Purdue University
Purdue e-Pubs

Department of Computer Science Technical
Reports

1996

IDIOT - Users Guide

Mark Crosbie
Bryn Dole
Todd Ellis
Ivan Krsul

Eugene H. Spafford
Purdue University, spaf@cs.purdue.edu

Report Number:
96-050

Department of Computer Science

Crosbie, Mark; Dole, Bryn; Ellis, Todd; Krsul, lvan; and Spafford, Eugene H., "IDIOT - Users Guide" (1996).

Department of Computer Science Technical Reports. Paper 1304.

https://docs.lib.purdue.edu/cstech/1304

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.

Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

IDIOT - USERS GUIDE

Mark Crosbie
Bryn Dole
Todd Ellis
Ivan Krsul

Eugene H. Spafford

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD-TR $%6-050
September 1996

IDIOT - Users Guide.

Mark Crosbie mcrosbie @cs.purdue.edu
Bryn Dole dole@cs.purdue.edu
Todd Ellis ellista@cs.purdue.edu
Ivan Krsul krsul @cs.purdue.edu
Eugene Spafford spaf@cs.purdue.edu

Technical Report TR-96-050

September 4, 1996

Abstract

This manual gives a detailed technical description of the IDIOT intrusion detection system from the COAST
Laboratory at Purdue University. It is intended to help anyone who wishes to use, extend or test the IDIOT
system. Familiarity with security issues, and intrusion detection in particular, is assumed.

A A R AR R WAL L ekl WL ET . M LR TEL FEatrom W tm AT Rea om0 B e oA e e mar TR M B e T Sl P w i A U Pps m T rfa b S L TN W e L 1 1F T

T AT LS MT o (NI T et e

Chapter 1

Introduction

This document is the users guide for the IDIOT intrusion detection system developed at the COAST
Laboratory.

This section will remain short because a much better description of what IDIOT is, the design goals
and the model it works under can be found in the documents included in the doc/IDIOT directory in the
IDIOT distribution.

The files in that directory are:

kumnar-spaf-overview.ps [KS94] This report examines and classifies the characteristics of signatures used
in misuse intrusion detection. The document describes a generalized model for matching intrusion
signatures based on Colored Petri Nets. This is the first document you should read. We recommend
that you stop reading this guide now and return here when you have finished reading that document.

kumar-intdet-phddiss.ps [Kum95] Sandeep Kumar’s original Ph.D. thesis. An in-depth description of
intrusion detection, the theoretical considerations behind IDIOT, and a description of the model that
was used to implement IDIOT.

taxonomy.ps [KS95] This report classifies UNIX vulnerabilities based on the signatures required to detect
them, and gives the best overview on how to write IDIOT patterns with examples from real UNIX
vuinerabilities. We recommend that you read this document last before you start writing patterns of
your own.

IDIOT work.ps [ES96b] This report outlines the structure of IDIOT, explaining how the components fit
and work together. It also describes results from profiling IDIOT against two audit trails and suggests
possible approaches to optimizing the program.

debugging IDIOT.ps [ES96a] This report describes changes made to IDIOT code which allow a greater
flexibility in the amount and type of debugging information generated. It also describes a sample
IDIOT program that has been included and a utility for separating the debugging information based
on its origin, pattern or server.

Chapter 2

Quick Start

The information in this chapter will help you get IDIOT running as fast as possible. However, we suggest
that you read the rest of the material in this document before you attempt to use IDIOT.

The following steps must be executed to install IDIOT correctly:

¢ Read this document at least once
¢ Edit the Makefile to set the appropriate values for your site

& Give the command “make C2_appl”
¢ Make sure that praudit is in your path
e« Run IDIOT

For the rest of this section we give an example of how to install and run IDIOT for the first time.
We start in a directory that contains only the IDIOT tar file:

aclarim 51 1 pwd
f.merdor /hona /gollus/ IDIOT

solaria 52 % 1s
idieot.tar

Extract the files from the tax file:

solaria 51 % ker xfv idioc.tar

x dog, O bykten, 0 tape blecks

x doc/manual, 0 bytas, O tape blochs

x doc/manunlsdoca.pa, LI5ESE byvea. 266 tape blocks

x doc/IDIOT, O bytes, 0 tapa blogkn

% doc/IDIOT/kunar-intdat-phddlss ps, 901656 bytes, 1766 tape blocka
x doc/IDIOT/kuwnar-apaf-overview.pa, 673780 bytes, 1316 caps hlocks
x doc/IDIOT/taxnnomy,pa, 45109 bytma, 1260 tape blockn

¥ Ci_patcema, O Dytes, 0 tape blocks

x C2_pacterns/creating-aacid-scripts, 440 byces, 1 tape blocka

x C1_parttermasexecuting-progs, 1618 bytea, 4 tape blocka

x C2_pattamns/1lpr_capy_files, 1295 bytes, 1 tape blocks

X C2_patcermns/print-mlmods, %1E byten, 2 tape blocks

x C2_patterma/astuld-writes-pecuid, 3026 bytea, 6 tape blocks

X €3_partermsswriting-co-executabla-£filea, 2671 bytan. & tapa blocks
x CZ_patcerna/writing-Lro-nonmwned-files, 1711 byctes, 4 tapa blochka
x appa, O bycea, O cape blocks

appa/profile.C, 1831 bytes, 4 tape blocka

appa/jig.C, 1625 bytes. & tape blocks

other, C2_patterms, 0 bytes, D tape blocks
other_C2_patterna/l-failed-logina, 1166 byces, 3 tape bloecks
othar_CZ_patterns/accesp-open-to-same-path-dlfE-Lnodes, 4522 bytes, 3 cape blocks
other_C2_patterna/bin-mail, 2534 bykea. 5 tapa blecks

HHANXNK

ather_C2 pattecena/clorke-wilson, 28131 bytes, & tape blocks
othar_€2_patterns/dir-browser, 1266 bytes, 1 tape blocka
other_C2_patearna/dont-follew-gym-links, 2938 Dytea, [tapa blocks
other_C2_patternasEfalled-su, 307 bytem, 1 taps blocka
other_C2_pattarna/fingar, 1041 byten, 1 cape bhlocks

other _C2 _patternasle, 1525 byctea, 1 tepa blocks
other_C2_pattarne/passwd-Fatctack, 1593 bytes. 4 tapa blecks
other_C2_patterncs//priv-pgm-in-userspace, 575 bytea, 2 tapa blocks
other_C2_patterns/rcw, 2185 bytes, 5 tapn blocka
other_C2_pacttarnsfgetid-pgma-canc-spawn-ahell, L076 bytas, } tape blocka
ather_C2_patternafehnall-scripk-atcack, 532 bytes, 2 tape blocka
other_C2_patterns/tftp, 1215 bytea, 1 tepe blocks
other_C2_patterna/eiming-sttack, 1122 bytes, 3 tape blocka
othar_C2_packerms/writing-cto-nonowned-dot-filem, 1057 byces, 3 ctape blocka
gudit_trails, 0 byctea, D taps blocks
audit_traile/creating-secid-scripts.audit_trail, 42632 bytes, 84 tope blocks
audlt_trailafexecuting-proga.audit_trail, 20389 byctes, 40 tapa blocks
audit_traile/lpr_copy flles.avdle_trail, 1125555 bykes, 2199 cape blocks
audit_trails/print-mimods.audit_trail, 23070 bytes, 46 tapa blocks
audit_trails/oetuid-writes-setuid.audit_trail, 15496 bytes, 31 cops blocks
audit_trails/writing-to-executable-£files.audit_trail, E975 byteg, 18 teape blochs
augit traila/writing-to-nonowned-files.audic_krail, 8376 bytes, 17 taps blocks
C2_Server.C, 15957 bytes, 32 tape blocks

DL _lisc.k, 2807 bytes, & tape blocks

pattern.l, B072 bytes, 15 tape blocks

C2_Sarver.h, 1425 kytes, 7 tape blocks

Expr.C, 14448 bytes, 29 cape blocks

praudit.h, 1174 byces, 7 tape blecks

CZ_appl.C., 5500 bytea, 11 tapa blocks

IP_Server.C, 47532 bytes. 93 cape blocks

C2_eventa.h, 12287 bytes, 24 tape hlocks

showaudit.pl, 16586 bytes, J4 tape blocks

utilicies., 4086 bytes, B tape blocks

utlla.k, 1248 bytex, 7 tapn bleocks

Hakefile. 9519 byctes, 1% tape blocks

DL_Ilist.C, 1087 bytes. } tapa blockec

abp_claps.h, 1282 bytes, 3 tape blocka

pat.y. 74732 bytes, 146 tape blocks

DL_JYlist.h, 1445 bytes, 3 tape blocks

pattern.h, 14607 bytes. 29 tape blocks

REATRME, 24 bytes, 1 tape blocka

FAN A X AKX AWM A K AHN NN N HT KN A X H N M M A M XA NN X

Eolaria 54 % 1g

C2_Server.C DL_lise.h sudic_traile/ praudit.h
C2_Server.h Expr.C doc/ ahewaudlt .pl*
c2_mppl.C IP_Servar.C idiok.tar utilities.C
CZ2_evenco. . Makefile other_C2_patternas utila.h
C2_patterns/ REATHE pac.y

DL_Ilint.C abx_class.h pattern.h

DL_Iliat.h appaf pattern,l

Make the C2.appl application:

solaria 56 % fusr/local/gnu/maka C2_appl
fopt/SUHWeprosoln/CC -xpg +d -c CI_sppl.C

“C2_appl.C*. line 1]8: Warning {Anachronism}: Formal argqument pacternfile of type char*

in call to C2_Server::parse_fllelchar*| ls belng passed consc charc®.
*C2_appl.C", llne 138: Note: Typa (X -migration® for more on anachronicms.

"C2_sppl.C", line l44: Warning {Anachroniam}: Fermal argument £ile of type char* in call

o C2_Server::dllink E5ilel{char*) is being pasaed eonst char-.
2 Warningla] detected.
foptsSUAsprasbln/Ce -xpr +d -¢ C2_Server.C

*jusr/includa/aya/syamacron.h", lina 104: Warning [Anachronism): Attempt to redafine

major without using lundef.
“juar/includa/eaya/eysmacxog.h”, line 104; Hote: Type "CC -migration® for mora on
AnAChYOn [omy .

*funr/includa/eya/eyemacroe.h®, lina 109: Warning (Anachronism): Attempt to redefinae

minor without uszing lundaf.

jusr/include/esys/sysmacros.h", line 115: Warning (Anachroniam): Attempt to redefine

makeder without using fundef.
1 Warningla} detected.
yace -d -v pat.y
2 rules neaver reduced

conflicts: 11 shift/reduce, 2 reducs/reduce
fopC/ETWaprosbln/sCC -mpg +d -C -0 YAcG.o ¥.tab.c

"pattern.h", lina 4]12: Warning l{Anachrenism]: Temporary created for argument newk in

call to Table<int>::puahiintal.
"pattern.h", line 4J2: Hote: Type °"CC -migration® for more on anachronisms.
1 Warningls) detecced,
leax pactern.l
Fopt{SURHspro/bin/CC ~xpg +d -o -0 lex.o lex.yy.=

paccern.h®, lins 432: wWarning {Anachroniam]: Temporary created for argumant nawt in

call to Table<lnt>: :push(intk}.

‘pattern.h”, lina 412; KHote: Type °“CC -migracion® for more on anachronigms,

1 Warningi{e| detected.

Jopt/SUNWapro/bin/oC -¢ -xpg +d Expr.C -0 Expr.o

"paktern.h=, line 433: Warning (A ism): Teop y created for argument newt in
call to Table<int»;rpushlintel,

"paccern.ht, line 432: Hote: Typa "CC -migration' for more on anachronisms.

1 Warning{a| detected.

{opt/SUNWIpro/bin/cC -xpg +d -c wcilitiea.C

FoptfSIRNapro/binysoC -xpg +d CZ_appl.o C2_Searver.c yacc.oc lex.o Expr.o b
ucklicles.o -1dl -lrwtool -lgen -o C2_oppl

Make sure that the praudit command in in the execution path.

aplaxis % which praudic
fuar/abin/praudic
aolarie 65 L Est pack={$path suor/obln)

Run the C2_appl. aplication to test the program. In this case we will compile, link and run a sample
pattern and audit trail shipped with IDIOT. Parse the pattern:

solaria 57 Vv _/C2_appl

Lini> parae C2_patterna/creating-aecid-scripta

Parsing file C2_patcerngfcreacing-gecid-acripes

Inaide stmt reduced expr: printf[*User id 1d hac gucceasfully setid ed Lfile hain®,
unlfied_cok-»get_RUID[], unified_tok->gek_FULL_HAME()]

Ingide stmt reduced expr: ({({ava->ERR() == 0] &k
unified_tok->agoign_RUID{eve->RAUTD{)) L&
wnifled_tok-rasaign FULL_HAME (eve->0BI{}]) k&
eva->0BT_NEWHODS[F > S511)

Parning trangition chmod

stark - chood
.

alter_chmod -
<= chzood

CC -pic -G -g -0 cr_sebid_pgms.eo cr_gobid_pgma.C
“cr_netid_pgms.C*, line 2%0: Warning (Anachronism): Foroal argunent val of type char®
in call te 2_cr_getid pgma_Token::aoskgn FULL _MANE(char*} is being paceed conot char®.
“er_setid_pgms.C", line 290: Heota: Type "CC -migration® for mora on anachronisms.
1 Warning(s) detected.
Dorie complling cr_satld_pgma.C
Inaide crante pattern.
Inacantiated new pattern inatance for cr_setid_pgms

Link the resulting compiled pattern:

tini> dlink /homam/gollum/IDIOT/cr_natid_pgma.co
Linking Flle /Romasfgollum/IDIOT/cr_setid_pgma.so
Insida create pattern.

Run the pattern with the corresponding audit trail.

einir run audit_trailafcreating-mpeatid-pcripts.audit_trail

Showaudlr: will execute the followlng command: tail +0 audit_traile/screating-oetid-scripta.audic_trail | praudic -¢ |
User ld 831 has succassafully anacid'ed fille /.zmordor/homesgollum/aan.aan

tiser id 833 hao successfully seccld’ed file /. mordor/home/gollum/hhb.nhb

User id 833 has succesafully astid’'ed file /.mordoc/home/gollumfece.cce

Usar id 831 hag successfully oetid'ed flle /.mordar/he=w/gollum/ddd. ddd

Showaudit: Ho of dropped eavents = 147

Showaudit: Could not follow the next audit file at ./showaudik.pl line 52.

NOTE: If you get an error message of the formDon‘ t handle events of type 0 yet! then
IDIOT was not able to open the audit trail. Verify that the praudit program is in your path and try again.

4

Chapter 3

IDIOT Patterns

There are currently three classes of pattern being shipped with IDIOT. They are:

L. Written and tested patterns. These are patterns that we have written and tested and can present audit
trails known to trigger the patterns.

2. Written but not tested. These patterns were written but could not be tested either through lack of time
or limitations in the underlying audit trail.

3. Theoretical patterns. These pattemns are written to demonstrate a particular point, but cannot be
handled by the IDIOT system currently.

Each of the following sections describes the different pattern types.

3.1 Written and Tested patterns

These patterns have been written and tested. They are shipped as working patterns to demonstrate IDIOT's
capabilities, and to be used in a real environment.

These patterns can be found in the C2_patterns directory. The audit trails to exercise these patterns
are in a directory audit-trails under the main IDIOT distribution directory. Each pattemn has an
associated audit file named <pattern name>_audit_file inthe audit_trails directory.

3.1.1 Detecting when programs create setuid programs. PATTERN:creating-setid-scripts

Very few programs should create setuid files and system administrators often run programs that search the
file system looking for unauthorized setuid files. This patiern will warn when a program creates a seuid file.

Vulnerabilities detected

Many vulnerabilities can sometimes be detected with this pattern.

State machine

Figure 3.1 illustrates the pattem.

