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Abstract

Motivation: The human body hosts more microbial organisms than human cells. Analysis of this microbial diversity
provides key insight into the role played by these microorganisms on human health. Metagenomics is the collective
DNA sequencing of coexisting microbial organisms in an environmental sample or a host. This has several applica-
tions in precision medicine, agriculture, environmental science and forensics. State-of-the-art predictive models for
phenotype predictions from metagenomic data rely on alignments, assembly, extensive pruning, taxonomic profil-
ing and reference sequence databases. These processes are time consuming and they do not consider novel micro-
bial sequences when aligned with the reference genome, limiting the potential of whole metagenomics. We formu-
late the problem of predicting human disease from whole-metagenomic data using Multiple Instance Learning
(MIL), a popular supervised learning paradigm. Our proposed alignment-free approach provides higher accuracy in
prediction by harnessing the capability of deep convolutional neural network (CNN) within a MIL framework and pro-
vides interpretability via neural attention mechanism.

Results: The MIL formulation combined with the hierarchical feature extraction capability of deep-CNN provides sig-
nificantly better predictive performance compared to popular existing approaches. The attention mechanism allows
for the identification of groups of sequences that are likely to be correlated to diseases providing the much-needed
interpretation. Our proposed approach does not rely on alignment, assembly and reference sequence databases;
making it fast and scalable for large-scale metagenomic data. We evaluate our method on well-known large-scale
metagenomic studies and show that our proposed approach outperforms comparative state-of-the-art methods for
disease prediction.

Availability and implementation: https://github.com/mrahma23/IDMIL.

Contact: mrahma23@gmu.edu

1 Introduction and background

The human body hosts one of the densest and diverse microbial
environments in the world. Trillions of microbial cells in the human
body are collectively referred to as the human microbiome
(Backhed, 2005; Turnbaugh et al., 2007). Metagenomics is the
sequencing of the collective DNA of microbial organisms coexisting
as communities in an environmental sample or a host (Hugenholtz
and Tyson, 2008). Metagenomics has enabled the investigation of
the human microbiome and provided key insights into the roles
played by microbes in a host. Typical Metagenome Wide
Association Study (MWAS) produces millions of DNA sequence
fragments from healthy and unhealthy cohorts. This genomic infor-
mation can be utilized to estimate microbial diversity and predict
diseases leading to the design of novel therapeutics and diagnostics
(Chiu et al., 2019). However, sequencing technologies do not deliver
the complete genome of an organism (millions in length), but a large
number of short contiguous subsequences called reads in random
order. Sequence reads from different microbes are mixed with a high
amount of repetitions (Hugenholtz and Tyson, 2008) resulting in

large datasets that range from gigabytes (GB) to terabytes (TB).
These factors impose serious challenges when developing machine
learning algorithms to predict disease from whole-metagenomic
data.

This article focuses on predicting clinical phenotypes, i.e. dis-
eases from whole-metagenomic data. Existing approaches for dis-
ease prediction utilize microbial profiling (McIntyre et al., 2017)
combined with conventional supervised learning methods for pre-
dictive analysis. Microbial profiling involves searching of the input
metagenomic sequences against the known microbial genome using
computationally expensive alignments. The current knowledge
about microbes is largely achieved in the unnatural conditions of
growing them in artificial media in pure culture without ecological
context (Quince et al., 2017). Moreover, it is estimated that less
than 2% of the bacteria can be cultured in the laboratory
(Handelsman, 2004; Wade, 2002). When microbial profiling is used
before disease prediction, the sequences that match with known mi-
crobial genome contribute to the feature creation process. The
sequences without sufficient match which may represent partial
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genome of potentially novel microbes, are ignored and do not par-
take in feature creation. A metagenomic sample with millions of se-
quence reads is represented with a single vector which is then used
to train classification models. The predictive models also include
errors and biases from prior alignments and microbial profiling
processes.

In our proposed approach, we aim to avoid the use of sequence
assembly and microbial profiling before classifying diseases from
metagenomic samples. To scale with millions of repetitive sequence
reads and achieve efficiency, we embed the DNA sequences in a
fixed-length vector representation and perform clustering on these
embeddings avoiding the computationally expensive alignment-
based clustering. For the prediction, we leverage the Multiple
Instance Learning (MIL) framework, where a single sample (known
as a bag) may include many data instances. MIL imposes two
restrictions on the generic classifiers: (i) the data will be represented
with the bag-instance relations and (ii) instances need to be labeled
along with the bags. Each of the instances in the bag has its features,
collectively representing the bag. As a result, the classifier is exposed
to more variations among the samples which help to classify accur-
ately. The second restriction allows for easy interpretations. These
utilities make MIL a good candidate for various predictive analyses
in metagenomics. We represent the metagenomic sample of a person
as a bag and the cluster prototypes within the sample as instances.
Besides bag-level classification, the MIL approach allows for infer-
ring which instances, i.e. groups of DNA sequences are likely to be
associated with the phenotypic labels.

Once formulated, the classification in MIL can be performed in
different ways, i.e. modification of the maximum margin formula-
tion of support vector machine (SVM), deep learning, etc. We utilize
deep learning to solve the MIL formulation because: (i) it extracts
relevant latent features from the earlier layers in a step-by-step man-
ner—a unique capability of deep learning compared to other ma-
chine learning approaches and (ii) deep-learning approaches are
highly nonlinear making them suitable for learning complex rela-
tions among the latent features. Specifically, we use a novel
attention-based deep convolutional neural network (CNN). Deep
CNN models (Krizhevsky et al., 2012; Simonyan and Zisserman,
2004) extract latent features from input in a step-by-step manner
using multiple layers of convolution operations. The neural atten-
tion (Vaswani et al., 2017) learns which features to focus on as part
of the deep-learning model. We use the positional attention values
to infer which groups of sequences in the unhealthy cohort may cor-
relate to a disease. We refer to our approach as Interpretable Deep
Multiple Instance Learning (IDMIL). We apply IDMIL on five
large-scale metagenomic datasets. We show that IDMIL outper-
forms existing state-of-the-art approaches in predictive perform-
ance. Via qualitative case studies, we show the interpretation
capability provided by IDMIL.

