
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1996

IDIOT - Users Guide IDIOT - Users Guide

Mark Crosbie

Bryn Dole

Todd Ellis

Ivan Krsul

Eugene H. Spafford
Purdue University, spaf@cs.purdue.edu

Report Number:
96-050

Crosbie, Mark; Dole, Bryn; Ellis, Todd; Krsul, Ivan; and Spafford, Eugene H., "IDIOT - Users Guide" (1996).

Department of Computer Science Technical Reports. Paper 1304.

https://docs.lib.purdue.edu/cstech/1304

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

IDIOT - USERS GUIDE

Mark Crosbie

Bryn Dole

Todd Ellis

Ivan Krsul

Eugene H. Spafford

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

CSD-TR 96·050

September 1996

IDIOT - Users Guide.

Mark Crosbie mcrosbie@cs.purdue.edu

Bryn Dole dole@cs.purdue.edu

Todd Ellis ellista@cs.purdue.edu

Ivan Krsul krsul@cs.purdue.edu

Eugene Spafford spaf@cs.purdue.edu

Technical Report TR-96-050

September 4, 1996

Abstract

This manual gives a detailed technical description of the IDIOT intrusion detection system from the COAST

Laboratory at Purdue University. It is intended to help anyone who wishes to use, extend or test the IDIOT

system. Familiarity with security issues, and intrusion detection in particular, is assumed.

Chapter 1

Introduction

This document is the users guide for the IDIOT intrusion detection system developed at the COAST

Laboratory.

This section will remain shon because a much better description of what IDIOT is, the design goals

and the model it works undeccan be found in the documents included in the doc/IDIOT directory in the

IDIOT distribution.

The files in that directory are:

kumar-spaf-overview.ps [KS94] This report examines and classifies the characteristics of signatures used

ill misuse intrusion detection. The document describes a generalized model for matching intrusion

signatures based on Colored Petri Nets. This is the first document you should read. We recommend

that you stop reading this guide now and return here when you have finished reading that document.

kumar-intdet-phddiss.ps [Kum95] Sandeep Kumar's original Ph.D. thesis. An in-depth description of

intrusion detection, the theoretical considerations behind IDIOT, and a description of the model that

was used to implement IDIOT.

taxonomy.ps [KS95] This report classifies UNIX vulnerabilities based on the signatures required to detect

them, and gives the best overview on how to write IDIOT patterns with examples from real UNIX

vulnerabilities. We recommend that you read this document last before you start writing patterns of

your own.

IDIOT_work.ps [ES96b] This report outlines the structure of IDIOT, explaining how the components fit

and work together. It also describes results from profiling IDIOT against two audit trails and suggests

possible approaches to optimizing the program.

debugging.lDIOT.ps [ES96a] This report describes changes made to IDIOT code which allow a greater

flexibility in the amount and type of debugging information generated. It also describes a sample

IDIOT program that has been included and a utility for separating the debugging information based

on its origin, pattern or server.

Chapter 2

Quick Start

The infonnation in this chapter will help you get IDIOT running as fast as possible. However, we suggest

that you read the rest of the material in this document before you attempt to use IDIOT.

The following steps must be executed to install IDIOT correctly:

• Read this document at least once

• Edit the Makefile to set the appropriate values for your site

• Give the command ''make C2_appl"

• Make sure that praudi t is in your path

• Run IDIOT

For the rest of this section we give an example of how to install and run IDIOT for the first time.

We start in a directory that contains only the IDIOT tar file:

lolariD. 51 , pwd

I •..,rc!or Ito"""" /Qoll"",/IDlor

" ..lad" 5 ~ , 15
i d i o ~ . tar

Extract the files from the tar file:

solaria 5J , tlr "tv idiot .•I.
x doc. 0 byou, 0 upe blocks
x doc/lllllnud. 0 bytn, 0 to.,., blocks

" d o c / " " " , u o l / d o c o . p ~ , !JS6S6 b y ~ e o . 165 ~ o " " bloc","

"docIIDIC1I'. 0 by~u. 0 tap" blot","
" dot/IDlarlku:llor_J.ntcl.t_phddlos.p~. 903656 b y t e ~ . 1766 to"" blot","

"doC/IDIOTIl<u=ae-apd-tvorvi"".pa, eH7BO byteo. lll6 ~ a " " , blocke
"dot/IDIOT/t""onomy,po, 645109 byta•• 1260 to"" blotke

" C ~ J l u ~ e " " " . 0 byu•• 0 ta"", blocl<.o
" C 1 " ' p a t t e r n 5 / t r e a t l n l l " _ ~ a t l . c 1 _ . c r i p t . , 440 b y ~ n . 1 u"" b l o t k ~

" C1....pa~totTUl/"""c"t1nll"-prOll" •• 1616 bytu, 4 topo blonl<.o
" C2...,POttotnSllpr_col'Y_filu. 1295 b y t o ~ . 3 topo blocks

" C2J1<1.tcern5lprint-llIknodo. 916 bytea. 2 to.,., bloC","
" C2...Il"ttorna/utuid_wriu._ao~u.ld, 3026 bytea. 6 tape blocks
x C2J1<ltterna/wr.ltino-to-""ecutolllo_Hl•• , 2671 bytaa. 6 topo block.!;

"C2..,Il<1ttern.a/writJ.nll_to_noncntned_fil••. 1711 b y ~ •••• tapo biock.o

J< app., 0 by~e~. 0 tap" blocks

" oppa/profile,C. 1831 bytn, 4 Up" block.o
" app./jill.C. 1625 by to., 4 top" blocl<.o

" oth.r_Co~ottotnS, 0 bytn, 0 tOpo block.o
" othar_CoJlottarna/3.failod_lO'\llna, 1166 b y ~ .. , 3 tapo blocka

r othar_C2J1UtotnS/occ.sa-opon-tO-~""",-path-dlU-lnode •• 4512 by.... 9 topa bloclts

J< othor_C2...pottorno/bin-lIlOil. 2534 by teo. 5 topo bloc""

2

x otbet_C2..-ttcnl:Ofc!mrkc-w115cn. 2813 ~ t 6 tm.,., blocks
x othot_C2..-tteE'J",.{dir-brO>lmer. 1266 byt 3 .0.,., blockD.

x other_C2..-.torn:rfci<mt.£01lcw_s'r'l"_linu. 2938 byteo. 6 tmpa blo.u

x other_C2Jlottemaffoiled-ou. 307 bytoo. 1 .opo bloc""
x otbar_C2..-ttornoff1ngor. 1041 bytu. 3 top<> blocks

x otbor_C2Jl.tltterrnofl". 1525 by too. J tapo blo.""
" other_C2..-tto:m..r;fpouwd._Fat.o.k. 1593 ~ t e o . 4 topo bloc","

" othar_C2..-ttarn.r;fptiv_pgm_in_usaropo.". 575 b:r'tu. 2 topo bloc","

"other_C2J1atteE'J\Ofrcw. 2185 byt..o. 5 topo blocks
" 0.hor_C2Jlottorn.of4etid-PlJIIll'-.ont-apo",,-ahell, 1076 byteS, J tapa blocks

" other_C2...:1'ot.orn.o{oholl_sttip._o.ta.k. 532 ~ t ..o, 2 topo blocks
x orher_C2JlottemsJrftp. 12H bytto. 3 .ope blocks

" other_C2...:1'ottttnaftiming_ottock. 1122 ~ . e . G , 3 "'PO blocks
x othor_C2...l10....nur/writ1ng-to-non"""ad_dot_Lil... 1057 byteo, 3 to"", blocko

.. audit_troi15. 0 ~t ..o. a toplt Mo.""

x oudit_troi!Gf.tenlno;r-aetld-••tipt".audi._trail. 42632 ~ t e o , U tapa block.s
.. audH_troihfextcuting_progo.audit_troil. 20389 bytn. 40 topo blockG

x oudit_ttoiloflpt_cO'PY_file•. audlt_troil. 1125555 ~ t 2199 toPe blocks
.. audit_troibfprint_llIkn.od.a.oudit_ttul, 23070 bytaB, 46 tOplt block.o

" oudit_troi!Gfaatuid-writn-oetuid.oudit_troil. 15496 ~ t ... , 31 taPO blocks

" oudit_troilstwriting-to-exe.utoble-Hlu.audit_trail. B975 ~ t e 4 , 18 tope blotks
"OUcUt_troi!Gfwritln",-to-noncnmad-Lilto.audit_troil. B376 bytn. 17 .apo block.!;
"C2_Sarvtr.C. 15997 by teo. J2 tope blot""

I< Plcliat.h. 2007 bytn. 6 .opo bloc:ko
"potttrn.l. 8072 byteo, 16 tope blockll

"C2_Strvtr.b, H25 byteo. 7 tope blo.1tD

I< &><pt.C. lU48 byto". 29 topo blocks
"proudit.h, J17t bytco. 7 topo blocko

" C2_app1.C. 5500 bytoa. 11 tapo blo.kG

"IP_servet.c. 47532 bytn. 93 taPO blocl<5
" C2_evtnu.h. l22S? by tea. 24 top<> blotkG

" oh.....aud1•.pl. 16986 by...". 34 .aptl block.o
"utilitieo.C, 0086 bytes. 0 tope blocltD

" utUo.h. 3248 bytoa. 7 tOplt bloc:k.o

"HokeHl... 9519 byt..o. 19 top" bloc:ko
" PL_IUst.C. 10B7 by teo. J tap<> blo.""

.. abo_clon.h. 1282 byteo. J topo blocko
"pat.y. 74752 by teo, 116 tope Mo."'"

I< DL.,.llist.h. H45 bytt". J t ..pe blocks
"pattern.h, 14607 bytos. 29 tope blo.1tI;

.. ~ 1 : A 1 l t r e . 24 byt.... 1 t ..pe block.o

oolaria 54 \ 10

C2_Servtr .C
C2_Serve... h

C2_app1.C

C2_""""ta.h
C2J1ottems/
Pl._llht.C

Dl._IUot.h

Dl._li"t.h

D:pt.C
IP_Servor.C

HAkefila

~

Ilh._cloo".h
app..1

audit_tr..ilSI

~ "
idlot.tat

o . h ~ r _ C 2 J l o t t e r n . o f

pat.y

P O t t ~ r n . h

pattern.l

proudic.h
..bcwaudlt.pl·

utilitioa.C
utila.h

Make the C2_appl application:

"olaria 56 \ fuar/locol{gnufJMko C2_oppl

fOpt/smr".p fbln/CC -><pq +d -. C2_app1.C
·C2_appl.C·. line 130, W......ing lAnoch:roni"..I, Pormol argument potternfilt o ~ type cltar'

in .011 to C2..5arvot::pane_fU,,[cltar·1 h beLng paoood conot .h.t·.
·C2_appl.C·. lin.. 13B, NO.": ~ .. ·CC -migration· ~ O t e>Ore On anachroniolllO.

·C2_appl.C·. line 144, Warning lAnaci:>:ronioOl" Formol orgument file of .ype cltar' in cmll

to C2_Serve.. ::dlllnlL..fH.. l"hat·1 is being POSOed eonst chor·.
2 W5rnlng[ol detoeted.

feptfS1J>l"".profb1nfCC -><PI! ~d -t C1_servn.c
·/.... rflne!uclo/oy.. fsy......croa.h·. lino 100: Warning [An...i:>:ronioml: toq>t to ..ad..Hna

.... jor withouc uolDg luncluf.

·/u../in.ludo/ayo/ay"....." ..04.b·. Hno 100, Nato, Type 'CC -",igre.ion· £0.. OIOr .. on

""".h:ron'
·/u../inclucl.. /sya/sy"mocra".b·. lino 109: W..rning [An.o.hronioml: "'ttoq>. to raddin..

<Dinor without u.ing lundef.

·/u.r/in.lude/oystsys......too.h·. Hn.. 115: W..rning [Mo.lltoni""'l: Att....,. to ..adtHne
mokad...... without usinll lunde!.

3 Warning[ol clnectad.

y..." _d -v pat.y
2 rules n"""r r ..duced

contlict., 11 ohittfreduce. 2 roduc"frodu.e
feptfSlllfo'l'profbLnfCC -__d -t -0 yo"c 0 y.tllh.c

·pattern.h·. lin.. 4J2, W......ing lAnach:ronis",], T""'POt..ry Ct..ated for arlJWlll'Rt nawt in

coIl to T.-ble<in.": :pu.hlint').
·pottern.h·. lint 4J2, Note: Typo .ct: - ..igr..c1oo· tar re on ono.hroni
1 W.........ngl.) dou.ted,

1"" pattern.l
fOptfS1J>l"o'I.pro/b.in/CC -__d _. _0 1"".0 l"".yy.t

·pott..m.h·, Hno 4H, w.m.ing PlnachroniaOl]' Tcq>oto.ry ct..Oted lor ..rgument nowt in

coIl to Tobla<int>: :puohlint'l.

3

o yecc.o 1"".0 Il:<Pr.o \

+d -c utllit!ee.C

o-<l C2_Appl.0 C2_Sorvor

-Ill"" -0 C2_oppl

- ~

- ~

- l r w ~ o o l

· p D ~ ~ e r n . h " . line 4)2, " o ~ o : 'I'yPe 'CC - < : > . i l l u ~ l o n · for re on"hronu......
1 Werninq(el d D t e < : ~ e d .

1 0 p ~ f S l l N ' r i " " p r o / b l n / C C _" -lCP\I +d Il:<Pr.C -0 ""Pr.o

·pDtrorn.h". lI.no 432: WDrnin<;l (-":1Achroni"..l: 'l'=p:lruy crDDced lor A r ~ n ~ n _ ~ in
call. ~ a T a b l o ~ i n ~ ~ , , , , , , , , h l l n t ~ l .

· p a ~ t e r n . h " . linD 432: "ote, Type "CC -mil/ra~ion' for more on ""achroniD.....
1 WArninll(DI d e t e c ~ e d .

/ o p ~ / SW""pro/bln/CC
I O p ~ / S l 1 N W " p r o / b l n / C C

"rHit!n.o -ldl

Make sure that the praudi t command in in the execution path.

"Olaci.. , '<hlch pr..u d i ~

f u " r / " b i n / p r a u d i ~

"ol..do. 65 , u~ p..rh_(SPAth l""r/obbll

Run [he C2_appl aplication to test the program. In this case we will compile, link and run a sample

pattern and audit trail shipped with IDIOT. Parse the pattern:

"oluia 51 , _/C2_appl

tini> parae C 2 J 1 A U e r n " / c r e a ~ i n l / - " e t i d - " c r i p t , ,

fAreing Hlo C 2 . . . J l e ~ u r n . a / c r e a ~ i n l l - rid'''cripta

InDide A " ' ~ reduced expr, p r i n ~ t l · l J . e r J.d td Me eucceoefully r o ~ ~ d ' e d Uile h\n·.

u n l f 1 e d . . . r o k - ~ g e ~ J l I J I D I 1 . u n i H e d . . . t c k - ~ l l e t _ r u I . L . . J W { E l l l

ItllIider reduced ",,",r, 1(I(ovo·,£RRll •• 01 "
uniHed_~ok-~"".illtlJlOID("""-~RI1ID(III 'Ii

u n i U e d . . . ~ c k - > a B D i l J T l J ' l l L L J l . ' H l " " " ' · > 0 8 . 1 (III
evo_>08.1.ftE>/HOl1S11 ~ 5111

Parainll ~ r " " " i c l o n clllDOd

.Dtut ->c_
,-

-,
<- ct=od

CC 'pic -G _q _0 c r _ o o ~ i < l J > g m o l . e o cr_aotidJlQ'llO..C

"cr_oni<i...P!l"=o.C'. lI.ne 290, Warninq IAnAcbroniD..l' Fo"""'l ar,"""",nt val o(~ y p e cMr'
in call to C 2 _ c r _ e e ~ l . d - P Q t l l O . _ T o k e n : : a O G l o n _ r o w . . J l A H E [c h u · 1 ie being pareed conn char'.

"cr_"eti<i...P!l"=o.C'. line 290: Note, Typo "CC _mil/ration" (or more on "".chron'''''''.
1 WarnJ.nl/lrl detected.

Done c o ~ U i n l / cr.... ati<l...s>\lmD.C

I""ide croate pattern.

Ina.t.ntiared new" pattern i t""co for cr_.etid....==e

Link the resulting compiled pattern:

tini, dIink /bOlllOo/llOllUlll/IOIO'l'/cr_aatid...P\JmD.ro

Linking tllo I h " " " ' . / l / o l l U l l l / 1 D 1 O ' l ' / c r _ . n i ~ . a o

1""ida create pAttern.

Run the pattern with the corresponding audit trail.

tini. run .udit_traila I c r ~ . t i n l / _ . o t i c : l _ . c r ipt•. ~ u d i t _ t r . i l

Sh......"dlt: ..ill ""ecute the followinq coorolOtld: taU .0 .."dlt_tr.ila/cr.....Un<;I-oet1d-acr,pu .•udit_trail I pnudir -r I
lJ~er ic:l 8n h"" "ucc... fully aotid·r<l. tile /.IOOrdor/ho=ll/o11"'"Ia
lJur id an haa o u c c ~ .. f"lly .ctid·ed file l.toOrdor/ha....190Uwo/hbb.hbb

V.or 1d an ha. autcOD,,(ully "etic:l'ed file l.mordorlh"""'lqol1umftct.ccc
U r ~ r id an Me GucceG.fully . ~ t i d · e d HIe f • ..,rdarlb"""'lqollum/c:lc:li:l..c:Ic:Ii:l.

ShOWAUdit, 110 ot dropp&d ovent" • 147
SbO'olAUc:llt: Could not foU the next ."dit HIe at ./sho...udit.pl line ~ 2 .

NOTE: Ifyou get an error message of the formDon' t handle events of type 0 yet! then

IDIOT was not able to open the audit trail. Verify that the praudit program is in your path and try again.

4

Chapter 3

IDIOT Patterns

There are currently three classes of pattern being shipped with IDIOT. They are:

I. Written and tested patterns. These are patterns that we have written and tested and can present audit

trails known to trigger the patterns.

2. Written but not tested. These patterns were written but could not be tested either through lack of time

or limitations in the underlying audit trail.