CHMOD R

II.’ B If
i Stan '—----I - -W After_chmod :

Figure 3.1: State machine

Pattern being used

pactern cr_setid pema “Monktor creatlon of setid programs.® priorcicy 7
atate atart, afeer_chmed;
atr FULL_MAHE:
int RUID;
poot_action [
printf[*"User id 1d has succesafully setid'sd flle %ain~, RUID, FULL_MAME);
)

txane chaod (CHHOD)
<= atarc:
-» after_chmod;
-t
this[ERR] = 0 && RUID = this(RUID] &Lk FULL_NAME = this[OBJ] &&
thia [0BI_MNEWHODS] > 511:
)
end chmad;

end cr_getid_pgms;

Note: the final clause in this guard would be best written as:

(this [OBJ_NEWMODS] & 06000) && (this(OBJ_NEWMODS] & 0111)

Discussion

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail generated
by the auditd daemon. :

An attacker, a user called goflum, ran the following expleit script.

4! /bin/fah

touch asn.pas
touch bbb.bbb
touch ceg,coc
touch ddd.dda

chmod 2750 ana.aaa ¥ gorgid
ch=gd 4755 bbb, bhb 1 anruild
chmod ugo=xa ccc.cco 7 sctuld and satgld
chmod 6007 ddd, ddd 1 undafinad {catuid and pegid
1 trut not executable)

¢ Gat rid of tha filma created
tm aan.aaa bbb.bbbd coc.cec ddd,ddd

The execution of IDIOT server with the audit trail generated for user gollum produces the following
output:

Usaar id B3] has successfully setid’ed fila /.mordor/home/gollum/aan.aaa
User id 81] haa succeaafully satid-ed file /.morder/home/gollum/bbb.bEb
User id 833 has coccepnfully aetid’ed file /.mordor/hama/gollumiccc.coe
User id §3] has succeanfully macid-ed file /. mordor/home/gollum/ddd.ddd

3.1.2 Detecting the execution of attack programs. PATTERN: executing-progs

Sometimes users import attack scripts and run them with little or no modifications. We can detect the
execution of well known attack scripts and programs by searching for well-known program names.

Vulnerabilities detected

CA-93:14 Internet Security Scanner will scan sites for potential security holes.

CA*** Crack tool for obtaining passwords.

State machine

Figure 3.2 illustrates the pattern.

e T

, . EXECVE S
{ Y (

' Alter_exe
5\\ Start Iib‘ . j

Figure 3.2: State machine

Patiern being used

extorn str Basename[atrc);

pactern ex_prc_pgma "Wateh for executions of cops/gimme ekc.” priority 7
ptake graxc. after_exec;
skr FULL_FROG, PROG!
imc RUID:

poat_pction [
printEl“User id Ad has fully d 1ayn‘, RAUID, FULL_PROG);
1

/e
" The routine Basmename ia deflned as a call to tha syatem funckicn
* basenama, Given a pointer to a null-termloated characrer sctring that
* contains a path nama, basenas&[] returns a peointer to the lagkt elemsnt
* of the path. Tralllng "/" charactera are deleced.
!
crans exec | EXECVE|
<- =cagk;
=-> alcer_sxec;
|_ [ehisa[ERR] = O && RUID = cthis{RUID] LL FRAOG = Basenams|chle(PROG]) L&

FULL_PROG = thia(FROG| &&
{FROG o~ "cops” || PROG =~ "gimme= || PROG =~ "crack®); }
end exec;

end execute_particular_pgms;

Note: this pattern can also detect the [CA-95:06] advisory on the SATAN tool. This can be done by
adding PROG ="satan" to the last clause in the guard.

Discussion

How does this pattern work? It is composed of essentially one transition — when an EXECVE occurs, it
checks to see if the executed program is one of the prohibited list. If it is, then the pattemn has terminated,
and the post action is taken. This prints out a friendly informational message.

We need to know two things while executing this pattern; the name of the program being exec’d and
the user id of the user executing the program. When the execve system call is executed, the name of the
program to execute is specified. This is recorded in the audit file. We can access this program name using
the this [PROG] construct, which returns the program name from this audit record. We record the full
program name in the variable FULL_PROG so it can be displayed in the post action. This variable is of type
str, which is a string class from the Rogue Wave library.

The user id is returned using the this [RUID] construct. It extracts the uid field of the audit record.
We assign it to a local variable so it can be displayed later in the post action.

To actually detect running a specific program, we use the pattern matching operator =~. This works as
in PERL. In this case, we are only interested in exactly the filename specified.

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail
generated by the anditd daemon. An attacker, a user called gollum, has the following files in his home
directory:

gollum & 1g -1

=TWEIW-T == 2 gollum gollum 10 Nav 26 LB:1) crack*

—CwWETW =L == L gollun gollum 45 Nov 26 lB:14 exploic-

~TWEIW~E"~ = 2 gollum gollum 10 MNov 26 18:131 hidden_hard*
lowareegwer 1 gellum gollum 5§ Wov i6 l8:1d4 hidden_sym -> crack*

The exploit script executed contains the commands:

¥ sbinseh
./crack
./hidden_aym

. /hidden_hard

The execution of IDIOT on the audit trail generated for user gollum on produces the following output:

User id 633 ha=s succeasafully emecuted 7. .mordor/home/golluns/crack
Usar id 811 has succenafully sxecubed /.mordor/homesgollum/crack

The program has detected two of the three executions of the program crack. In fact, the two instances
detected are the first two lines of the exploi.t script. Itis unfortunate that we cannot detect which execution
produces which line of output. As shown next, the audit trail events generated for both are identical.

header, 118, 2, execre(2),,5un Hov 26 18:16:12 1595, - 258009008 msec
path, 7 .oordor/homo /gollum/crack

attributa, 100764, gollun, gollum, 2653521], 40562, 0

subject, gollum, golium, gollum,gollum, gollum, 17720,18887,0 5 aclaria
TELUrT, success,

header, 119, 2, execve[2),,5un Hov 26 1B:16:12 1995, = 348082000 msec
path, / .mordor /hams /gollumscrack

attrlbure, 100764, gollum,gollum, 36535223, 40502, 0

subject, gollum, gollum, gellum, gollum, gollum, 17721, 188587,0 5§ =claria
Teturn, succans,0

3.1.3 Ipr can copy a file over any arbitrary file: PATTERN: lpr_copy files

The line printer program can be made to overwrite arbitrary files on the system. 1pr is a setuid root program
that copies files to print into the spooler directory. The files are then printed from the spooler directory.
If the -s option is used, the 1pr program creates a link to the file in the spool directory. However, the
temporary names created in the spool directory will wrap around after 1000 print jobs.

By forcing these names to wrap around, the 1pr program can copy an arbitrary file over a link which
points to a destination file. This will cause the destination file to be overwritten, even if the user did not
have permission to access that file.

Vulnerabilities detected

8lgm -Advisory-3.UNIX.lpr.19-Aug-1991 1pr can overwrite any arbitrary file.

State machine

Figure 3.3 illustrates the pattern.

EXECYE CHEAT

Figure 3.3: Detect lpr copying arbitrary files

Pattern being used

/
lpr_copy_[Clles

Decects if lpr triea ko ovarwrite a Elle cutolde of fugr/spool
[H1ga] -Advipory-1. UNIK, 1pr. L5-Aug-1991

Hark Crosbie February 1236
!

extarn int inTrea(atr, atrc);
excern int true_print(str}:

extern ink acrmatchiatr, acri;
patktern lpr_copy_filam "lpr copies files nobt in spool dir® priority 7

state scark, after_lpr_exec, after_copy;
ELr FROG, FILE;

int RUID, PID;

poat_ackien (
printf(“User %d aktteopted to copy over £ille %eun*, RUID, FILE);
]

/* tha invariant gtatec that we will deleta tokena in the otate

* machine once the proceas exita. If lpr exite, there’s no point
* concinuing cp try to magch for thea actack.

*r

neg invariant flrae_inv /* negative lmvarlant *7
atata starc_fnv, final;
krang exit [(EXTITI
<= Start_imr:
-» finnal;
[€ PID = thialPID);)
end pEit;
end first_inv;
eranc exec_lpr { EXTCVE|
<~ mtark;
-> after_lpr_exac;
-t
this[ERA] = 0 G& PID = thia[PID] && PROG = this[PROG) &k
RUID = this[RUIDN &
(atrmatch{*._*lpr", thin[PROG]) = 1} && this(EUID) =~ 0;
end exec_lpr:
trana do_copy{CREAT)
<- afcer_lpr_emec:
-> afeer_comy;
-t
thilg(ERR] = 0 Rk Cthls[PID] = PID k& FILE = chis[0B)] a&
{inTree =" /varfapools=, chia[0BJ]) = D};
1
end do_capy;

and lpr_copy_~Cilaa;

Discussion

The 1pr command is a setuid root program that places files in the spool directory on behalf of users.
Typically it places a copy of the file in the spool directory, but if given the —s option, it will create a
symbolic link to the file in the spool directory. If given the —q option, it will place the file in the directory,
but not enqueue it for printing.

The files in the spool directory have a very predictable name. The name of a spool file starts with £ for
a control Rle and AF for its associated data file. For example, executing the command 1pr -Poz -g -s
.aliases (where oz is the name of our local printer), creates the two files in the /var/spool/lpg/oz
directory:

—TU-TW=——— 1 daemon claemon 152 Peb 19 17:5& cfA278yavin.co.purdue.edn
lrwarwarwe 1l reoe dacmon 23 Feab 19 17;54 dfA278yavin.cs.purdue.edu -» shome/mcrosbia/.aliases

The number after the c£A and AfA part of the file names will increment after every print command.
Thus, after a thousand print commands, the file dfA278yavin. cs.purdue.edu will be reused.

The essence of this attack is to create a link in the spool directory to a file you want to overwrite. Then,
execute a thousand prints until the number in the spool directory filename wraps around, then print the file

10

you want to overwrite with. The 1pr program will write over the existing link, and as it is setuid root, it
can overwrite whatever that link pointed to.

The IDIOT pattern presented above detects this attack by seeing if the 1pr program overwrites any files
outside of the /var/spool directory tree. If so, it prints a warning. The audit trail in Solaris encodes the
final destination filename when accessing a link, so this is available to the pattern.

A sample run is shown below:

tini» run audic_data/lpr_copy €iles.audir_data

Showaudit: will exacute tha fellowing command: tail +0 awdit_daraslpr_copy_fileo.oudit_data | praudit -r |
Showaudit: Ho of dropped evencs = 123

User 727 attempted te copy over file /home/mcrosbie/trp/overwriteme

User 727 actempred oo copy over flle shome/mocrosbie/tnp/overuritems

tinir Progran ended

3.1.4 Print all executions of mknod. PATTERN: print-mknods
If a user creates a device, it is possible to access the disk or other system resources without proper

authorization. For example, if a user created a device in a local directory with the same device numbers as
the root disk, then that user could access and change any information on the disk.

Pattern State Machine

The state machine is very simple and is shown in Figure 3.4.

H MENOD @

Figure 3.4: State machine for detecting mknods

Pattern code

f
print-mmods

Print all autcessful wonods

Mark Crosbin Hovember 1995
-/

{* returna TRUE if the mode of the file correaponds ta a block special
* or char special file - ip it a device?
*
extern int isdeviintl:
pattarn oknod *Print all successful mknoda® priocity 7
state gtart, after_mknod;
lnt RUID, DEV:

/* path of the device the user creaced */
str PATH:

/* report cceatlhng & devlce */

poat_ackicn {
peincfiUser id 1d succesatully created a devica in %a.\n", RUID, PATH):
1
/* only one cronaltion rneeded - Lf we nec a MBOD event chen oee if
* the user has succaasfully created a device
b
crana makenods (HKHOD|
<= mtark:
=> after_mimod;
-
f* igdevll retvrns TRUE if the device mode used Ln cthe mioed()
= indicates a davice typa {aither char er block spacial)
r
thia[ERR) = 0 &k isder[thic[DEV_MODE]) = 1 &k
RUID = chis(RUID) &k PATH = thla[0BJ]:
}
end makenods;
end mkned;

Discussion

When a device is created, the mknod command is used. A parameter specifies the mode used to create the
device. If this mode indicates that this is a block special or character special file, then the message is printed.

A utility routine isdev () is used to check the mode of the device being created. If this is special file
(ie. adevice), isdev () retums TRUE. If this occurs, and the MKNOD succeeded, then the user ID and
path of the device are recorded and dispiayed.

Output from IDIOT

IDIOT produces the following cutput when presented with the attack audit tmil:

tind> run audlt_dato/mmod. audic_daca

Showsudic: will execute che following command: cail «0
audic_daca/mknod. audit data | praudic -r |

User id 0 succeanfully createad a device in

/home /peroshie/myIDIOT/ oudic_daca/soon.

Showaudit: Ho of dropped eventa = 79

3.1.5 Detecting when setuid programs write to setuid or executable programs. PATTERN:
setuid-writes-setuid

Very few setuid programs should write to other setuid or executable files, and many attack scenarnios share
these characteristics. Rogue setnid programs will often create setuid shells or alter system owned executable
programs to alter their behavior. Hence, it is desirable to detect whenever such behavior and report it as
suspicious.

This pattern will wam when a setuid program creates or opens a seuid file (or executable program) for
write. It will also report when a setuid program opens a setuid or executable file for read only, using the
open systemn call, and specifies that the file should be created if it does not already exist.

Vulnerabilities detected

Many of the vuinerabilities listed below can somerimes be detected with this pattern. In particular, when
any of these semid programs creates or opens a setuid or executable file.

12

8lgm-Advisory-3.UNIX.Ipr.19-Aug-1991 Any user with access to 1pr can alter system files and thus
become root. We can only detect the vulnerability if 1pr creates or opens for write a setuid or
executable file.

8lgm-Advisory-11.UNIX.sadc.07-Jan-1992 sadc can be used to create files in normally unwritable di-
rectories. sadc normaily runs egid sys, and therefore can be used to create files in group sys
writeable directories. We can only detect the vulnerability if sadc creates or opens for write a setuid
or executable file.

8lgm-Advisory-5.UNIX.mail.24-Jan-1992 A race condition exists in binmail, which allows files to
be created in arbitrary places on the filesystem. These files can be owned by arbitrary (usually
system) users. We can only detect the vulnerability if binmail creates or opens for write a setuid or
executable file.

8lgm-Advisory-6.UNIX.mail2.2-May-1994 The old race condition still exists in the patched binmail,
which allows files to be created in arbitrary places on the filesystem. These files can be owned by
arbitrary (usually system) users. We can only detect the vulnerability if binmail creates or opens
for write a setuid or executable file.

8lgm-Advisory-15.UNIX.mail3.28-Nov-1994 A hole in binmail allows files to be created as root. We
can only detect the vulnerability if binmail creates or opens for write a setuid or executable file.

CA-95:05 Sendmail Vuinerabilities February 22, 1995. This advisory supersedes ail previous CERT
advisories on sendmail. The CERT Coordination Center has received reports of several problems
with sendmail, one of which is widely known. The problems occur in many versions of sendmail.

We can only detect the vulnerability if sendmail creates or opens for write a setuid or executable
file.

CA-95:08 Sendmail v.5 Vulnerability August 17, 1995. In sendmail version 5, there is a vulnerability
that intruders can exploit to create files, append to existing files, or execute programs. We can only
detect the vuinerability if sendmail creates or opens for write a setuid or executable file.

State machine

Figure 3.5 illustrates the pattern.