1.1 Metagenomics and disease prediction
Qin et al. (2012) performed statistical analysis on microbial diver-
sity among the samples from type-2 diabetes (T2D) patients and
healthy controls for marker identification. Saulnier et al. (2011)
identified significant differences between the gut microbiomes of
healthy people and people who suffer from irritable bowel syn-
drome. Other studies discovered the correlations among colorectal
cancer (Zeller et al., 2014), inflammatory bowel disease (IBD) (Qin
et al., 2010) and obesity (Le Chatelier et al., 2013); and the varia-
tions in microbial abundance. These approaches require extensive
preprocessing of samples and microbial profiling.

MetAML (Pasolli et al., 2016) uses machine-learning methods
for disease classification. It first identifies marker genes and species-
level abundance using the MetaPhlAn2 (Truong et al., 2015)
method. MetaPhlAn2 (Truong et al., 2015) is used for the quantita-
tive taxonomic profiling of the microbial communities in metage-
nomic samples. MetAML uses these features to train a random
forest or SVM classifier to predict clinical phenotypes. Rahman
et al. (2017) used clustering to identify cluster centroids and then
used the minimum distance from a sample to the centroids as fea-
tures for classifiers.

1.2 Deep learning and metagenomics
Deep learning has achieved unprecedented success in wide-ranging
domains (Gu et al., 2018). Deep learning has been used in metage-
nomic studies for different prediction tasks. Fioravanti et al. (2018)
proposed Ph-CNN which takes as input the operational taxonomic
unit (OTU) abundance distribution and the OTU distance matrix,
and outputs the class of each sample using deep CNN. DeepARG
(Arango-Argoty et al., 2018) uses a deep neural network on the dis-
similarity matrix created using all known categories of antibiotic re-
sistance genes to predict their presence in metagenomic samples.
RegMIL (Rahman and Rangwala, 2018) uses Canopy-based se-
quence clustering (Rahman et al., 2017) to score the reads based on
the cluster memberships. It then uses a deep neural network-based
regression to score sequences in test samples and classify samples
based on sequence score distributions.

Dna2vec (Ng, 2017) uses similar technique as word-embedding
(Le and Mikolov, 2014) in natural language processing to embed
DNA sequences. This approach uses random lengths for DNA sub-
sequences (kmers) which increases entropy and directly affects the
reproducibility of the sequence representations. PLG–ABD (Nguyen
et al., 2017) uses MetaPhlAn2 (Truong et al., 2015) method to esti-
mate microbial abundance and then sorts species-level abundances
based on biological taxonomy to represent the metagenomic sam-
ples as images. It then uses deep CNN to classify healthy and patient
samples. It suffers from the same limitations as MetAML that dis-
cards a large number of DNA sequences during the profiling pro-
cess. Moreover, the possibility of interpretation is lost in the latent
space after convolution.

1.3 Multiple Instance Learning
In the original formation of MIL (Dietterich et al., 1997), a bag is
classified as positive if one or more instances within it are positive,
whereas a negative bag contains only negative instances. Different
formulations of the MIL problem have been developed over the
years (Amores, 2013). MISVM (Andrews et al., 2003) and sbMIL
(Bunescu and Mooney, 2007) are two of the popular MIL algo-
rithms which follow the standard assumption. These methods use
local information-based comparisons between individual instances
and treat bag labels as aggregations of instance labels. Kotzias et al.
(2015) proposed a MIL formulation titled group-instance cost func-
tion (GICF) where negative bags contain some positive instances
and developed a general cost function for determining individual in-
stance labels from group labels. In contrast with the standard as-
sumption, this is referred to as the collective assumption.

Neural attention has been used to create bag-level representation
from instances (Ilse, 2018) and then classify the bags. This approach
uses a deep CNN for latent feature extraction and applies neural at-
tention to the fully connected layer when all latent features are al-
ready extracted. As a result, mapping with the original feature space
is lost, and the attention values are not interpretable, especially for
nonimage input data, i.e. DNA sequences. We refer to this approach
as attention-based deep MIL (AttMIL) and use it as one of the state-
of-the-art models for comparative analysis. LaPierre et al. (2016)
proposed a phenotype prediction from metagenomic data that uti-
lizes instance space. This approach used the distances in instance
space to represent bags which were then classified by the SVM
classifier.

2 Problem formulation

Given a metagenomic sample of a person consisting of sequence
reads, our objective is to classify the person as either healthy or un-
healthy. We represent groups of similar DNA sequences in a metage-
nomic sample as instances and use the instances to represent a
sample as a bag in MIL. Formally, the jth sample is represented as a
bag Bj with a set of c instances Ij ¼ fr1; r2; . . . ; rcg. Here, an instance
ri 2 Ij represents a cluster of similar DNA sequences in the sample j.
We associate with each bag Bj with a class label Yj 2 f0; 1g to indi-
cate if the jth person is healthy (Yj ¼ 0) or unhealthy (Yj ¼ 1). For a
total of m samples, the problem of predicting disease from
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metagenomic data now can be formulated as learning a function
f ðB1:mÞ ! Y1:m where B1:m ¼ fB1;B2; . . . ;Bmg are the collections of
bags representing the samples taken from the healthy and unhealthy
cohorts and Y1:m ¼ fY1;Y2; . . . ;Ymg are the bag labels such that a
bag Bi has the label Yi. We also want to learn the contributions of
the DNA sequences to the disease state within a bag.

