988 

     

 z4  (1300 obs.) β1 β2 S.E. R2 

m1’  0.051  0.797 0.20 e-3 0.99993 

p  0.938 -0.383 0.11 e-3 0.99990 

     

 z5  (346 obs.) β1 β2 S.E.   R2 

m1’  0.063  0.795 0.19 e-3 0.99994 

p  0.924 -0.380 0.10 e-3 0.99993 

  
        

       NOTE. – Forecasting rules are conditional on current productivity, zi.  Each regression takes the form 

       log (y) = β1 + β2 log (m), where y= m’ or p. 



 
Table 4. Forecasting rules in full lumpy investment model 

 z1  (302 obs) β1 β2 S.E.  R2 

  m1’
 0.021  0.796 0.22 e-3 0.99992 

p  0.976 -0.396 0.07 e-3 0.99997 

     

 z2  (1158 obs) β1 β2 S.E. R2 

  m1’
 0.032  0.797 0.23 e-3 0.99991 

p 0.962 -0.391 0.07 e-3 0.99997 

     

 z3  (1894 obs) β1 β2 S.E. R2 

m1’
 0.043  0.797 0.22 e-3 0.99992 

p 0.948 -0.387 0.06 e-3 0.99997 

     

 z4  (1300 obs) β1 β2 S.E. R2 

m1’ 0.054  0.796 0.18 e-3 0.99994 

p 0.933 -0.383 0.05 e-3 0.99998 

     

 z5  (346 obs) β1 β2 S.E.   R2 

m1’ 0.066  0.794 0.17 e-3 0.99995 

p 0.919 -0.380 0.04 e-3 0.99999 

  
        

       NOTE. – Forecasting rules are conditional on current productivity, zi.  Each regression takes the form 

       log (y) = β1 + β2 log (m), where y= m’ or p. 

  



 Table 5.  Distribution of aggregate investment rates in partial equilibrium  

 Persistence
Standard 
Deviation 

Skewness Kurtosis 

A.  full models (large idiosyncratic shocks) 

Frictionless - 0.092 0.105 0.541 2.099 

Lumpy Investment   0.223 0.066 1.314 4.527 

B.  common productivity models 

Frictionless - 0.092 0.105 0.541 2.099 

Lumpy Investment   0.227 0.072 2.324 8.643 

 

 

Table 6.  Distribution of aggregate investment rates in general equilibrium  

 Persistence 
Standard 
Deviation 

Skewness Kurtosis 

Data   0.706 0.008 - 0.182 - 0.743 

                             A.  full models (large idiosyncratic shocks) 

Frictionless   0.627 0.008   0.086   0.316 

Lumpy Investment   0.636 0.008   0.098   0.297 

                                       B.  common productivity models 

Frictionless   0.627 0.008   0.086   0.316 

Lumpy Investment   0.638 0.008   0.103   0.293 

      NOTE. – Data is U.S. annual private investment-to-capital ratio from BEA fixed asset and GDP tables 1954-2002. 

 

 

Table 7.  Price effects in the lumpy investment models  

 
interest 

rate 
wage 

target 
capital 

total 
adjustors 

aggregate 
investment rate

             A. Rises following a 2 standard deviation rise in TFP: Common Productivity 

Partial eq.            --             -- 33.3 56.0 46.5 

General eq. 2.83 2.72   3.6   4.0   2.4 

             B. Declines following a 2 standard deviation fall in TFP: Common Productivity 

Partial eq.            --             -- 25.5 15.0 15.7 

General eq. 2.77 2.65   3.7   4.1   2.1 

             C. Rises following a 2 standard deviation rise in TFP: Full 

Partial eq.            --             -- 35.9 35.9 34.6 

General eq. 2.84 2.73   3.6   2.5   2.4 

             D. Declines following a 2 standard deviation fall in TFP: Full 

Partial eq.            --             -- 25.7   1.0 14.3 

General eq. 2.76 2.64   3.6   2.1   2.1 

NOTE. – Percentage deviations relative to steady state are reported for target capital.  Remaining columns are 

percentage point differences from steady state. 



Table 8. Aggregate moments in the full models 

  Z Y I/Y  N K 

A.  Standard Deviations Relative to Output 

Frictionless:  General Equilibrium 0.587 1.950   0.537 0.670 0.498 

    Lumpy Investment:  General Equilibrium 0.590 1.940   0.531 0.663 0.499 

Frictionless:  Partial Equilibrium 0.137 8.338   2.768 1.000 1.093 

    Lumpy Investment:  Partial Equilibrium 0.174 6.571   2.003 1.000 1.020 

B.  Contemporaneous Correlations with Output 

Frictionless:  General Equilibrium 1.000 1.000   0.957 0.958 0.020 

    Lumpy Investment:  General Equilibrium 1.000 1.000   0.959 0.959 0.019 

Frictionless:  Partial Equilibrium 0.707 1.000 -0.218 1.000 0.938 

    Lumpy Investment:  Partial Equilibrium 0.718 1.000   0.019 1.000 0.888 
 

NOTE. – For Y, we report the percentage standard deviation; for I/Y, we report the standard deviation 

relative to Y, and for Z, N, and K, we report percentage standard deviations relative to Y.   