Pattern being used

extern int isexeclint}, iseidrinc);

o
* Very [ew satuid programs should write to other getuid or executable
* files. Thie pattern will warn when & setuid program createa ot
* opens a aeuid flla {or exscucabla program} for wriks.
=
pattern setuidwriteasstujd ‘“ectuwid program wrlites ©o a setuid or axecutahle file® prisrity LD
int PID;
atr PILE;
ate PROGHAME:
atate ckark, afear_exec, violaclon;

poat_action (

princf{"setuid program \s creasted/opened Lor write che setuid or executable Eile ¥a.\n",
PRUGMAHE, FPILE);

}

13

OPEN

’ OPEN_RW

OPEN_RWC

OPEN_RWTC)
- AL
EXECVE N B

| - After_exec » Violation :

- " CREAT = A

l SR T
OPENRWT < g

OPEN_W

OPEN_WC.

- OPEN_WTC,

OPEN_RC

Figure 3.5: State machine

14

neg invariant firat_inv f* negoetive invariant */
state atart_inv, Einal.

trana exit{EXIT)
<= gptact_lmov;
-» Einal;
[_ { PID = thic[®ID];)
end exle;
end firsc_inv;

Erans exec [EXECVE}
<- stark;
-» afrar_exec;

|_ [ehis[ERR) = 0 && PID w thir[PID] && icoid{this[OBI_HMODS)) = 1

&& PROGMAME = chia[PROG]: }
end exec;

erana medd (CREAT)
<- after_enccy
-» viglation;
|. { this[ERA] = 0 && PID = this[PID] && FILE e this[ORT]
[iaexec{thic[QBI_HODS)) = 1 []| issldithis{0BI_MODS]}
end modd ;

crang modd [OPEN_RA
<~ alter_exec;
=-> vinlacion:
|_ [this[ERR] = 0 && PID = thin[PID) k& FILE = chis[0BJ]
|kgexecithin [OBI_MODS)) = 1 || isaid(thiz(OBJI_MODS]}
end modd ;

erana mod5 (OFEN_RWC)
<- afbter_enec;
~» vielacion;
|- { thla[ERA] = O L& PID = thiz[PID) && FILE e this[OBJ]
(imexeci{thie[OBI_MODS)) = 1 || fesaldithis{OBI_MODS]}
end modS;

trang modS [OFEN_RWTC)
<= afber_sxec;
-» yiolation:
|— [thi=[ERR] = 0 && PID = chin[PID] k& FILE = thia[OBJ]
[ipexec{thic[OBRI_MODS)) = L || issidithis(OBI_MODS]}
end modf

Erann med? (OPEN_RWNT)
<- after_enec;
-» wvislation:
|- (ehis[ERA] = 0 && PID = thiz[PID] Lk FILE = thie[ORJ]
(iaexec{thia[CBI_HORS}!) = L []| izald(this(OBI_HODS|}
end med?;

tranas modB (OFEN_W)
<- afcer_exec:
-» vielation;
—I { thip[ERA] = & Lk PID = thia[PID] && FILE = this|0OBJ]
(isexecithis[CBI_MODS]) = 1 || isaidichls(OBI_MODS]}
end modl;

erans madd (OFEN_WC]
<- after_cxec:
-» violation;
l. { this[ERR] = & && PID o thic[PID] L& FILE = chia[OBJ]
(inexacithia (ORI _MODS)) = 1 [| isald(thia[OB3_MODS]}
end modd;

trana modl0 {OPEH_WITH
<= after_exec:
-» wiolation;
J_ { thia[ERR] = 0 && PID = thia[PID] Lk FILE = this[0BJ]
{igexec (this (ORY_MODS)) = 1 || iasidithic{OBI_¥ODS|}
end modld;

erann modll [OPEN_WT)
«= afber_exec;
-> violntieon;
|- [chialERR| = 0 && PID = chia[PID] L& FILE = chis[0BJ]
(loexecthio{ORI_MODS]) = 1 || isaidithis(OBI_rODS]}
end modll:

trans modl2 (OPEN_RC)
<- nfcor_punc:
-» wiolakien:
|- { chis[ERR] = 0 && PID » this[PID)] && FILE = chis(ORJ]
{iapxec(thia [ORJ MODS]) = 1 || isoid{chis[0BI_MODS)1
end modl2:

Lk
= 11;

L1
» 11:

14
= 1]

111
o 1];

hk
= 11;

113
= 1);

13-
= 1]1;

113
s 1];

111
= 1l:

L1
= 11:

15

end setuidwritessetuid:

Discussion

The pattern described in this document was tested under Solaris 2.4 using the BSM C2 audit trail generated
by the auditd daemon. The following setuid programs were created:

/* Program: teatl =/
tinclude <atdio.h>
flocluda <eya/cypaa.h»
tinclude <pys/atoc._h>
#include <fencl. h>

maing) [
/* creace a setuld executable file */
creat{"teatl,cl®, 5_ISUID | S_IRWNU | S_IWGRP);
]

/* Progrom: testz */
dinclude <scdio.h>
finclude <sys/types.hx»
#lncluda =nya/fatat,h>
finclude <fcnel h=

mainl] [
/" Creace o sctuid program =/
open(“teat2.cl®, O_CREAT, S5_ISUID | S_IRWXU | S_IWGRP };
/* Open the setuld program craated by program bteacl =/

opan(*teoecl . cl", O_RDWRI:
|

An attacker, a user called gollum, ran these two program in order.

The execution of the IDIOT server on the audit trail generated for user gollum on produces the
following output:

astuid program /Roms/krsul/testl createdfopened for write the
satuid or axecutable Eile / mopdor/home/gollum/Eascl.cl,

astuid progras fRemoskrsul/test? createdfopened for write the
setuld or mxecutable Elle /_moxdor/homa/gallum/Lest2.cl.

Eatuld program /nomeskrsul/test2 created/opened For write the
setuid or axacutable Efle / eoxdor/home/gollum/Eancl.cl.

3.1.6 Writing to Executable Files. PATTERN: writing-to-executable-files

Writing to an executable file is often evidence of viral behaviour. A virus may attempt to affect a program
by inserting code at the start of the file which will be executed before the program contained in the code.
This is very common on MSDOS machines. However, a UNIX system may still be vulnerable to this type
of attack if executable files are left in place with write permission for users or groups.

Vulnerabilities detected

Any activity in which an executable file is written to.

16

Pattern State Machine
The pattern is very simple. For each process that is EXECed, the pattern detects writes to a file by that

process that has the execute permission bits set. If such a write is detected, the pattern has fired. Figure 3.6
shows this.

QPEN_WTC

CPFEN_WC

EXECVE

OPEN_RWTC

OPFEN_RWT

Figure 3.6: State machine for pattern to detect viral be-
haviour

Pattern code

writing-to-execucsble-£ilea

.
-
* Dotect programs wrlting to executabla files which may ks an
* indicaticn of viral behaviour

.

Hark Croabia Fabruary, 1596
extern ink lamxec{int}.
extern int true_printiscr):
pattern virus "Programa writing co executakle files (viral behavlor)*® priority 10
int PID, EUID; /* pattern local variables. may be initialized. 7
ctr FILE, PROG;
atoke acort, after_exec, viclation;
/* poat action aimply reporta on atktack */
paek _acktion {
printf{*Program 13 running a3 EUID M wrorte to tha exacutable Eile %¥s.\n*,

PROG, EJID, FILE]:
1

/" Thera can ba >= 1 invariancs */

17

f* this invariant kills a token if ics corresponding parent exits *7
neg invariant firat_inv /* pegative invariant "/
gtate gtart_imy, Einal:

trans exit (EXIT)
<= RLAarc_inv;

=» finml;
{I_ { PID = chialPID); 1
end axit;:

end firat_inv;
4* pattern description followa */

/" EXECVE is the event typs of the transition - executing a proceas */
trana exec{EXELVE]
<= start;
-» afcar_exec;
|- { chia{ERR] = 0 && PID » this[PID] £k PROG o this[PROG) Lk
EUID = chis[EUID]);)
end excc;

/= GPEN_RW - open a file for reand or write */
trans mods [OPEI_RH]
= aftaxr_axec:
-» viglation:
|— [thia[ERR] = 0 L& PID o rhig[PIE| &k FILE o chig[GAT] &k
inexec(thia [UBI_HODS]); }
end modd;

crans mod5 (OFEN_RWC)
- after_exec;
-> wvielaticn;
|- { thia[ERR] = ¢ && FID = this[FID] && FPILE = this[0BJ] &&
izexec({thia [OBI_MOD5]);)
end mod3;

txang ol {OPEN_RWTC)
“- after_mxeac;
=> vlolation;
|_ { this[ERR) = 0 L& PID = chis(PID] && FPILE = thla{0BJ] &k
isoxec{this[0BJ_MODS]): 1
end modf;

trana mod¥{OPEN_RWT|
<= afbar _exec;
-» wviolation;
| { this[ERR] = 0 G& PID = thia[PID] && FILE = chia[0BJ] &&
igexec (this[QBI_MODS]): }
end mod?;

trang modd [GPE_W]
<- altar_exec;
-» violation;
] thia[ERR] = 0 &k /= if thic operation succeeded "/
PID = chla(FID] && /* and this PID matches that of the exec =/
FILE = this[0BJ| &Lk /* remesbar thic filenama *;
ipexec(thie(OBI_MODS]): } /- 1f this file is executable */
end mod6;

erana moedd (OPEN_W)
<- after_exec:
-» vialatien;
|- ¢ thls(ERR] = © &k PID » thig[PID} L& FILE s thig[OBJ) &&
igaxecithin [DBJ_HODS)1:)
end modd;

trana modll (OFEN_WTC)
<=- afLar_exec;
-> vielation;
|. { chEs[ERR] = 0 && PID = this[PID] && FILE = this[0BJ] Gk
icaxec(this[QBI_HODS]:: }
end modld;

erans modll{OPEN_WT}
<- after_enec;
-> wvielarticn;
|- ¢ thin[ERR] = 0 && PID = thin[PID] && FILE = thia[OBJ] &k
ipexectthle [ORJ_HODS]); }
end modll;

end virusa;

18

The pattern seems complex, but is essentially very simple. The pattern starts by detecting the execution
of a new process using the EXECVE transition. From this after_exec state, it detects any open calls that
could potentially write over a file which has its execute permission bits set. The isexec function is in
utilities.C and retums TRUE if a file is executable. This can be computed by information about the
opened file stored in the audit trail. The types of open call detected are:

¢ OPEN_W open for write.

» OPEN_WC open for write and create if not present.

s OPEN_WT open for write and truncate to zero size if present.

e OPEN_WTC open for write and create and truncate to zero size.
e OPEN_RW open for read or write.

¢ OPEN_RWC open for read or write and create if not present.

» OPEN_RWT open for read or write and truncate to zero length.

¢ OPEN_RWTC open for read or write and create if not present and truncate to zero size.

If any of these occur and the file is executable, we could have potential viral activity on the system. It
could also indicate a attempt to install a trojan horse on the system. This would be a version of a program
that had similar functionality but installed a malicious piece of code.

Discussion

The pattern will only detect a process being executed that overwrites executables. A series of shell commands
to overwrite an executable won't be detected, because each shell command results in a new process with a
new PID. The PID attribute of the tokens won’t be unifiable.

Why does this pattern not detect WRITE events? In the Solaris BSM audit trail the write events are
subsumed under the OPEN event. So the audit trail for a write looks as follows (output of praudit):

header,1356.2,0pen(2] - read,wzlce,,Tue Feb I0 LB:53:34 1996, « 346005000 miec
pach, /hooe fmerasble /myIDIOT/ audlt_data/executabls

attribute, 100711, otrasble, moroabie, 8308636, 191085, 0

subject, -2, mcroshie, ncreebia,. mcroabia,mcrosbie, 20085,0.0 0 ¢.0.0.0

return, Eucress, 4

The audit trail was gathered with the fw audit mask flag. This gathers data about file writes. The open
call is recorded, but the write call is not. The above audit trail corresponds to the following code fragment
from exploit-write.c:

if((Edwopen(™./ bla*, O_RDWR}) =<) {
parrori® opon: "):

exiktll):
]

printfr"Exploit: writing to executahla...\n"|:
AE(write{fd rabcdaf", 5| = &) {

parrori” write: "):

exicill;
1

19

Thus, we are forced to detect writes to executable files by detecting the opening of the file, and not the
actual write.

This pattern can also be written without the EXECVE transition. In effect it would then check every
write on the system to see if it overwrites an executable file.

3.1.7 Writing to nonowned files. PATTERN: writing-to-nonowned-files

Users often create files in their home directories that are world writable. This is often because of a umask
setting that does not disable the world write bits. Or, users may be sharing information via world writable
files. Either way, this is a potential avenue for attack, as any information can be written into a non-owned
file for later retrieval. This may allow an attacker to hide stolen information or plant a trojan horse in another
user’s directory. In the worst case, an attacker could place a ++ into a world-writable . rhosts file owned
by another user, leaving that user’s account open to abuse.

Pattern State Machine

The state machine for this pattern is presented in Figure 3.7.

OPEN_WT

OFEN_WTC

OPEN_WC

OPEN_RWT

Figure 3.7: State machine for pattern to detect writing to
nonowned files

Pattern code

The code for the pattern is as follows:

20

writing-co-nonowned-£iles

Chack a if a procesd is writing to filea which ik doman‘t
oW .

This could indicata potantcial wviral acktivitby

" Hark Crogbie February 1996

extern int true_print|str);

pattern unwanted writam "Wriring to noncwned Eiles® priority 7
nodup atate atart, final: /* only two gracen nesded *f
int PID, EUID: /* record pertinent information nbout procoss */
5tr PATH;

poat_action [
princf[~Pid %d, uger id ¥d wrore %%, & nonowned Eile.y\n®, PID, EUIO, PATH);
]

/= for anch type of wrlte cvent recorded in the audik trail, see if
* the owner of tha film and EUTID of the process doing che write
* differ. IE 20, thls indicatea overwriting a non-owned file.

.

Erant wribal |[OFEN_W}
<- starc;
-» final:
|- { chin[ERA] = 0 &k /* the action aucceeded */
this [0BI_OWHER] I= thic[EUID) k& /* owndershipe don‘t match *f
FID = chla[PID] &k /* remambar PID of this proceas *f
EUID » thia[EUIP] k& /° ceswrber EUID of user */
PATH = thls(OBJ]: /* remember path to fila being overwritten =/
H
end writel:

trans write2 [OFEN_WC)
<- stark;
-x Zinal;
|- [thia[ERA] = 0 ELE& this[0BJ_OWNER] != this[EUID] kk PTD = thin[PID] &&
EUID = this{EUID] k& PATH = thia(OBJ);
}
end write2;

trans wribtel (OFEN_WTI
- stark;
-» flnal;
|- { Ehig[ERR] = Q0 &k thin[OBT_OWNER| != thiplEUID] && PID = chis[PID] k&
EUID = thisa[EUID] && PATH = chia[0BJ];
}
end wricel;

trans writed (OPEN_WTIC)
<- ocact;
-> final;
|_ (thia(ERR] = & && thia[0BJ_OWNER] != thia[EUID] && PID = thia[PID] k&
EUID = this[EUID] L& PATH = thio[QRY];
)
end writed;

end unwanted_writes;

The pattern looks complex, but is essentially very simple. It detects any writes to a file that has an owner
field (OBT_OWNER) that differs from the current effective user ID (EUTD). If so, then the pattern reports the
write as being suspicious.

Discussion
This pattern is very simple. If the owner of a file differs from the effective user ID of the process writing to the

file, then the post action reports this. Note, see the description forwriting-to-executable-files
for more details on how the audit trail represents write events.

21

3.2 Written but untested patterns

This section describes patterns that are written but untested. These pattemns can be tested in the current
IDIOT implementation, but they are being shipped “as is” without any testing.

These pattems can be found in the other_C2_patterns directory under the main IDIOT distribution.

3.2.1 PATTERN: lpd.delete files

This pattern attempted to detect the CERT vulnerability outlined in CERT Advisory CA91:10.a. The 1pd
line printer daemon can be made to delete files outside of the usual /var/spool directory by exploiting
a race condition. The race condition exists between the time the file is copied into the spool directory and
the time the file is removed from the directory. By changing the file to a link, it was possible to remove any
file on the system (as 1pd ran as root).