3 Materials and methods

Figure 1 shows an overview of our proposed IDMIL. We first embed
the DNA subsequences (kmers) into a fixed dimension and then use
power-mean statistics to represent a sequence as a vector from its
corresponding kmers. These sequence representations are clustered
to create instances. We then represent the metagenomic samples as
bags composed of these instances and classify the bags.

3.1 DNA subsequence (kmer) embedding
We first embed the k-length contiguous DNA subsequences (known
as kmer) in a fixed-length vector space. For this purpose, we use an
approach similar to continuous bag-of-word-based representation
(Mikolov et al., 2013). For a read S with a sequence of t kmers,
S ¼ ðkmer1; kmer2; . . . ;kmertÞ, we define Prefi ¼
fkmeri�a;kmeri�aþ1; . . . ;kmeri�1g as the set of kmers immediately
preceding kmeri in S and Sufi ¼ fkmeriþ1;kmeriþ2; . . . ; kmeriþag as
the set of kmers immediately following kmeri in S where a �
Uniformð8k;16kÞ is a randomly chosen context window such that
jPrefij � a and jSufij � a. We define Qi ¼ fPrefi [ Sufig as the con-
text set of kmeri w.r.t. Skmers such that jQij � 2a. We learn a d-di-
mensional embedding vector for each kmeri by maximizing its
probability of appearing in a DNA sequence given its context.
Hence, the probability of kmeri given its context set Qi:

PðkmerijQiÞ ¼
exp ðU>i ViÞP4k

j¼1

exp ðU>j VjÞ
(1)

where Ui 2 Rd and Vi 2 Rd are the output vector and the context-
based input vector of kmeri, respectively. Vi is computed as the aver-
age of all the input embedding vectors of kmers in the context set Qi.
We use a shallow two-layer neural network to train the kmer embed-
dings that maximize the probability of kmers given the suffix and pre-
fix. The error in kmer predictions from their context is used to update
the network parameters via a backpropagation algorithm using the
Adaptive Moment Estimation (Adam) optimizer (Ba et al., 2016).
This context-based kmer embedding helps to reduce noise inherent in
the metagenomic data. Two kmers with similar suffix and prefix will
be closer to each other in the embedding space. Subtle noise within
similar kmers with similar suffix and prefix will not affect the kmer
embeddings drastically. Inspired by the natural language processing,
we perform term frequency–inverse document frequency (TF–IDF)
(Rajaraman and Ullman, 2011) based kmer pruning before starting
the kmer embedding process for better efficiency. The TF–IDF score
of kmeri for any sequence Sj is represented as:

Ti;j ¼ fi;j � log
D

dfi

� �
(2)

where Ti;j is the score of kmeri in a sequence Sj, fi;j is the frequency
of kmeri in sequence Sj, D is the total number of sequences in the

sample and dfi is the total number of sequences in the sample con-
taining kmeri. Based on this score, we take the top 70% of the kmers
from each sequence and prune the rest. The set of the remaining
kmers from all DNA sequences creates our kmer vocabulary. The
TF-term ðfi;jÞ ensures that infrequent kmers which are likely to be in-
herent noise, receive low scores. The IDF-term ðlogðD=dfiÞÞ ensures
highly frequent kmers appearing in most of the sequences, receive
low scores. Such kmers are also likely to be system-generated noise
and do not provide any discriminatory information. This way TF–
IDF effectively reduces the total number of kmers and noise. We
also utilize binary tree-based hierarchical softmax with Huffman
encoding to estimate the final softmax (Eq. 1) (Mikolov et al.,
2013). This reduces the complexity of softmax computations from
O(N) to O(logN) where N is the size of the pruned kmer
vocabulary.

3.2 DNA sequence representation
We use the kmer embeddings (Section 3.1) to represent the raw se-
quence reads in the whole-metagenomic sample. In natural lan-
guage processing, sentences and documents are often embedded in
fixed-dimensional vector space using Sentence2vec and Doc2vec,
respectively (Le and Mikolov, 2014). If we consider each DNA se-
quence as a sentence and kmers as words then Sentence2vec
requires learning the weights for millions of DNA sequence making
the process computationally infeasible. We can consider the meta-
genomic samples as documents and embed the whole sample using
the kmer embeddings with an approach similar to doc2vec (Le and
Mikolov, 2014). But this approach will not help to interpret the
predictions. State-of-the-art encoder–decoder-based sentence
embedding approaches, for example recurrent neural network
(Mikolov et al., 2010), gated recurrent unit (Chung et al., 2014)
and long–short-term memory networks (Palangi et al., 2016) are
capable of encoding sequence ordering. But they operate on a few
hundreds of time-steps and suitable for text data with only a few
thousands of sentences, unlike the whole-metagenomic data with
millions of sequences per sample.