 
 

 

 

 

Table 9.  Aggregate moments in the common productivity models 

  Z Y I/Y  N K 

A.  Standard Deviations Relative to Output 

Frictionless:  General Equilibrium 0.587  1.950   0.537 0.670 0.498 

    Lumpy Investment:  General Equilibrium 0.590 1.939   0.533 0.665 0.502 

Frictionless:  Partial Equilibrium 0.137 8.338   2.748 1.000 1.093 

    Lumpy Investment:  Partial Equilibrium 0.168 6.804   2.117 1.000 1.063 

B.  Contemporaneous Correlations with Output 

Frictionless:  General Equilibrium 1.000 1.000    0.957 0.958 0.021 

    Lumpy Investment:  General Equilibrium 1.000 1.000   0.960 0.960 0.019 

Frictionless:  Partial Equilibrium 0.707 1.000 -0.218 1.000 0.938 

    Lumpy Investment Partial Equilibrium 0.687 1.000 -0.029 1.000 0.897 
 

NOTE. – For Y, we report the percentage standard deviation; for I/Y, we report the standard deviation 

relative to Y, and for Z, N, and K, we report percentage standard deviations relative to Y.   
   



 Table 10. General equilibrium effects of idiosyncratic shocks on plant-level investment 

  Inaction
Positive
Spike 

Negative
Spike  

Positive
Invest. 

Negative 
Invest. 

Invest. 
Persistence

LRD Data 0.081 0.180 0.014 0.800 0.104   0.007 

 A.  Frictionless models 

Full 0.004 0.390 0.141 0.585 0.411 -0.234 

Common productivity 0.000 0.000 0.000 1.000 0.000   0.627 

 B.  Lumpy Investment models 

Full 0.777 0.186 0.014 0.199 0.024 -0.156 

Common productivity 0.776 0.198 0.000 0.224 0.000 -0.221 
 

NOTE. – LRD data reproduced from Cooper and Haltiwanger (2002).  Inaction: fraction of plant obs. with 

|i/k |<0.01; Positive Spike: fraction of obs. with i/k > 0.20; Negative Spike: fraction of obs. with i/k < - 0.20; 

Positive Invest.:  fraction of obs. with i/k ≥ 0.01; Negative Invest.: fraction of obs. with i/k ≤ - 0.01; Invest. 

Persistence: first-order autocorrelation of plant-level investment rates.    
 

 

 

Table 11. Partial equilibrium effects of idiosyncratic shocks on plant-level investment 

  Inaction
Positive
Spike 

Negative
Spike  

Positive
Invest. 

Negative 
Invest. 

Invest. 
Persistence

 A.  Frictionless models 

Full 0.000 0.398 0.144 0.598 0.402 - 0.216 

Common productivity 0.000 0.145 0.009 0.856 0.144 - 0.092 

 B.  Lumpy Investment models 

Full 0.764 0.188 0.024 0.201 0.036 - 0.145 

Common productivity 0.782 0.194 0.000 0.216 0.002 -0.192 
 

 

 

 

 

Table 12. Equilibrium and the dynamics of plant investment rates 

Standard 
Deviation of: 

+ spike 
  obs. 

- spike 
  obs. 

+ i/k 
   obs. 

- i/k 
   obs. 

+ spike 
  size 

- spike 
  size 

+ i/k 
  size 

- i/k 
  size 

                                                   A.  Common productivity lumpy investment models                

Partial Eq. 0.12 0.01 0.12 0.01 0.11 0.01 0.11 0.03 

General Eq. 0.02 0.00 0.01 0.00 0.02 0.00 0.02 0.00 

                                                   B.  Full lumpy investment models                                          

Partial Eq. 0.13 0.08 0.13 0.13 0.06 0.02 0.06 0.03 

General Eq. 0.05 0.01 0.00 0.02 0.03 0.00 0.01 0.01 

NOTE. –Columns 1 - 4 report standard deviations of the fraction of plants exhibiting positive spikes, 

negative spikes, positive investment and negative investment over a 5000 period simulation.  Columns 5 – 8 

report standard deviations of the mean investment size within each category over the same simulation.  



Table 13. Plant-level investment in extended full lumpy model 

  Inaction
Positive
Spike 

Negative
Spike  

Positive
Invest. 

Negative 
Invest. 

Invest. 
Persistence

LRD Data 0.081 0.180 0.014 0.800 0.104   0.007 

General Equilibrium 0.048 0.180 0.015 0.720 0.232 -0.148 

Partial Equilibrium 0.052 0.184 0.025 0.688 0.260 -0.137 
 

NOTE. –Extended full lumpy model has an upper support on adjustment costs of 0.00975, and zero 

adjustment costs for investment rates satisfying  |i/k |< 0.015.  All other parameters are identical to those for 

the full lumpy model in previous tables.  

 

 

 

 
Table 14.  Distribution of aggregate investment rates in extended full lumpy model 

 Persistence Standard 
Deviation

Skewness Kurtosis 

General Equilibrium    0.634 0.008  0.096  0.294 

Partial Equilibrium   0.207 0.067 1.265 4.338 

 

 

 
 

Table 15. Aggregate moments in extended full lumpy model 

  Z Y I/Y  N K 

A.  Standard Deviations Relative to Output 

General Equilibrium 0.589 1.943   0.533 0.665 0.500 

Partial Equilibrium 0.171 6.676   2.043 1.000 1.026 

B.  Contemporaneous Correlations with Output 

General Equilibrium 1.000 1.000   0.959 0.959 0.020 

Partial Equilibrium 0.718 1.000   0.005 1.000 0.893 

 

NOTE. – For Y, we report the percentage standard deviation; for I/Y, we report the standard deviation  

relative to Y, and for Z, N, and K, we report percentage standard deviations relative to Y.   
   

 