This pattemn cannot be tested on our machines, because our 1pd daemon has the fix in place and we

cannot replace it without seriously disrupting the local printing environment in COAST.
However, the core transition in the pattern detects a delete (an UNL INK event) occuring with a destination
outside of a specified directory tree. It uses the inTree () external function (found inutilities.C to

match the file being deleted with the path prefix /usr/spool. If no match is found, then we conclude
that 1pd is trying to delete a file outside of the print spool directory.

erana daleta |UNLINK)
<= afver_lpd exec:
=» alcer_delete;
- ¢
thin[ERA] = 0 Gk thig[PID] = PID k& PILE =~ thia(ORJ) &k
{inTran{"fusrc/fapocl", FILE] = {);
)
end dalets:

3.2.2 PATTERN: failed.su

This is a very simple pattern that reports all failed su attempts. Most system consoles also report similar
information. The pattern simply looks for SU events in the audit trail that have an err attribute of I,
indicating that they have failed.

3.2.3 PATTERN: finger

This pattern attempts to detect the finger program spawning a program other than finger. This was
motivated by the Internet worm attack where the stack for the £inger daemon was overwritten and caused
a new program to be spawned.

This pattern cannot be tested because it hard codes the inode value for the finger daemon fingerd
and the finger program finger into the pattern. This will change from site to site, and from system to
system. The pattern should be rewritten to allow a more portable specification of the location of the daemon
program.

22

3.24 PATTERN: priv-pgm-in-userspace

This pattern attempts to detect a privileged program executing in user space. It does this using the
inUserSpace{) extemal function.

3.2.5 PATTERN: rew

This pattern atternpts to verify integrity using Clarke-Wilson triples. More information on this pattern and
Clarke-Wilson integrity triples can be found in Section 4.8.9 of the taxonomy . ps file in the doc/IDIOT
directory of the distribution.

3.2.6 PATTERN: shell-script-attack

Certain classes of attack make a shell execute and pass it strange command line arguments, A favourite
attack is to run a shell with a command line argument of —i. This gives an interactive shell. If, somehow,
a root shell can be spawned from a program with the -1 option, an intruder has an interactive root shell on
the system.

The key to this pattern is this transition:

crana axec (EXECVE)

<= start;

-» after_eoxes:

[
thls[EAR]) = 0 && RUID = this[RUID] && PROG = this[FROG]| &L
iglinkichia[PRAOG]) && shall_acripelthig[PROG]} Lk
{Bamaname (this [PROG]Y == *""==);

}

and esxac:

The Basename () external function gets the actual name of the program being executed, with the
leading path component stripped off. If this name starts with a - symbol, the pattern indicates that something
suspicions has occured.

3.2.7 PATTERN: tftp

This pattern attempts to detect the t £tp program accessing files outside of the t £tpboot / directory. This
could indicate an attacker using the TFTP protocol as an attack vector.

This pattern has too many hardcoded constants to be useful in its current form. It hardcodes the inode
numbers for the tftp program into the pattern. This should be changed to a more natural way of specifying
the name of the program.

3.2.8 PATTERN: bin-mail

This pattern attempts to detect the /bin/mail program writing to a file that has its setid bit on, or is
executable. The pattern is very straightforward. The execution of the mail program is checked by the
transition on the EXECVE event. This is coded rather awkwardly - it detects the execution of the mail
program by looking at the inode of the argument to the exec () call. This is very system dependent, and
should be fixed.

23

It then checks to see if that program opens any files for writing that have their execute bit set (using the
isexec () utility function) or have their setid bit set (using the issid () function). In either case, the
pattern triggers, indicating that the mail program probably has been subverted.

The invariant deletes any tokens associated with a process when that process exits. Thus, as a mail
program runs it generates a token in the machine, and once that program exits, all tokens associated with it
are deleted.

3.2.9 PATTERN: setid-pgms-cant-spawn-shell

A setoid program is not allowed to spawn a program with the effective user id unchanged. This would allow
attackers to subvert (say) the mail program, and make it spawn a shell with an effective user id of root.

This pattern is conceptually simple — if an EXECVE occurs of a shell program and the EUID changes
after the call, then trigger the pattern. However, because of a weakness in Sun BSM auditing, this information
is not available. Instead, the pattern must monitor on a per-user basis — if a user executes a setid program
that then spawns a shell with a user id different from the user’s, it triggers the pattern. This is less flexible
than the generic patten, but is workable under Sun BSM auditing.

3.3 Theoretical patterns

This section describes theoretical patterns. These patterns cannot be tested in the current IDIOT implemen-
tation, and are written for instructive purposes only.

These patterns can be found in the other_C2_patterns directory under the main IDIOT distribution.

3.3.1 PATTERN: access-open-to-same-path-diff-inodes

The general problem that this pattern tries to detect is that of an attacker to exploit the small window of
opportunity that exists between programs checking the validity of the files and the actual opening of the file
for wnting. If an attacker can slow down the system, by running the program with a very high nice value,
for example, he can replace the file that has been validated with another of his choosing.

passwd -F Attack In SunOS

The passwd command can be directed to treat another file as the password file using the -F option. Before
opening this file for writing, and depending on the version of Unix one is using, the passwd program will
atternpt to determine that the user can indeed read and write to the file by either opening it for read, calling
the access system call or calling the stat system call. If after this check has been completed, and before
the file is actvally opened for writing, the user changes the path name to point to the real system password
file, the passwd program will operate on this file assurning it is still working with the original file.

24

xterm Logging Attack

xterm needs to run as root because it needs to chown the tty it allocates to interact with the user. Logging
is a security hole because of the race condition between access check permissions to the logging file and
the logging itself. When given the -1f option, xterm creates a file by calling the creat system call
and immediately changes the uid and gid of the file to match that of the user running the program and start

logging.
The problem appears when a user gives the following sequence of commands:

mmad foo p 8 fon 16 the FIPO named pipa
xtarm -1f foo B creat will open the FIFD and block becauss chara
1 is no proceps reading the other end of the pipe
wv [oo junk
in -a /ekc/pasnwdl foo
cat junk # Now that thare is a reader at the other aide of tha
b named pipe, the creac pysbem call returns ond
t the next statement executed ic the chmod syatem
¥ call ethat will change the permisaion of the fetc/pascwd
fllc ac chat che voer can odd and delate encries.

Although more difficult to exploit, the patched version of xterm continues to have a similar problem.
The code described above got replaced by:

1 1fi{mccesaa(screen->logfile, F_OK] ! = 0] |

2 If {exxno == ENOEHT)

3 creat_as(screen-»>uld, screen-rgid, acreen->1logfile, 0644} ¢
4 elue

5 Tatucm;

6)

7

B if[accemaigcreen->logfile F_OK) !m O

] || acceasimcraen-rloglile,W_OK) != Q)

10 cecurn;

11

12 itiiacreen->logiduopeniscresn->logiile, O_WRONLY | O_APPEND, 06441)<0)
11 raturn;

The creat system call was replaced by the creat_as routine. This routine forks a child process
that changes its permissions to that of the user before it attempts to create the file, effectively eliminating
the previous race condition. Unfortunately, a race condition, although much harder to exploit, still exists
between the access call in line 8 and the open call in line 12. If a user can slow down this program
and time things right, after the access call succeeds, the log file can be replaced by a link to the real
/etc/passwd file. The xterm process will open the /etc/passwd for writing, and append to it the
information that it is supposed to log.

Vulnerabilities detected

CA-93:17 xterm Logging Vulnerability.
8lgm 5/11/1994 The passwd command takes a -F option in SunOS.

Pattern State Machine

The state machine is shown in Figure 3.8.

25

C:
& P Access i
c’ - ('-. _ 'l
v N < o
EXECVE ég‘f' %
sl T
{ Swort . After |
i Stae f ‘. Exec '
e L AR
.)
+ g ‘1) |
EXEC 5"" - B NP
) -y
5 S ¥
Afier -
'“h".’ b w Create /
, Afier ¢ - v —
Open ™ CLOSE

Figure 3.8: Attack state machine

26

Pattern code

Iz
* pasowd Blym advinory. xterm CA-9$3:17 advicory

= Detecta the clasnic “window-of-opportunity*' exploitation. Used in
* pasewd program and xterm logging bug,

" Hark Crosble HNov. 1935

= Ivan Kraul Hov. 1955

-r
extern int inedefstr); /* retumns the inode for thia particular fila 7

pattern aotgpdl "access-open-to-aamm-path-diff-inodes" prierity 7
state akark;
nodup ocace after_access;
nodup atate after_create;
nodhup ateate alter_open;
nEnter afcar_sxec;
atata violacion;

int PID, INODE, EUID, RUID;
atr FILE. PROG;

post_acklon {
printfivlolationwn*};
1

g
* this invariant states that the patterncs are patchad ac lang ac thig
* proceEE 1A running
*r
neg invariant inv /' negative invariant ~*/

state atart_inv, final inv;

trans proc_exitc{EXIT|

<= gtart_kmv;

=> Einal_imv;

|- { thie[FID} = PID; }
end proe_exlk;

end inv;

i~
* This transition is taken if thea exacve dosa not regult in an ervor and the
" progra= axecuting is setuid root. Well..... not guite. We area tasting thia

* program but don’'t wanr ro intreduce a vulnecabilicy... or at least not & big
" one. 50 we will check f[or those prograns whose afectiva uaer id ig neot the
* some a3 the real usar id.

"
trana axecl [EXECVE|
<= QTATYLC:

-» after_exec:
|- (thig(ERR] = 0 && PID = thia[PID] L& PRDG = ELhik[PROG])
L& EUID = thia[EUID] &k RUID = thia(RUID] Li EUID != RUID ; }
end execl: -

trans axec2 (EXEC|
<= ATAXC;
-> after_exec;
|- [thia{ERR} » 0 && PID = chis[PID] k& PROG = this[PROG]
&k EUID = this(EUID] && RUID = thia[RUID] && EUID !'= RUID ; }
end execZ;

'!-

* This tranaiticn is raken when a program creaceg & File calllng tho create

T Eystem call

~r
Trans create [CREATI|

<- after, exec;

=» after_crante;

|- { this[ERR) = & && PID = thia[PID] && INODE = thia|OBJ_INODE)

k& FILE = thialOBJ}:)

end creata:

g
* Progranms can alao create files by calling the OPEN_WC or OPEN_WIC call and
* gloging them, The next threa tansitlons are dealgned to catch thicg.

b
trana opencreacel (OPEN_WC
<= after_cacc;
-> afbar_apan;
| { thia[ERR] = 0 &k PID = chls[PID)} && INODE = thia[OBI_INQDE)
&k FILE = this[QRT):]
end opencreatel;

27

trana cpancreaba (OFEN_WC|
<- after_eonec;
-» afEar_open;
!_ (thla[EAR) = 0 &k PID = thlo[PIP] &k IRODE = this[0BI_INODE|
&k FILE = thia[oBJ]: }
end opencrente?;

trang cloce (CLOSE}

<= after_cpen;

=» after_ccoaka:

|- { thia(ERR] = 0 && FID = this{PID} && INUDE = this(QRJ_INODE]:]
end clope;

)‘l
* After n fila has bean created, if the anoo E£ile path wap uced ac a
* parameter to the chown or chood routlne but the inpde is different
= then we have a violation|
.
krang eh=od{CHMODI
«~ after_cresake;
-+ violation:
|- { thig[ERR] = 0 &k PID » Ehisa[PID] &k
INODE != chis(OBF_THODE] &k PILE = this[0R)]: }
and chood;

trans chown (CHOWN}
=~ afber_crankte;
-> wvialatlon;
|- (EhiG(ERR] = 0 &k PID = this[PID) &&
INODE I= thio[OBJ_INODE] k& FILE = this[OBI];)
end chowm;

I
* The folling krancitiong are taken afrer a asuccesaful exec if s Eile ip Ceoted
* for exiatence wlth the stat or accesa call
~f

trans access{ACCESS]
<- after_exec;

=» afkter_acceas;
J— [thiG[EBRR] ® 0 &k PID o thin[PID| &k INODE = this [OBJ_INUDE]
&k FILE = this[0BJ]: 3
and accass;

trana start{5TAT}
<= afrer exec:
-» after_accens;
|_, { thin[ERR] = O L& PID = chig[PID] k& INODE « rhim[OBJ _INDDE]
&& FILE = chis[0BJ):)
end akot;

‘"
* If tha aama File that was opened for read is now opened for write
* and the Inode number has changed then we have & problem
/

trana writel [OPEN_W}

<- pliver_accecs;
-> wviclatlon;
|_ { thig[ERR] = 0 &k PID » this[PID] &k INOCE != this[OBJ_INODE]
k& FILE = this(gBI);]
and wrikal:

trans write2 (OPEN_WC)
<= after_access;
-» violacien;
{_ [this[EAR]) = 0 EL PID = thig[PID] L& INODE != thia(OBJ_INODE]
&k FILE = this[DOBJ]: }
end wrlced:

trans writel |OPEN_WT1
«- aftar_accenm:
-» violation;
|_ { thia[ERR] = 0 &k FID = this{FID] k& INOUDE != chis[O0R]_IKODE]
L& FILE = thia(aBI):)
end writel;

trans writed (OPEN_WTCTI|
- after_access;
-> wviolaticn;
1_ (this(ERA] = 0 && PID = thla[PID] &k INODE |= thins(QGRJ_THODE]
&G FILE = thig[ORT]; }
end writed;

end actepdi:

28

Discussion

This pattern can detect the attack by seeing if the inode for the file has changed. How does this happen?
When the file is first opened, it will have an inode given by the destination of the link. If an attacker moves
the original file and creates in its place a link that to points to to another file, this inode will change. Thus,
by detecting this change in inode value, the attack can be detected.

Unfortunately, this pattern cannot be used as is with the Basic Security Module C2 logging provided by
Sun with Solaris 2.4. For this pattern to work, the audit trail would need to provide, at least, the following
information:

1. execve: ERROR, EUID, RUID, PID, and program name
2. creat: ERROR, PID, initial file name, final file name, and inode number
3. open: ERROR, PID, initial file name, final filename, and inode number

. close: ERROR, PID, inode, initial file name, and final file name

. chown: ERROR, PID, inode, initial file name, and final file name

4
5
6. chomod: ERROR, PID, inode, initial file name, and final file name
7. access: ERROR, PID, inode, initial file name, and final file name
8

. stat: ERROR, PID, inode, initial file name, and final file name

The only items that require explanation are the file names. If we have a symbolic link sym1 that points to
afile £i11 thenacall to chmod("syml",mode) would require an audit trail record that would indicate
that the chmod system call was executed on the initial file name sym1 and the final file name £i11. The
inode should be the one corresponding to the final name.