We use an approach similar to concatenated power-mean of
word-embeddings (Ruckle et al., 2018) to represent sequence reads
using kmer embeddings. Power-mean does not require learning add-
itional weights, making it a suitable choice for whole-metagenomic
data. The power-mean (Hardy et al., 1952) is a generalization of the
averaging. For a sequence S with total t kmers, S ¼
ðkmer1; kmer2; . . . ;kmertÞ where kmer1; kmer2; . . . ;kmert are
embedded using d-dimensional vectors w1;w2; . . . ;wt, respectively
(Section 3.1); the element-wise power-mean is defined as:

8i ¼ 1; 2; . . . ; d :
wp

1i
þwp

2i
þ � � � þwp

ti

t

 !1
p

; p 2 R [ 61f g (3)

Different values of power-mean (p) provide interesting statistics,
for example minimum (p¼�1), harmonic mean (p¼�1), geometric
mean (p¼0), arithmetic mean (p¼1), maximum (p¼þ1) and
others. We make a matrix MS ¼ ½w1;w2; . . . ;wt� from all the kmer
embeddings in a sequence S with t kmers where each wj 2 Rd and
MS 2 Rt�d. Let NpðMSÞ 2 Rd be the vector whose d components
are the element-wise power-means of w1;w2; . . . ;wt and p is the
power-mean value. To get a summary statistics from the kmer
embeddings, we calculate total n power-means and represent S as a
vector:

Sequence Reads

Kmer 
Extrac�on Kmers

Embedding
Kmer 
vector Power

mean 

Sequence 
vectors Clustering Distance 

based 
ordering 

Deep CNN 
Model 

Mul�ple Instance Learning (MIL) formula�on

Instance 
vectors

Bag 
Matrix

Predic�ons

Sub-sequence and sequence representa�onsInput sequence data

Bag labels and 
Interpreta�ons

Fig. 1. Overview of our proposed IDMIL. We first embed the kmers in a fixed dimension. The kmer embeddings are used to represent the sequence reads. Clustering is per-

formed to create instances of MIL which form the bags in MIL, as healthy or unhealthy
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RS ¼ Np1
ðMSÞ�Np2

ðMSÞ� . . . �Npn
ðMSÞ (4)

where � stands for concatenation and p1;p2; . . . ;pn are total n dif-
ferent power-mean values. Concatenation is effective here because it
produces a more precise summary and reduces the uncertainty of
representations compared to averaging the kmer embeddings which
may result in similar representations of different DNA sequences
due to their similarities in averages. Among the choices of power-
mean values minimum, maximum and positive odd numbers are
found to be effective in text processing (Ruckle et al., 2018). The
minimum and maximum considers the range of kmer embedding
values. The rationale for positive numbers is that, negative power-
mean are discontinuous and undefined when input is zero. Odd
power-mean values are preferable because they preserve the input
sign. A higher positive value of p tends to þ1 and can significantly
increase the data dimension. Hence, we have used all p ¼ 61;1; 3
and concatenate them for sequence representations.

3.3 Instance representation
After representing the DNA sequences with a fixed dimension, we
perform clustering with the Mini-batch KMeans algorithm (Sculley,
2010) within each metagenomic sample. Metagenomics produces re-
petitive DNA sequence fragments from different parts of the micro-
bial whole-genome. By clustering the embedded sequences and using
the cluster prototypes, we remove redundancies. The Mini-batch
KMeans is a variant of the KMeans algorithm which uses mini-
batches to reduce the computation time, while still attempting to
optimize the same objective function of KMeans. Say the jth metage-
nomic sample is represented by a set of sequence representations Bj

(Section 3.2). The objective function of the Mini-batch KMeans:

min
X
x2Bj

jjf ðIj;xÞ � xjj2 (5)

where, Ij ¼ fr1; r2; . . . ; rcg is a set of c cluster centers in the jth sam-
ple, each x 2 Bj is a sequence representation (Section 3.2) in the jth
sample and f ðIj;xÞ returns the nearest cluster center of x using
Euclidean distance. Each mini-batch updates the clusters using a
convex combination of the values of the cluster centers and the data
by applying a learning rate that decreases with the number of itera-
tions. As a result, Mini-batch KMeans converges faster than naive
KMeans and does not suffer increased computational cost for large-
scale metagenomic data. The resultant cluster representatives be-
come the instances in our proposed MIL approach.

3.4 Bag representation
We order the instances in a bag based on their Euclidean distances
from a reference data point. We define the reference data point href

as the average of all the cluster centers (instances) in the training set.
Instances in a bag are sorted in ascending order based on their corre-
sponding distances from href. For the jth sample with total c ordered
instances Ij ¼ ðr1; . . . ; rcÞ, this implies:

8i ¼ 1; . . . ; c� 1 : ri � riþ1 ) distðri;hrefÞ � distðriþ1; hrefÞ (6)

where distð:Þ returns the Euclidean distance between two vectors.
Finally, we represent the jth bag with ordered instances as a matrix
Bj 2 Rc�d0 where d0 is the instance dimension (Section 3.3). Here,
d0 ¼ d:n for kmer-embedding size of d and total n power-mean val-
ues. The ordering serves two purposes: (i) it combines similar instan-
ces within a locality which is required by the CNN during the
prediction phase and (ii) the positional information of instances can
be used for interpreting prediction results via the attention
mechanism.

3.5 Classification model
Figure 2 shows an overview of our proposed prediction model. We
use a deep CNN on the bag representation. Our motivation for
using a deep CNN model: (i) CNNs are extremely effective in
extracting the latent features hierarchically from the input, (ii) they
learn complex, nonlinear relationship among these latent features

which can be leveraged for a complex classification task such as
ours where we differentiate samples at molecular level, (iii) CNNs
provide an advantage over feed-forward networks by considering lo-
cality of features, i.e. our proposed instance ordering within the
bags and (iv) a carefully designed CNN model can provide interpret-
ation of the predictions in addition to the high accuracy. Our model
is similar to AlexNet (Krizhevsky et al., 2012), a popular deep
CNN-based model while keeping the number of layers and learning
weights minimal to make the model scalable for whole-
metagenomic data and avoid overfitting. We use multiple hidden
layers with rectified linear unit (ReLU) as the nonlinear activation
function. We use the negative log-likelihood (NLL) as the loss func-
tion for our binary classification tasks (healthy versus unhealthy):