3. Theoretical patterns. These patterns are written to demonstrate a particular point, but cannot be

handled by the IDIOT system currently.

Each of the follOWing sections describes the different pattern types.

3.1 Written and Tested patterns

These patterns have been written and tested. They are shipped as working patterns to demonstrate IDIOT's

capabilities, and to be used in a real environment.

These patterns can be found in the C2_patterns directory. The audit trails to exercise these patterns

are in a directory audit_trails under the main IDIOT distribution directory. Each pattern has an

associated audit file named <pattern_name>_audiLfile in the audit-trails directory.

3.1.1 Detecting when programs create setuid programs. PATIERN:creating-setid-scripts

Very few programs should create setuid files and system administrators often run programs that search the

file system looking for unauthorized setuid files. This pattern will warn when a program creates a seuid file.

Vulnerabilities detected

Many vulnerabilities can sometimes be detected with this pattern.

5

State machine

Figure 3.1 illustrates the pattern.

CHMOD

Stan -',---- --I

Figure 3.1; State machine

Pattern being used

paccern cr_suid...J>q= ·"..,nicor c,eulon of secid prog-r""",.· priodc:.- 7
naco, narC. dcer_chmod,

ocr FULLJ{NIE;

int RUID,

""oc_accion t
pcint~r'User Id \d has successfully setid'lld file \5\n·. RIIID. FtILLJW'IEl,

U"-lUl c1>:>o<l(OIIIODl
<- stact,

-> aftcr_ch:ood,

1- ,
this[ERRl .0" RIIrD. thbtRIIID] "ruLLJWlE. thb[OBJ] ""

c h b [D B J ~ D S l > 511;,
end choood,

end cr...etid...Pll='

Note: the final clause in this guard would be best written as:

(this [OBJ_NEWMODSj & 06000) && (this [OBJ_NEWMODS] & 0111)

Discussion

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail generated

by the audi td daemon.

An attacker, a user called goLLum, ran the following exploit script.

I! /bln/ah

touch aaa. ua

couch bbb.bbb
touch rcc, ccc

touch ddd.ddd

chl>od 2750 aaa.aU

ch=lod U55 bbb.bbb

cbmo<l u..o·= ccc.ccc
chmod 6007 ddd.ddd

I .ocllid

I .etuld
• setuLd and •• t .. ld
I und"fin.d (••tuid and id

I but not ""e t.>blel

I G.t rid o ~ tho fihs create<!.

<1'1ao bbb.bbb ccC.ccc ddd.ddd

6

The execution of IDIOT server with the audit trail generated for user gollum produces the following

output:

U ~ e r id 8 ~ J hu ~ u e e e u t u l l y oeeid'cd HIe I.mordor/home/ll'ellumlllfta.allft

U ~ e r id all h a ~ ~ u e c e ~ ~ t u l l y ~ e e i d ' c d fUe l.mordor/ho"""lI'ollUlll/bbb.bbb
U6er id 8ll hu .ueeeeotully ~ e e i d ' c d . file 1 ...,rdor/hClllllO/lI'ollumleee.eee

U ~ e r id 8ll hu ~ u e e e n t u l l y ~ e e i d ' c d HIe l.mordor/h"""'/goll"""ddd.ddd

3.1.2 Detecting the execution of attack programs. PATIERN: executing-progs

Sometimes users import attack scripts and run them with little or no modifications. We can detect the

execution of well known attack scripts and programs by searching for well-known program names.

Vulnerabilities detected

CA-93:14 Internet Security Scanner will scan sites for potential security holes.

CA*** Crack tool for obtaining passwords.

State machine

Figure 3.2 illustrates the pattern.

EXECVE '
\ I

"c-'- - I I f - - - ~ A f t e c _ e x ,

" '

Figure 3.2: State machine

Pattern being used

exrern "er Buen""'" InrI:

pattern ""-Prt...Pll"'l' ''''oteh for e " e e u t i e n ~ of c o p ~ / l I ' i m N l ete.· priority 7

Ot"tO nact. aftor_""oc,
"tr f'tIl..L...FIIOG. PROd;

int RUlli';

pe.t_oetion I
printfl·User 1d \d ho.••ucttnfully executed \Oln'. RUlli'. I'IlLL...PIICG1:

,'
• The routine Buen""", b deHned as a eall to the IJ)'n"", function

• base""""'. Given a pointer to a null-terminated elulroner otrinll' rhot

• eentains a p4rh n""",. basen......... ll r,,"urns a pointer to the l ... t d_nt

• o~ the P<'eh. TraUi.nII'·f' thoratt"ro aro dal"t"".

"
tr""" "",etl=1

<- ~ t n t ;

-> "n"r_"",ec,
1_ I thb[ElUl.I • 11''' RUlli'. thb{RUIDI u, pilOO. Ba.en...... lthh(PIlOO]I ~ ~

7

l'ULL_fROO • tllblfROOI "
(PROO .- "COps· J I fROG .- .gimr>e" II PltOO .- ·teae"·); ,

entl ""e.:;

Note: this pattern can also detect the [CA-95:06] advisory on the SATAN tool. This can be done by

adding FROG =;;satan" to the last clause in the guard.

Discussion

How does this pattern work? It is composed of essentially one transition - when an EXECVE occurs, it

checks to see if the executed program is one of the prohibited list. If it is, then the pattern has terminated,

and the post action is taken. This prints out a friendly informational message.

We need to know two things while executing this pattern; the name of the program being exec'd and

the user id of the user executing the program. When the execve system call is executed, the name of the

program to execute is specified. This is recorded in the audit file. We can access this program name using

the this [FROG] construct, which returns the program name from this audit record. We record the full

program name in the variable FULL_PROG so it can be displayed in the post action. This variable is of type

s tr. which is a string class from the Rogue Wave library.

The user id is returned using the this [RUID] construct. It extracts the uid field of the audit record.

We assign it to a local variable so it can be displayed later in the post action.

To actually detect running a specific program, we use the pattern matching operator =-. This works as

in PERL. In this case, we are only interested in exactly the filename specified.

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail

generated by the auditd daemon. An attacker, a user called golLum, has the following files in his home

directory:

<;Iollum , 1" _1

-ol:..,,-r-- 2 <;Iollum <;Iollum

-r-n/-r-- 1 <;Iollum <;Iollum
-noxn/_r_" 2 <;Iollum <;Iollum

1 ~ 1 \loll"", \lollum

10 Nov 26 16,13 cta.""

45 Nov 26 16,14 """loit"
10 Nov 26 18,13 Iliddlln..har<:!"

5 Nov 26 18:14 Ilitl<len_oy,o -> encl<"

The exploi t script executed contains the commands:

Il/bin/,,1l

.Icrack

.lllidtl",,-oym

./hidtl"n_hatd

The execution of IDIOT on the audit trail generated for user golLum on produces lhe following output:

Uaee itl 033 haa ,,"ccuaf"lll' uecllt"tI I . ..,ttlor/home/<;lollu:n/cnck
Uset iel ell hao , , " c c e n e ~ u l l y ""eclltml. l.motdOt/ho"",/<;Iollum/ctack

The program has detected two of the three executions of the program crack. In fact, the two instances

detected are the first two lines of the exploi t script. It is unfortunate that we cannot detect which execution

produces which line of output. As shown next, the audit trail events generated for both are identical.

8

header.UO.2.""ecveI21 •• S"", Nov 26 18:16:12 1 ~ 9 5 . - 250009000c
pilCh.' .llIOrdorthcm>a/voUum/crBcl<
attribuee. 100764. vollum. voUum. ~ e SJ52Jl. ~ O S B 2 . 0
~ubjeet.vollum.vollum.vollum.voUum.vollum.1i720.1ae01.0 5 "'Olarill
reCurnuc"e"•• O

hellder.1l9.2.e><e=e121 .• Sun Rov 2610,16,12 U95. - ~U002000 "",ec
pilch. I .mordor IhCWl>e/vollWll/crllcl<
Iletr lbuce. 100764. vollum. vollum. ~ 0 5 J 5 2 ~ J. 40502. 0
...ubjeet.vollum.\Io11um.Voll""'.VollUlll.VollUlll, 11721,10001.0 5 "'Olarill
reCum. Buc"eu. 0

3.1.3 Ipr can copy a file over any arbitrary file: PATTERN: Ipr_copyJiles

The line printer program can be made to overwrite arbitrary files on the system. Ipr is asetuid root program

that copies files to print into the spooler directory. The files are then printed from the spooler directory.

If the -5 option is used, the Ipr program creates a link to the file in the spool directory. However, the

temporary names created in the spool direcmry will wrap around after 1000 print jobs.

By forcing these names to wrap around, the Ipr program can copy an arbitrary file over a link which

points to a destination file. This will cause the destination file to be overwritten, even if the user did not

have permission to access that file.

Vulnerabilities detected

8lgm -Advisory-3.UNlX..lpr.19-Aug·199l1pr can overwrite any arbitrary file.

State machine

~ g u r e 3.3 illustrates the pauerp..

o
Figure 3.3: Detect lpr copying arbitrary files

Pattern being used

,.

• Dec"", ... if Ipr criu to oV<lrvrlte " tUe OlItmLde o ~ lu"r/"pool

• I\lI.rl< Cro...bie Februa<y 1996.,

e"Cern int inTreel ... cr.... tr),

e"Cem int 'ru"...prinC("'Crl:

9

extern int "trmatchl"u:. "ttl;

"tat.. "'art. dter_Ipr_exec. "eter_copy,
str PROG. i'lL!:,

int R111D. PID,

pen_"ction [

printfl"U"er \d "tte""ted to copy over file \o\n", JUflD. l'll..El,

/0 the invari....t "tateo that ve "ill clelet.. toke"" in th.. at"te

° _thine onte the prote"" .."it". H lpt e"ito, tbere'" no point
" continuin; co try to _<tb for the "ttack.

0'
n"9 inv"ri....t llnt_inv I· n"tiv.. lnvlltllll\t 0/

"tata at"rt_Uov. fUoal,

tr....... ..,.it(=1
<- ararr_inv,

-. final,
1_ (PID • this [PID] ;)

end ..",it,

end fint_inv;

tr....... "".,,_lprl=vl:1
<_ "tart,

-. "ner_lpr_""et;
,_ I

thi,,[EiIlI] .0 ". PID. chi,,[PID] "P!<DG. tbis[PRDG] "
RlllD • thi ... rRllID] ~ ~

[nrmacchlo.olpr", thi"[PROOll • 11 ~~ th1"r=1 • 0,

cr....... <!o_copylCRl!A.1'1

<- aftec_lpr_e",.":,,
- ~ dter_copy,
,_ I

thh[&J<)I.] • 0 ,~ thhiPID] • PID , , ~ PILE. tbi"rOB.:J]

lin'I'rael"-/v"r/apaol/", tbhlOB.:Jll .01,

Discussion

The lpr command is a setuid root program that places files in the spool directory on behalf of users.

Typically it places a copy of the file in the spool directory, but if given the -s option, it will create a

symbolic link to the file in the spool directory. If given the -q option, it will place the file in the directory.

but not enqueue it for printing.

The files in the spool directory have a very predictable name. The name of a spool file starts with cf for

a control file and df for its associated. data file_ For example, executing the command lpr -Paz -q -s

. aliases (where oz is the name of our local printer), creates the two files in the /var / spool / lpq/oz

directory:

-- ---- 1 d.o.emon doemon
1 ~ 1 rOOt do""",..

152 Peb 19 11:54 cfA21By"vl.. ,co.purdue,e<ht
23 Feb 19 17,54 d!A27Byavln.t".purdua.e<ht -. /homelmcro"bia/.alia"e.

The number after the cfA and dfA part of the file names will increment after every print command,

Thus. after a thousand print commands, the file dfA278yavin. cs" purdue" edu will be reused.

The essence of this attack is to create a link in the spool directory to a file you want to overwrite. Then.

execute athousand prints until the number in the spool directory filename wraps around, then print the file

10

you want to overwrite with. The lpr program will write over the existing link, and as it is setuid root, it

can overwrite whatever that link pointed to.

The IDIOT pauern presented above detects this attack by seeing if the lpr program overwrites any files

outside of the /var / spool directory tree. If so, it prints a warning. The audit trail in Solaris encodes the

final destination filename when accessing a link, so this is available to the pattern.

A sample run is showll below:

dnb run ...udlt_dattlflpr_toW_fl-le"dit_dau

5h""a"dit, "ill ~ a = t a til" fOll""ing t"......"d, taU .0 ..."di.t_dau/lpr_toW_filt......."dit_dat... I puudit _r 1
Sh""audit, >I... of dropped events • 12~

Uaer n? attempted to topy ovar lile Iho""/mcrosbie/tq>/Ove.....it""'"
User 12? att...,.,ted to copy over file IIl"""'/"",roabie/l:rri>/oven<ri.""",
. i n i ~ Pr09r"", endod

3.1.4 Print all executions ofmknod. PATIERN: print-mknods

If a user creates a device, it is possible to access the disk or other system resources without proper

authorization. For example, if a user created a device in a local directory with the same device numbers as

the root disk, then that user could access and change any information on the disk.

Pattern State Machine

The state machine is very simple and is shown in Figure 3.4.

MKNOD

Figure 3.4: State machine for detecting mknods

Pattern code

'0
• prin.-.w.O<b

• PrLn. all ... ucce.... ful lllknodQ.

• Hark. Cro...bi" lIov=ber 1995

0'
,. rot"rna TRUE if til" ..ode o£ .he HI.. oorr.....POnd$.0 a block • .,.,cial

• or "har • .,.,dal file _ i" i. a d""ice?

0'
u.ern int isd""11n.l:

pate"rn lllkne><l 'Print all a"eceas!"l lllknO<b' priority 1

ste aft .. rJ'lla>od,

In. RUID. OW:

/. p ...tll of the device .he ".er e«...tll<! '1
••r P;,.n1;

/" report «eating ... dlce ./

I I

pont_actian (

peintfl·U.ee id \d .uece•• fully creattd a d""ica in U.\n'. RUID. PAnI);

,. only one tr"""lUon needed - if "" .ce a INIOD event "hen 'cc if
• the u'Or h """e...dully er".ted a devi"..

0'
"r""" lM.!<enodOlHKlJOPI

<_ .tart,

-> aftcr...-oU<nod,,- ,
,. i"cl«vll eceUrnD 'I1U1Z H th.. devic.. ..ode un..1 in "he "",,,odO

• indic.t..n a device type (.. ither char cr block spacial)

0'
thh(l!llR) ~ 0 " isd=lthi,,(DF:V_1l0DElJ • 1 "
RIIl:D • "ll1,,(RUID} &(, PAnI ~ thh(OBJ],,

end ""'kenode,
end mlcnod,

Discussion

When a device is created, the mknod command is used. A parameter specifies the mode used to create the

device. If this mode indicates that this is a block special or character special file, then the message is primed.

A utility routine isdev () is used to check the mode of the device being created. If this is special file

(i.e. a device), isdev () returns TRUE. If this occurs, and the MKNOD succeeded, then the user ID and

path of the device are recorded and displayed.

Output from IDIOT

IDIOT produces the following omput when presented with the attack audit trail:

tinl> nul cudlt_dat'l"",,,od.audit_data

Sh""au<!.i", ..ill ""ecut" "he followlrtq coomcnd, "aU .p

iludit_da"almlcnod.clI<!.it-da"a I praudJ.c -r I
11."r id 0 .ucc"••fully cr"ated a devic" in

Ih""...'"",rO"bi"Io>yIDIOT/alldl"_dat"l""" .
Sh""audit, No of dropped """nt•• 79

3.1.5 Detecting when setuid programs write to setuid or executable programs. PATIERN:
setuid~writes·setuid

Very few seruid programs should write to other seruid or executable files, and many attack scenarios share

these characteristics. Rogue setuid programs will often create seruid shells or alter system owned executable

programs to alter their behavior. Hence, it is desirable to detect whenever such behavior and report it as

SUSpICIOUS.

This pattern will warn when a seruid program creates or opens a seuid file (or executable program) for

write. It will also report when a setuid program opens a seruid or executable file for read only, using the

open system call, and specifies that the file should be created if it does not already exist.

Vulnerabilities detected

Many of the vulnerabilities listed below can sometimes be detected with this pattern. In partiCUlar, when

any of these seruid programs creates or opens a setuid or executable file.

12

8Igm~Advisory-3.UNIX.lpr.19-Aug-1991 Any user with access to Ipr can alter system files and thus

become root. We can only detect the vulnerability if Ipr creates or opens for write a setuid or

executable file.

8Igm~Advisory-ll.UNIX.sadc.07-Jan-1992 sadc can be used to create files in normally unwritable di

rectories. sadc normally runs egid sys, and therefore can be used to create files in group sys

writeable directories. We can only detect the vulnerability if sadc creates or opens for write a setuid

or executable file.

8Igm-Advisory-5.UNIX.maiI.24~Jan-1992 A race condition exists in binmail, which allows files to

be created in arbitrary places on the filesystem. These files can be owned by arbitrary (usually

system) users. We can only detect the vulnerability ifbinmail creates or opens for write a setuid or

executable file.

8Igm-Advisory-6.UNIX.mail2.2-May-1994 The old race condition still exists in the patched binmail,

which allows files to be created in arbitrary places on the filesystem. These files can be owned by

arbitrary (usually system) users. We can only detect the vulnerability if binmail creates or opens

for write a setuid or executable file.

8Igm-Advisory-15.UNIX.mail3.28-Nov-1994 A hole in binmail allows files to be created as root. We

can only detect the vulnerability ifbinmail creates or opens for write a setuid or executable file.

CA-95:05 Sendmail Vulnerabilities February 22, 1995. This advisory supersedes all previous CERT

advisories on sendmail. The CERT Coordination Center has received reports of several problems

with sendmail, one ofwhich is widely known. The problems occur in many versions ofsendmail.

We can only detect the vulnerability if sendmail creates or opens for write a setuid or executable

file.

CA-95:08 Sendmail v.5 Vulnerability August 17, 1995. In sendmail version 5, there is a vulnerability

that intruders can exploit to create files, append to existing files, or execute programs. We can only

detect the vulnerability if sendmail creates or opens for write a setuid or executable file.

State machine

Figure 3.5 illustrates the pattern.