The audit trail generated by the Basic Security Module provided with Solaris 2.4 violates the file names
requirement. To see why this is important, consider the following fragment of a setuid C program called
xtermbug:

/% Create a log Elle called xtermbug.log */
if[creati"xtermbug.log®, 01 > -1 } (
/" Tha parmicions of the created file were amt to Ox00O00. Changa them
to dopething more raamcnable 7
if(chood{ "ztermbug. log®, S_TRWNU | S_IRWHG | S_IRWKO} == -1 } |
fprintf{atderr, "Could nat change the permission of file mtermbug.login®);
1
1 elee {
fprintf(stderr. "Could not creace log file xtermbug.log\n=}:
1

and an attack script that will exploit the vulnerability described in thisdocument is called xt exmbug . exploit:

4i/binfah

omknod ztermbug.log p

xEerminig &

sleep 1

my xterpbug,log junk

ln -5 /homas/kraul/break_me xtermbug, log
cat junk

cat /hooes/kraul /break_me

29

This attack can not be detected by the pattern described in this document if you are using the Basic
Security Module logging in Solaris 2.4. The audit trail generated for this session, reformatted for clarity
and brevity, with the attacker called goflum, and the victim called krsul, is:

execve (2} - path, fhome/gollun/xtermiug.axpioit - EUID gollus - RUID gollum
execvel2) - pach, fusr/obin/miood - EUID gollum - RUID gollum
okned{2] - arguoent,2,0xllbf. mode - argument,l,0x0,dev
path, / .mordor/hooa/gol lun/zterolug. log = EUID gellum - RUID gollum
chowni{2] - argument,2,Dx]dl.new file uid - argumenc,3,0x34l,.new Eile gid
path, 7 . mocdox/home /gol lum/xtermbug . log - EUID gollum - RUID gollum
exacva (2] - path, /homesfkraul/bin/xtarmbug - BUID krsul - AUID gollum
eapcyve(2) - path, fusc/bln/oleep - BUID gollum - RUID gollum
execve(2) - path, fuar/lecal/bin/mr - EUID gollum - RUID gollum
10 rename(2) - path, /.eordor/homesgollun/xtermbug. log
11 path, / .mordor/homa/gollum/junk - EJID gollum - RUID gollu=
11 exetve(2) - path, fusc/bin/ln - EUVID gollum - RUID gollum
11 symlink{2}) - text,/homesa/keoul/break_me - pach, /.mordor/home/gollun/zeermiug. log
13 EFUID gollum - RUID golluno
15 execve(2) - pach,/usr/bin/cat - EUID gollusm - RUID gollum
16 creac(2} - path./.morder/homafgollum/xtermbug.leg - argument, 3, 0xZ, otropen: Elag

[T W P N

17 HITD krgul - RUID geollum
18 chrmod(2) - argument, 2, 0xlEf,.new f£ile mode - path, fhomae/krsul/break_me
19 EJID kraul - RUID gollum

20 cmecve{l) - path, fuar/binfcat - EUID gollum - RUID gollum

Notice that in line 20, the audit trail indicates that the chmod {2) system call was made to the file
‘homes/krsul/break_me. While this is ultimately true, it does little to help detect the exploitation of the
vulnerability. The pattern design specifically looks for a chmod or chown to the same file name as the
creat but with different inode numbers. The audit trail should mention that the original call was made to
file xtermbug. log.

3.3.2 PATTERN: 3-failed-logins

This pattern attempts to detect failed login attempts. Specifically, it looks for more than 3 failed login
attempts in a 3 minute time period. This could indicate that a password attack is occuring against a user
account.

This pattern cannot be tested because IDIOT currently does not support a CLK event. The idea behind
a CLK event is to allow timing information to be incorporated into the pattern. Consider the code for the
pattern:

/* CLX has not bean implemented yot *¢
neg invaripnt inv
stata atart_inv, final inwv;

trana clk(CLX)
<= pbtarc;
== final:
|— (this[TIME] - clma > L60O;]
el clk;
end Lov;

/* pactern daascclpcion follows */
erans falll (LOGTH)
<= ztark;
-» after_Enill;
[
this{EAR] = L && ruld = chis[RUID] &6 time =« chis[TIHE]:

1
end faill:

crano Eail2 {LOGIN}
<+ after_faill;
-» after_fall2;
It
this[ERR| = 1 && ruild = thla[RUID).
¥
end Eall2;

erana £mill (LOGIN)

30

«- after_faill;
-> afrer_Faill;

thla[ERR] = 1 &k ruld = this[AUID] & chis[TIME] - cime < 180;

H
end Lalll:

The first failed login attempt sets the time attribute of the token. This is taken from the timestamp
information in the audit trail. The third failed login attempt can use this to make a transition if less than 180
seconds (3 minutes) has passed. The CLK event occurs at predicatable time intervals (say every second). It
is used in the invariant to delete any tokens that have been in the state machine for longer than 3 minutes.

The CLK event should to simple to add to IDIOT and would provide great flexibility in writing patterns
to detect failed login, network access and other object creation attempts.

3.3.3 PATTERN: dir_browser

This pattern detects a user browsing through directories. It does this by counting the number of change-
directory events in the audit trail. Normally a user executes a few chdir commands in a session, but an
abnormally high number of these commands could indicate someone browsing where they shouldn’t be.

This pattern cannot be tested because it uses the CLK event as described in the previous section. However,
it illustrates a useful way of detecting if someone is browsing through sensitive directories. It uses the inode
of a shell process to identify which process to monitor — most users browse using their shell. It then
counts the number of CHDIR (change directory) events in the audit trail. I this count exceeds a threshold,
it triggers the pattern.

3.34 PATTERN: le

This pattern tests to see if an ethernet device was put into promiscuous mode. In the words of the comments
to the pattern:

Entablishing a bhardlink to /dev/le and opening che hardllnk io not
posolble because hord links cannot be eatablished acress devicea. Dan't
know how Lo tept for promiscuity yet.

This pattern may not be possible to implement at all, but is included as an example.

3,3.5 PATTERN: port_walk

This pattern attempts to detect a port walk attempt. It uses accept events in the audit trail to detect an
intruder connecting to ports across the machine in an attemnpt to see what services are running. It cannot be
tested or implemented as IDIOT does not support the accept event yet. If it were extended to handle such
events, then a wide variety of network attack patterns could be detected. See the section on limitations of
auditing for more information.

3.3.6 PATTERN: dont-follow-sym-links

This pattern attempts to detect a setuid root program following a symbolic link. This a potential vulnerability
as an attacker could replace the link with a link to another file, and subvert the operation of the setuid root

31

program.

This pattern contains a subtle flaw. Consider the following code snippet:

trana cpan5 (OPEH_R)
<= acaxt;
-» nfcar_open;
|- { this[ERR] = 0 && thisa[EUID] = & Kk iclinkithis[0B)]} E&
PILE » this(0ORJ] && PID e thia[PID]: }
end open5;

This code detects if a file was opened for reading by a process running with root prvileges. It uses the
islink() call to test whether the file was a link. This is a mistake — the state of the file system may have
changed between when the audit data was generated and the pattern is being run. This is explained in the
section on External declarations in the technical documentation.

This pattern is an example of how nor to use external functions to carry out computations. External
functions should never query system state that may change between when the audit trail was generated and
when the pattern is run.

3.3.7 PATTERN: timing-attack

This pattern also uses the CLK event, but to detect a race condition attack where a file is unlinked and
relinked to a new destination before being accessed. This is a classic “time-to-check-to-time-to-use™ attack.

The first transition records the time that shell script starts to execute a program pointed to by a link. The
next {ransition is taken when the same file is unlinked within 1 second. The final transition is taken if that
same file is relinked to a different location within | millisecond. This triggers the pattern -—— an attacker is
attemnpting to relink a setuid link to point at a file he/she wishes to gain access to.

The invariant in this pattern deletes any tokens that have been in the state machine for longer than 5
seconds. As the CLK event is not implemented, this invariant won't compile under the current version of
IDIOT.

32

Chapter 4

Users Guide

4.1 The C2_appl Application

Testing a pattern is a straightforward procedure. It involves compiling the pattern, linking the pattern into
a program that can process the pattern and running the pattern with an audit trail. In IDIOT the three steps
are performed using the same program: C2_appl.

The patterns can be stored in arbitrary directories. The example shown here assumes that the pattern is
stored in a directory called $IDIOT_HOME/C2_patterns. Note that the descriptions of these patterns
are normally not located in this directory.

To compile a pattern run the C2_appl application and type the command “parse <pattern
name>". The following figure is an example of compiling a pattern from the C2._appl application:

$ cd SIDIOT, _HCOHE
5 ./C2_appl
tinl> parse C2_pabtrternassetuid-writes-aetuid

tinl> parse C2_pattearna/astuid-wrirtes-eatuid

Inside »stot reduced eaxpr: prinkfi*,,.\n")

Pushing scace "atart_inv* into tha invariant
Pushing atate -final* into the Invariant

The ecates ln thls invariant are 2, whlch are:
atart_inv

final

Parsing invarkant ctransition exit
<goms gtates delsteds

Paraing transiticon modll

Ingide stmt reduced expr: ({({eve-»ERR{} ca Q) &&
unlfled_tok->assign_PID(eva->PIDII1} E&
unified_tok=>aasign_FILE|eve->0BJ{]}) &k
{(isexecieve->0BJ_MODS{}} == 11 ||
[isgidieva-»0RT_MODS()| == 17})

a3

faraing trangicion modl2

starkt -» axec
‘=

afEtar_exec =» modd, modd., ...
- exec

vlclacion -

cC -plec -G -g -0 setuldwrltessectuid.so aetuldwrltesaetuid.C
<potae warnings deleceds>

11 Warnlng{a) detecced.
Done compaling maruidwritescetuld.C
Inzade create pattern.

Ingtantinced new pactorn inascance for socuidwriceacecuid
tina>

After compilation of the pattern you should be able to see the C++ and relocatable files produced
in the $IDIOT.HOME directory. The files generated will have the name that was indicated in the
first line of the pattern description. For example, in the following pattern the name given to the pat-

tern is setuidwritessetuid and hence the resultant files will be setuidwritessetuid. C and
setuidwritessetuid. so.

pattern sstuldwritessstuid *setuid writes to a sstuld flle" prlericy 10
intc PID;

ocr FILE:

scr PROGIAME;

srate acart, after_exec, violation;

<portion of the pattern dealateds

trana modl2 (OFEH_RE)
<- after_exec.
=-> violation:
|_ { thia[ERR| = 0 &k PID = this[PID| &k PILE = this[OBJ] &&

[isexec{chls (CBI_MODS]) = 1 || issddithla[ORI_HODS]} = 1);)
end modl2;

end sctuidwriktesactuid;

After you have compiled the pattern you must link it to the C2_appl program by issuing the “*dlink
<pattern name>" command. Note that the pattern needs to be compiled only once and can be linked
many times in many different runs. In the following example the pattern compiled earlier in this section is
linked in a different session.

5 cd SIDIOT_HOME

S perd $ where nre we?

/homas /gollum/IDICT

5 . /CI_appl

tini> dlink shomea/gellum/IDIOT/setuldwrlcessoscuid.so
Innide craate pactarn.

tlol>

Running the pattern on an audit trail involves giving the “run <audit trail file>" command.
The following figure shows an example of running a pattern on a C2 audit trail.

5 cd SIDIOT _HOME

34

% pwd ¥ whars ars we?

fhomen/gollum/ IDIOT

$ la -1 /homes/gollum/trailc/writes-secuid.audlt_trail

-ru-rw--=-- 1 gollum 15496 Dec 2 16:14 traile/esguld-writes-geruld. audit_trail
$./C2_appl

tini> dlink fhosws/gollum/IDIOT/EatuidwritesEetuid,go

Inaide creace pactern.

tinix run /homec/gollum/trailefurices-sctuid.avdit_trail

S5h dlc: will the following command:

Eail -0 crailesoetuid-writes-setuld.audit_trail | prawdikc -r |
setuid program fhoms/gollum/wvulner/testl created/opened for wrika \
tho setuid or executnble file /.mordor/homs/gollumftescl.cl.
satuid program fhama/gollum/valner/teac? creaced/opened for wrika \
the setuid or executable file /.mordor/homs/gollumstect?.cl.
metuid program fhomesgollum/valner/rest? created/opened for write \
the satuid or executnble file /.mordor/homs/gollum/tectl.cl.
Showaudit: Mo of dropped eventa = 56

tlnl>

You can turn on debugging on the C2.server that C2_app] application runs by issuing the command
“server debug 1". The following figure illustrates tuming on debugging.

5 cd SIDIOT _MOME
§ pred 1 whare are wa?
fhamenfgollun/ IDIOT
5 15 -1 /homeasgollum/traila/wrires-sstuid, avdit_trail
-rw-rw---- 1 gollum 15456 Dec 2 L6:14 traila/aetuid-writes-matuid,audit_trail
5 ./C2_appl
cimi> dlink /homep/gollum/IDIOT/actuidwritessatuid.so
Inside create pattern,
tini> server debug 1
tini» run /homas/gollumferalls/writes-getuld. sudic_trail
sh dit: will o the following command:
teil <0 traile/oetvid-writeo-setuld.audit_trail | praudie -r |
FORK, TIME[817581176).RUID{B3I1}........ ORI _THO w O
CLOSE, TIHEIA17581177),RUID{GI3)........ QBRI_IND =
CLDSE, TIME|817581177),RUID(BII}........ CBI_INO = O

<debug information deleteds

satuid program /hame/gollun/vulnerfcestl ercated/opened for write \
the setuid or executable file /. mordor/home/gollum/testl.cl.

CLOSE, TIHE{817581179) RUID(EI]}.vnnvnnn CBJ_INO = 4113
CLOSE., TIME{B175B1179).RUIDI(E3IIY..vvvuunn CBJ_INC = 4113
EXIT, TIHE{B17581175),RUID{EII}.c.uunnaa. ERRIO],RET(0)
Ehowaudit: Ho of dropped events = 55

cini>

4.2 Writing IDIOT Patterns

This section will take a step-by-step approach to writing a pattern. Along the way, each element of a pattern
will be described. This will enable you to read an IDIOT pattern and understand what it is doing, and to
write your own patterns.

As an example, we will use the other_C2_patterns/lpr_copy_files pattem. We will explain
each part of the pattern as it is developed.

4.2.1 Basic structure of a pattern
A pattern consists of four key components:

1. A name for the pattern — 1pr_copy_files in our case. The name is found just after the pattern
keyword.

35

2. A post action which is executed when the pattern is matched.
3. An invariant which specifies when tokens are to be deleted.

4. A set of transitions between states, with associated guard expressions.

Of these, the post action and invariant are optional. A pattern without a post action doesn’t make much
sense as it won’t be able to report to the outside world. A pattern need not have an invariant if it does not
need to delete tokens.

The general structure for a pattern is as follows:

<external declarationss

pattern <pattern name> ["optional comment®] priority <priority valus>
<grakn declarations>
<coken color declarations>
[poat_actien { <post action code> }]

[neg invariant cinvariant name> /* opcional iovariang */
<invariant statn declaratlona>

trans <transltien camexr{<aventx|
<- =ztransition Ercm atata name>;
-» <cpangsltlon co scate nomes;
|- | <guard expressicn>;}
end <cransitlon names;
end <invariant names;)
F* accual pattern traneitions Etart hare */
trans <transition 1 name>{<event»|
<- <tranaicion £rom AtALe nams>;
=-> <cranalcion £Q gscake name>;
|- { <guard expraasionr;}
end <trangsition 1 nomex;
trann <tranaicion 2 name>|<ovent>)
<- <transition fram state nama>;
-» <tranoition to state names;
J— { <guard expreasian=:}
end cceanoition 2 nosmes;

end <pATCoITE THOUDE>;

There can be more than one invariant. Each invariant is given a unique name. An invariant is specified
like a real pattern — it can have multiple states.

The external declarations refer to functions that will be used to perform computations in the pattern.
They are covered in detail in Section 5.2,

The pattern name follows the pattern keyword. This must agree with the name at the end of the
pattern following the end keyword. This will be the name of the pattern C++ code generated when this
pattern is parsed. So in our case, lpr_copy-files will generate 1pr_copy-files.C which will be
compiled to 1pr_copy_files.so. Note, the pattern name and the name of the file containing the pattemn
do not have to agree. The pattern name is what is used.

4.2.2 State declarations
The state declarations section is where the states of the pattern are listed. This is similar to declaring a

variable — the state keyword specifies that the variable names following it are actually states in the
IDIOT pattern. For example,

36

atate atart, after_lpr_exes, after_lpzr_copy:

specifies three states — the start state, and two other named states. These names are used in the transition
section to specify what transitions connect what states. Note, the start state does not have to be explicitly
denoted as such — when the transitions are parsed, the start state is deduced.