L ¼ �Yj log ðPðYjÞÞ � ð1� YjÞðlog ð1� PðYjÞÞÞ (7)

where Yj 2 f0; 1g is the true class label of any bag Bj and PðYjÞ is
the model’s predicted probability of the class being Yj. Because we
use the NLL-loss, the last layer is equipped with the log-softmax ac-
tivation function which produces the log probability vector
(Goodfellow et al., 2016). We adopt the dropout regularization at
hidden layers (Srivastava, 2014) which helps the model to avoid
overfitting by ignoring randomly selected hidden units during the
training. The objective of the classification model is to minimize the
loss. The error in prediction is used to update the network parame-
ters via a backpropagation algorithm using the Adaptive Moment
Estimation (Adam) optimizer (Ba et al., 2016). We start our model
with only one hidden layer. The number of hidden layers is then
increased by one until the increment does not result in achieving a
higher area under curve of the receiver operating characteristic
(AUC-ROC) value on a validation set.

3.6 Attention mechanism
Attention in deep learning involves learning a vector of importance-
weights of elements in the data, i.e. group of pixels in an image,
word or sentence in a text corpus (Vaswani et al., 2017). In the at-
tention mechanism, we estimate how strongly an element is corre-
lated with (attends to) other elements for the classification.
Attentions weights are usually learned as part of the deep-learning
model of the actual classification task. The same back-propagation
algorithm that trains the classification model also trains the atten-
tion values. Softmax is used for the final calculation of the attention
weights. As a result, these weights are within the range ½0� 1� and
sum to 1. The attention values reduce noise by dampening or high-
lighting data instances such that it reduces classification errors. It
also helps to interpret the prediction results. We start with the bag
representation of dimension c� d0 where c is the number of instan-
ces and d0 is the instance dimension. Here, d0 ¼ d:n for d-dimension-
al kmer embedding and n power-mean values. We apply attention
a1; a2; . . . ; ac to instance positions as follows:

8j ¼ 1; . . . ; c : aj ¼
exp fW>ðtanhðVr>j ÞÞ 	 rðUr>j ÞgPc

i¼1

exp fW>ðtanhðVr>i ÞÞ 	 rðUr>i Þg
(8)

where aj 2 R is the attention value for the jth row of a bag, rj 2
R1�d0 is the jth instance of a bag, W 2 Rl�1; V 2 Rl�d0 and U 2
Rl�d0 are the learning weights of the hidden layers for the attention
vector with l units, tan hð:Þ is the element-wise hyperbolic tangent
function, rð:Þ is the element-wise sigmoid function and 	 is the
element-wise multiplication. For attention calculations, we use the
tangent hyperbolic nonlinearity which includes both negative and
positive values and ensures proper gradient flow. However, tanh(x)
becomes linear for x 2 ½�1; 1� limiting the effectiveness the deep
learning model. To solve this issue, we use the gating mechanism
(Dauphin et al., 2017) which combines hyperbolic tangent and sig-
moid nonlinearity for effective gradient propagations. This way we
achieve an attention values for each of the c rows (instances) of the
bag matrix.

We label the disease and healthy states with class labels 1 and 0,
respectively. Higher attention value for an instance position infers

i42 M.A.Rahman and H.Rangwala

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_1/i39/5870478 by U

.S. D
epartm

ent of Justice user on 17 August 2022



that the instances at that position in the unhealthy samples can be
associated with the disease. This allows us to map the original
sequences to the clusters representing these highly attended instan-
ces. This way we can interpret the result of the prediction by infer-
ring association between groups of similar sequences and a disease.
Alignments and microbial profiling can be performed only on these
selected sets of sequences reducing much of the computational over-
head. Applying attention to hidden layers will not help to interpret
because mapping between the latent features and the original feature
space is not straightforward (blackbox), especially for nonimage
data where hidden layers are unlikely to be human-understandable
when visualized. We first multiply the bags with positional attention
values before proceeding with the rest of the proposed model.

3.7 Convolutional neural network configuration
Color image data are represented in a CNN model using 3D tensors
with shape w� h� c where w, h and c represent the width, height
and the color channels (one for gray-scale and three for color), re-
spectively. Following this notation, we reshape a bag Bi 2 Rc�d0

into a 3D tensor B0i 2 R1�c�d0 where d0, the instance-dimension
becomes the number of channels. The convolution operation
involves calculating weighted averages of the locales in the matrix
by sliding a convolutional kernel over the matrix. The weights are
learned by the neural network using the back-propagation algo-
rithm. When applying convolution on multichannel data, each con-
volutional filter is composed of the same number of kernels as the
number of input channels. Each kernel performs convolution on
their respective channels. These channel-wise convolution outputs
are then combined by an element-wise addition. After adding a bias
term, the filter outputs a single channel from all the input channels.

We apply one-dimensional convolutions with filters of size 9. In
IDMIL, the instances within a bag are ordered based on their corre-
sponding distances from a reference point which is the average of all
instances in the training set (Section 3.4). The effectiveness of this
ordering is subjected to the choice of reference point. When we
apply a one-dimensional convolutional filter of size 9, the convolu-
tion will take total nine instances for each of the weighted average
calculations. The filters will see a similar set of instances when slid
on the tensor which reduces the effect of variations in the instance
ordering. We start with only 24 convolutional filters per hidden
layer and increase this number as a power of two until the increase
does not provide higher AUC-ROC values on a validation set. We
apply a one-dimensional average pooling of size and stride of two
for sampling the learned features. The last two layers apply

convolution with smaller filter sizes (5 and 3) which allows the
model to focus more within the smaller locality of more relevant fea-
tures than earlier layers. Finally, fully connected layers perform the
predictions upon collapsing the hidden units.