Pattern being used

~ " t ~ r n int i.""etlintl. iUidlint);

,.
• Very tev ... tuid proqr""'" ~ h o u l d ""it.. to other .etuid or eueutabl"

• HIes. Th.l .. pattern w111 warn ..hen" ."tuid proqr"", <:reat"o or
• opens a .~uid tilft (or en<:utable proqr""'l tor ""ite ..,

pattern oetuidvrit..uetuid ' e ~ t u i d prOllr"", ""Heo to " oetuid or """e.>tl>bl.. tile' pdority 10
Lnt PID;
otr PILE,

Otr PROONNlE,

....t ... tort. after_""oc. "iol"tlon,

poot_"<:tlon I
printf(·~ .. tuid Pr09r.... \5 trnted/opened tor ""it" t h ~ ...tuid or e"ee.>tl>ble t i l ~ \5.\n·.

PROONAH!<. PILE),

13

OPEN

1

....~
""t

-----aJ Violation ;
--~

~ ~i

OPEN_RWTC

1
CREAT

1-
"" --..-

--1-
"OPEN-FWT

1-
OPEN_W

1
OPEN_we.

I
. ,OPEN_WTG,

EXECVE
'.

5'''''
.,

\ i

Figure 3.5: State machine

14

• •

,.

~
~"

~
o
~.

,

,.,
o

n"
"o ,..
"c'..
":: ;;:

•..
n'
e . ~

",.•
"•

[!t :l
... "'- , ~ e
~ .. I ¥ , ~

all~"~

t ::; .. ~; ~,-..... ~ " ~"

", ... ""< .. I -.. • !i !:!..
.. j

=
,

.0

!:-::
••:;;l:l
i .-....,.o.
~
,
o,
,.

•
",•
~
'.
"

,, .
"" -, "
~ I ¥ q
~ - ~ ~

n;:~~~S
.. ~ " I " "n

i-(2
l~' ~

..
e"

., ,, -,,,,

~ ~ ; ~ ! '
1:;_ ... :>...:;
.. ~. i! ~ "

~ ~C'.I~ g
~ ~? ~ ~·- .~" ,
'0
~::
'6 ~
'0-.· .
• eo:..-.-.--,,..••"'..'.
~;
':.: ~"
0_,.
:::~..

"

•.,,
e'-.
:£
o,
'·0••"".,
oD..
~;
, D

S:''0::~

.
•-, A l!'

I V , t:

! . ~"".-" g.:;, i5... ;' "E!.,." ..
;: ~ :;r,I~ ~
" ~ .. " .,
" Iii? n 0:
;;"- -, '". ,.. ••
lh

"00

".

•

..
, '

., ,
.. , A e
ll- I"v 'Ii:

! . '.',<n-;:,-:;,iI.-,... .." '"
:;;-" '" <;~ - :;-" ..
~ e? ~ ,!i!·- ";!'.. 1i· ..0

h

"'0-....,,.,,,-.-...
: ,..
••"";:r;;

••° •
~ ~.
0_'0-,--..

e'

., .
.. _, A!
'" I • , Ii:

! "',"'-" g.:; ll.
.. ;' ~ ~ t' ~

!~~l~.. "
~. ~.. -
e::

"00

".-.
• S'...-.-,,.-,,,. ,
••;t:l,..
••
~;

'"O·'0-,--

•
·"e'-.-.'.0o,..••· ,
~. 10
•
~;
".gO.,.-..
e'

,
-, A e
I y , 0:

! "',. . , , ; : ; : ' - : ; ~
-' .. - .. "

.... "'.. 0
• '1:;" ~ '"...... !i!
;; -" ~ 'i:!
~. =l
!.O _

h
'6 i::
'0· .

•
.
•

..
"

•
• ;r-oo-.:!!
•..,. ,
••;t::
-0••
~;.
~ ~.

~o
:::~

~ _, A ~
'" I ., ~

! "','" - .. g.:; is
-. ::- S'." ~ :

~ ~ ::,,'l::;::

1eP. ~ ,~
.. - ':0:· .,..
'0

h,.
0''0..

•."..
••-=:!!
o,
D'••""
""•~;
~E'0-,.-..
e'

,, - .. ,
Ii. I • I •

! .'"!,. ,
-;g.:;

-'..- .. " ...e£ :::,I~ ~
~e?~~,- .. ,~,. .
'0

e::

"'0o.
•• :r.,.-.-..-o,,. ,

••""H, .,.
0.

~ E'0::~..
e'

,
, , ,

IY I ~

! .,,!
'"';:;e.:;e
c .. ~ ... " 0
'-~~C-' .. _

~~? ~ ~.- ,
~. ~
'0 _

e::,.
0'
~ ~

-.
-:!!
o,,. ,
••· ,

""•
~;, ,.
B ~

~ ~. -

..,
•, .

..
"

., ,
g, 1~1~

! . '.',... ;:;:'-~~
!:' .. ~. ~ t' ..e- ~ ... <;

I> r:lg;:: "; ~ .. ~ ,~
!. ~· ._0

~ : :

"00

".

~:;