States can be declared nodup. This means that tokens will not be duplicated when they move from that
state. Typically, a token which satisfies a guard will be duplicated into the state after the guard, leaving a

token behind. A nodup state means that the token moves into the new state, and no token remains in the
source state. The start state cannot be nodup’d. To declare a state nodup do:

nodup acate this_is_a_nodup_state;

4.2.3 Token color declarations

Tokens have bindings associated with them that can carry values along as the token moves through the
machine. For example, in our pattern, we might want to record the user id of the person who executed the
lpr command and the process id of the command itself. We declare two variables to store these values:
RULD and PID:

ine rRUTD, PID;

These variables can now be used in the guard expressions. Once assigned to, they will store a value that is
bound to that token as it moves through the state machine — consider them as “local variables” to a token.
Each token will have a unique pair of these variables as every execution of the 1pr command will have a
unique PID assigned to it.

How are these variables set and nsed? We will discuss this when we describe transitions.

4.2.4 The post action

‘The post action code is executed when the pattern is matched. It is usually used to inform the system
operator that a potential intrusion has occurred, or it could take active steps to halt the intrusion (such as
shutting down the system). The post action code is normal C code, and it can reference any of the local
variables declared in the pattern.

4.2.5 The invariant

Every time a pattern is evaluated, the invariant is also evaluated. This controls the deletion of tokens from
the machine. Why is this necessary? Consider our example pattern again. Every time the lpx program
is executed, a token will move from the start state to the after_lpr_exec state. But this invocation of
1pr may be completely innocent. Thus that token will remain in the after_lpr_exec state. Over time,
tokens will accumulate in the machine increasing processing time and causing memory overflow. Thus we
need a mechanism to delete tokens that are no longer necessary.

For every token that is placed in the start state of the main patter, a token is placed in the start state
of the invariant state machine. Events drive the tokens through both the main pattern and the invariant
pattern. If a token reaches the final state in the invariant state machine, the corresponding token, and af/ its

37

descendents, are deleted from the main pattern state machine. To do this, IDIOT maintains a link between
tokens in the main pattern machine and those in the invariant machine. This deletion happens automatically.

An invariant is specified using the same syntax as a normal pattern transition. In our example, there are

only two states to the invariant machine, with one transition between them. The following code shows the
Imvanant:

neg iovariant First_imv 7* negacthve invariant */
atata atarc_inv, final;

rrana axir [EXTIT]
<= atark_lonw;
-» final;
|- [FID = ehia[PID|;)

end oxic;
and firgt_ainv:

The transition is named exit and it leads from state start_inv to state £inal. These states are
declared prior to the transition specification. This transition is taken when an EXIT event occurs in the audit
trail — when a process has exited. The PID attribute is available in this event, and it gives the process id
of the exiting process. Our invariant guard states that any token whose PID color matches the PID attribute
from this event will be deleted. In simple terms, all tokens created by this process will have the same
PID value. When the same process exits, we will delete all these tokens using this invariant. The guard
expressioninthe | ... section will be explained in Section 4.2.7.

This is a very common invariant. A lot of patterns will delete tokens associated with a process once
that process exits. Another common invariant is deleting tokens that no longer can form part of an intrusion
atternpt. For example, in the other.C2_patterns/3-failed-logins pattern, the invariant deletes

any tokens that have been in the system for longer than 3 minutes. This pattern looks for 3 failed login
attempts within the space of 3 minutes, so keeping tokens around for any longer is pointless.

neg invariant imv
state steck_lnv, Cinal_imv;
trang clk[CL)
<- start_inv;
-» Elnal_inv;
|- (thia[TIME] - tima > 180;)

end Clk;
end inv;

The CLK event has not been implemented yet.

+.2.6 Ulnification - binding values to tokens

Before ¢ : :n discuss transitions and guards, the concept of unification must be discussed. IDIOT uses
uni“couor v lest guard expressions. An expression is unifiable if the value on the left hand side and that on
the . . : ur the = sign can be combined. The reader is refered to standard textbooks on this topic: [Set89]
for example. Simply put, an expression of the formx = y is unifiable if x and y both have the same value.
If one of x or v does not have a value bound to it, it assumes the value of the other variable. This allows
assignment to occur, without requiring unique assignment and equality operators.

4.2.7 Pattern transitions
After the invariant comes a list of the transitions. There is no special order to each transition, as IDIOT

computes the placement of the states based on the transition specifications. Each transition is contained
withinatrans ... end block.

38

A transition is associated with a particular audit event. In our example pattern, the two transitions are
associated with EXECVE and CREAT respectively. A transition will only be taken if its corresponding event
occurs, and its guard is satisfied.

A guard is a boolean expression that must be satisfied before a token can transit a guard. The boolean
expressions in IDIOT are expressed in a C-like syntax. They are evaluated left-to-right with short circuit
evaluation. This means that if a component of the guard causes the whole guard to evaluate to false,
evaluation halts. Most guards are specified in conjunctive normal form — a conjunction of clauses.
Conjunction is specified using the AND operator, which is && in C (and IDIOT).

The guard for the transition exec_lpr looks as follows:

-1
thin[ERR] = 0 &t PID = this[PID] k& PROG = thia(FROG] ak
RUID = this[RUID] &k
Istrmacch(® . *1lpe=. this[PROG]} = 1) && thim[EUID] = {O;
}

This guard is composed of six clauses each separated by a && operator. The full guard is only true if each
of the clauses are individually true. If any clause evaluates to false, the value of the conjunction of these
clauses is false, so evaluation halts and the gnard evaluates to false.

The first clause checks the ERR attribute of the event. This is a very common test, and can be seen
in just about every guard. If ERR is O the event occurred successfully, if it is 1 the event failed for some
reason. So if we had this[ERR] = 1 in the clause, we would be testing for failed EXECVE events. In
the clause, this refers to the attributes of the current event.

The second clause extracts the PID attribute from the audit record, and binds it to the current token.
This now becomes a local variable available to all other guards in other transitions. Effectively, we have
tagged this token with the process id of the process that caused the token to enter the state machine.

The third clause does the same but for the name of the program which is stored in the PROG attribute of
the EXECVE event. This is the full pathname of the executable associate with this event. Again, we bind
this to a token color (i.e. alocal variable to the token) called PROG.

Similiarly, the fourth clause extracts the real user id of the process that caused with audit event and binds
it to the token color RUID. This will be used later in the post action to identify which user attempted to copy
over a file. This is a common occurrence in patterns — some identification information is extracted from the
events and bound to a token color. This informnation is usually process id, user id or file name information.
This can be used to pinpoint who attempted an intrusion, and what they were using or trying to access.

These bindings are actually used in the second transition. The guard for the second transition looks as
follows:

- ¢
this[BPAR] = 0 &k thig[PID) = FID &k FILE = this[0BJ] &&
IlnTree (" " /var/apocl/®, thia(QBJ)) = d);
}

The == operator is not used in IDIOT. Instead, the = operator is used to unify the values on the left and
right of the operator.

Notice how the order of the terms around the = sign is reversed. We are now unifying in the opposite
direction. Each clause will evaluate to true if the value of the specified attribute from this audit event
matches the corresponding color for the token. IDIOT will match the PID attribute for this event with the
PID color for every token in the after_lpr.exec state. This color was bound in the first transition.

39

This enables us to tie audit records together that belong to the same process. If another process called
the creat () system call, there would be a CREAT event in the audit trail — but the PID field would not

match the token’s PID field. Only the process that first introduced the token into the state machine will
match the PID field.

We then bind the file name in the OBJ attribute of the event to the token color FILE. This is used in the
post action to identify which file is the target of the attack.

40

Chapter 5

Technical Details

5.1 How IDIOT works

As with most sizable projects, IDIOT consists of a fairly complex file structure. Determining how the
components of the program integrate and work together can be a challenging task. This section is presented
as an overview of the structure of IDIOT, discussing its major components and how they cooperate to form
an intrusion detection system.

IDIOT consists primarily of four components: the audit trail, showaudit . pl, the C2_Server, and the
pattern descriptions. Of these four, both the audit trail and showaudit .pl are machine dependent, while
the C2_Server and patterns are portable. A fifth component, C2.appl, provides an interactive user interface
to IDIOT; this is also portable.

5.1.1 Audit Trail

While technically quite separate from IDIOT, the audit trail is obviously an extremely important part of
this intrusion detection system. Without an audit trail, there would be no record of activities against which
patterns could be matched, and this system would be rather useless. Currently IDIOT has only been used
with Solaris 2.4 and the Sun BSM audit trail. However, the system design should work equally well with
virtually any other OS and audit trail. Difficulties arise from the fact that, while most operating systems
provide some manner of audit trail, they each have a different format. This leads to portability problems.
IDIOT deals with this problem by working with a canonical form of the audit trail, rather than the raw audit
trail itself.

5.1.2 showaudit.pl

showaudit .pl is IDIOT’s solution to handling different audit trail formats. The current showaudit .pl
is simply a PERL script that converts a Sun BSM audit trail into the canonical format necessary for IDIOT.
If IDIOT is moved onto a new platform, only showaudit.pl need be rewritten to accomodate the new
audit trail format. Similarly, if IDIOT were to be expanded on an existing system to examine more detailed

41

information from the audit trail, showaudit .pl would need to be extended to include the new information
in the canonical audit trail.

showaudit.pl accepts either raw binary input files or ASCII files generated using the praudit
command. It can be run from the C2_appl interpreter (discussed later) to parse audit files, or it can be run
manually to view an audit trail in canonical form. By utilizing command-line options, the audit trail can be
printed either with or without symbolic names for events.

As the inner workings of showaudit .pl are discussed in Section 5.3, we will not go into any more
detail here.

5.1.3 C2.Server

The C2_Server is the core of IDIOT. It is actually a C++ class, an instance of which is instantiated to
periorm the intrusion detection. An object of type C2_Server has several methods associated with it; the
most interesting of those are listed here:

int run praudit{char *audit_file) — primary method, described below
C2.Pattern *parse_file(char *patternfile) — parse an IDIOT pattern file

C2_Pattern *dllink file{char *file) — dynamically link a compiled pattern description
into the server object

As shown above, run_praudit (} simply takes the name of the audit file as input. run_praudit ()
calls showaudit .pl to transform the audit trail information into canonical form. Then it goes into a loop,
reading one audit event at a time from the transformed audit file. If run against a static audit trail, this loop
continues until it reaches end-of-file. Otherwise, run.praudit only exits upon encountering some kind
of failure.

For each event, run_praudit () steps through the list of patterns which are requesting events. For
each of these patterns, it executes the method PatProc (), passing the current event as a parameter.
PatProc () is a method for each pattern, and thus knows the curmrent state of matching for that pattemn.
It takes the current event and performs the operations that should result from the occurrence of that event.
These include operations such as token unification and transition firing.

5.1.4 Patterns

Finally, of course, the patterns play a major role in the workings of IDIOT. Patterns are written in a language
that describes a known method of attack as a set of states and transitions between them. As indicated above,
transitions are based on audit trail records, or events.

To be used by IDIOT, patterns must translated into C++, compiled inte shared objects, and linked
into the C2_Server object. This can all be done at startup time, or patterns may be added to the server
dynamically.

Figure 5.1 depicts the basic component structure of IDIOT.

42

At tradl

Figure 5.1: Structure of IDIOT

43

51.5 C2.appl

C2_appl provides an interactive interface into IDIOT. It allows the user to compile patterns, dynamically
link pattern objects and instantiate server objects, as well as several other related activities. Listed below
are some of the major commands available:

parse — parse a pattern file
dlink — dynamically link a compiled pattern into the server

server — perform operations on the server (set infile to binary or ascii, exercise patterns, change debug
level, or print the server queue)

debug — debug a pattern description
run — initiates run_praudit, described above

time — display time accumulated in C2_appl

3.2 Refering to external functions

Extemal utility functions are used to compute results that cannot be expressed in IDIOT pattern form. For
example, the pattern 1pd delete_files checks to see if a file is being deleted outside of a specific
directory tree. A function called inTree will check to see if a given filename is below a specified directory
point. It returns TRUE if this is so.

How can this be incorporated into an IDIOT pattem? The following example shows how:

extern int inTree(sctr, str);

pattarn 1pd_delece_files "lpd deletes flles noc usder spool Qir* priericy 7
atatn atart, after_lpd _sxac, afear_dalaktn;
atr PROG, FILE:

It
this[EAR] = & && thia[FID] = PID Lt FILE = thie{OBJ] &&
{lnTreo{*/uar/apocl, FILE] = 01;

The function inTree is declared external to the pattern. The declaration states that it takes two string
arguments, and returns an integer. When the function is used, we pass two string arguments: /usr/spool
and the token attribute FILE.

The extern keyword behaves similarly to C, but there are slight differences. The external declaration
is parsed by IDIOT to see if it matches an internal type. If we examine the actual declaration for inTree,
we see it takes two strings as arguments, which is declared inutilities.C as:

int inTree(char *dir, char *file);

However, this will cause an error in IDIOT. Insiead, the built in string type is used: str. IDIOT will
parse this and emit C++ code as follows:

extern int inTree(Str , Str);

This uses the inbuilt string class which is then translated into a RWCString.

The allowable parameter types for external declarations are as follows:

1. int Integer type — equivalent to C int.
2. bool Boolean type — equivalent to C int.

3. str String type — equivalent to C char *.

NOTE it is important that any extemnal C function be used to compute data that will not change over
time! For example, if an external function was written which computed the number of users on the systern,
an IDIOT pattern which was parsing an audit trail and called that function would probably get a different
result every time it was run.

This problem occurs because IDIOT patterns get alf their information about the system from the audit
trail. If an external function computes a value that changes over time (such as number of processes, average
system load, disk utilization) then the values being retumed by the external function are not what they would
have been at the time the audit trail was generated. Instead, they will reflect the system state when the
pattern is run, which may be completely different from the state when the audit file was generated.

For example, see the patten other C2_patterns/dont-follow-sym-links. This pattern
uses a function islink () to see whether a specified file is a symbolic link. However, the state of the file
systern may have changed between the time when the audit data was generated and the time the pattern is
run.

Inall the patterns provided with IDIOT, the utility functions perform computations that cannot be easily
done in a pattern specification. For example, a pattern can check to see if a file name exists in a specified
path component (this is a string match — it does not check the state of the file system). Or it can see if a file
permission mask has the execute bit set (a simple bit-wise computation).

5.3 Audit trail canonicalization

A problem faced by any intrusion detection system is portability — every vendor and system has its own
unique audit trail format. Indeed, this format often changes across OS families from the same vendor
(SunOS vs. Solaris, for example). A well designed intrusion detection system shouid be able to accomadate
multiple audit trail formats with little modification.

5.3.1 Therole of showaudit.pl

IDIOT achieves this platform independence by spliting the intrusion detection engine into two parts: a
front end tool that reads a system-dependent audit trail and generates a platform independent intermediate
form and a back end that performs the pattern matching. The showaudit .pl script is a PERL [WS92]
script that converts a Sun BSM audit trail [Sun] into a canonical audit format that IDIOT can handle. The
back end pattern matching engine will take this canonical form and run the patterns against it. If the IDIOT

45

system is ported to a new system with a different audit trail format, only the showaudit .pl seript has to
be rewritten. Similarly, if IDIOT is expanded on an existing system to monitor more detailed information
from the audit trail, the showaudit.pl script has to be extended to inciude this new information in the
canonical audit trail.

The showaudit .pl script can accept either raw binary input files or ASCII files generated using the
praudit command. Typically, showaudit isrun from the C2_appl interpreter to parse audit files when
running IDIOT patterns. However, it can also be run manually to view an audit file in canonical form. The
scrpt will mn the praudit script to preprocess the audit trail. If the —r option is given, the audit trail is
printed in raw format — no symbolic names for events are printed. The praudit command runs faster in
raw mode. By default, the script prints symbolic names for events.