3.8 Data augmentation
Data augmentations are used to introduce variations to the predic-
tion model which helps the model to avoid overfitting and general-
ize. In image classification, data augmentations involve duplicating
the images with a combination of affine transformations. Additional
neural networks have been utilized to learn the augmentation pro-
cess (Perez and Wang, 2017) which involves learning more weights
and additional computations. Most of the MWASs contain a few
hundred samples each with millions of DNA sequences. In our pro-
posed approach, we utilize data augmentation without introducing
any additional learning weights to make the prediction model gener-
alized. Once the bag is formed with ordered instances, we randomly
shuffle the positions of the instances within a small window of size
z � Uniformð1;10Þ. This introduces perturbation within a small lo-
cality of the bag when z>1. The label of this new bag remains the
same as the original one.

4 Experimental setup

4.1 Datasets
Table 1 shows the key statistics regarding the metagenomic datasets
used in this article with the number of unhealthy and healthy sam-
ples and the average number of DNA sequences (in millions) in each
sample. These datasets are the metagenomic studies of liver cirrhosis
(Qin et al., 2014), colorectal cancer (Zeller et al., 2014), IBD (Qin
et al., 2010), obesity (Le Chatelier et al., 2013) and T2D (Qin et al.,
2012). The minimum number of average DNA sequences in a sam-
ple is 40.2 million in the T2D dataset. This shows how large these
datasets can be. We removed class imbalances by combining random
oversampling and our proposed data augmentations (Section 3.8)
within the training set of each 10-fold cross-validation experiment.

4.2 Data preprocessing
We preprocessed the FASTQ files using fastp (https://github.com/
OpenGene/fastp) an efficient, opensource FASTQ processing tool.
The adapter sequences are removed using the fastp tool. Quality
scores are checked from both 50 to 30 and 30 to 50 ends. fastp then
checks how many of the total bases from both ends have a quality

c =214 =
16384

(Ordered
Instances)

d = 4 (power-mean) × 26 (kmer embedding) = 256

Gated
A�en�on,
So�max

Element-wise
mul�plica�on

per-row

Channel 1 =
Embedding

dim 1

1 × 214 × 256
[H × W × C]

e

K

Posi�onal A�en�on

16384 × 256

1D-Conv, 1×9, 
kernels=128,
stride=1,
padding=0,
Dropout, ReLU

1D-Avg
Pooling,
1 × 2

1D-Conv, 1×9, 
kernels=128,
stride=1,
padding=0,
Dropout, ReLU

Channels: 128

1D-Conv, 1×5, 
kernels=128, 
stride=1,
padding=0, ReLU
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Log So�max

1D-Avg
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1 × 2
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1 × 2
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padding=0, ReLU
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1 × 2

FC1

16384 × 1

c�on
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Fig. 2. Overview of the deep CNN-based classification model. The figure shows operations and shapes of transformed data. The operations follow from the top-left to the bot-

tom-right. After applying attention, the bags are reshaped into a 3D tensor where each embedding dimension becomes a channel. A series of convolution layers is applied be-

fore classification. FCi represents the ith fully connected layer
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score lower than a predefined quality-threshold (20 in our case). If
30% (threshold parameter) of the bases are low quality, then the
read is removed. fastp then merges paired-end reads based on the
overlapping information. It tries to find an overlap between the
forward-read to the reverse complement of the reverse-read. This is
performed for each pair in parallel. If the length of the overlapping
region is lower than 30 (threshold parameter) and the number of
mismatches within the overlap is higher than 20% (threshold par-
ameter) of the overlapping length, then fastp removes the read.
Otherwise, a merged sequence is created from each paired-end read.
This process creates a single FASTA file with the merged sequences.

4.3 Evaluation metrics
We evaluate the success of our MIL-based approach in several ways.
The simplest measure is accuracy which measures the percentage of
samples that are classified correctly. We also use the AUC-ROC,
which is the plot of false-positive rate versus true-positive rate. We
repeated each experiment 10 times and calculated the margin of
error for the mean with 95% confidence interval. The margin of
error can be calculated as:

ME ¼ t½1�a=2;n�1� �
rsffiffiffi

n
p (9)

where ð1� aÞ is the significance level, t½1�a=2;n�1� is critical value of
the t distribution with n – 1 degrees of freedom for an area of a=2
for the upper tail, rs is the sample standard deviation and n is the
sample size.

4.4 Software and hardware
We implemented the kmer embedding and the deep CNN model
using PyTorch (https://pytorch.org/) a popular Python-based open-
source deep-learning framework. For the Mini-batch KMeans, we
used Scikit-learn (Pedregosa et al., 2011). We used the ARGO com-
puting cluster configured with dual Intel Xeon 28 core CPUs, 1.5 TB
RAM and four Nvidia v100 GPUs each with 32GB VRAM available
at George Mason University (http://wiki.orc.gmu.edu/index.php/
About_ARGO).