·~,0-.-,
•••, ,.'.."",..
•;; .
g

~E:
~~

.
, , 1

I" y , ~

i ~~.:.~
"-"'O:;'iI,
0> ~ . : : r ;;- ~ ..
... ; .. I N

~-~eO

~~~~~
~. i!:· .
~~,.
0'
00

".

'"



end s e t u i < h a i u ~ s e t u i d ,

Discussion

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail generated

by the audi td daemono The following setuid programs were created:

I' PrO<JtlUll' testl "'
linelude <stdto.","

lindude ~ s y , , ' t y p ....h>
linelude <,yo/...t.h>

IlJlelude <fentl.ho>

.... inn I

,. eteste s aetuLd """tutabl" HI" .,
tr"et(OtesH.e1". S_IS\JID I S_IRIIX\1

I' ProqrlUll' t"..2 °1

lintlude <stdio.","

linelude < a y ~ / t y p e •. h>
lindude ~ . y . ' . t " t . l l >

.."dude <fent1.ho>

.... inll I

'0 Cteste " " .. <uid prO<Jram "'
optm("te..2.t1"0 O_CIUl1I.'I', S_ISUID I S_IRWlCU I S_IW\;RP I,
,. Open the ."tuid prO<Jr......rooted by pr<>;,ram t".tl "f

optm(Otut1,do, O-.JUMIII:

An attacker. a user called gollum, ran these two program in order.

The execution of the IDIOT server on the audit trail generated for user gollum on produces the

following output:

s"tuid prO<Jr .... /hO.... / k r ~ u l / t n t l treated/opened for writ .. th ..

• e~id or entotahlo fUo ' , m o ~ t / h o m o , g o l 1 u m 1 t u t L . e l ,

s"tuid prOllU=O "'OIl>t,kr"ul/tnt2 treated/opened for writ .. th..

utuld or e"..totahI.. HIe / _mordor/home/gollum/test2 .eI.
sotuid pr09t"'" /ho.... /knul/t""t2 treated/opened lor ...ite the

~ e t u i d or e"etotahI" fUe 1,.,.,nIor/homo/gollumlte.el.el.

3.1.6 Writing to Executable Files. PATIERN: writingMto-executable-files

Writing to an executable file is often evidence of viral behaviour. A virus may attempt to affect a program

by inserting code at the start of the file which will be executed'before the program contained in the code.

This is very common on MSDOS machines. However. a UNIX system may still be vulnerable to this type

of attack if executable files are left in place with write permission for users or groupso

Vulnerabilities detected

Any activity in which an executable file is written to.

16



Pattern State Machine

The pattern is very simple. For each process that is EXECed, the pattern detects writes to a file by that

process that has the execute permission bits set. If such a write is detected, the pattern has fired, Figure 3.6

shows this_

EXECVE

OI'EN..RWT

Figure 3.6: State machine for pattern to detect viral be

haviou"r

Pattern code

,.
• writi"g-to-e-....,"toble-fl1e~

• Doteee prD<j'romll wrlti"" to exe""tal>l" files "hieh lMy be ""
, ir:ldic~tion o~ vir"l behe.viour

- Ho.rk C r o ~ b i " F " b r u ~ r y . U96.,
extern int boxec(int),

""tern i"t true..,printlDtr),

pottem viruo ·Pr09romo writing to "",",,"tal>10 file. (vlr"l beh"vlor)' priority 10

ir:lt PID. l!llID, /. p"tt"m 10eo.l v"rial>lu. =y be initiolhed.• /

Gtr FILl':. FROG,

ot~te ~torr, ofter_oxec. violnion,

,. poot "ction o i ~ l y reporto on att"ek ./

p o ~ t _ " e t i o n (
printf!·Proqro.m h running,,~ WID ld "rote to the e"e""toble fHe h.I"-,

PROG, EllID, FILE]:

,. There con be ~ . 1 invariont•• /

17



/0 this invariant kill. a token if it9 eorrespondin\l porent e:dts 0/

ne<;! invariant £irst_in" /0 ne<;!ative invadant 0/

state start_in.... final;

tr""" eldt(EKITl

<- "tart_in",
- ~ £ind,

L ( PID· this(PID);
end "",it,

end Unt_inv;

/0 EKECVE is the .....ent typ<l ot tho tr"""ition _ exeoutin\! a precess 0/

"r""" =ee(=l
<- atart:
- ~ attar_nee,

1_ I "his {ERR] m 0 U. PID. this(PID] ". PROG • this(PROO] ~ ~

EUID • !;hie (WID); ]

Coo exec,

/" OPll>LIII</ - open a tile for read or ...ite ./

trans < n o < I ~ [OPDLRlll
<_ aftar_""'oe,

-, v.oladon:

1_ ( this(ERRl B 0 " PIO. tbis(PIO) ~ ~ PILE. "his(OIlJ] "
b""eeltblo[OllJJlQOS]l; }

end OIO<1G;

tr""" <no<ISIOPElCRWCl
<- aftet_"-"ee;
-> violation;

1_ ( thi,,(e>UI] • 0 " PIO • this(PIO] " PILE m this(OB.J] ""

isoxoelthis(OB.JJlODS]l, )
~ lIIOd5,

t ....n" _6lOPElCRlm:1
<_ dtor_""oo;

-> vl01ation;

1_ { thi.a(l!/IR) • 0 ,,~ PIO m "hb(PIO] " PILE m tbis(OB.J] "
ia""oe(this(OB.JJ10DS]I; ]

ond _6,

tr""" _7(OPDCRm'1
<- aHor_nee,

-. violotion;

1_ ( thh(ERR] m 0 '" PID m tbis(PIO] "PILE. thia(OB.J] "
is""eclthis(OB.J_HOns]l; ,

end _7;

tran,. mod8l0PElCili
<- attor_oxoc,

-, vl010uo,,;

1_ ( .hia(URl m "",, /" if this opera.'on suoceeded "/
pm • !;hlo(PIO] " /. and this PIO OI&tchos that ot tho oxoc "/
PILl! m thia(OB.J1 ~ , /0 rftlllO!Olbar tbia fllolUl.llllO Of

i"uoelthlo(OB.JJlODSll; ) '" if this tile is o"ecutable 0/

and _6;

tr""" mod'I lOPElCWCl

<- aftOr_e"ec,
viohtion,

1_ { thh(URl • 0 " PID • !;his(PID} ~ , PILI! • thh(OB.Jl "
h"",ec("hi" (OB.JJlQDS]l; I

endo>od9:

tranS 1IIO<l10 lOPI!!Clm:l

<- att"t_""ee,
-. violation:

1_ I 01>1. (ERR] • 0 " PIO m this [PIO] " PILE m thh [OIlJ] "
is"""c[thi,,(OIlJJlQns]I , ,

end _10;

trana modll(OPDLOlTl
<- after_exec,
-> violation;

1_ { th1a(UR] m 0 '" PIO. thie(PID] "PILE. th1s(OIlJ] '"

ia""eelth.lo[OIlJJlQDSll, }
and _11;

and vitus,

18



The pattern seems complex, but is essentially very simple. The pattern starts by detecting the execution

of a new process using the EXECVE transition. From this after_exec state, it detects any open calls that

could potentially write over a file which has its execute permission bits set. The isexec function is in

utili ties. C and returns TRUE if a file is executable. This can be computed by information about the

opened file stored in the audit trail. The types of open call detected are:

• OPEN_W open for write.

• OPEI:LWC open for write and create ifnot present.

• OPEN_WT open for write and truncate to zero size if present.

• OPIDLWTC open for write and create and truncate to zero size.

• OPEN..RW open for read or write.

• OPEN...RWC open for read or write and create ifnot present.

• OPEN_RWT open for read or write and truncate to zero length.

• OPEN...RWTC open for read or write and create if not present and truncate to zero size.

If any of these occur and the file is executable, we could have potential viral activity on the system, It

could also indicate a attempt to install a trojan horse on the system. This would be a version of a program

that had similar functionality but installed a malicious piece of code.

Discussion

The pattern will only detect a process being executed that overwrites executables. A series ofshell commands

to overwrite an executable won't be detected, because each shell command results in a new process with a

new PID. The PID attribute of the tokens won't be unifiable.

Why does this pattern not detect WRITE events? In the Solans BSM audit trail the write events are

subsumed under the OPEN event. So the audit trail for a write looks as follows (output ofpraudi t):

p a ~ h . I h C Q e / " " , ~ a . b i " ' ....IDIlI'I',audit_daU./"""""tl>bla

attribute, iOO'11, " " , ~ a a b 1 e . ""'raable_ 83 08638. 19J 085. 0

aubj"c". _ 2 . " " , ~ o a b i e , , , , , , r o . b i a . , , , , , ~ o a b i , , , , , , , , r o ~ b i a , 20085.0.0 0 0.0.0.0

racurn.suCCUS,4

The audit trail was gathered with the fw audit mask flag. This gathers data about file writes. The open

caB is recorded, but the wri te caB is not. The above audit trail corresponds to the following code fragment

from exploit-write. c:

iff (fdoapan(·.,axecutlil>i,,·. O_RDh'lUI < 01 (

perrorl' opc>n: '1;

""itnl'

princ!('E:>:plai'" ..... iting co executo.bl".. \n·l,

iff ""'iteUd. ·alxdaf·, 61 < 61 {

perrarl' ....n .. ' '1,
eIIi"lll;

19



Thus, we are forced to detect writes to execurable files by detecting the opening of the file, and not the

actual write.

This pattern can also be written without the EXECVE transition. In effect it would then check every

write on the system to see if it overwrites an executable file.

3.1.7 Writing to nonowned files. PATTERN: writing-to-nonowned-files

Users often create files in their home directories that are world writable. This is often because of a umask

setting that does not disable the world write bits. Or, users may be sharing information via world writable

files. Either way, this is a potential avenue for attack, as any information can be written into a non-owned

file for later retrieval. This may allow an attacker to hide stolen information or plant a trojan horse in another

user's directory. In the worst case, an attacker could place a ++ into a world-wrirn.ble . rhosts file owned

by another user, leaving that user's accoum open (0 abuse.

Pattern State Machine

The state machine for this pattern is presented in Figure 3.7.

OPEN..RWTC

Figure 3.7: State machine for pattern to detect writing to

nonowned files

Pattern code

The code for the pattern is as follows:

20



,.
vri ~ i n g - ~ D - n o n " " " ' e d - f t l e .

Chenk" it " p ~ D < : e u 15 v r ; : ~ ; : n l l to HI"....hinl>. it dono,,'.

~ .

• This could indica." potontial vh,nl activity

• ~k Crc.bi" F o b " " . ~ 1996.,
""cern in. tru• ...s>rint Istrl,

p"Ue= unvonted..vricoa "Writing to non01<'l'led fil"o" ptiority

nDduO' ncn.. natC, Uoal, /" only tl<O HOnU n"edod of

inc Hil. EIlID, /" .ecord pertinent inforlllAtion about procna "'

ponO_Dctton (

princU·Pld'd. uoet 1<:\ \d IaO"e U ... nonowned. file.\o", PIll. EUID. PA'IH),,
/" for <lnoh typ<o of wrlte event record"d in tho audit trail, se. it

tho """or of tho Hlo IU><:\ WlD of the ptOC"•• c\oJ.T\\I che writo

diffee, If 00, this indic".". avervritinll" non-awned HI....,
tr""" ""itolIOPDf_W)

<- start,
-. final,

1_ ( chio[EIIR] .0 ". /" che <lcoion o.,e.ee<l.ed 0'

thi.[ODJ_OWlIEIlJ ,_ tl>..iGlEUUlJ ~ .. '" olft'ld"nhipo don"t ....t,," 'f

PID' chia[PID] " '" r<mambo.r PIll of thia ptOC"U Of

EtIID thi"rEU:ID]'. /" t ~ r WJ:D of U5er ./
"Ani. thh{OBJ]; /. remmnb<lr path ta tU" boling avervritun"',

end ....ite1,

tr""" ><tite210PI2Ch'Cl
<- erart;

Unal,

1_ ( thb(ERR] - a " this(OBJ_OWN'I!f() :_ this[ElJrD] ~ ~ PrO _ tl>15(PI0] ~ I i 

wro • th>s!El1lD) ,Ii- "Ani _ thb (OBJ) ,,
end ....ite2,

tr""" "",itellOPi2Cl'lI'l
~ _ start,

-> Una1;

1_ I thin(ERR] _ a " thl.s(OBJ_OIQ;£II.) :. thi,,[EUID] " PID _ thblPID] "

EtlID • thi. [EllIe] '"' PAnI _ th>S(OBJ],

tra"" "",ite4(OPDCm'C1

<- ot"rt,
-> tina-I,
1_ ( thi,,(ERRj .0'," tl>i5(OBJ_OiiNEII) :_ thie(EUItI] ,Ii- PID _ thb(PID) "

EU'ID _ thb lEUID] " PAnI _ th15(OBJ];

The pattern looks complex, but is essentially very simple. It detects any writes to a file that has an owner

field (OBJ_OWNER) that differs from the current effective user ID (EUID). If so, then the pattern reports the

write as being suspicious.

Discussion

This pattern is very simple. If the owner ofa file differs from the effective user ID of the process writing to the

file, then the post action reports this. Note, see the description for wri ting-to-executable-files

for more details on how the audit trail represents write events.

21



3.2 Written but untested patterns

This section describes patterns that are written but untested. These patterns can be tested in the current

IDIOT implementation. but they are being shipped "as is" without any testing.

These patterns can be found in the other_C2_patterns directory under the main IDIOT distribution.

3.2.1 PATTERN: Ipd..deleteJiles

This pattern attempted to detect the CERT vulnerability outlined in CERT Advisory CA91: lO.a. The Ipd

line printer daemon can be made to delete files outside of the usual/var Ispool directory by ex.ploiting

a race condition. The race condition exists between the time the file is copied into the spool directory and

the time the file is removed from the directory. By changing the file to a link, it was possible to remove any

file on the system (as Ipd ran as root).

This pattern cannot be tested on our machines, because our lpd daemon has the fix. in place and we

cannot replace it without seriously disrupting the local printing environment in COAST.

However, the core transition in the pattern detects a delete (an UNLINK event) occuring with a destination
outside of a specified directory tree. It uses the inTree () external function (found in utilities. C to

match the file being deleted with the path prefix /usr / spool. If no match is found, then we conclude
that Ipd is trying to delete a file outside of the print spool directOlY.

tr""" ddfttft IIINLDIK)

<- aftnt_l""'--ft><c!t,
- ~ aItrr_drletr,,- ,

t~ia[VIII] • 0 ~~ thl.[PID] • pm u. nu:. thio{OBJj , ~

tinTtu(·/usr,opool·. nLE) .0),

3.2.2 PATTERN: failed.su

This is a very simple pattern that reports all failed su attempts. Most system consoles also report similar

information. The pattern simply looks for SU events in the audit trail that have an err attribute of I.

indicating that they have failed.

3.2.3 PATTERN: finger

This pattern attempts to detect the finger program spawning a program other than finger. This was

motivated by the Internet wonn attack where the stack for the finger daemon was overwritten and caused

a new program to be spawned.

This pattern cannot be tested because it hard codes the inode value for the finger daemon fingerd

and the finger progrnm finger into the pattern. This will change from site to site, and from system to

system. The pattern should be rewritten to allow a more portable specification of the location of the daemon

progrnm.

22



3.2.4 PAITERN: p r i v - p g m ~ i n . u s e r s p a c e

This pattern attempts to detect a privileged program executing in user space. It does this using the

inUserSpace () external function.

3.2.5 PATIERN: rcw

This pattern attempts to verify integrity using Clarke-Wilson triples. More infonnation on this pattern and

Clarke-Wilson integrity triples can be found in Section 4.8.9 of the taxonomy. ps file in the doc / IDIOT

directory of the distribution.

3.2.6 PATIERN: sheII-scripl-atlack

Certain classes of attack make a shell execute and pass it strange command line arguments. A favourite

attack is to run a shell with a command line argument of -i. This gives an interactive shell. If, somehow,

a root shell can be spawned from a program with the -i option, an intruder has an interactive root shell on

the system.

The key to this pattern is this transition:

Ct""" <lxo<olEXECVEJ

<- natC;

- ~ afte.t_exe.",,- ,
thb[EIlRJ ·0 ". RUID ~ chta[RUID] "PROG • this[PlIOO] ......

hlinklchia[PROG]) ...... "hdl.....ttiptlthi,,[PROO]I ......

lBaun""",lchi"IPROO]1 .- .-_OJ'

The Basename () external function gets the actual name of the program being executed, with the

leading path component stripped off. If this name starts with a - symbol, the pattern indicates that something

suspicious has occured.

3.2.7 PATIERN: trtp

This pattern attempts to detect the tftp program accessing files outside of the tftpboot/ directory. This

could indicate an attacker using the 1FIP protocol as an attack vector.

This pattern has too many hardcoded constants to be useful in its current fonno It hardcodes the inode

numbers for the tftp program into the pattern. This should be changed to a more natural way of specifying

the name of the program.

3.2.8 PATIERN: bin-mail

This pattern attempts to detect the Ibin/mail program writing to a file that has its setid bit on, or is

executable. The pattern is very straightforward. The execution of the mail program is checked by the

transition on the EXECVE event. This is coded rather awkwardly - it detects the execution of the mail

program by looking at the inode of the argument to the exec () call. This is very system dependent, and

should be fixed.

23



It then checks to see if that program opens any files for writing that have their execute bit set (using the

isexec () utility function) or have their setid bit set (using the issid () function). In either case, the

pattern triggers, indicating that the mail program probably has been subverted.

The invariant deletes any tokens associated with a process when that process exits. Thus. as a mail

program rons it generates a token in the machine, and once that program exits. all tokens associated with it

are deleted.

3.2.9 PATTERN: setid.pgms.cant.spawn.shell

A setuid program is not allowed to spawn a program with the effective user id unchanged. This would allow

attackers to subvert (say) the mail program, and make it spawn a shell with an effective user id of root.

This pattern is conceptually simple - if an EXECVE occurs of a shell program and the EUID changes

after the call, then trigger the pattern. However, because ofa weakness in Sun BSM auditing, this information

is not available. Instead, the pattern must monitor on a per-user basis - if a user executes a setid program

that then spawns a shell with a user id different from the user's, it triggers the pattern. This is less flexible

than the generic pattern, but is workable under Sun BSM auditing.

3.3 Theoretical patterns

This section describes theoretical patterns. These patterns cannot be tested in the current IDIOT i m p l e m e n ~

tation, and are written for instructive purposes only.

These patterns can be found in the other_C2_patterns directory under the main IDIOT distribution.

3.3.1 PATTERN: access-open-to-same-path-dilT-inodes

The general problem that this pattern tries to detect is that of an attacker to exploit the small window of

opportunity that exists between programs checking the validity of the files and the actual opening of the file

for writing. If an attacker can slow down the system, by running the program with a very high nice value,

for example, he can replace the file that has been validated with another of his choosing.

passwd -F Attack In SunOS

The passwd command can be directed to treat another file as the password file using the -F option. Before

opening this file for writing, and depending on the version of Unix one is using, the passwd program will

attempt to determine that the user can indeed read and write to the file by either opening it for read, calling

the access system call or calling the stat system call. If after this check has been completed, and before

the file is actually opened for writing, the user changes the path name to point to the real system password

file, the passwd program will operate on this file assuming it is still working with the original file.

24



xterm Logging Attack

xterm needs to run as root because it needs to chown the tty it allocates to interact with the user. Logging

is a security hole because of the race condition between access check permissions to the logging file and

the logging itself. When given the -If option, xterm creates a file by calling the creat system call

and immediately changes the uid and gid of the file to match that of the user running the program and start

logging.

The problem appears when a user gives the following sequence of commands:

Ollcnod foo P • foo h ~Il@ FIFO ..- pipo

J<eOnl -H foo I cru~ will open til" FIFO ond block beeo".o choro
t io no proceoo reodinll tllo other etld of ~ I l e pipe

"'" loo jull!<
1n _ ~ (etc/pos"W'd ~ o o

cot jW1k I Nav thot th..r .. i ~ 0 rudor .. t til" "thor ~ i d " of oho

• ~ "ipe. tile c ~ e a ~ "yot ..... caU r e ~ u r n o and
t tile ne"t n a ~ e m e n t exectlted i" tile cl\:l>o<l oynem
I caU that ",ill chll.Jlllo the p e n n i ~ ~ i o n of tht Ittc/pOS,,>Jd

• ~Uo 00 ~ t u r . t ~ h o " o o ~ cll.Jl add II.Jld dele~e ontrie~.

Although more difficult to exploit, the patched version of xterm continues to have a similar problem.

The code described above got replaced by:

1 lflocc.. ~ . ( ~ c r o ..n-.10l1fi1". F_OKI I _ 01 I
2 Ie (....rno ._ =e>lTl

J cr"a.... o ~ l ~ c r ..en-.uid. ~ c r " .. n - . l I i d . ~ c r ....n->loqlHo. 06441,

4 ..10..
5 retuen,

",
B Hracc.... (..creen_>loqfil@.F_OKl !. 0

9 II ..cc".. (.cr....n-.loq£il".'COKl !- 01

10 r e ~ u m ,

n
12 Ie I (."re",,-.lOllfd.oponlocreen->lOllHle.O_WRom.yloJ-PFmD. 06Ull<OI
1] roturn,

The creat system call was replaced by the creat_as routine. This routine forks a child process

that changes its permissions to that of the user before it attempts to create the file, effectively eliminating