. Asanexample, the output when the script is un with the audit trail forwrit ing-to-executable-files
is:

execve Tue Feb 20 18:53:24 1956 mcrosble merosbie meroshle meroable -2
a4 20085 Pailure: Ho auch £lle or directory ~1 + ARBAY(OxfdS564| O
exwcve Tue Feb 20 18:53:24 1956 ecroobie merosbie merosbie meroabie -2
0 20085 failure; Ho surh file or directory -1 + ARRAY([QxEd554) 0
execve Tue Feb 20 18:51:24 1956 mocroabie mcroabie meroabie meroskia -2
O 20085 succege 9 -~ ARRAY[Oxfd5341 133080

open - read meroable meroabie mercable meroabia -2 O 20085 success 4
= ARRAY{OxfdSd=) 151085

axit Tue Feb 10 1B:53:34 1596 ecroobie mcroobie meroobie mecroosbic -2 0
20085 succeas ©

fork Tum Feb 20 18:53:41 15396 roor xodt xeob roat -2 0 10116 success @

As can be seen, the script prints a symbolic name for events — for example, execve is the execve ()
system call used to overlay a process with an executable image. Parameters to the system call are displayed
after each event name. Identification information for the user calling the command is also printed. In this
case, the user id, effective user id, group id and effective group id is printed. This is described in more detail
in the Sun BSM audit trail documentation. In contrast, the raw output from showaudit.pl -r looks as
follows (for the same audit trail}:

23 024860414 727 727 727 127 - 0 20085 2 -1 -
f.ecror-2/pl9/X11IR6/6und-6005/exploit O

23 24860414 727 727 27 127 -2 0 20085 2 -1
/.ecror-2/pl?/hatiava-1.0al/exploit &

23 0823860414 727 727 727 V27 -2 Q 20085 0 Q0 -

/homa fecroebin/myIDIOT fandit_dara/exploit 193080

B0 G24060414 727 727 727 V2% -2 0 20085 D 4 -

fhoma /ncropbie/myIDIOT /audic_darasexecutable 727 0100711 133085
1 824860414 727 F2F 927 Y2F -2 0 20065 0 O «

2 EB24BE04E]1 ¢ 0 O 0 -5 0 10116 0 O =

The same information is encoded in the raw format as the ASCII format, but the symbolic names are
replaced by their corresponding integer codes from the audit trail. For example, the last line shows a user
and group id lineof 0 0 0 0 which corresponds to the root user and group id.

53.2 Operation of showaudit.pl
The script takes three command line arguments: -i controls what type of audit file format showaudit

expects. -i ascii processes ASCII audit trails and -1 binary processes binary audit trails. - £ makes
it follow the audit trail as it is generated.

46

The script starts by opening a pipe to a command to parse the raw, kemel generated audit file. This is
usually atail -£ of the output of praudit run on the command-line supplied audit filename. The audit
file is then parsed record by record by the showaudit script and each record is printed in canonical form
to stdout. When showaudit is used from within C2_appl, this output is redirected into the C2_Server
to drive the IDIOT pattemns.

An audit trail is composed of a series of records each of which is a sequence of tokens. Figure 5.2
shows a typical audit record layout. These tokens contain information such as the time the audit record was
generated, the event it represents and user IDs associated with the audit event. Before the actual event token
is decoded, the surrounding header and informational tokens must be decoded. showaudit processes
each type of token as described below, and then it generates output for the actual audit event in the audit
record.

Header Token

Arg Token

Data Token

Subject Token

Retumn Token

Figure 5.2: Layout of a typical audit record

“The script must handle binary and ASCII input formats so the $opt_x flag is checked while parsing
audit record tokens. If the flag is true, the numeric value associated with an event is tested, of not, an ASCII
string can be tested. For example, the file token gives the pathname to the next audit file. It’s numeric event
number is 17, and its ASCII string representation is “file”. The code to determine whether the current record
is a file record looks as follows:

LE [{%opt_x &k $_[0] == 17) || {!Sopr_rc && 5_(0] eq "fila*)) #file
trailer, (event 171 [
wy (Snexc_£ile_pat, Seat, dfiles, Snoxt_nudie_filla, Sdirmame};
LE{O_ < 4 || $_[31 17 7.=41595\d¢)Nh. %)
print "No of dropped events = Sdropped eventa®, “\n";
exit 0;
}

showaudit handles the following types of audit tokens:

File token — a file token indicates that the current audit trail has ended and it points to where the next
audit file can be found. showaudit will parse this token and extract the file name for the new audit
file and make three attempts to open the new audit file. If it cannot open it after 3 attemnpts, it gives up
and exits. Furthermore, a file token must mark the szart of a new audit file — if showaudit does
not find a file token, it complains that the audit file is invalid and gives up.

47

Header token — a header token marks the begining of an audit record. A cormesponding trailer token
marks the end of the audit record. The header token encodes the length of the audit record, the event
type the record encodes and a timestamp for when the audit record was generated. showaudit
extracts the type of the audit event and the timestamp from the header token. It then starts to parse
the remaining tokens in the audit record.

Path token — a path token contains access path information for an object (typically a file). The pathname
is encoded as a length field and an arbitrary length character string. showaudit stores the pathname
component. There can be multiple path tokens if a link is being followed.

Attribute token — an attribute token contains information from the file’s i-node entry. This includes the
user and group id of the file’s owner, the file system the file resides on, the inode for the file and the
device id for the file system device. showaudit extracts this information.

Argument token — an argument token contains system call argument information. showaudi t extracts
the argument values. Note, there can be multiple argument tokens — one for each argument to a
system call.

Subject token — a subject token describes a subject (i.e. a process). The fields of interest to showaudit
are the real and effective user and group id’s, the process id of the process that generated the audit
event, and an audit session id.

Socket token — this records information about a an Intemnet socket. showaudit extracts the type, local
port and address and remote port and address information from the token.

Return token — this stores the retum value of a system call and the returned error code for the system
call (the errno value in UNIX). showaudit extracts both these fields.

Text token — this contains an artibrary text string which is extracted.

Once the header and informational tokens have been processed, showaudit has enough information
to start generating a canonical form for the audit record. It calls the print_C2_record routine to print
out the audit record in canonical form. This routine does not handle every audit event — a variable
dropped_events records how many events were ignored from the audit trail. For each audit event type,
itcalls print.base C2._record to print the basic information about the audit record. This routine prints
the user and group id's, audit session id, process id and the return value and error number from the system
call. :

Then the print_-C2_record prints information about certain audit events. This uses the information
stored while parsing the tokens. For example, the code to print a chmod () event looks as follows:

C2_10:
print_bace_C2_racoxd();
fchmod has 3 args, path, inode & the newmods on the £ile, an Eype O%,, ..
Sarg(~path*] = [=«>"] if ! exisata Sarg[*path"}:
print * =, Sarg("pach)(0};
if (exists Sarg(=ocb3=)}
{ princ = =, Sarg(“obj*}{"inode"}:)
elan
{ princ * 0";]
print = *, Sarg{-arga"}[0]:
princ *in’; raturn;

48

The €210 is the branch of the case statement that handles this audit record type. The path and inode
information was stored earlier in the associative armay arg when the tokens were being parsed. These fields
are now accessed and printed out, separated by spaces.

5.4 Adding new audit events to IDIOT

IDIOT does not handle all audit events in the Sun BSM trail. It is possible to enhance IDIOT to extract
information about audit events and provide extra information to patterns. Before attempting to modify
IDIOT to add new events you should read all the documentation shipped with IDIOT and (for Solaris
machines) the Audit Record Description section of the BSM answerbook.

There are three components of the IDIOT system that must be modified to handle a new audit record. 1)
The showaudit .pl script must parse the audit tratl and extract the relevant information out of the audit
record tokens; 2) The C2_Server module must know how to interpret the data and generate the correct
class; 3) The C2_Server: :parse method defined in pat .y must add the event names to the parsing
symbol table.

To add a new event (or add attributes to an existing event) edit the showaudit .pl file and remove
the event you are going to add from the dropped events list (if it’s there) and add the event to the appropriate
group. Events are grouped together according to the information they print. All events print the base
record. Groups of events print additional information. The event number can be extracted from the
/etc/security/audit_event file. For example, the 1ink system call is event number 5. The entry
in the audit.event file for link is:

S:AUE_LINX-1linki2]:fc

Then edit the C2_events.h file and add the code for your event (or the attribute you added). As in
showaudit .pl, events are grouped into classes of similar events, A GENERIC event in this file is only
a class definition that encompasses many events. For example, the class “C2Event_GENERIC.EXEC”
represents all execute events that have the same format. The individual instances are defined by the lines:

typedef C2Event GENERIC_EXFEC CZ2Event_EXFC;
tynedaf C2Event_GENERIC_EXEC C2Event_EXECVE;

Similarly, the class “C2Event _GENERIC" represents all the audit events that share the same format
but are not a logical group (similar to execs). From the declaration:

typedef C2Event _GENERIC C2Event_CLOSE:
typedef CIEvent_GENERIC C2Event_ACCESS;
typedaf C2Evant_GENERIC C2Event _(HDIR;
typedaf CIEvent GENERIC C2Event _FORK;

typedof C2Event_GENERIC C2Event_LSTAT;
typedaf C2Event_GENERIC C2Event_STAT:

typedef CZEvent_GENERIC C2Event_UNLINK;
typadaf C2Event GENERYC C2Event_VFORK:

we gather that the events CLOSE, ACCESS, CHDIR, FORK, LSTAT, STAT, UNLINK, and VFORK
have been grouped together by the showaudit .pl.

Finally, edit the pat .y file and search for the C2_Sexver: :parse method. It should resembie:

49

int C2_Server::parae{char *pact|
(

atatic int pushed_sment_declxs o 0;

LE{ 'pushed_cvent_decla}

(
asrver_eviaocliType = C2_evHane2Type!
azApploame = "C2°;
aymtab pushlavell] ;

aymtab.pushinew aym_tab_entry(*ACCESS”, =1, symtyp_mvent, symattr_pnone, NULL)} !
aymtab.pushinew aym_tab_entry("CHMOD", -1, symtyp_evenk, symattr_none, NULL)} ;
/* Lota of linea delated..... =7

aymtob.pushi{new sym_tab_entry("SYHLINK®, -1, cymtyp evenk, Jymakttr, none, NULL1) ;
aymteb,.pughi{new aym cab_entxy("VFORK:, -1, symbtyp_eavent, aymatbr_nene, NULL))

pushed_event_decls = 1;

f* Some pore code cdeloted *f

Add another line to this routine to push the name of the event you are defining.

5.4.1 Events Supported in Shipped Version

The following tables have a list of the events that can be used in IDIOT patterns with the system as shipped.

Events: EXEC, EXECVE

Auributes: TIME (time.t), RUID (uid_t), EUID (uid_t), RGID (uid_t),
EGID (uid._t), AUID (uid_t), SID (uid_t}), PID (int),

ERR (int), RETVAL (int), PROG (const char *), PROGINODE (int),
OBJ.MODS (int)

Description: | TIME: Time the event took place

RUID: Real user ID

EUID:; Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

PROG: Name of program executed

PROGINODE: Program inode number

OBJI_MODS: Permissions of program executed

50

Events: LINK, SYMLINK

Autributes:

Description:

TIME (time_t), RUID (nid_t), EUID (uid.t), RGID (uid.1),
EGID (uid-t), AUID {uid_t}, SID {uid 1}, PID (int),
ERR (int), RETVAL (int), OLDPATH (const char *),
NEWPATH (const char ¥}

TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL.: Process return value

OLDPATH: Pathname of the object linking to
NEWPATH: Pathname of new object

Events: MKINOD

Attributes:

Description:

TIME (time_t), RUID (uid_t), EUID (uidt}, RGID (uid-t),
EGID (uid.t), AUID (uid_t}, SID (uid_t}, PID (int),

ERR (int), RETVAL (int), OBJ (const char *), DEV_MODE (int)
TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL.: Process return value

OBJ: Name of special file

DEV_MODE: Permissions of the special file

Events: LOGIN, 5U, EXIT

Altributes:

Description:

TIME (time_t), RUID (nid_t), EUID (uid.t), RGID (uid.t},
EGID (uid_t), AUID (uid_t}, SID {uid.t), PID (int),
ERR (int), RETVAL (int)

TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session 1D

PID: Process ID

ERR: Return status of system call

RETVAL.: Process return value

51

Events: OPEN_R, OPEN_RC, OPEN_RT, OPEN_RTC, OPEN_RW,
OPEN_RWC, OPEN_RWT, OPEN_RWTC, OPEN_W, OPEN_WC,
OPEN_WT, OPEN_WTC

Attributes:

Description:

TIME (time_t), RUID (uid_t), EUID (uid-t), RGID (uid.t),
EGID (uid_t), AUID (uid_t}, SID (uid_t), PID (int},

ERR {int), RETVAL (int), OBJ {const char *), OBJ_INODE (int),
OBJ_MOQODS (int), OBJ_.OWNER (int)

TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session [D

PID: Process ID

ERR: Retumn status of system call

RETVAL: Process return value

OBI: Name of file being opened

OBJ_INODE: Inode number of file opened

OBJ_MODS: Permissions on file opened

OBJ_OWNER: User ID of file owner

Events: ACCESS, CHDIR, CLOSE, FORK, LSTAT, STAT,
UNLINK, YFORK

Attributes:

Description:

TIME (time_t), RUID (uid_t), EUID (uidt), RGID (uid-t),
EGID (uid-t), AUID (uid_t), SID (uid.t), PID (int),

ERR (int), RETVAL (int), OBJ (const char *), OBJ_INODE (int)
TIME: Time the event took place

RUID: Real user [D

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBJ: Name of file being opened

OBI_INODE: Inode number of file opened

OBJ_MODS: Permissions on file opened

OBJ_OWNER: User ID of file owner

OBJ: Name of object

OBJ_INQCDE: Inode of object

52

Events: CREAT

Aftributes:

Description:

TIME (time.1), RUID (uid.t), EUID (uid_t), RGID (uid._t},
EGID (uid_t}, AUID (uid_t), SID (uid.t), PID {int),
ERR (int), RETVAL (int), OBJ (const char *}, OBJINOQDE (int),
OBJ_MODS (int)

TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUTID: User audit ID

SID: Session ID

PID: Process ID

ERR: Retum status of system call

RETVAL.: Process return value

OBJ: Name of file being opened

OBJINODE: Ingde number of file opened
OBJ_MODS: Permissions on file opened
OBJ.OWNER: User ID of file owner

OBJ: Name of file created

OBJ_INODE: Inode of file created

OBJ_MODS: Permissions of file created

Events: CHMOD

Altributes:

Description:

TIME (time.t), RUID (uid.t), EUID (uid_t), RGID (uid_t),
EGID (uid-t), AUID (uid.t), SID (uid_t), PID (int),

ERR (int), RETVAL (int), OBJ (const char *), OBJINCDE (int},
NEW_MODS (int)

TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Session ID

PID: Process ID

ERR: Return status of system call

RETVAL: Process return value

OBJ: Name of file being opened

OBJ_INODE: Inode number of file opened

OBJ_MODS: Permissions on file opened

OBJ_OWNER: User ID of file owner

OBJ: Name of file for which the permissions are being changed
OBJINQDE: Inode of file being changed

NEW _MODS: New permissions for file

53

Events: CHOWN

Attributes: TIME (time_t), RUID (uid_t), EUID (uid_t}, RGID (uid.t),
EGID (uidt), AUID {uid_t}, SID (uidt), PID (int),

ERR (int), RETVAL (int), OBJ (const char *), OBI_INODE (int),
OBI_NEWUID (int}, CBI_NEWGID (int)

Description: | TIME: Time the event took place

RUID: Real user ID

EUID: Effective user ID

RGID: Real group ID

EGID: Effective group ID

AUID: User audit ID

SID: Sessien ID

PID: Process ID

ERR: Return status of system call

RETVAL.: Process return value

OBJ: Name of file being opened

OBJ_INODE: Inode number of file opened

OBJ_MODS: Permissions on file opened

OBI_OWNER: User ID of file owner

OBJ: Name of file for which the ownership is being changed
OBJ_INODE: Inade of file being changed

OBINEWUID: New user id for file

OBINEWGID: New group id for file

5.5 A sample IDIOT program

jig.C was written as an example of how to run IDIOT non-interactively. It instantiates a C2_Server object,
sets the desired debug level, loads the specified pattemns, and attempts to match ali patterms against the
specified audit trail.