5 Discussion

5.1 Comparative analysis
Table 2 shows the comparison of mean accuracies and mean AUC-
ROC values with margin of errors from different approaches for 10-
fold cross validations on the metagenomic datasets used in this
article. We compare our proposed approach, IDMIL with non-MIL-
based approaches such as MetAML (Pasolli et al., 2016) and PLG–
ABD (Nguyen et al., 2017). We also compare IDMIL with some of
the popular MIL approaches such as miSVM (Andrews et al., 2003),
MISVM (Andrews et al., 2003), sbMIL (Bunescu and Mooney,
2007), GICF (Kotzias et al., 2015) and AttMIL (Ilse, 2018). All of
these approaches are briefly discussed in Section 1. Among these
approaches miSVM, MISVM, sbMIL and GICF were developed to
handle numeric data and most of them rely on costly kernel compu-
tation in the instance space. We used the publicly available open-
source (https://github.com/garydoranjr/misvm) implementations of
these models. For the AttMIL, we used the author provided source
code (https://github.com/AMLab-Amsterdam/AttentionDeepMIL).
To run these MIL algorithms in our problem setup, we used our

proposed instance and bag representations (Section 3.4) as input to
these MIL approaches. We observe that our proposed, IDMIL sig-
nificantly outperforms all the baseline approaches used in this
article.

Note: Bold texts indicate comparatively better performances.
When predicting liver cirrhosis disease IDMIL has achieved

91.7% accuracy and 95.1% AUC-ROC which is better than the
non-MIL-based approaches, i.e. MetAML (87.7% accuracy, 94.5%
AUC-ROC), PLG–ABD (89.1% accuracy, 91.4% AUC-ROC) and
other nondeep-learning-based MIL approaches such as GICF
(81.2% accuracy, 84.7% AUC-ROC) as well as deep-learning-based
MIL approach AttMIL (86.4% accuracy, 88.1% AUC-ROC). We
see that other MIL-based approaches provide competitive predictive
performance compared to the non-MIL approaches. This shows the
effectiveness of our proposed instance and bag generation mechan-
ism as well as the effectiveness of the MIL paradigm in predicting
disease from large-scale DNA sequence data.

In this article, we only focus on the DNA sequence data for dis-
ease predictions. IDMIL performs well with only the DNA sequence
data compared to other approaches. However, factors other than
the microbial composition can affect health conditions. For obesity
and T2D datasets, all approaches showed lower predictive perform-
ances compared to the other datasets. Possible reasons may include
more subtle shifts in microbial diversity from a healthy state to obes-
ity or T2D compared to other diseases. External factors such as
medication, living style and diet (Pasolli et al., 2016) may play key
role in identifying these diseases. Therefore, the type of disease is an
important factor impacting the predictive performance. IDMIL’s
better performance can be attributed to:

• Noise reduction: The TF–IDF-based pruning removes kmers that

are likely to be noise. The kmer-embedding considers the suffix and

prefix reducing the effects of few nucleotide changes among the

kmers. Instances are represented as cluster centroids which reduces

dependency on a single sequence. The initial attention mechanism

only prioritizes instances that help to classify the sample accurately.

As a result, the effects of nondiscriminative instances are reduced.
• Data utilization: IDMIL takes the raw sequences as the input. It

does not restrict itself by using reference genome sequences or

any knowledge as a priori. Therefore, IDMIL can generalize over

different datasets as well as various sequencing technologies.

Unlike MetAML (Pasolli et al., 2016) and PLG–ABD (Nguyen

et al., 2017), IDMIL avoids microbial profiling prior to predic-

tion and takes full advantage of the vast amount of genomic in-

formation inherent in the whole-metagenomic data.
• Hierarchical feature extraction: The CNN models are proven to

be effective for hierarchically generating the latent features.

Unlike other approaches, deep CNN-based IDMIL learns com-

plex nonlinear relations among these latent features.
• Data augmentation: The data augmentation process and a min-

imal number of learning weights ensure that the model avoids

overfitting and generalizes easily.

5.2 Parameters and sensitivity analysis
We used a grid search on a validation set for model selection. We
train the model with 0.0001 as the learning rate, 500 as the

Table 1. Dataset statistics

Datasets Total samples Unhealthy cases Healthy controls Avg. sequences per-sample (std) (in millions)

Liver cirrhosis 232 118 114 51.6M (30.9M)

Colorectal cancer 121 48 73 60.0M (25.5M)

Inflammatory bowel disease (IBD) 110 25 85 45.2M (18.4M)

Obesity 253 164 89 68.2M (23.2M)

Type-2 diabetes (T2D) 344 170 174 40.2M (11.8M)
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maximum number of iterations and 5 as the batch size. The size of
kmer vocabulary increases exponentially with the length of the
kmers (4k for k-length kmers) which directly affects the runtime of
the kmer-embedding process (Section 3.1). Figure 3a shows the ef-
fect of various kmer-lengths on average AUC-ROC values with the
margin-of-errors from ten repeated trials. We observe that when k’s
value is in the range ½8–10�, we get the steepest ascent in the average
AUC-ROC values. We also observe that the margin-of-error reduces
with increasing value of k. This is because the model better approxi-
mates the sequence reads with long subsequences. The value of
k¼10 is suggestive from our empirical evaluation for high accuracy
and scalability.

Figure 3b shows the effect of various kmer embedding dimen-
sions (increased as the power of 2) on AUC-ROC values. We notice
a sharp increase in AUC-ROC values as we increase the embedding
size from 8 to 64. Further increase in the embedding dimension does
not provide any dramatic improvement in predictive performance
but increases the computational overhead. We observe lower values
of AUC-ROC (Fig. 3c) when the number of clusters is small. This is
because the clustering algorithm forcefully combines dissimilar
sequences in the same cluster when the number of clusters is small
and the bags contain inadequate numbers of instances. However,
selecting a large number of clusters result in near-empty clusters and
higher computational runtime. Overall, an embedding dimension of
64ð26Þ and a total of 16 384ð214Þ clusters per sample provided the
best results for all the datasets used in this article.