the previous race condition. Unfortunately, a race condition. although much harder to exploit, still exists

between the access call in line 8 and the open call in line 12. If a user can slow down this program

and time things right, after the access call succeeds, the log file can be replaced by a link to the real

letc/passwd file. The xterm process will open the letc/passwd for writing, and append to it the

information that it is supposed to log.

Vulnerabilities detected

CA-93:17 xterm Logging Vulnerability.

81gm 5/11/1994 The passwd command takes a -F oplion in SunGS.

Pattern State Machine

The state machine is shown in Figure 3.8.

25



s,~

i Stale i

EXECVE

"+
EXEC

... , -.

After

""'"~,.. --,

J .. _ ~

After ·'r---
0,,"

\
CLOSE

After
_.....1 Access r- -----__.,'..

...
.p'l ~ : ~ e )

... '.' ~
rviol:uioni

Figure 3.8: Attack state machine

26



Pattern code

,-

Oet~tt~ th.. cl...uic ·"1n<\",,-of-oppeJrtunity' ""Ploit...tion. U ~ e d in
p ...uwd prOIl""'''' ...nd ",term 10llging bug.

>I...rk Cr05hl.. Nov. 1 9 ~ 5

Ivan Kr5ul NOV. 19~5

-,

..",tern int inod.. r ~ t r l , ,. r .. turnS t h ~ inod.. for t h i ~ p ...rticul...r fil... ,

p ...tt ..rn ",OUPd! • ... c .. ~ n - o p e n - t o - ~ ....... _pHh_diff_inod..s· priority 7

at ... t .. n rt,

nodup ot t .. atter_...cc.. ~ ~ ,

nodup ~ t t ..... tter_cr.....te'
nodup ... t t .. ,,It.. r_open,

..... t .. dt..r_ex.... '

~t ... t" viol...tion,

int PID. D r o D ~ . llUre. RIIID,
5tr PILE. PRa;,

poat_..... tion I
p.,intf I ·violetion\n·l;

,-
tl>l ... invariant .....tn th... t th.. p ... tur.......r" "",t"hod "" long ... rhie
proc ..sc ... rUNun"

-,
neg inv...riant inv /' n ~ .. tiv.. inv...riant '/

at... t .. n ..rt_inv. fin... l_inv,

tr...... proc_"",it(""U'1
<- ... t ...rt_lnv,

- ~ fine!..i"",
1_ ( thi.(PID) _ PI», )

..nd pr",,_..dt,
..nd inv;

,-
TIlls tranBition i ... t ...k"n H th" ex......... d ..... n .. t ruult in an error <U\d til..

proqr "","CUtl-ng b ... tvid rOot. W.. U ••••• not quit W.....r" t ting tllb

proqr but don't ..ant to introdue" ... vuln..cability or at l e nOe a bi"
..n... 00 'I....111 ehcck lor tho.e progrllrlll ...ho~ .... l ..etiv.. Ullcr id i ~ n .. t th..
~ " " ' " as t h ~ rc...l u~ .. r id.-,

tran...",ecll£X£C\ll!.1

n ..n;
...It ..r_ ..,,,ec;

1_ ( thi.(eRR.] _ 0 " PID. thb[PID] " PROO _ thi.[PROGI

"ElIID thi"(l!IIIDI ~ ~ RlJID _ thle[RIIID] ~ ~ EtlID I_ RIIID ; J
..nd exccl,

tr........",..c21=1
<- atatt,

...It..r_,,,,..e,
1_ [ thi~!eRR.1

~~ EUJ:D
..nd c",..c2,

,.

• Q ~~ PI». thie[PID] " PROG _ thia[PRa;1
thh[ElIID) && RUID _ thi,,[RUID) & ~ E:!JID :_ RIIID

TIlls t r a n ~ i t i o n is t ...ken wh..n ... proqr............teo a HI.. e ... lling tho crc...t ..
llyn.... call-,

tr...ns cr t .. lCREATI
<- ..ft _ e"
-,. ... ft .. r_cr t .. '

1_ (thlo[llRJI.) 0&& PID tll1o[PID] && INODE:. thbIOBJ_DroDE)

&& FILE: • thi"IOBJI,

end er..... t ... '

,-
Proqe"",,, c ho cr..... t .. files by c ...lling th .. QPE:rcwc or OPf2l_\fI'C tdl and

C"lo"ing tl> Th.. next thr.... t ...... ltlo"" "'re dUI91lod to c ...tC"1> thi~.-,
tr""" ..pent ......teIlOPf2l_OC)

<- dt.. r_c",cc,
_> aftcr_op<ln;

L ( thi~[1lRl\1 .0" PIO tl>la[PID) &, INOOE: • thi,,[OBJ_DroDlll
"PILE:. tl>is[OBJ),

end opentre...teI,

27



.~""" OP"'nc~u ...2 (OFEN_h1:1

<- " l ' ' ' ~ _ o " o ' "
_. "nor_op"",
t_ ( .llh(li>Ql.) - 0 ~l< FlO _ .1l1.(FIO) l<l< !HODE _ .hi~(O&1_!HODEI

"" FlU _ .hh (0&1]: J
end o""ncr... te2;

,r4llG "loGe (CUlSEI
..e.er_open,

- ... f . " r _ " ~ u . , , ,
1_ (.hi~(I!.JIR] 0" FID • thh(PID) l<l< !NODE ••1l10{O'I.LD/{)DE), ]

end "loG'"

,.
H."r " lil" h... been eru'ed. H tho .. ""'" fil" pUll "00 UJ>ed ..0 a
para:oe'''r '0 rhe "hOlm Or ,,_ rouUne bu. 'he !noele h eliHerent

'hen "e have" vi"l... ionl.,
tt""" ehmodlCltllCJOI

.. f . e ~ _ e r " ...",
-. vio1orion,

1_ ( thio(l!RR) - 0 " FlO. ellh(FIO] "
UIODE I_ thh(OBJ_INODE) l<l< FILl: _ .hlo(OBJ),

and elll:lod,

trano e l l c : r w n ( C I I ~ i N l

<_ ..feer_cruee,

-. vio1oUon;

1_ ( thia{£JUl) - 0 " PIO • ehi.(PIDI "
:moDE I_ thio(OBJ_WOOI:] l<l< I'lLt. thiG(OBJ],

"nd .h""",
,.

The fOIling tranaitio re talcen ..n"r ....uc.e.... ful exo. if .. fil" i ••ened

lor "xheen.o "l'h the Or ..."eso "aU.,
tr""" ....e .. CAOCESSl

<- a f t " ~ _ " , , e . ,

- ...l ...._....e ... '
1_ (thi,,(£JUl) 0" FID thio(FID]" meDE _ ehh(OBJ_D1DDI:)

"I'lLE _ ellh(OBJ];

and atten,

er""" Ge... CSTATI

<- af."r_e',,,.::
afeer_..tce•• ,

1_ I tllh(l!.JIR] 0 "l< PIO thio(PID] 0" DIODE. thill(OBJ_INtlDE]

" PILE ••hb [OBJ] ,
end ..... ,

tor ""it"for r".d i ~ n"" opened

'h"n "" h ..v" .. D ~ o h l " " ,

tllh[PIDJ " DIODE !.a" pm
thi.(OBJ) ,

If .he .""'" fHe thae " ... opon"'"
and 'he lnod" n l l l > D e ~ hn "Ilanoed.,

'rana ..... i.ol (OPENJ\1
<- after_..ccua,

-. viol ..Uon,
1_ { .1110 (ERR]

"l< I'lLE
..nd ""ie.. l,

,.

'r""" l«ito:2(OFDC\<C1

<- .. n"r_..""...."
_. viol..don,

L (.Il1.(Ii>Ql.) 0 '" FlO _ .1lt.(PUI] '" DIODE I_ ehi"tOBJ_D100E)
" FI.LE _ ehh (OBJ], I

end ""lte2,

ttana ..... ieoJ IOPI2Ch"l'1
<_ ..fe.. r_..""..... ,

-. "iol.. t10n,
1_ (ehb(ERI\] 0" PID ehia{PIOI l<' !NODI: !. tIl10(OBJ_DroOE]

l<l< i'lL!!: _ thie (OD.:!) ,

"nd ""ie..J,

.r...... l«iee4 (OFDCWIt:1

..feer_..".o.... ,

-. "iol... :Ion;
1_ (ehh(ERI\) 0 '" FlO _ tllh(PID] " WODE I_ thie{OD.:!_DIODE)

"FIl..E .lli,,(O,..,],)
end l«iee4,

28



Discussion

This pattern can detect the attack by seeing if the inode for the file has changed. How does this happen?

When the file is first opened. it will have an inode given by the destination of the link. If an attacker moves

the original file and creates in its place a link that to points to to another file, this inode will change. Thus.

by detecting this change in inode value. the attack can be detected.

Unfortunately, this pattern cannot be used as is with the Basic Security Module C2logging provided by

Sun with Solaris 2.4. For this pattern to work, the audit trail would need to provide, at least, the following

information:

1. execve: ERROR. EUID, RUID, PID, and program name

2. creat: ERROR, PID, initial file name, final file name, and inode number

3. open: ERROR, PID, initial file name. final filename, and inode number

4. close: ERROR, PID, inode. initial file name, and final file name

5. chown: ERROR, PID, inode, initial file name, and final file name

6. chomod: ERROR, PID, inode, initial file name, and final file name

7. access: ERROR, PID. inode. initial file name, and final file name

8. stat: ERROR, PID, inode, initial file name, and final file name

The only items that require explanation are the file names. Ifwe have a symbolic link syml that points to

a file fill then a call to chmod ( "syml" ,mode) would require an audit trail record that would indicate

that the chmod system call was executed on the initial file name syml and the final file name fill. The

inode should be the one corresponding to the final name.

The audit trail generated by the Basic Security Module provided with Solaris 2.4 violates the file names

requirement. To see why this is important, consider the following fragment of a setuid C program called

xtennbug:

/' C ~ u t e a 109 fUe called "te=buIl.I .... "/

H( crcatl·xte=buIl.I09".Ol > -1 I (

/. Tb" p<lrmidorur. of the cruted tile "er" .... t to OxOOOOO. eh""".. th_

to " ..""'thill.. OIOra r .....eJt<lb1e "I
H( c_I·"t,,=bug.log",S_II<WXUIS_II<WXGls_II<WXOI •• -1 I (

fprlnt£latderr. 'Could net "han.... th" pe=i"don o£ £lIe .te=bull.l"11\n"l:,
I ehe (

fprilltf (stderr. 'Could nOt "re"te I .... til" xtermbu... IOlI\n·l:

and an attack script that will exploit the vulnerability described in this document is called xtermbug . exploit:

1!/binf"h

mknod xtermbu... I .... p

>ttermbug •

"leep I

"'" "te=bug.l.... junk
In -a /ho""'"/kt"ulfbr"""-",,, xtetlllbo... I ....

"at jWllc

"at /h"""'''fkr""l/br''''k-"",

29



This attack can not be detected by the pattern described in this document if you are using the Basic

Security Module logging in Solaris 2.4. The audit trail generated for this session, reformatted for clarity

and brevity. with the attacker called gollum, and the victim called krsul, is:

1 ",,~cveI21 - pll~h./h""",/>;allum/"'~~=hu.g.""Ploi~ _ l!l!JD gollum _ R\IUI <;IOllum

2 ""ecve121 - pa~h,I""~/abin/<Ob'Io<I - WID <;Iollum - IWJ:D <;Iallu:o
1 """"0<1121 - arqum<>n~.2.0"llb~.lIIDde _ 1lrqUIIIIlJ1~.l.a"a,elGV

4 pUll.. / .1l>O~do~/ho ... / g o 1 1 u m / " t ~ = . b u g . l D \ l • WID <;Iollum • RUID <;Io11um

5 chownl21 - ugumen~.2.0"Hl.new file "'iel - orgwnen~.3.0x341,new file gid
fi pacll. I ..... ~ c 1 o " ' / h _ / g o 1 1 ..... /"~e=hu.g.lO<;1 - EUTD <;Iollum - RUID >;ol1um
7 e"ecvo(21 _ pIlU'./ho"",,,/k:n,,,lIbin'''tenobug _ £U:ID ku",1 _ RITID lIo11um

e necve(21 - pUh,/",."'/bin/oleep - WID gol1um - RUID <;Io11Ul1l
9 e,,~cveI21 _ pll~h./u8:l[/locB1/bin'mv _ m1D goU..... _ IlUIn gOll=

10 <ename(2) - pUh./.""'rdor/h""",/."ol1"",l"t"r>ribLlg.IOV
11 p l l ~ h . / .lIIOrdo"'/h""",/>;ol1um/junk _ """'D 9011"", _ RITID 9011"",

n el<eev.>(2) - pllth./u.c/bin/ln - EIIID <;Iallum - RUID geUum

Il symlinkl21 - text, /h""""all<rGul/bcuk..o>e - pa~h, I.Il>Orclorlho"",/gol1uml"te=hu.g.lov
14 EIIID gol1Ul1l - RUID <;Io11w::1
15 e>:e=e(2) - path,/",o~/bin/cat - WID gol1Ul1l - RUID goUum

16 crut(21 _ path,I.ll>Orcla",/hOlllOIgollW11/"unobug.1D\l _ anrument,J,O~,ar","p"n: fI ...."
17 = krsul _ RUID gol1l"",

18 c_121 - erlJUlllOn~.2.0"lft.n_ filll IlI<><Ia _ path./hOlllollalkrsullbroaJc-"""
19 = ""aul _ RUID gol1U11l.
20 ,,:<e=e(21 - Plltb.lu... ",/binlc... t - EUID gol1Ul1l _ RUID 9all"",

Notice that in line 20, the audit trail indicates that the chmod (2) system call was made to the file

/homes/krsullbreakJ1le. While this is ultimately true, it does little to help detect the exploitation of the

vulnerability. The pattern design specifically looks for a chmod or chown to the same file name as the

creat but with different inode numbers. The audit trail should mention that the original call was made to

file xtennbug .log.

3.3.2 PATIERN: 3.failed-Iogins

This pattern attempts to detect failed login attempts. Specifically, it looks for more than 3 failed login

attempts in a 3 minute time period. This could indicate that a password attack is occuring against a user

account.

This pattern cannot be tested because IDIOT currently does not support a CLK event. The idea behind
a CLK event is to allow timing infonnation to be incorporated into the pattern. Consider the code for the
pattern:

/0 CLI\ h.... nat be...n impleaMtnte<l y ... t °1
neq i . n v l l r U 1 n ~ lnv

"tato .......rt_inv. tinal3nv,

t",,,,,,,, elk(C'LXl

<- etan,
_ ~ Hn....l:

1_ ( ~hls['I'I:!IE] - t1ll>o!t ~ 160, ]

end elk,
encl Inv,

/0 pauern c1ucdption tOll......5 °1

tr""" toUllLOODlI
<- stan,

- ~ otter_CoUI,,- ,
th1s{EIIR] 1 ~~ ruld. ~ h i . [ R I l I D ] ~ ~ time. ~ h l l l [ T I H E ] ,,

end tllll1,

~ ' O J U I flll.121LOOINl
<. Il£tc"'_hill;
_ ~ Iltter_hU2,

'-,
,

end fall2;

30



<- ..ftu_f..il2,

-> .. f t e ~ _ f ..ilJ;,- ,
~h!'[ElUII • 1 ". ~ ! d . thia[lIlnDl " thi,,[TIHI!.J - tlmo < 180,,

end fdU,

The first failed login attempt sets the time attribute of the token. This is taken from the timestamp

information in the audit trail. The third failed login attempt can use this to make a transition if less than 180

seconds (3 minutes) has passed. The CLK event occurs at predicatable time intervals (say every second). It

is used in the invariant to delete any tokens that have been in the state machine for longer than 3 minutes.

The CLK event should to simple to add to IDIOT and would provide great flexibility in writing patterns

to detect failed login, network access and other object creation attempts.

3.3.3 PATTERN: dirJ>rowser

This pattern detects a user browsing through directories. It does this by counting the number of change

directory events in the audit traiL Normally a user executes a few chdir commands in a session, but an

abnormally high number of lhese commands could indicate someone browsing where they shouldn't be.

This pattern cannot be tested because it uses the CLK event as described in the previous section. However.

it illustrates a useful way of detecting if someone is browsing through sensitive directories. It uses the inode

of a shell process to identify which process to monitor - most users browse using their shell. It then

counts the number of CHDIR (change directory) events in the audit trail. If this count exceeds a threshold,

it triggers the pattern.

3.3.4 PATTERN: Ie

This pattern tests to see if an ethernet device was put into promiscuous mode. In the words of the comments
to the pattern:

I!.otablbhing " b,,~dlink to /dIN/le and op<>J\U1Q' tM 1 > , , ~ d U n l < i." not

pOso!blc be<:;auac h"rd Unka """"ot be eatabliahlO<1 " " ~ o . , , d""i,,"a. Don't

len"" b"'" to tllat ~ o r peo..;..tuity Yllt.

This pattern may not be possible to implement at all, but is included as an example.

3.3.5 PATTERN: port_walk

This pattern attempts to detect a port walk attempt. It uses accept events in the audit trail to detect an

intruder connecting to ports across the machine in an attempt to see what services are running. It cannot be

tested or implemented as IDIOT does not support the accept event yet. Ifit were extended to handle such

events, then a wide variety of network attack patterns could be detected. See the section on limitations of

auditing for more information.

3.3.6 PATTERN: dont-follow-sym-Iinks

This pattern attempts to detect a seruid root program following a symbolic link. This a potential vulnerability

as an attacker could replace the link with a link to another file, and subvert the operation of the setuid root

31



program.

This pattern contains a subtle flaw. Consider the following code snippet:

t t a n ~ opon5 (OPDeA)

<- oton,
_. dtot_open,

1_ { th15ll!RRl ·0" thhlEUrDl • 0 ~l" iGll.nJclthislOBJl1 l"lO
PILB • thl.e{OB.JI lOlO pIO • thh(PID], I

end op.m5,

This code detects if a file was opened for reading by a process running with root prvileges. It uses the

islink () call to test whether the file was a link. This is a mistake- the state of the file system may have

changed between when the audit data was generated and the pattern is being run. This is explained in the

section on External declarations in the technical documentation.

This pattern is an example of how not to use external functions to carry out computations. External

functions should never query system state that may change between when the audit trail was generated and

when the pattern is run.

3.3.7 PATIERN: timing-attack

This pattern also uses the CLK event, but to detect a race condition attack where a file is unlinked and

relinked to a new destination before being accessed. This is a classic "time-to-check-to-time-to-use" attack.

The first transition records the time that shell script starts to execute a program pointed to by a link. The

next transition is taken when the same file is unlinked within I second. The final transition is taken if that

same file is relinked to a different location within I millisecond. This triggers the pattern - an attacker is

attempting to relink a setuid link to point at a file he/she wishes to gain access to.

The invariant in this pattern deletes any tokens that have been in the state machine for longer than 5

seconds. As the CLK event is not implemented, this invariant won't compile under the current version of

IDIOT.

32



Chapter 4

Users Guide

4.1 The C2..appl Application

Testing a pattern is a straightforward procedure. It involves compiling the pattern, linking the pattern into

a program that can process the pattern and running the pattern with an audit trail. In IDIOT the three steps

are performed llsing the same program: C2_appl.

The patterns can be stored in arbitrary directories. The example shown here assumes that the pattern is

stored in a directory called $IDIOT...HOME/C2_patterns. Note that the descriptions of these patterns

are normally not located in this directory.

To compile a pattern run the C2_appl application and type the command "parse <pattern

name>". The following figure is an example of compiling a pattern from the C2-appl application:

S cd $IDIOTJlOMl:
$ ./C2_8ppl

~ l n l > p a ~ 5 e C : 2 J 1 a t ~ " r r u o / 5 " t u i d - w r i t " 5 . a " t u i d

l n a 1 d ~ Btmt reduced ""Pr, printfl·, .. \n"l

Pulhing atate "aurt_inv" into tb" invariant

Pulhing "tat" "final· into the Invulant
'!'he Stltu in this invariant ar" 2. whicb arll'
Itart_inv
, ~ ,

Parsing invari .....t tranliUen "xit

Parling tr"""itien 1IIOdl1

Iru;ide scmt reduced ""Pr, lllle... e-~£RRll Cg 01 "

un1t l o d . - t o l < - ~ a o . i Q 1 \ . . P I D l l l V n - ~ P I D r I II "
un1fied_tok"~aloign-"'IL"rl",,_>OllJll1l "

Irh~x~clllVe-~OIlJJtODSlll·· II II
liuidl"...n_>Oll.JJ1onsllr •• 1111

33



->~, 0>0<11., •• "
<- exee

...lolatlon
<- I'IO(\J. _t ....

cr: -pLe -c; -g -0 .etuld><rlte••etuld .•o .etuldwrLt"U""uld.C:

<.""'" ",uninq. deleted>

11 W4rnl",,!.1 d"t"eted.

Oon" c ~ ~ l i n 9 uotuidvrheao"tuLd.C:
Inside cteate p ..ttorn.

1n.IItant>at.. d n"" pacu.... i ...... c""".. tOt a o c u ' d w r ~ c u u t u i d

tini>

After compilation of the pattern you should be able to see the c++ and relocatable files produced

in the $lDlDT_HOME directory. The files generated will have the name that was indicated in the

first line of the pattern description. For example, in the following pattern the name given to the pat

tern is setuidwritessetuid and hence the resultant files will be setuidwri tessetuid. C and

setuidwritessetuid. so.

pottem .otuLdwrit".oetuid ·.etuid writeo to ...etuid tno' priority La
int PID,

..cr YlLl:;

Str PRCCIIAHE,

naco ocort ...ltet_ex"". vie1<>.tien,

<pottion ot tho pe.ttern del .. ted.>

tr""" ......:ll.210PDlJlC1
<- after_exec,

-,. v101<>.tion;

1_ ! thio[EllRI ... " PID. tbb[PIDI "PILE. tb1B[DBJ] "

U • .."""ltbh(OBJJ10DS]I • 1 II ieoidlthh(OBJJ<DDS]l • 1),
..nd 1I»dl2,

end oecuidwrite..etuid,

After you have compiled the pattern you must link it to rhe C2_appl program by issuing the "dlink

<pattern name>" command. Note that rhe pattern needs to be compiled only once and can be linked

many rimes in many different runs. In rhe following example the pattern compiled earlier in this section is

linked in a different session.

S cd SIDIOTJlOHE

S pwd • "hoto on ....,'1

IbClll<l./gol1um/IDIOT

S ./CLappl
tini,. dUnk Iho""'4Igo1Lum/IDIOT/s"tuid><rltU...cuid.'0
In.oid.. c ..... t .. p ..tt .......

tln1>

Running the pattern on an audirtrail involves giving the "run <audi t trail file>" command.

The following figure shows an example of running a pattern on a C2 audit trail.

S cd SIDIOTJlOHE

34



$ pwd I "hore ..r .. _?

fhO"",,,fgoll,,,,,fIDIOT

$ h -1 /h""",MqollU"'ftr..UG/""itu-eetuLd...udlt_tr..il
_rv_nr 1 ..ollU'" 15496 Dec Z 16,14 tr..il"' .... tuid-....it....-a ..tuld ...udlt_t"..il

$ . /CZ_..pp1

dni. dUnlo; I h ~ s / q o l l W I I / I D I O T / a .. tuLdIorrit..nuuid."a

I""id.. cr.. u .. p ..tt..m.
tini. run Ih"""'MqollWll/t"..U .. I ....itu-eetuid...udit_ta..U
5h"",.."dlt: ..ill .."ecute th.. 10110..in\l cOlrlllMld,

t .. il _0 tr..n./.... t"id-....it... - .... tuid ...udit_tt..il I pt..udit _r I
... ~ i d prOllt"'" /h""",'qollUlll/vulller/t...tl cre.. t .. d / o p e n ~ fot ....it..

tha " .. tuLd Or ""ecutahl.. fil .. 1.IDDtd<>r/h"""" ..oll"",/taStl.tl .
... t"id prOllt,,", Ih..... /lIollUlll/""lller/t..nZ t r e a t ~ f o p e n ~ lor ....it..

th.. " .. tuLd or .." ..""tabl.. file f.lDDtdDr/h....../1I01lutlftut2,el .
... tuid prOlltlltl IhOlDOlfllollUlll/vulner/tenZ tre.. t ~ / o p t n ~ fot ....it..

th..... tuLd or .." ..""tahl.. fil .. f.lDDtd<>r/hoa>e/llollutl/tutl.el.
Sh"",..udLt, No of cb:opped ovente • 56

tlnl.

You can tum on debugging on the C2_server that C2_appl application runs by issuing the command

"server debug 1". The following figure illustrates turning on debugging.

S cd SlDIOT.J!ClI<I<