Following is the usage summary for jig.C:

Voagn: jig [epticna} «audiefller <patterniilex+in
Optiona:
-d n -- Sat debug level Eto n (dafaulee te O A f opraom net givent
-1 -- Link in precompiled patterns |patterna paraed by defaulk)
- Pattarn fllea on command line ghould be *. 80 versiona

As can be seen, the current defaults are to generate no debugging information and to parse all patiems.
For most cases, it would likely be preferable to have jig.C link precompiled patterns by default. This
would be a minor change within the code.

It should be noted that jig.C was written as an example program and assumes some degree of
experience on the part of the user. No error-checking is performed on the command-line arguments; they
are assumed to be accurate and complete.

5.6 Debugging

The original debugging options for IDIOT were quite simple: debugging was either on or off, and the
only debugging information that could be automatically generated came from the server. Pattern debugging

54

information had to be manually inserted into the pattern itself. We decided that more flexibility would be
helpful. There are now three levels of debugging:

Level | — Only generate server debugging information
Level 2 — Only generate paltern debugging information

Level 3 — Generate both pattern and server information

We also decided that the ability to separate the pattern debugging information from the server debugging
information would be quite useful. A PERL script, view_debug.pl, was developed for this purpose; it
is also described below.

5.6.1 Debugging the server

Debugging within the C2_Server is fairly basic. If the debug level is appropriately set, the server generates
information about each audit event it processes. This information includes the type of event, time of
occurrence, RUID, EUID, PID, return value, and various event-dependent information, such as program
name. This information is now only generated when the debug level is set at 1 or 3. Also, each line of
debug output has been prepended with a %S to distinguish it from pattern debugging information.

5.6.2 Debugging patterns

This section describes how to debug patterns written in the IDIOT pattern language. As the language is
especially tailored to specifying pattern transitions, it is difficult to use regular tools such as gdb to debug
patterns. To aid debugging, we have provided some rudimentary output routines. The main utility routine
we have provided is true_print (), which takes a string as a parameter, prints the string to STDOUT,
and returns TRUE.

As mentioned above, debugging information for pattemns originally had to be generated manually.
We decided that having some debugging information generated automatically could be useful, if it were
governed by the debug level. To achieve this goal, we modified pat .y to insert the following code into
every pattern as it is parsed and translated to C++-

int dbug:
extern int trua_print{sScr)

dbug = S-»debug: ¢/ executed within patkern conatructor

if (dbug > 1)
true _printl* <pALtern name> -- «<trangsition namer transiction fired '}:

We decided to only insert calls to true_print () at the completion of each transition to allow the user to
maintain a fine grain of control over debugging output.

If more debugging information is desired, there are a couple of options. Note that IDIOT uses short-
circuit evaluation of guards, so if any one of the conjunctive clauses is false, then evaluation of the whole
clause stops and the transition is not taken. Thus, if a true_print ()} call is placed within a clause, all
the preceding clauses must be true before the print will occur. true_print () itself returns TRUE, which
is the identity element for logical-and and has no effect on the evaluation.

55

Forexample, if we were interested only in the occurrance of an OPEN_W event (fromthe writing-to-executabl
pattern), whether or not it was successful, we could do:

trans modd (OPEN_W)
<= affor_exec;
-» violetion;
|- { true_pcinti*Hatched GPE_MW event...*l &k / ovent occurrecd */
this[ERR| = 0 Lk /* 1if thio oparacion cuccasdad *7
PID = thia[PID] &k /* and thix PID matches cthat of the exec */
FILE » thin(0BJ] && /* vemember thip Eilenama *f
Lgexecithip[0OBI_MOD5)); 7* if this [ile 1s executable */
end modd;

Note that this call to true_print ()} would always be executed, regardless of the debug level. If the
statement should be conditional upon the debug level, it could be inserted as follows:

Erana modf (OFPEH_W|
<= aftar_axec:
- violaclon;
=t ((dug > 11 ? cree_princ(“Hacched OPEN_W event...") : 1) k& /* event occurred *7
thls[ERR] = Q0 L& /* if thin cparaticn succeadad */
PID » thia(PID] L& /* and thiz PID matches thac of the exec */
FILE = thia[0BJ] &k /" remambwer thic filsnams */
isexec(this[OBI_MODS]}:
end mod8;

As with an ordinary call to true_print (), this would leave the value of the guard unchanged. In addition,
the debugging information would only be generated if the debug level was set appropriately (> 1).

One itemn to note is that each string passed to true_print () is prepended with %P before being
printed, distinguishing it from the server debugging information.

3.7 Interactive debugging

The C2.appl program can be used to run IDIOT interactively. This can sometimes be useful for debugging
purposes. The debug level is initialized to 0. To change the debug level, issue the following cornmand:

server debug <debug level:>
The specified debug level will cause the appropriate debugging information to be printed to STDOUT.

We mentioned above that each pattern’s dbug variable is initialized only once, within the pattern
constructor. Thus, the dbug variable retains the value of the server debug level at the time the pattern was
instantiaied. This allows the user to dictate which patterns generate debugging information.

For example, if you only wished to debug the executing-particular-pgms pattern while
matching several, you would do the following:

> .fC2_appl ffocart C2_appl, debug level sec co O
cini> dlink <patternl.sc»
tini> dlink <patternd.so>

F/link in N patcterns without debug info

elni> dlink <potterni.acs
eini> aarver debug 2

tini> dlink ex_prt_pgms.so
tini> run <audit erail>

All of the included patterns would be utilized, but only the executing-particular-pgus pattern
would generate debugging information.

56

5.8 Viewing debug information

As an aid in viewing and understanding debugging information, we developed view_debug.pl. This
PERL script separates pattern debugging information from server debugging information. Furthermore, it
allows both sets of output to be viewed simultaneously with the debugging statements synchronized.

To run it simply type . /view_debug.pl, followed by the command line you wish to have passed to
jig. view_debug.pl will execute . /jig with the specified command line and separate the debugging
output into the files pat_debug.out (pattern debug information) and C2_debug. out (server debug
information). (NOTE: view_debug.pl currently assumes it is in the same directory as jig.) The output
is separated according to the presence of the %P at the beginning of pattern debugging output and the %S
preceding server debugging output. For each line of output the following occurs:

— if preceded by %P, the line is numbered and written to pat.debug.out, minus the %P, and a blank line
(numbered identically) is written to C2_debug.out

~ if preceded by %S, the line is numbered and written to C2_debug.out, minus the %S, and a blank line
{numbered identically) is written to pat_debug.out

— all other lines are simply printed to STDOUT, without affecting the numbering

After view_debug.pl has finished, pat.debug. out and C2_debug. out may be viewed side by
side, allowing the user to see exactly what sequence of events is causing each transition to fire. The line
numbers allow easy synchronization while viewing the files.

NOTE: While view_debug.pl will not currently work with the C2.appl interface, this could be
changed with a fairly simple alteration of the PERL code.

57

Chapter 6

Limitations of C2 Audit Trails

6.1 Auditing socket calls on System V (Solaris)

In SunQCs, the abstraction of sockets is built into the kemel. Calls such as socket, connect and accept
must cross the system call boundary, and will generate audit records.

However, in System V, the communication abstraction is streams. A stream is a data flow path between
two endpoint entities. Streams are a generic abstraction for data flow —they are used to implement terminal
drivers, sockets and FIFOs in System V versions of UNIX. In particular, the abstraction of sockets is
provided by a library built on top of the kernel. Socket calls in this library execute a series of getmsg,
putmsg and ioctl calls to interface with System V streams. No audit data is generated that specifically
mentions that a socket call has occured. The audit data only shows the System V stream interface calls.

This makes it difficult to write patterns to detect such simple network based attacks as port-flooding and
port-walking. A port-flood is where an abnormally high number of connections are received on a single port.
The idea is to use up kemel socket resources and denying network access to any other users. A port-walk
is a series of connections to ports which attempts to find services running on ports which may be exploited.

Both of these attacks could be detected from an audit trail which contained records for connect and
accept events. To simulate this, a wrapper library for the socket library must be written. This wrapper

library will generate an audit record to be placed in the audit file, and will then call the original socket library
call.

An example below shows how this is done:

tinclude <sya/typea_h»
tinclude <syas/socket.h>
tloclude <bsm/libbam. h>

/* ths _connect roucina is tha ayatem call =/
extern int _conneet|int &, struct sockaddr *nams, int namelent;

#* wrlte our own Connect rooktine thac will gensrate an auvdie record =/
int connect(int a, atruct sockaddr *nams, int namelen)

struct asocket sock:

Int coken:

coken_t *m;

cokeén = au_copend); f* allocace an sudie token te wrate info to *7

/" generace a gocket token that records the informacicn =/

58

m = au_to_socketizock];:
f* write that smocket token to the audit erail */

returni_scckat (dozmain, type. protocol):

6.2 Auditing operations on symbolic links on System V (Solaris)

Many of the patterns devised at the COAST lab needed information about system calls that were operating
on symbolic links. The pattern that detects the exploitation of the xterm bug, for example, can detect
exploitations by seeing if the inode for the log file has changed between the creation and accessing of the
file.

Unfortunately, this pattern cannot be used as is with the Basic Security Module C2 logging provided by
Sun with Solaris 2.4. For this pattern to work, the audit trail would need to provide, at least, the following
information:

I. execve: ERROR, EUID, RUID, PID, and program name

2. creat: ERROR, PID, initial file name, final file name, and inode number
open: ERRCOR, PID, initial file name, final filenare, and inode number
close: ERROR, PID, inode, initial file name, and final file pame
chovn: ERROR, PID, inode, initial file name, and final file name

chmod: ERROR, PID, inode, initial file name, and final file name

N e W kW

access: ERROR, PID, inode, inittal file name, and final file name

8. stat: ERROCR, PID, inode, initial file name, and final file name

The only items that require explanation are the file names. If we have a symbolic link sym1 that points to
afile £i11 then acall to chined { "syml" ,mode) would require an audit trail record that would indicate
that the chmod system call was executed on the initial file name sym1 and the final file name £i11. The
inode should be the one corresponding to the final name.

The audit trail generated by the Basic Security Module provided with Solaris 2.4 violates the file names
requirement. To see why this is important, consider the following fragment of a setuid C program called
xtermbug:

/% Cxeate o log Elle called xtermbug.log *f
if| creat{ "xtarmbug.log".01 = -1 }
/* Tha permiwions of the creaced flle were sot to Ox00000. Change them
to something more reaconable */
1f{ chnod(*xterobug. lag®, S_TAWNU|S_IRWKG|5_IRWXO) =m -1 }
tprintf(otderr. "Could not change the permiasion of file
xrarmbug, login® | ;
]
) alme {
fprincEi{atderr. "Could not craate log Eile xtermbug.legin-};
]

59

and an attack script that will exploit the vulnerability described in this document is cailled xtermbug . exploit:

#libinfah

akmod xtermbug.log p

xterzbug &

aleep L

mv xtermbug.log junk

In - fhomes/kraul/bresk_me xtermbug.log
cak junk

cat /homesfkrsul fbreak_ma

This attack can not be detected by the pattern described in this document if using the Basic Security
Module logging in Solaris 2.4. The audit trail generated for this session, reformatted for clarity and brevity,
with the attacker called golfum, and the victim called kxrsul, is:

l emecvell) - path, fhomesgollum/xtermbug.exploit - EVID gollum - RUID
gollum

2 execvel?) - path, fusr/sbin/mknod - EUVID gollum - RUID gollum

1} mmed(2) - arqumenc,2,0xllb6,mode - argumenc,},dxl,dev

4 path., / .motdor fhome/gollum/xcerchag, log - EUID gallum - AUID
gollu
o

3 chowmi(2) - orqgument,2,0x34l,new file uid - argument, 3, Ox341,new file
gid

1 path, / .mordor/home fgol lun/aterebug . log - EUID gollum - RUID
gollu
m

7 execvel2} - path, /homes/kroul/bin/xterzbug - EUVID krsul - RUID gollum
8 emecvel|2} - path, fusc/bln/sileep - EUID gollum - RUID gollum

% execvell) - path, fusc/local/blnfomv - HEIDR goliuvm - RUID gollum

10 renmme(2} - path,/.morder/home/gollum/xterming, log

11 pach, / .mordoer fhome /gollum/junk - EUID gollun - RUID gollum
12 execve(2) - path, fusc/bin/ln - BUID geollum - AUID gollum

13 aymlink(2} - text, /homeaskraul/break_me - path, /.mordor/home/gollumsace
rmbug

.loyg

14 EDID gollum - BUID gollum

15 wexecve(2) - path, fusrsbin/ecet - EUVID gollum - RUID gollum

16 creat(2] - path,/.mordor/homafgollum/xtarmbug.log -

argqueentc, J,0x2, stropen:

flng

17 EUTID krpul - ROUTD gollum

18 chmod(2}) - arquoent,2,0x1ff, new filen mode - path, fhomesfkrsul/break_me
‘19 EUVID krsul - RUID gollum

20 execva{l) - path,fucr/binfcat - EJID gollum - RUID gollum

Notice that in [ine 20, the audit trail indicates that the chmod(2) system call was made to the file
/homes/krsul/breakme. While this is ultimately true, it does little to help detect the exploitation of the
vulnerability. The pattern design specifically looks for a chmod or chown to the same file name as the
creat but with different inode numbers. The audit trail should mentton that the original call was made to
file xtermbug. log.

6.3 Write events are not audited

Some patterns need to detect WRITE events. However, in the Solaris BSM audit trail the write events are
subsumed under the OPEN event. So the audit trail for a write looks as follows (output of praudit):
header,136,2,0pent2) - read,write,,Tue Feb 20 18:53:34 1526, ~ 8945005000 maec

path, /hooe/merosbie/myIDIOT/ audit_datasexecntabla

actribute, 10071)l,zcrosble, morosbin, 83406348, 133085, 0

subject. -2, meroghie.morosbio, moreshie, morosbie, 20085,0.0 0 0.4.0,0
TeLuIn, success, d

The audit trail was gathered with the £w audit mask flag. This gathers data about file writes. The open
call is recorded, but the write call is not. The above audit trail corresponds to the following code fragment:

60

iE{ |fd=ppen(®./executabla*, O_RDWRII < 07 (
perror(® open: "!;
exiti{l);

)

prinef{"Bxploit: writing to executablae,..\n");
LE{ write(fd, "abcdef=, 61 < 61 [

perrori® writm: ");

eeit{l);

}

Thus, we are forced to detect writes to executable files by detecting the opening of the file, and not the
actual write.

61

Chapter 7

Source Code

62

Bibliography

[ES96a] Todd Ellis and Eugene Spafford. Debugging idiot. Technical report, April 1996,
[ES96b] Todd Ellis and Eugene Spafford. Working with idiot. Technical report, April 1996,

[KS94] Sandeep Kumar and Eugene Spafford. An application of pattern matching in intrusion detection.
Technical report, Purdue University, 1994,

[KS95] Sandeep Kumar and Eugene Spafford. A taxonomy of common computer security vulnerabilities
based on their method of detection. Technical report, Purdue University, 1995.

[Kum95] Sandeep Kumar. Classification and Detection of Computer ;’ntrusions. PhD thesis, Purdue
University, August 1995,

[Set89] Ravi Sethi. Programming Languages, Concepts and Constructs. Addison-Wesley, 1989.
[Sun] Sun Microsystems. SunSHIELD Basic Security Module Guide.
[WS92] Larry Wall and Randal Schwartz. Programming PERL. O’Reilly and Associates, 1992.

63

	IDIOT - Users Guide
	Report Number:
	

	tmp.1307986960.pdf.7Y8Pz