5.3 Interpreting instance attentions
The attention mechanism enables us to assign a weight ai 2 ½0;1� to
each instance position i in the bags. A higher value of ai implies that
the instances in position i of the bags contribute more to the class
label Y ¼ 1 (unhealthy) than the class label Y ¼ 0 (healthy), whereas
lower ai implies the opposite. Our experiments show that highly
attended sequence groups come from some of the well-known
pathogens. After training the model, we take the instances from the
unhealthy bags of the training set where the instance position
receives attention higher than 0.5. Each instance maps to a group of
similar DNA sequences. We use the basic local alignment search
tool (Altschul et al., 1990) to identify the species represented by
those clusters. An identified species receives the attention of the clus-
ter it belongs to. If a species is identified in multiple clusters then we
take the average of the attention weights.

We show two use cases using the instance-level interpretation for
liver cirrhosis and colorectal cancer disease. Figure 4a shows some
of the identified species with high attention weights for liver cirrho-
sis diseases. Veillonella dispar, Klebsiella pneumoniae and
Streptococcus anginosus are some of the known pathogens for liver
cirrhosis (Pasolli et al., 2016; Qin et al., 2014). Fusobacterium
nucleatum, Peptostreptococcus stomatis, Gemella morbillorum and
others (Fig. 4b) are found to be associated with colorectal cancer
disease (Kwong et al., 2018; Zeller et al., 2014). IDMIL’s user can
utilize the attention-based ranking by pruning the lowly attended
sequences and use any assembler and profiling tool on the remaining
highly attended sequences. The pruning reduces much of the

Table 2. Comparison of mean performances (10-fold cross validation) on different datasets with the margin of errors for 10 repeated trials.

Methods Cirrhosis Colorectal IBD Obesity T2D

Accuracy AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC

MetAML (Pasolli et al., 2016) 0.877 0.945 0.805 0.873 0.809 0.809 0.644 0.655 0.664 0.744

(0.042) (0.029) (0.061) (0.053) (0.042) (0.044) (0.036) (0.071) (0.054) (0.048)

PLG–ABD (Nguyen et al., 2017) 0.891 0.914 0.742 0.815 0.836 0.847 0.660 0.675 0.626 0.691

(0.031) (0.026) (0.049) (0.042) (0.030) (0.016) (0.032) (0.042) (0.048) (0.039)

miSVM (Andrews et al., 2003) 0.772 0.815 0.692 0.743 0.742 0.759 0.594 0.617 0.584 0.611

(0.038) (0.041) (0.036) (0.042) (0.029) (0.044) (0.027) (0.041) (0.042) (0.041)

MISVM (Andrews et al., 2003) 0.796 0.826 0.664 0.728 0.739 0.748 0.576 0.592 0.592 0.628

(0.022) (0.019) (0.038) (0.051) (0.036) (0.051) (0.026) (0.037) (0.035) (0.038)

sbMIL (Bunescu and Mooney, 2007) 0.782 0.818 0.714 0.753 0.752 0.763 0.602 0.618 0.597 0.612

(0.042) (0.029) (0.035) (0.048) (0.021) (0.032) (0.038) (0.026) (0.016) (0.017)

GICF (Kotzias et al., 2015) 0.812 0.847 0.738 0.785 0.772 0.792 0.624 0.648 0.622 0.684

(0.029) (0.032) (0.029) (0.037) (0.028) (0.035) (0.038) (0.024) (0.021) (0.033)

AttMIL (Ilse, 2018) 0.864 0.881 0.792 0.826 0.813 0.847 0.688 0.724 0.724 0.759

(0.018) (0.024) (0.021) (0.033) (0.025) (0.031) (0.026) (0.019) (0.029) (0.037)

IDMIL 0.917 0.951 0.845 0.895 0.867 0.882 0.767 0.793 0.782 0.816

(0.027) (0.021) (0.042) (0.035) (0.024) (0.024) (0.047) (0.028) (041) (0.036)

Note: Bold texts indicate comparatively better performances.

Fig. 3. Sensitivity of AUC-ROC with respect to (a) kmer-lengths, (b) kmer embedding dimensions and (c) number of clusters in Mini-batch KMeans. Each experiment is per-

formed a total 10 times and the average AUC-ROC values are reported with the margin of errors. Cutoff values used in this article are shown using vertical dashed lines with

the corresponding values
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computational burden from subsequent analysis. Our proposed ap-
proach does not restrict how microbes will be quantified in a cohort.
It uses the disease classifications to infer which of the sequences can
be ignored before proceeding to the microbial quantification. This
allows for the discovery of novel microbes, better data utilization
and easy generalization. This shows that IDMIL is also interpret-
able, and it has clinical significance.

6 Conclusion

We demonstrate a MIL-based disease prediction method from large-
scale metagenomic data harnessing the hierarchical latent feature ex-
traction capability of deep CNN. For this purpose, we propose an
efficient, scalable and unsupervised bag-instance representation of
the whole-metagenomic data. Our proposed approach does not re-
quire sequence assembly and microbial profiling before the disease
classification. The data representations are parallel, and the predic-
tion phase involves a minimal number of learning weights which
helps this approach scale with metagenomic data. IDMIL is capable
of fully utilizing the enormous amount of sequence reads in the
whole-metagenomic data while providing high accuracy and effi-
ciency. IDMIL can infer associations between DNA sequences and
diseases using the attention mechanism which can lead to efficient
microbial profiling and finding associations between microbes and
diseases. Our proposed model is highly parallel in nature and easy to
replicate in any distributed system. More generally, we have shown
the effectiveness of MIL methods within metagenomics. The pro-
posed approach has shown both strong results and significant poten-
tial for further improvements.
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