S pwd I wh.. t .... ro " .. ?

Ih""",,,/o .. ll""'/IDIOT
S h -1 /ho.... s/llOUutI/tt.. il./vrite"-.... tuid ...udit_troil
_rv_nr 1 o .. llUlll lS496 D<!t 2 16:34 traLhf.etuid-....ites-.... tu'd, .."dLt_trail

S . fCZ_..ppl
dOl»' dli Iho...... fllOllU"'/IDIOT/ .. etuidlorrit .. u .. tuid.ao
InsLd.. er t .. patt .. rn.
tini. serv..r debug 1
tin,. run Ihomos /lIo11woltr.. il,,'....it....- ..etuid. "Udlt_trail

Sh......."d,t, will ""..cut.. th.. foUowing c<>lrlllllnd,
toil .0 troil./a .. tuld-""ite,,-a .. tuld.oudLt_troil I proudit _t I

FORK, TDlE!817S811761.RUIDl83JI •••.•••• OBJ_INO. 0
CLOSE. TIHl':!817S81177I, RUIDl8331 •••••••• OBJ_INtI • 0

CLOSIl, TIHl':!817S81177I.RUIDl83JI •.•.•••• OBoJ_INtI. 0

.... tuid prOllt"'" Ih""""fgo11"",/vuln..rftutl erened/opened for ....it..

th...... tuid Ot .." ..eutol:>l.. Hle /.lDDtdOt/h""",flloll"""t ... tl.cl.

CLOSE. T:IHIll81'S81l79l.RUIDI&3JI .••.•.•.••.••• OBJ_WO. 4113
CLOSE. TDlEl81'S81179l.P.u:tDI83lJ •• , •••••••.••• OBJ_nlO • 4113

E::'llT, TDlEI81H81l79f.P.UIDIUJf. . •.••••••• I!P.RIOl.RE:t"IOl
Show..udit, No ..1 dropped ""ent•• 56
ti..i.

4.2 Writing IDIOT Patterns

This section will take a step-by-step approach to writing a pattern. Along the way, each element ofa pattern

will be described. This will enable you to read an IDIOT pattern and understand what it is doing, and to

write your own patterns.

As an example, we will use the other_C2_patterns/lpr_copy_files pattern. We will explain

each pan of the pattern as it is developed.

4.2.1 Basic structure of a pattern

A pattern consists of four key components:

1. A name for the pattern - Ipr_copy_f i les in our case. The name is found just after (he pattern

keyword.

35



2. A post action which is executed when the pattern is matched.

3. An invariant which specifies when tokens are to be deleted.

4. A set of transitions between states, with associated guard expressions.

Of these, the post action and invariant are optional. A pattern without a post action doesn't make much

sense as it won't be able to report to the outside world. A pattern need not have an invariant if it does not

need to delete tokens.

The general structure for a pattern is as follows:

<ext..rnal <Ieclarati.."".

<tolten c o l o ~ declontlo.u.

In"9 U1variant ~ i n v a r i a n t n-.-. /. optionol invar.l""t '/

<:Invod""t atato declaraUon.a>

tcono <t".moIUe" """",>«event.,
~ - <tranaiUon from ata... n""",.,

-. <ttanoltLon to atoto """"'"
1_ I <quard e>:prennion>;}

end <tcanoiUon n"""'>;
end ~ i n v a r i a n t n"""," J

,. accual pattern tr"""itions ""art here .,

tn.na <t""""ition 1 name'«"""nt>'
~ _ ~ . r a n . t l l i t i o n from atato n-.->;

-> ~ t r a n . t l l i d o n to ototo na",,»,

1_ I <guard ""Pro""ion>, I

end. <tr"""itlon 1 """"'>;

t"ana <tt"""ition 2 Rhme>l<owent»
~ _ <tranoitio" from ntato """"'"
-> <ttan.itlon to .. tOte IUU:I<!>; •

1_ ( <guard e>:pre.aion>:)

end <t.."""ltLon 2 .........>;

end <pottem ~ > ;

There can be more than one invariant. Each invariant is given a unique name. An invariant is specified

like a real pattern - it can have multiple states.

The external declarations refer to functions that will be used to perfonn computations in the pattern.

They are covered in detail in Section 5.2.

The pattern name follows the pattern keyword. This must agree with the name at the end of the

pattern following the end keyword. This will be the name of the pattern C++ code generated when this

pattern is parsed. So in our case, lpr-copy_files will generate lpr-copy_files.C which will be

compiled to lpr_copy_files. so. Note, the pattern name and the name of the file containing the pattern

do not have to agree. The pattern name is what is used.

4.2.2 State declarations

The state declarations section is where the states of the pattern are listed. This is similar to declaring a
variable - the state keyword specifies that the variable names following it are actually states in the
IDIOT pattern. For example.

36



specifies three states - the start state, and two other named states. These names are used in the transition

section to specify what transitions connect what states. Note, the start state does not have to be explicitly

denoted as such - when the transitions are parsed, the start state is deduced.

States can be declared nodup. This means that tokens will not be duplicated when they move from that
state. Typically, a token which satisfies a guard will be duplicated into the state after the guard, leaving a
token behind. A nodup state means that the token moves into the new state, and no token remains in the
source state. The start state cannot be nodup'd. To declare a state nodup do:

4.2.3 Token color declarations

Tokens have bindings associated with them that can carry values along as the token moves through the
machine. For example, in our pattern, we might want to record the user id of the person who executed the
Ipr command and the process id of the command itself. We declare two variables to store these values:
RUID and PlD:

int RlITD. PIg,

These variables can now be used in the guard expressions. Once assigned to, they will store a value that is

bound to that token as it moves through the state machine - consider them as "local variables" to a token.

Each token will have a unique pair of these variables as every execution of the Ipr command will have a

unique PID assigned to it.

How are these variables set and used? We will discuss this when we describe transitions.

4.2.4 The post action

The post action code is executed when the pattern is matched. It is usually used to infonn the system

operator that a potential intrusion has occurred, or it could take active steps to halt the intrusion (such as

shutting down the system). The post action code is nonnal C code, and it can reference any of the local

variables declared in the pattern.

4.2.5 The invariant

Every time a pattern is evaluated, the invariant is also evaluated. This controls the deletion of tokens from

the machine. Why is this necessary? Consider our example pattern again. Every time the Ipr program

is executed, a token will move from the start state to the after_lpr-exec state. But this invocation of

Ipr may be completely innocent. Thus that token will remain in the after-lpr_exec state. Over time,

tokens will accumulate in the machine increasing processing time and causing memory overflow. Thus we

need a mechanism to delete tokens that are no longer necessary.

For every token that is placed in the start state of the main pattern, a token is placed in the start state

of the invariant state machine. Events drive the tokens through both the main pattern and the invariant

pattern. If a token reaches the final state in the invariant state machine. the corresponding token, and all its

37



descendents, are deleted from the main pattern state machine. To do this, IDIOT maintains a link between

tokens in the main pattern machine and those in the invariant machine. This deletion happens automatically.

An invariant is specified using the same syntax as a nonnal pattern transition. In our example, there are
only two states to the invariant machine, with one transition between them. The following code shows the
invariant:

n"'l i n v " d a n ~ Unt_inv ,. nequive inv"r1""t .,
"tat.. nart_inv. fin"l,

tr""" <>Xitll!Xl:Tl
<- ..nrt_lnv,
-> Unal,

1_ (PID· thblPIDI, )
end G > t i ~ ,

Al\<l H t 5 t _ ~ n v ,

The transition is named exit and it leads from state starLinv to stare final. These states are

declared prior to the transition specification. This transition is taken when an EXIT event occurs in the audit

trail - when a process has exited. The PID attribute is available in this event, and it gives the process id

of the exiting process. Our invariant guard sta[es that any token whose PID color matches the PID attribme

from this event will be deleted. In simple tenns, all tokens created by this process will have the same

PID value. When the same process exits, we will delete all these tokens using this invariant. The guard

expression in the 1_ section will be explained in Section 4.2.7.

This is a very common invariant. A lot of patterns will delete tokens associated with a process once
that process exits. Another common invariant is deleting tokens that no longer can fonn part of an intrusion
attempt. For example, in the other_C2_patterns /3 -failed-logins pattern. the invariant deletes
any tokens that have been in the system for longer than 3 minutes. This pattern looks for 3 failed login
attempts within the space of 3 minutes. so keeping tokens around for any longer is pointless.

n"'l inv"d""t inv
"t"te It ..rt_inv. finaLinv,

tr""" e l ~ 1C'U;1
<- .. tart_1nv,

_> Un"l_inv,
1_ ( thi.. (TDlE] - t1m<>,. laO, ]

end tIl<,
end inv,

The eLK event has not been implemented yet.

·,.2.6 lTnification· binding values to tokens

Before .... ~ : '0 discuss transitions and guards, the concept of unification must be discussed. IDIOT uses

u n i ~ 7 O : [ E I ( ) ' " :0 lest guard expressions. An expression is unifiable if the value on the left hand side and that on

the. . 'jI the = sign can be combined. The reader is refered to standard textbooks on this topic: [Set89]

for example. Simply put, an expression of the fonn x = y is unifiable ifx and y both have the same value.

If one of x or y does not have a value bound to it. it assumes the value of the other variable. This allows

assignment to occur, without requiring unique assignment and equality operators.

4.2.7 Pattern transitions

After the invariant comes a list of the transitions. There is no special order to each transition, as IDIOT

computes the placement of the states based on the transition specifications. Each transition is contained

within a trans ... end block.

38



A transition is associated with a particular audit event. In our example pattern, the two transitions are

associated with EXECVE and CREAT respectively. A transition will only be taken if its corresponding event

occurs, and its guard is satisfied.

A guard is a boolean expression that must be satisfied before a token can transit a guard. The boolean

expressions in IDIOT are expressed in a C-like syntax. They are evaluated left-to-right with short circuit

evaluation. This means that if a component of the guard causes the whole guard to evaluate to false,

evaluation halts. Most guards are specified in conjunctive normal form - a conjunction of clauses.

Conjunction is specified using the AND operator, which is && in C (and IDIOn.

The guard for the transition exec_lpr looks as follows:

,- ,
~hi~I"""1 • 0 .... PID. ~ h b I P I D I " PIlOCi. ~ h i ~ ( P I l O G J ....

1l00D • thisIRUID] "
Ist"""'tth(·.·lp~·. this[PROG]l • II .... t h i ~ I I ! l l I D ] .0,

This guard is composed of six clauses each separated by a && operator. The full guard is only true if each

of the clauses are individually true. If any clause evaluates to false, the value of the conjunction of these

clauses is false, so evaluation halts and the guard evaluates to false.

The first clause checks the ERR attribute of the event. This is a very common test, and can be seen

in just about every guard. If ERR is 0 the event occurred successfully, if it is 1 the event failed for some

reason. So if we had this [ERR) = 1 in the clause, we would be testing for failed EXECVE events. In

the clause, this refers to the attributes of the current event.

The second clause extracts the PID attribute from the audit record, and binds it to the current token.

This now becomes a local variable available to all other guards in other transitions. Effectively, we have

tagged this token with the process id of the process that caused the token to enter the state machine.

The third clause does the same but for the name of the program which is stored in the PROG attribute of

the EXECVE event. This is the full pathname of the executable associate with this event. Again, we bind

this to a token color (i.e. a local variable to the token) called PROG.

Similarly, the fourth clause extracts the real user id of the process that caused with audit event and binds

it to the token color RUID. This will be used later in the post action to identify which user attempted to copy

over a file. This is a common occurrence in patterns - some identification infonnation is extracted from the

events and bound to a token color. This information is usually process id, user id or file name information.

This can be used to pinpoint who attempted an intrusion, and what they were using or trying to access.

These bindings are actually used in the second transition. The guard for the second transition looks as
follows:

,- ,
~hi.IElUlJ ·0 .... thh[PID] • PID~" FILl'. tllh(OBJ] ....

l ! n T r e " ( · · / v ~ r / ~ p o o ! l · . ~ h i , , ( O B . T ) ) • 0),

The == operator is not used in IDIOT. Instead, the = operator is used to unify the values on the left and

right of the operator.

Notice how the order of the terms around the =sign is reversed. We are now unifying in the opposite

direction. Each clause will evaluate to true if the value of the specified attribute from this audit event

matches the corresponding color for the token. IDIOT will match the PID attribute for this event with the

PID color for every token in the after_lpr_exec state. This color was bound in the first transition.

39



This enables us to tie audit records together that belong to the same process. If another process called

the creat () system call, there would be a CREAT event in the audit trail- but the PID field would not

match the token's PID field. Only the process that first introduced the token into the state machine will

match the PID field.

We then bind the file name in the OBJ attribute of the event to the token color FILE. This is used in the

post action to identify which file is the target of the attack.

40



Chapter 5

Technical Details

5.1 How IDIOT works

As with most sizable projects, IDIOT consists of a fairly complex file structure. Determining how the

components of the program integrate and work together can be a challenging task. This section is presented

as an overview of the structure of IDIOT, discussing its major components and how they cooperate to form

an intrusion detection system.

IDIOT consists primarily of four components: the audit trail, showaudi t. pl. the CZ...server, and the

pattern descriptions. Of these four. both the audit trail and showaudi t . pl are machine dependent, while

the CZ..5erver and patterns are portable. A fifth component. C2...appl, provides an interactive user interface

to IDIOT; this is also portable.

5.1.1 Audit Trail

While technically quite separate from IDIOT, the audit trail is obviously an extremely important part of

this intrusion detection system. Without an audit trail, there would be no record of activities against which

patterns could be matched, and this system would be rather useless. Currently IDIOT has only been used

with Solaris 2.4 and the Sun BSM audit trail. However, the system design should work equally well with

virtually any other OS and audit trail. Difficulties arise from the fact that, while most operating systems

provide some manner of audit trail, they each have a different format. This leads to portability problems.

IDIOT deals with this problem by working with a canonical form of the audit trail, rather than the raw audit

trail itself.

5.1.2 showaudi t . pl

showaudi t .pl is IDIOT's solution to handling different audit trail fonnats. The current showaudi t . pI

is simply a PERL script that converts a Sun BSM audit trail into the canonical fonnat necessary for IDIOT.

If IDIOT is moved onto a new platform, only showaudi t .pl need be rewritten to accomodate the new

audit trail format. Similarly, jf IDIOT were to be expanded on an existing system to examine more detailed

41



infonnation from the audit trail, showaudi t . pI would need to be extended to include the new infonnation

in the canonical audit trail.

showaudi t .pI accepts either raw binary input files or ASCII files generated using the praudi t

command. It can be run from the C2_appl interpreter (discussed later) to parse audit files, or it can be run

manually to view an audit trail in canonical form. By utilizing c o m m a n d ~ l i n e options, the audit trail can be

printed either with or without symbolic names for events.

As the inner workings of showaudi t .pl are discussed in Section 5.3, we will not go into any more

detail here.

5.1.3 C2-Server

The CZ..5erver is the core of IDIOT. It is actually a C++ class, an instance of which is instantiated to

perfonn the intrusion detection. An object of type CZ..5erver has several methods associated with it; the

most interesting of those are listed here:

int rUILpraudit (char *audiLfiIe) - primary method, described below

C2..Pattern *parse_file (char *patternfiIe) -parse an IDIOT pattern file

C2_Pattern *dIlink_file(char *fiIe) - dynamically link a compiled pattern description

into the server object

As shown above, run_praudi t () simply takes the name of the audit file as input. rUILpraudi t ( )

calls showaudi t .pl to transfonn the audit trail information into canonical form. Then it goes into a loop,

reading one audit event at a time from the trans fanned audit file. If run against a static audit trail. this loop

continues until it reaches end-of-file. Otherwise, run_praudi t only exits upon encountering some kind

of failure.

For each event, run..praudi t () steps through the list of patterns which are requesting events. For

each of these patterns, it executes the method PatProc (), passing the current event as a parameter.

PatProc () is a method for each pattern, and thus knows the current state of matching for that pattern.

It takes the current event and perfonns the operations that should result from the occurrence of that event.

These include operations such as token unification and transition firing.

5.1.4 I'allerns

Finally, of course, the patterns playa major role in the workings of IDIOT. Patterns are written in a language

that describes a known method of attack as a set of states and transitions between them. As indicated above,

transitions are based on audit trail records, or events.

To be used by IDIOT, patterns must translated into C++, compiled into shared objects, and linked

into the C2_Server object. This can all be done at startup time, or patterns may be added to the server

dynamically.

Figure 5.1 depicts the basic component structure of IDIOT.

42



e

cancnical
arlit

"""" e
sh::x.-aL.rl:i.t .pl

t
event

A.rli.t. b:ail

Figure 5.1: Structure of IDIOT

43



5.1.5 CZ-"ppl

C2_appl provides an interactive interface into IDIOT. It allows the user to compile patterns, dynamically

link pattern objects and instantiate server objects. as well as several other related activhies. Listed below

are some of the major commands available:

parse - parse a pattern file

dlink - dynamically link a compiled pattern into the server

server - perform operations on the server (set inlile to binary or ascii, exercise patterns, change debug

leve!, or print the server queue)

debug - debug a pattern description

run - initiates run_praudi t, described above

time - display time accumulated in C2....appl

5.2 Refering to external functions

External utility functions are used to compute results that cannot be expressed in IDIOT pattern form. For

example, the pattern Ipd...delete_files checks to see if a file is being deleted outside of a specific

directory tree. A function called inTree will check to see ifa given filename is below a specified directory

point. It returns TRUE if this is so.

How can this be incorporated into an IDIOT pattern? The following example shows how:

e"tem int in'l'ree I ~ t r . ~ t r ) ;

p ~ t t ..m Ip<Ldelete3ile. 'lpd delete. filn not u<"ldc!r .pool dlr" priority 1

~c .. c .. acarc. dcu_IP'!...""'"c. ~ f t ..r_d..ht.. ,

.tr PROG. PILE,

L<
cbhlEllR) .0 .... cbiarPID) • PID .... PILE. cbis\OB.:J) ....

Cin'l'ru! ·/uau.pool". FILE) • 0];

The function inTree is declared external to the pattern. The declaration states that it takes two string

arguments, and returns an integer. When the function is used, we pass two string arguments: /usr / spool

and the token attribute FILE.

The extern keyword behaves similarly to C, but there are slight differences. The external declaration

is parsed by IDIOT to see if it matches an internal type. If we examine the actual declaration for inTree,

we see it takes two strings as arguments, which is declared in utili ties" Cas:

int inTree(char *dir, char *filel i

However, this will cause an error in IDIOT. Instead, the built in string type is used: str. IDIOT will

parse this and emit C++ code as follows:

44



extern int inTree(Str , Str );

This uses the inbuilt string class which is then translated into a RWCString.

The allowable parameter types for external declarations are as follows:

I. int Integer type - equivalent to C into

2. bool Boolean type - equivalent to C into

3. s tr String type - equivalent to C char *.

NOTE it is imponant that any external C function be used to compute data that will not change over

time! For example, if an external function was written which computed the number of users on the system,

an IDIOT pattern which was parsing an audit trail and called that function would probably get a different

result every time it was run.

This problem occurs because IDIOT patterns get all their information about the system from the audit

trail. If an external function computes a value that changes over time (such as number ofprocesses, average

system load, disk utilization) then the values being returned by the external function are not what they would

have been at the time the audit trail was generated. Instead, they will reflect the system state when the

pattern is run, which may be completely different from the state when the audit file was generated.

For example, see the pattern other_C2_patterns/dont-follow-syrn-links. This pattern

uses a function islink () to see whether a specified file is a symbolic link. However, the state of the file

system may have changed between the time when the audit data was generated and the time the pattern is

run.

In all the patterns provided with IDIOT, the utility functions perform computations that cannot be easily

done in a pattern specification. For example, a pattern can check to see if a file name exists in a specified

path component (this is a string match - it does not check the state of the file system). Or it can see if a file

permission mask has the execute bit set (a simple bit-wise computation).

5.3 Audit trail canonicalization

A problem faced by any intrusion detection system is portability - every vendor and system has its own

unique audit trail format. Indeed, this format often changes across OS families from the same vendor

(SunOS vs. Solaris, for example). A well designed intrusion detection system should be able to accomadate

multiple audit trail formats with little modification.

5,3.1 The role of showaudit. pI

IDIOT achieves this platform independence by spliting the intrusion detection engine into two parts: a

front end tool that reads a system-dependent audit trail and generates a platform independent intermediate

form and a back end that performs the pattern matching. The showaudit .pl script is a PERL [WS92]

script that converts a Sun BSM audit trail [Sun] into a canonical audit fonnat that IDIOT can handle. The

back end pattern matching engine will take this canonical form and run the patterns against it. If the IDIOT

45



system is ported to a new system with a different audit trail format, only the showaudi t. pI script has to

be rewritlen. Similarly, if IDIOT is expanded on an existing system to monitor more detailed information

from the audit trail, the showaudit. pI script has to be extended to include this new information in the

canonical audit trail.

The showaudi t. pI script can accept either raw binary input files or ASCII files generated using the

praudit command. Typically, showaudi t is run from the C2_appl interpreter to parse audit files when

running IDIOT patterns. However, it can also be run manually to view an audit file in canonical form. The

script will run the praudit script to preprocess the audit trail. If the -r option is given, the audit trail is

printed in raw format - no symbolic names for evenrs are printed. The praudi t command runs faster in

raw mode. By default, the script prints symbolic names for events.

As an example, the output when the script ismn with the audit trail forwriting-to-executable-files
IS:

uecve 'l'Ile Peb 20 18:5J:H 1 9 ~ 6 meroobie "",rosbie merosbLe "",rosbie -2
o 20005 h.ilure' No such HI.. or directory _1 • ARRAYIOxfd5641 0
uecve 'Ne peb 20 18:53:30 1 9 ~ 6 "",ro.bie ....rosbie ....rosbie ""'rosbie -2
o 200B5 f"ilur", No .urh fil" or d..ir...,tory _1 • AlUlAYIO"fd5~41 0
cxecve The Feb 20 18:53:34 1 9 ~ 6 IIICrosbie IIICrosbie mcrosbie "",rosbie _2
.. 200B5 llUtten 0 - ARRAYIO"fd5J41 191080
npen - read merosbi.. mcrosbi.. mcrosbi.. mero.bi.. _2 .. 20085 sueeeu 4
_ ARAAYlO:rfd54el n30B5
v:.it The Peb ~ O 18:53:34 1996 o:cro.bl.. merosbJ. .. "",ro.b, .. mcro.b,.. -2 0
20005 Sueee"" 0
fork rue Feb 2" 18:53:11 1996 roo.. root root root _2 0 10116 ."eees. 0

As can be seen, the script prints a symbolic name for evenrs - for example, execve is the execve ( )

system call used to overlay a process with an executable image. Parameters to the system call are displayed

after each event name. Identification infonnation for the user calling the command is also printed. In this

case, the user id, effective user id, group id and effective group id is prinred. This is described in more detail

in the Sun BSM audit trail documentation. In contrast, the raw output from showaudit. pI -r looks as

follows (for the same audit trail):

23 B2U60414 127 727 727 727 -2 0 200BS 2 -1 _
/ .eel;or-2fp19/JI;11R6f5unl-GOll5/exploit 0
23 B24860414 727 127 721 127 -2 0 200B5 2 -1 •
/.eetor-2/p17/hotj"v,,-1.0,,1/erploit 0
23 B24850414 121 727 721 727 -2 0 20005 0 0 •
Iho"",/mcrombie/l6YIDlar/""dit_dar"/'O>l;Iloit 19JOaO
00 B24860414 721 721 121 721 -2 0 20085 0 4 •

IbO""'''mcrolbJ.e/'''YIDlOT/llUd..il;_dar'''"",eeu~lI!>l .. 127 0100711 191065
1 8:1860414 727 127 727 727 -2 0 20065 0 " •
2 8:1850Ulo 00 0 _::I. 0 101160 O.

The same infonnation is encoded in the raw fonnat as the ASCII fonnat, but the symbolic names are
replaced by their corresponding integer codes from the audit trail. For example, the last line shows a user

and group id line of 0 0 0 0 which corresponds to the root user and group id.

5.3.2 Operation of showaudi t . pI

The script takes three command line arguments: -i controls what type of audit file fonnat showaudit

expects. -i ascii processes ASCII audit trails and -i binary processes binary audit trails. -f makes

it follow the audit trail as it is generated.

46



The script starts by opening a pipe to a command to parse the raw, kernel generated audit file. This is

usually a tail -f of the outputofpraudi t run on the command-line supplied audit filename. The audit

file is then parsed record by record by the showaudi t script and each record is printed in canonical form

to stdout. When showaudi t is used from within C2_appl, this output is redirected into the C2_Server

to drive the IDIOT patterns.

An audit trail is composed of a series of records each of which is a sequence of tokens. Figure 5.2

shows a typical audit record layout. These tokens contain information such as the time the audit record was

generated, the event it represents and user IDs associated with the audit event. Before the actual event token

is decoded, the surrounding header and informational tokens must be decoded. showaudi t processes

each type of token as described below, and then it generates output for the actual audit event in the audit

record.

HeaderToken

ArgToken

Data Token

Subjecl Token

Relurn Token

Figure 5.2: Layout of a typical audit record

"The script must handle binary and ASCII input formats so the $opt-r flag is checked while parsing

audit record tokens. If the flag is true, the numeric value associated with an event is tested, of not, an ASCII

string can be tested. For example, the file token gives the pathname to the next audit file. It's numeric event

number is 17, and its ASCII string representation is "file". The code to determine whether the current record

is a file record looks as follows:

If ll$op"_,, ~ ~ $w[OI ··17) II l ! $ o P " . - " ~ " LIO] ell 'Hl,,')) lfi1<l

ueUer. ( ~ " 171 I
my (Sn".t31le..P4t, Sent. QHlu. $n"""_Budit..-lUe. $dirn-.-I,
HlQ_ < 4 II S_[Jl 1- 1."1199S\d+)\ .. ·1) I

prin" ·No of drOPP<ld e v e n t ~ • Sdropped_evenu". "In",

exi" 0,

showaudi t handles the following types of audit tokens:

File token - a file token indicates that the current audit trail has ended and it points to where the next

audit file can be found. showaudi t will parse this token and extract the file name for the new audit

file and make three attempts 10 open the new audit file. If it cannot open it after 3 attempts, it gives up

and exits. Furthermore, a file token must mark the start of a new audit file - if showaudi t does

not find a file token, it complains that the audit file is invalid and gives up.

47



Header token - a header token marks the begining of an audit record. A corresponding trailer token

marks the end of the audit record. The header token encodes the length of the audit record, the event

type the record encodes and a timestamp for when the audit record was generated. showaudi t

extracts the type of the audit event and the timestamp from the header token. It then starts to pame

the remaining tokens in the audit record.

Path token -a path token contains access path information for an object (typically a file). The pathname

is encoded as a length field and an arbitrary length character string. showaudi t stores the pathname

component. There can be multiple path tokens if a link is being followed,

Attribute token - an attribute token contains information from the file's i-node entry. This includes the

user and group id of the file's owner, the file system the file resides on, the inode for the file and the

device id for the file system device, showaudi t extracts this information.

Argument token - an argument mken comains system call argument information. showaudi t extracts

the argument values. Note, there can be multiple argument tokens - one for each argument to a

system call.

Subject token - a subject token describes a subject (i.e. a process). The fields of interest to showaudi t

are the real and effective user and group id's, the process id of the process thm generated the audit

event, and an audit session id.

Socket token - this records information about a an Internet socket. showaudi t extracts the type, local

port and address and remote port and address information from the token.

Return token - this stores the' return value of a system call and the returned error code for the system

call (the errno value in UNIX). showaudi t extracts both these fields.

Text token - this contains an artibrary text string which is extracted.

Once the header and informational tokens have been processed, showaudit has enough information

to start generating a canonical fonn for the audit record. It calls the prinLC2...record routine to print

out the audit record in canonical form. This routine does not handle every audit event - a variable

dropped...events records how many events were ignored from the audit trail. For each audit event type,

it calls print..base_C2...record to print the basic information about the audit record. This routine prints

the user and group id's, audit session id, process id and the return value and error number from the system

call.

Then the print_C2...record prints information about cenain audit events. This uses the information

stored while parsing the tokens. For example, the code to print a chmod () event looks as follows:

C2_10,
p r i n t _ b . , . u _ C 2 . . r f t C o ~ d l ) ,

1._ hu 3 ugs, PAth. Jnadc ~ the n ~ on the filft, U1 type 0"",.

$ftrql·pftth·l • 1·"·1 H ! e:lI:in~ Sft~ql·pftth·},

pri"t· ., $u<;Il·puh·IIO!,

i£ le"bu $ftrql·obj·j)
I p~l"t ••• $Brgol·obj'}{·i.Iladc·}, j

ehft

I print' 0', I
prine· •• S f t ~ q { · f t r q 8 · } r O I ,

prine '\,,', ntu=,

48



The C2_10 is the branch of the case statement that handles this audit record type. The path and inode

information was stored earlier in the associative array arg when the tokens were being parsed. These fields

are now accessed and printed out, separated by spaces.

5.4 Adding new audit events to IDIOT

IDIOT does not handle all audit events in the Sun BSM trail. It is possible to enhance IDIOT to extract

information about audit events and provide extra information to patterns. Before attempting to modify

IDIOT to add new events you should read all the documentation shipped with IDIOT and (for Solaris

machines) the Audit Record Description section of the BSM answerbook.

There are three components of the IDIOT system that must be modified to handle a new audit record. 1)

The showaudi t .pl script must parse the audit trail and extract the relevant information out of the audit

record tokens; 2) The C2_Server module must know how to interpret the data and generate the correct

class; 3) The C2_Server: :parse method defined in pat. y must add the event names to the parsing

symbol table.

To add a new event (or add attributes to an existing event) edit the showaudit .pl file and remove

the event you are going to add from the dropped events list (if it's there) and add the event to the appropriate

group. Events are grouped together according to the information they print. All events print the base

record. Groups of events print additional information. The event number can be extracted from the

/ etc/securi ty / audi Levent file. For example, the link system call is event number 5. The entry

in the audit~event file for link is:

Then edit the C2_events . h file and add the code for your event (or the attribute you added). As in

showaudi t. pl. events are grouped into classes of similar events. A GENERIC event in this lile is only

a class definition that encompasses many events. For example, the class "C2Event_GENERIC_EXEC"

represents all execute events that have the same format. The individual instances are defined by the lines:

~ypede! C2E:ven~_GENERIC_EXEr C2Even~_=,

typedot C 2 1 : V e n ~ _ G I : U E l I I C _ E X E C C 2 E v t l n ~ . . E X £ C V E ,

Similarly, the class "C2EvenLGENERIC" represents all the audit events that share the same format

but are not a logical group (similar to execs). From the declaration:

~ y p e d e f C 2 E : v e n ~ _ G E N E R I C

~ y p e d o t c ~ E v t l n ~ _ G I 2 l E l I . I C

~ d o t C 2 E v o n ~ _ G D l E R I C

~ y p o d o t C 2 E v o n ~ _ G = I C

~ y p e d o t C 2 & v e n ~ _ G E N E I \ I C

~ y p e d o f C 2 E v o n ~ _ G D l E R I C

~ y p e d e f C 2 E : v e n ~ _ G E N E R I C

~ y p o < l o t C 2 l ! v < l n ~ _ G D l E R I C

C2Event_CLOSE,

C2EventJ-CCESS,
C2Event-<::Htlfl\,

C2Event_l'OlIJ<;

C2EventJS!AT,
C2EvenCSTAT;
C2E:vent_UNLIIlK;

C2Event_VFOllJl,

we gather that the events CLOSE, ACCESS, CHOIR, FORK. LSTAT, STAT, UNLINK, and VFORK

have been grouped together by the showaudit. pl.

Finally, edit the pat. y file and search for the C2_Server: :parse method. It should resemble:

49



int C 2 . . S " ~ r v c . - : :panele"".- 'pnl,
~tatic int p .... h t d . - " " " " t _ d ~ c 1 s • 0,

it l !pu~hO<i.-c:vent_d~th I,
~",""".-_"vH""",2Typ" • C2_evNlI:Ie2T\1Pe'
~ z A p p l n " " " , • "C2",
aymta!>, pU5bhvelf I ,

~ymtOlb.pu~hln_ ~YlI'...tOlb_"ntryl"I\CC£S5·. -1. " y m t y p _ ~ v e n t . " y W l t u - - - " o n ~ . NULLl)

~ t a b . " " s h l n e o r aYllLtOlb_entryl"CHIIOD"" -1. 5ymtl'P_event, 5Yl"'1ttr..none, NULLl)
(' Lot. of lin"a d"I.. ~ o d ..... O{

~ y m t a b . p u s h C n _ "Y'lLtOlb_entryl"S'il'ILDlK", -1. Gymtl'P_event, ~ Y I " " ' t t r . . n o f \ O , NULLl)
.Y"'tab.pu.bl.......YllLtOlb_entryl"vFOllX'. _I" ~ Y I " ' I ' P _ . v ~ n t . ~ y a > B t . r - - " o n ~ . mlLLl)

p u ~ h e d . - l l ' V ~ n , , - d ~ c b • 1,

{' So"", OIOr" code del"ted '{

Add another line to this routine to push the name of the event you are defining.

5.4.1 Events Supported in Shipped Version

The following tables have a list of the events that can be used in IDIOT patterns with the system as shipped.

Events: EXEC, EXECVE

AUributes: TIME (time..t), RUID (uid..t), EUID (uid..t), RGID (uid.l),

EGID (uid.l). AUlD (uidJ). SID (uid..t). PID (int),

ERR (int), RETVAL (int). PROG (canst char *), PROG....INODE (int).

OBI.MODS (int)

Description: TIME: Time the event took place

RUlD: Real user ill
EUID: Effective user ID

RGID: Real group In

EGID: Effective group ID

AUlD: User audit ID

SID: Session ill

, PID: Process ill
,

ERR: Return status of system call

RETVAL: Process return value

PROG: Name of program executed

PROG....INODE: Program inode number

OBI.MODS: Permissions of program executed

50



Events: LINK, SYMUNK

Attributes: TIME (time.l), RUID (uid.l), EUID (uid.t), RGID (uid.t),

EGID (uid_t), AUlD (uid.l), SID (uid..1), PID (int),

ERR (int), RETVAL (int), OLDPATH (const char *),

NEWPATIi (const char *)

Description: TIME: TIme the event took place

RUID: Real user ID
EmD: Effective user ID

RGID: Real group ID
EGID: Effective group ID

AmO: User audit ID

SID: Session ID

PIO: Process ill

ERR: Return status of system call

RETVAL: Process return value

OLDPATH: Pathname of the object linking to

NE\VPATH: Palhname of new object

Events: MKNOD

Attributes: TIME (time_t), RUID (uid..l), EUID (uid.l), RGID (uid.l),

EGID (uid..1), AUlD (uid.l), SID (uid.l), PID (int),

ERR (int), RETVAL (inl), OBI (canst char *), DEY..MODE (int)

Description: TIME: Time the event look place
RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUlD: User audit ID

SID: Session ID

Pill: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBI: Name of special file

DEYMODE: Permissions of the special file

Events: LOGIN, SU, EXIT

Amibutes: TIME (time_t), RUID (uid.l), EUID (uid.t), RGID (uid.l),

EGID (uid.l), AUlD (uid.l), SID (uid.t), PIO (int),

ERR (int), RE1VAL (int)

Descriplion: TIME: Time the event took place

RUID: Real user ID

EUlD: Effective user ill

RGID: Real group ID

EGID: Effective group ill

AUlD: User audit 10

SID: Session ill

PID: Process ID

ERR Return status of system call

REIVAL: Process return value

51



Events: OPEN...R. OPEN...RC, OPEN..R.T, OPEN.RTC, OPEN...RW,

OPEN...RWC, OPEN...RWT, OPEN...RWTC, OPEN_W, OPEN_WC.

OPEN_WT. OPEN_WTC

Attributes: TIME (lime..t), RUID (uid.l), EUID (uid.l), RGID (uid.t).

EGID (uid.l), AUlD (uid..t), SID (uid..t), PID (int).

ERR (int), RErVAL (int), OBl (const char *), OBl.lNODE (int),

OBJ.MODS (int), OBLOWNER (int)

Descriplion: TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUlD: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBl: Name of file being opened

OBl.lNODE: Inode number of file opened

OBJ..MODS: Permissions on file opened

OBJ_OWNER: User ill of file owner

Events: ACCESS. CHDIR, CLOSE, FORK, LSTAT. STAT,

UNLINK. VFORK
Attributes: TIME (time.l). RUID (uid.l), EUID (uid.l), RGID (uid.l).

EGID (uid_t), AUlD (uid_t), SID (uid.!), PID (int),

ERR (int), RETVAL (int), OBl (canst char *), OBl.lNODE (int)

Description: TIME: Time the event took place

RUID: Real user ill

EUID: Effective user ill

ROID: Real group ID

EOID: Effective group ID

AUlD: User audit ID

SID: Session ill

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBl: Name of file being opened

OBl.lNODE: Inode number of file opened

OBl..MODS: Permissions on file opened

OBl_OWNER: User ill of file owner

OBI: Name of object

OBl.lNODE: Inode of object

52



Events: CREAT

AnribUles: TIME (time..t), RUID (uid.1), EUlD (uidJ:), RGID (uidJ:),

EGID (uidJ:), AUlD (uid.!), SID (uid..t), PID (int),

ERR (int), RE1VAL (im), OBI (const char *), OBIJNODE (inl),

OBI...MODS (int)

Description: TIME: TIme the event took place

RInD: Real userID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUlD: User audit ID

SID; Session ill

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBI: Name of file being opened

OBI.1NODE: Inode number of file opened

OBJ...M:ODS: Permissions on file opened

OBI ~ O W N E R : User ID of file owner

OBI: Name of file created

OBJ..mODE: Inode of file created

OBI...MODS: Permissions of file created

Events: CHMOD

AUributes: TIME (lime.1), RUID (uid.t), EUID (uid.t), RGID (uid.!),

EGID (uid_t), AUlD (uid.1), SID (uidJ:), Pill (int),

ERR (int), RETVAL (inl), OBJ (const char *), OBI..INODE (inl),

NEW...MODS (inl)

Description: TIME: TIme the event took place

RUID: Real user ill

EUID: Effective user ill

RGill: Real group ID

EGID: Effective group ID

AUlD: User audit ID

SID: Session ID

Pill: Process ill

ERR: Return status of system call

RETVAL: Process return value

OBI: Name of file being opened

OBJ..INODE: Inode number of file opened

OBJ...M:ODS; Permissions on file opened

OBI_OWNER: User ID of file owner

OBI: Name of file for which the permissions are being changed

OBJ..INODE: Inode of file being changed

NEW...MODS: New permissions for file

53



EvenlS: CHOWN

Attributes: TIME (time.1), RUID (uid.1), EUID (uid.1), RGID (uid.1),

EGID (uid.1), AUlD (uid.1), SID (uid.l), PIO (im),

ERR (int), RETVAL (int), OBI (canst char *), OBI..lNODE (int),

OBJ...NEWillD (int), OBLNEWGID (int)

Description: TIME: TIme lhe evenl took place

RUID: Real user ID

EUlD: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUlD: User audit ID

SID: Session ID

PIO: Process ID

ERR: Return status of system call

REIVAL: Process return value

OBI: Name of file being opened

OBIJNODE: Inode number of file opened

OBI..MODS: Permissions on file opened

OBLOWNER: User ID of file owner

OBI: Name of file for which the ownership is being changed

OBIJNODE: Inode of file being changed

OBI...NEWUID: New user id for file

OBI...NEWGID: New group id for file

5.5 A sample IDIOT program

jig. C was written as an example of how to run IDIOT non-interactively. It instantiates a CZ....server object,

sets the desired debug level, loads the specified patterns, and attempts to match all patterns against the

specified audit trail.

Following is the usage summary for j ig . C:

lJUgo, jig l o p ~ i o n a l . a u c : U t £ i l o ~ q>a.tto..... Ul"~+\n

Option~ :
_d n -- Sot debug 1"",,1 to n ldefeult~ to g ~f Opt.o" not Oi..." ....

-1 -- Unit i.n pe""oq>iled p a t t " r n ~ lpattu"," p " t ~ t d by default I

- Pattern lUes On c(lllmoUl(! lin" ohoul,d be '.'0 "".nona

As can be seen. the current defaults are to generale no debugging information and to parse all pauems.

For most cases, it would likely be preferable to have j ig . C link precompiled patterns by default. This

would be a minor change within the code.

It should be noted that jig. C was written as an example program and assumes some degree of

experience on the part of the user. No error-checking is performed on the command-line arguments; they

are assumed to be accurate and complete.

5.6 Debugging

The original debugging options for IDIOT were quite simple: debugging was either on or off, and the

only debugging information that could be automatically generated came from the server. Pattern debugging

54



information had to be manually inserted into the pattern itself. We decided that more flexibility would be

helpful. There are now three levels of debugging:

Level 1 - Only generate server debugging information

Level 2 - Only generate pattern debugging information

Level 3 - Generate both pattern and server information

We also decided that the ability to separate the pattern debugging information from the server debugging

information would be quite useful. A PERL script, view_debug .pl, was developed for this p u r p o s e ~ it

is also described below.

5.6.1 Debugging the server

Debugging within the C2_Server is fairly basic. If the debug level is appropriately set, the server generates

information about each audit event it processes. This information includes the type of event, time of

occurrence, RUID, EUID, PID, return value, and various event-dependent information, such as program

name. This information is now only generated when the debug level is set at I or 3. Also, each line of

debug output has been prepended with a %5 to distinguish it from pattern debugging information_

5.6.2 Debugging pallerns

This section describes how to debug patterns written in the IDIOT pattern language. As the language is

especially tailored to specifying pattern transitions, it is difficult to use regular tools such as gdb to debug

patterns. To aid debugging, we have provided some rudimentary output routines. The main utility routine

we have provided is true_print ( ), which takes a string as a parameter, prints the string to STDOUT,

and returns TRUE.

As mentioned above, debugging information for patterns originally had to be generated manually.
We decided that having some debugging information generated automatically could be useful, if it were
governed by the debug level. To achieve this goal, we modified pa t . Y to insert the following code into
every pattern as it is parsed and translated to C++:

int dbull:
e"tern int trut...printCStr J'

dbI.lll • S->debull' /I ""tented within paUern cc""tructcr

if Idb\lll > 11
true...print I' '<pattern n""",' -- <tr/lJU;ition n"""" tr4J\Sition Hred" I;

We decided to only insert calls to true_print () at the completion ofeach transition to allow the user to

maintain a fine grain of control over debugging output.

If more debugging information is desired, there are a couple of options. Note that IDIOT uses short

circuit evaluation of guards, so if anyone of the conjunctive clauses is false, then evaluation of the whole

clause stops and the transition is not taken_ Thus, if a true_print () call is placed within a clause, all

the preceding clauses must be true before the print will occur. true_print () itself returns TRUE, which

is the identity element for logical-and and has no effect on the evaluation.

55



Forexample, ifwe were interested only in theoccurranceofan OPEN_W evem(from thewri ting-to-executabl
pattern), whether or not it was successful, we could do:

tr4:15 lIlOdSlOPENJ/l
<- & f t ~ r _ e > < ~ t ;

-> viohtian,

1_ { truOJlrU'.tl·tIbtchad OPl!N_'" "vont ... ·1 '" , evont ae"u=od .(
thio[ERnI .0" /. it thio Opo>r"dan outeeeded .,
PIp. thio[PID] " ,. and. tid.. PID _tehos that af tb.. oxec .,
PILE. thb(OIl.JI ...... ,. remember thb HI"",,",,, .,

I O " " ~ t l t h 1 o [ O I l . J J l O D S ] l ; ,. it this Hlo 10 oxocutablo .,
ond II'IO<lB;

Note that this call to true_print () would always be executed, regardless of the debug level. If the
statement should be conditional upon the debug level, it could be inserted as follows:

ttan.o lIlOd810Pl!N_WI
<- aftar_axec,

- ~ "iol"tlon;

1_ [ l l<!bug. 11 ? tru".JIrinti·tIbtehod OPI2iJ/ ev..nt ... ·1 : 11 " ,. ""ent occurred"
tlllo[EP.R] .0" ,. it tllb operatian ..uceeeded .(

pm • thia(pm] "" ,. and this PIt> ""'teh..o that of tha ""oc .(
PILE. thb[OBJ) '" ,. r ~ r tlli" HI..n ..... "

is""..elthio[OBJ..J!ODS]l;
.. nd _8;

As with an ordinary call to true_print ( ) , this would leave the value of the guard unchanged. In addition,

the debugging information would only be generated if the debug level was set appropriately (> I).

One item to note is that each string passed to true_print () is prepended with %P before being

printed, distinguishing it from the server debugging infonnation.

5.7 Interactive debugging

The C2_appl program can be used to run IDIOT interactively. This can sometimes be useful for debugging

purposes. The debug level is initialized to O. To change the debug level, issue the following command:

server debug <debug level>

The specified debug level will cause the appropriate debugging information to be printed to SmOOT.

We mentioned above that each pattern's dbug variable is initialized only once, within the pattern

constructor. Thus, the dbug variable retains the value of the server debug level at the time the pattern was

instantiated. This allows the user to dictate which patterns generate debugging information.

For example, if you only wished to debug the executing-particular-pgms pattern while
matching several, you would do the following:

~ .'C2_oppl IfOtOrt C2_0ppl. debug_level lIet til 0
tini~ dHnk < p e . t t o r n I . ~ a .

t i n i ~ dlinl< < p 8 t t ~ " " . ' I I ~

(/link in Ii p<lttOrn5 without d ..bug info

tIn» d11nk <pottornN.so.

tin» ss"""r d ..bug 2

tin» dUnk 0l<.JlrtJl'lrOl5.so
dni> run <oudit t r a i l ~

All of the included patterns would be utilized, but only the executing-particular-pgms pattern

would generate debugging infonnation.

56



5.8 Viewing debug information

As an aid in viewing and understanding debugging information, we developed view_debug .pI. This

PERL script separates pattern debugging information from server debugging infonnation. Funherrnore, it

allows both sets of output to be viewed simultaneously with the debugging statements synchronized.

To run it simply type ./view_debug .pl, followed by the command line you wish to have passed to

jig. view_debug. pI will execute ./j ig with the specified command line and separate the debugging

output into the files pat-debug. out (pattern debug information) and C2_debug. out (server debug

information). (NOTE: view_debug. pI currently assumes it is in the same directory as jig.) The output

is separated according to the presence of the O/OP at the beginning of pattern debugging output and the %S

preceding server debugging output. For each line of output the following occurs:

- if preceded by %P, the line is numbered and written to paLdebug.out, minus the %P, and a blank line

(numbered identically) is written to C2_debug.out

- if preceded by %S. the line is numbered and written to C2-debug.out. minus the %S. and a blank line

(numbered identically) is written to pat-debug.ollt

- all other lines are simply printed to STDOUT, without affecting the numbering

Afterview_debug. pI hac; fi~ished. pat_debug. out and C2_debug. out may be viewed side by

side, allowing the user to see exactly what sequence of events is causing each transition to fire. The line

numbers allow easy synchronization while viewing the files.

NOTE: While view_debug. pI will not currently work with the C2..appl interface, this could be

changed with a fairly simple alteration of the PERL code.

57



Chapter 6

Limitations of C2 Audit Trails

6.1 Auditing socket calls on System V (Solaris)

In SunGs, the abstraction of sockets is built into the kernel. Calls such as socket. connect and accept

must cross the system call boundary, and will generate audit records.

However, in System V, the communication abstraction is streams. A stream is a data flow path between

two endpoint entities. Streams are a generic abstraction for data flow - they are used to implement terminal

drivers, sockets and FIFOs in System V versions of UNIX. In particular. the abstraction of sockets is

provided by a library built on top of the kernel. Socket calls in this library execute a series of getmsg,

putInsg and ioctl calls to interface with System V streams. No audit data is generated that specifically

mentions that a socket call has occured. The audit data only shows the System V stream interface calls.

This makes it difficult to write patterns to detect such simple network based attacks as port-flooding and

port-walking. A port-flood is where an abnonnally high number ofconneclions are received on a single port.

The idea is to use up kernel socket resources and denying network access to any other users. A port-walk

is a series of connections to ports which attempts to find services running on ports which may be exploited.

Both of these attacks could be detected from an audit trail which contained records for connect and

accept events. To simulate this. a wrapper library for the socket library must be written. This wrapper

library will generate an audit record to be placed in the audit file, and will then call the original socket library

call.

An ex.ample below shows how this is done:

Undude " 1 I Y ~ f ~ " i P " •. h ~

Unclude " I I Y B l o o c k e ~ . h ~

Unelude " b = f l i b l > . m . h ~

'" th.. _ccnnect rcudne ie the e y ~ t e m eall "'
""tern i n ~ _eonneet I int e. etruet oock<lddr "n""",. int n""",l..,.l,

/" writ" o u ~ . , . . . , . Conn"Ct toutin" tlult will <;l..,..rato on oudit r"cord "f
int cORneetlint e, -Cruet eoek.ddr 'n""",. int n""",hn) t

nruet socket oock,

lnt tOk"",

toke,,-" "III'

'" <;l0n...at.. a ..ceke. token that roeordo tho infctl:\Otion "'

58



f' write tnat .aeku tokan to tna audit trail ./

6.2 Auditing operations on symbolic liuks ou System V (Solaris)

Many of the patterns devised at the COAST lab needed information about system calls that were operating

on symbolic links. The pattern that detects the exploitation of the xterrn bug, for example. can detect

exploitations by seeing if the inode for the log file has changed between the creation and accessing of the

file.

Unfonunately. this pattern cannot be used as is with the Basic Security Module C210gging provided by

Sun with Solaris 2.4. For this pattern to work, the audit trail would need to provide. at least, the following

information:

I. execve: ERROR, EUID, RUID, PID, and program name

2. creat: ERROR, PID, initial file name, final file name. and inode number

3. open: ERROR, PID, initial file name, final filename, and inode number

4. close: ERROR, PID, inode, initial file name, and final file name

5. chown: ERROR, PID, inode. initial file name, and final file name

6. chmod: ERROR, PID, inode, initial file name, and final file name

7. access: ERROR. PID, inode, initial file name, and final file name

8. stat: ERROR, PID, inode, initial file name, and final file name

The only items that require explanation are the file names. Ifwe have a symbolic link syml that points to

a file fi 11 then a call to chmod ( n sym1 " ,mode) would require an audit trail record that would indicate

that the chmod system call was executed on the initial file name sym1 and the final file name fill. The

inode should be the one corresponding to the final name.

The audit trail generated by the Basic Security Module provided with Solaris 2.4 violates the file names

requirement. To see why this is important, consider the following fragment of a setuid C program called

xterrnbug:

/' Cecatc • log fLle called xtermbu9.1og '/

if[ eroatC·xton:!N9.1og·.01 ~ -1 I (
/. Tho p"rmi.iaR5 of the ceutcd fllo "",re 5''': to 0,,00000. Chango th....

to """,,"thing OII>re re""oJ14ble '/
Hc eh:so<lC·xtt=bug.10l1·.S_IRWllUIS_IRWXtiIS_IJUlXOI •• -1 I C

!print!l.tdtrr. 'Could not th4n9o tho perminion of file

xto rmbul1. I <>o\n·l,,
) oho {

fprlntfCndere. 'Could not ereato lOll file "tcrmbul1.log\n·l,

59



and an attack script that will exploit the vulnerability described in this document is calledxterrobug . exploit:

I J / I > i n ' ~ h

mknotI " c ~ r = l > u " .1 ..... p

"U=buq r.
sloop 1
1I!V " C ~ r m b u q . l ..... junJc

In -. ' h " " " " ~ / k r o u l / b r ~ ~ k . , . I o a "cermbuq.loq
cot iunJc

cot Ih"",",./kroullbrcak.-me

This attack can not be detected by the pattern described in this document ifusing the Basic Security

Module logging in Solaris 2.4. The audit trail generated for this session, reformatted for clarity and brevity,

with the attacker called gol/urn. and the victim called krsul. is:

1 ""e"",,(2) - path./hCllllC/qollUl11/"te=l:luq.~"IIloit - rolD "ol1um - RI1ID
qollum

2 e"0",,,,(2) - path./uu/.bin/"""'od - ElIID qollUlll - RIIID 'lollum
1 mlaoodf21 - arqument.2,Oxl1b6,0I0de - ar~t,J.O"O,elov

4 "ath.I.OIOrclor/hcmo/gollum/"to=bog.10ll _ WID gollum _ RIIID

1I011u

•
5 c1.own(ZI - .r9WO"nt.2.0xl41.n.... Ule uiel - Grq=><nc.J.O"J41.nC>' file

."
6 p.th,I ...,rdor/h""""I'lollum/.. t ~ = b u ' l . 1 0 q - EllUl "ollmo - RI1m

'loUu

•

E\1ItI I<toul - III1ID ,,011\'"
chmod.lZI - argument.Z.OxIH.ncv ~ i l .. m o c l ~ - poth./h"""'~lkr~ullbreok.,.loa

EllID krou1 - RUID aall._
cX8<:vo(2) _ "ath./uor/l>in/cat _ rolD qoU"", _ RI1IO qoUum

1 ~"~<:vcfZI - "ath,/ho"",.,kr.UlIblnl"tonbolll - £UUl "".u1 - RlIID qoUum
B ~ .. ~ < : v c f 2 1 - path./uor/blnlol~O'P - rolO 'lollUlll - RlIIO 'lollum

~ " " ~ c v o f ] l - parh./u.r/local/bln/"'" - EJJ:ID "o11_ - RlIID "ol1um
10 rcn"""'fZI _ "atb.I.CIOrclor/bOlllelllollum/xto<mhuq.10ll

11 parh.I.OIOrclorlh..... /'lollum/junk - WID 'lOll"", - RlIIO "oU.....
12 execvefZI _ path./uorlbinlln _ l!lJ:ID qoUum _ RlIID qollmo

IJ oyool.inkl2 I - t~"c. Ih""",~/kroullbreal<..olc - path. I . ..,rdor/h"""'/"oU..... I"t~-.. ,~
14 WID gall_ - RIIID "all"'"
15 ..,..."",,(2) - poth, lu.r/bin/coc - &\lID 'loU"", - IWID "011",,,

16 cr..atfZl _ path.I."",relot/hQlllll./"oll""'/xt~n:lbuIl.loq_

a~t.J.OJ<2, otrop~n:

flo'l

"
'"
"'"

Notice that in line 20, the audit trail indicates that the clunod(2l system call was made to the file

lhomes/krsul/breakJne. While this is ultimately true, it does little to help detect the exploitation of the

vulnerability. The pattern design specifically looks for a chrnod or chown to the same file name as the

creat but with different inode numbers. The audit trail should mention that the original call was made to

file xterrobug .log.

6.3 Write events are not audited

Some patterns need to detect WRITE events. However, in the Solaris BSM audit trail the write events are

subsumed under the OPEN event. So the audit trail for a write looks as follows (output of praudit):

heaeler,lJ6.2.openIZI - reGeI.writ~ .•Tu.. F ~ b 20 U:53:J4 1 ~ 9 6 . ~ 846005000 Nee
pGth. /ho... / m c . r o ~ l > i .. /myIDI01'I a u < l i t _ e l a t G / e " o c o t G b l ~

" t t r i b u ~ ~ . 1001 11, m c . r o ~ b 1 e . l I I C r o ~ b ; : ~ . 83886J8. 1 ~ J O a 5 . 0
Gobi~et. -Z.mc.ro"bi... m o r o ~ b i o , m o r o " b i e , m c . r O G b i o , 20085. O. 0 0 0.0.0.0

teturn, ouec03s. 4

The audit trail was gathered with the fw audit mask flag. This gathers data about file writes. The open

call is recorded, but the wri te call is not. The above audit trail corresponds to the following code fragment:

60



ifl I f d . O p e " l ' . / e " e = ~ a b l e · . OJlUtlllll < 01 (

perrorl' ope'" '1,

exitlll,

p r i , , ~ f ! " l ! : q > l o i t ' vriti"ll ~ o e x " " u ~ a b l .. , .. \"·I,
H! ""lte(fd. 'eb<;def". 61 ~ 61 (

i><'rrerl" " " i ~ e , '),
ftXitll) ,

Thus, we are forced to detect writes to executable files by detecting the opening of the file, and not the

actual write.

61



Chapter 7

Source Code

62



Bibliography

[ES96a] Todd Ellis and Eugene Spafford. Debugging idiot. Technical report. April 1996.

[ES96b] Todd Ellis and Eugene Spafford. Working with idiot. Technical report, April 1996.

[KS94] Sandeep Kumar and Eugene Spafford. An application of pattern matching in intrusion detection.

Technical report, Purdue University, 1994.

[KS95] Sandeep Kumar and Eugene Spafford. A taxonomy ofcommon computer security vulnerabilities

based on their method of detection. Technical report, Purdue University, 1995.

[Kum95] Sandeep Kumar. Classification and Detection of Computer Intrusions. PhD thesis, Purdue

University, August 1995.

[Set89] Ravi Sethi. Programming Languages. Concepts and Constructs. Addison-Wesley, 1989.

[Sun] Sun Microsystems. SunSHIEW Basic Security Module Guide.

[WS92] Larry Wall and Randal Schwartz. Programming PERL. O'Reilly and Associates, 1992.

63


	IDIOT - Users Guide
	Report Number:
	

	tmp.1307986960.pdf.7Y8Pz

